Using soil bacteria to facilitate phytoremediation

In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work ha...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology advances Vol. 28; no. 3; pp. 367 - 374
Main Author Glick, Bernard R.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Inc 01.05.2010
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work has been done under more controlled laboratory conditions and not in the field. As an adjunct to various phytoremediation strategies and as part of an effort to make this technology more efficacious, a number of scientists have begun to explore the possibility of using various soil bacteria together with plants. These bacteria include biodegradative bacteria, plant growth-promoting bacteria and bacteria that facilitate phytoremediation by other means. An overview of bacterially assisted phytoremediation is provided here for both organic and metallic contaminants, with the intent of providing some insight into how these bacteria aid phytoremediation so that future field studies might be facilitated.
AbstractList In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work has been done under more controlled laboratory conditions and not in the field. As an adjunct to various phytoremediation strategies and as part of an effort to make this technology more efficacious, a number of scientists have begun to explore the possibility of using various soil bacteria together with plants. These bacteria include biodegradative bacteria, plant growth-promoting bacteria and bacteria that facilitate phytoremediation by other means. An overview of bacterially assisted phytoremediation is provided here for both organic and metallic contaminants, with the intent of providing some insight into how these bacteria aid phytoremediation so that future field studies might be facilitated.
In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work has been done under more controlled laboratory conditions and not in the field. As an adjunct to various phytoremediation strategies and as part of an effort to make this technology more efficacious, a number of scientists have begun to explore the possibility of using various soil bacteria together with plants. These bacteria include biodegradative bacteria, plant growth-promoting bacteria and bacteria that facilitate phytoremediation by other means. An overview of bacterially assisted phytoremediation is provided here for both organic and metallic contaminants, with the intent of providing some insight into how these bacteria aid phytoremediation so that future field studies might be facilitated.In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the environment, especially from soil. These phytoremediation approaches have come a long way in a short time. However, the majority of this work has been done under more controlled laboratory conditions and not in the field. As an adjunct to various phytoremediation strategies and as part of an effort to make this technology more efficacious, a number of scientists have begun to explore the possibility of using various soil bacteria together with plants. These bacteria include biodegradative bacteria, plant growth-promoting bacteria and bacteria that facilitate phytoremediation by other means. An overview of bacterially assisted phytoremediation is provided here for both organic and metallic contaminants, with the intent of providing some insight into how these bacteria aid phytoremediation so that future field studies might be facilitated.
Author Glick, Bernard R.
Author_xml – sequence: 1
  givenname: Bernard R.
  surname: Glick
  fullname: Glick, Bernard R.
  email: glick@sciborg.uwaterloo.ca
  organization: Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22685053$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20149857$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtrHDEQhIVxsNePvxDmYpLLbFqPGWkuhsTkBYZc4rPo0fTYWmZHG0lr8L-Pll1j8CHOqaH5qpquOmPHc5iJsYrDkgNvP62WvQ-Z3AMOj0sBZQ1iCcCP2IIbLWtuuu6YLUBLVXe6gVN2ltKqAA008oSdFonqTKMXTNwlP99XKfip6tFlih6rHKoRnZ98xkzV5uEph0hrGjxmH-YL9m7EKdHlYZ6zu29ff9_8qG9_ff958_m2do1UuXYKe9XR0A39KDiXfOR9L5yEoXUjgtYDKtcaNCBbNLznWmlqDW9oaI0DKc_Zh73vJoY_W0rZrn1yNE04U9gmq1ULIIRq3ialLO8WvpAf_0lyrUGCAi0K-v6Abvvyu91Ev8b4ZJ-zK8DVAcDkcBojzs6nF060Zhd34a73nIshpUijdbtgS5I5op8sB7sr1a7sS6m7K2BB2NJZMTCvDJ5v_If0y15KpahHT9Em52l2pctILtsh-LdN_gK3vsBH
CODEN BIADDD
CitedBy_id crossref_primary_10_1016_j_chemosphere_2013_01_025
crossref_primary_10_1007_s11356_019_05391_9
crossref_primary_10_1007_s11356_017_0029_8
crossref_primary_10_1007_s11284_018_1630_0
crossref_primary_10_3390_ijms18102026
crossref_primary_10_1007_s13205_015_0283_8
crossref_primary_10_1007_s12010_013_0244_9
crossref_primary_10_1016_S1002_0160_17_60454_5
crossref_primary_10_1007_s11368_021_02934_x
crossref_primary_10_1038_s41598_023_39852_6
crossref_primary_10_1002_jobm_201800656
crossref_primary_10_1007_s13762_014_0614_z
crossref_primary_10_1007_s11104_020_04823_7
crossref_primary_10_5897_AJMR2017_8469
crossref_primary_10_1016_j_chemosphere_2022_135262
crossref_primary_10_5812_jhealthscope_62153
crossref_primary_10_1016_j_chemosphere_2018_11_041
crossref_primary_10_1080_19443994_2016_1157043
crossref_primary_10_1016_j_jenvman_2019_109476
crossref_primary_10_3389_fmicb_2023_1272591
crossref_primary_10_1007_s40003_019_00407_9
crossref_primary_10_1007_s11157_013_9313_3
crossref_primary_10_3389_fmicb_2017_01385
crossref_primary_10_1016_j_jenvman_2023_119207
crossref_primary_10_1080_21622515_2016_1164252
crossref_primary_10_1007_s11368_015_1346_5
crossref_primary_10_1016_j_envpol_2020_113924
crossref_primary_10_1002_jctb_6145
crossref_primary_10_1016_j_marpolbul_2017_07_072
crossref_primary_10_1016_j_micres_2015_03_013
crossref_primary_10_3389_fmicb_2017_00172
crossref_primary_10_1007_s11356_019_05764_0
crossref_primary_10_1139_er_2017_0022
crossref_primary_10_1016_j_jwpe_2020_101688
crossref_primary_10_1039_C8RA06758A
crossref_primary_10_1016_j_ecoleng_2017_12_033
crossref_primary_10_1007_s11368_019_02358_8
crossref_primary_10_1007_s42729_024_02165_2
crossref_primary_10_1007_s11104_010_0482_3
crossref_primary_10_1016_j_chemosphere_2013_02_055
crossref_primary_10_3390_su12093795
crossref_primary_10_3390_plants10122659
crossref_primary_10_1080_15226514_2015_1109600
crossref_primary_10_1016_j_ecoleng_2016_11_051
crossref_primary_10_1134_S1021443718010077
crossref_primary_10_1016_j_biteb_2018_06_001
crossref_primary_10_1016_j_ecoenv_2015_10_012
crossref_primary_10_1016_j_envpol_2021_116572
crossref_primary_10_1007_s11356_019_07256_7
crossref_primary_10_1016_j_rser_2015_09_078
crossref_primary_10_1016_j_stress_2023_100259
crossref_primary_10_1016_j_jhazmat_2012_10_063
crossref_primary_10_1038_srep20245
crossref_primary_10_3390_ijms23010214
crossref_primary_10_1016_j_scitotenv_2019_04_225
crossref_primary_10_1016_j_sjbs_2018_01_014
crossref_primary_10_1002_jobm_201500010
crossref_primary_10_1016_j_sajb_2019_01_006
crossref_primary_10_1016_j_chemosphere_2018_11_021
crossref_primary_10_1016_j_jgeb_2015_02_001
crossref_primary_10_1007_s11356_014_3010_9
crossref_primary_10_1016_j_eti_2020_100692
crossref_primary_10_1007_s10529_014_1466_9
crossref_primary_10_1007_s11356_017_8366_1
crossref_primary_10_1016_j_soilbio_2016_08_021
crossref_primary_10_1016_j_bcab_2018_11_009
crossref_primary_10_1080_15226514_2018_1474437
crossref_primary_10_1089_ind_2012_0028
crossref_primary_10_1016_j_jclepro_2021_129015
crossref_primary_10_1590_S1415_475738420150053
crossref_primary_10_1016_j_jece_2014_07_017
crossref_primary_10_1016_j_jenvman_2012_02_030
crossref_primary_10_1016_j_plaphy_2019_08_015
crossref_primary_10_1016_j_jhazmat_2015_07_006
crossref_primary_10_1007_s11270_021_05430_7
crossref_primary_10_3389_fmicb_2019_01211
crossref_primary_10_1007_s00284_020_02208_8
crossref_primary_10_1007_s13762_022_04669_9
crossref_primary_10_1016_j_eti_2016_04_006
crossref_primary_10_3389_fmicb_2020_00051
crossref_primary_10_1007_s11274_016_2176_3
crossref_primary_10_1007_s00284_019_01703_x
crossref_primary_10_3389_fpls_2019_00060
crossref_primary_10_1088_1755_1315_1215_1_012047
crossref_primary_10_1007_s00253_019_10222_5
crossref_primary_10_1016_j_chemosphere_2020_125932
crossref_primary_10_1080_15226514_2019_1633253
crossref_primary_10_1016_j_chemosphere_2012_07_005
crossref_primary_10_3390_ijms232113094
crossref_primary_10_1007_s13762_013_0412_z
crossref_primary_10_1016_j_scitotenv_2017_04_084
crossref_primary_10_1007_s10661_016_5211_9
crossref_primary_10_1016_j_chemosphere_2019_125353
crossref_primary_10_3390_ijerph18189867
crossref_primary_10_1016_j_micres_2024_127831
crossref_primary_10_1016_j_bcab_2023_102898
crossref_primary_10_1016_S1002_0160_17_60347_3
crossref_primary_10_1111_1462_2920_12701
crossref_primary_10_1007_s11356_014_2848_1
crossref_primary_10_1016_j_scs_2018_12_009
crossref_primary_10_1080_03650340_2016_1235781
crossref_primary_10_1007_s00248_021_01824_6
crossref_primary_10_1016_j_ecoenv_2023_114764
crossref_primary_10_1016_j_marpolbul_2016_06_070
crossref_primary_10_3390_jox13020019
crossref_primary_10_1016_j_apsoil_2012_01_006
crossref_primary_10_1016_j_chemosphere_2020_128195
crossref_primary_10_3390_w12030860
crossref_primary_10_1016_j_ibiod_2024_105941
crossref_primary_10_1016_j_chemosphere_2011_05_002
crossref_primary_10_1016_j_plaphy_2020_04_016
crossref_primary_10_1016_j_soilbio_2020_107879
crossref_primary_10_1002_clen_201100715
crossref_primary_10_1016_j_chemosphere_2019_125365
crossref_primary_10_1016_j_jes_2015_12_034
crossref_primary_10_1007_s11356_024_34706_8
crossref_primary_10_1080_15226514_2014_910172
crossref_primary_10_1080_15320383_2017_1348336
crossref_primary_10_3389_fpls_2020_00359
crossref_primary_10_3389_fpls_2016_00101
crossref_primary_10_1080_17429145_2017_1397203
crossref_primary_10_1002_jctb_6077
crossref_primary_10_1016_j_apsoil_2017_10_003
crossref_primary_10_3389_fpls_2022_882228
crossref_primary_10_1016_j_eti_2021_101419
crossref_primary_10_1016_j_jece_2023_110055
crossref_primary_10_1016_j_envexpbot_2020_104161
crossref_primary_10_1007_s11356_022_19939_9
crossref_primary_10_1016_j_chemosphere_2013_01_082
crossref_primary_10_22207_JPAM_17_3_59
crossref_primary_10_1016_j_jenvman_2018_06_025
crossref_primary_10_1016_j_apsoil_2014_04_011
crossref_primary_10_3390_ijms20235883
crossref_primary_10_1016_j_marpolbul_2016_06_036
crossref_primary_10_1007_s42398_019_00054_4
crossref_primary_10_3389_fmicb_2016_01836
crossref_primary_10_3389_fsufs_2020_593568
crossref_primary_10_2134_jeq2011_0170
crossref_primary_10_3390_plants11151946
crossref_primary_10_1016_j_ejsobi_2014_02_012
crossref_primary_10_1016_j_geoderma_2013_03_014
crossref_primary_10_1007_s11104_023_06215_z
crossref_primary_10_1016_j_jhazmat_2015_09_044
crossref_primary_10_1128_mSphere_00376_21
crossref_primary_10_1016_j_crmicr_2024_100333
crossref_primary_10_1016_j_ecoenv_2019_02_074
crossref_primary_10_1007_s00128_018_2518_y
crossref_primary_10_1007_s00572_018_0861_9
crossref_primary_10_1007_s13762_015_0757_6
crossref_primary_10_1186_s12864_018_5130_y
crossref_primary_10_1016_j_jenvman_2014_04_027
crossref_primary_10_1016_j_plaphy_2020_04_039
crossref_primary_10_1016_j_ecss_2013_01_016
crossref_primary_10_1007_s11356_011_0538_9
crossref_primary_10_1016_j_jprot_2014_04_029
crossref_primary_10_1111_1751_7915_12057
crossref_primary_10_1007_s11356_024_33182_4
crossref_primary_10_3390_microorganisms12101945
crossref_primary_10_3390_w14020142
crossref_primary_10_3389_fpls_2018_01500
crossref_primary_10_1080_09593330_2021_1998229
crossref_primary_10_3390_ijerph18147358
crossref_primary_10_1007_s11270_015_2537_9
crossref_primary_10_1007_s13205_024_04066_8
crossref_primary_10_1080_09593330_2012_660646
crossref_primary_10_1016_j_cej_2020_125657
crossref_primary_10_7745_KJSSF_2011_44_1_058
crossref_primary_10_1007_s11356_016_7930_4
crossref_primary_10_1016_j_jece_2022_107141
crossref_primary_10_3389_fpls_2018_00452
crossref_primary_10_1080_07388551_2021_1888066
crossref_primary_10_1007_s11356_015_4074_x
crossref_primary_10_1016_j_bcab_2024_103030
crossref_primary_10_1016_j_scitotenv_2018_02_037
crossref_primary_10_3390_agronomy9090529
crossref_primary_10_1007_s11356_013_2364_8
crossref_primary_10_1080_15320383_2016_1138929
crossref_primary_10_1080_15320383_2013_786020
crossref_primary_10_1016_j_ecoenv_2013_04_005
crossref_primary_10_3389_fpls_2016_01487
crossref_primary_10_3390_microorganisms12112137
crossref_primary_10_3390_ijerph15071330
crossref_primary_10_1016_j_chemosphere_2014_04_110
crossref_primary_10_1016_j_jenvman_2018_07_057
crossref_primary_10_3390_su14063353
crossref_primary_10_1016_j_soilbio_2013_01_012
crossref_primary_10_1007_s11270_019_4325_4
crossref_primary_10_1016_j_scitotenv_2022_154136
crossref_primary_10_1016_j_watres_2016_03_029
crossref_primary_10_1071_CP21322
crossref_primary_10_5194_soil_10_551_2024
crossref_primary_10_1016_j_chemosphere_2012_09_045
crossref_primary_10_1038_s41598_019_41946_z
crossref_primary_10_1016_j_nbt_2016_09_006
crossref_primary_10_1016_j_scitotenv_2014_06_040
crossref_primary_10_7717_peerj_8589
crossref_primary_10_1016_j_ibiod_2015_12_013
crossref_primary_10_1080_15226514_2018_1537245
crossref_primary_10_3390_w11101962
crossref_primary_10_1016_j_micres_2020_126439
crossref_primary_10_3390_su151914643
crossref_primary_10_1007_s10661_024_12414_7
crossref_primary_10_3389_fpls_2015_00080
crossref_primary_10_1080_15226514_2017_1413334
crossref_primary_10_1016_j_resmic_2011_09_003
crossref_primary_10_1080_15226514_2017_1413332
crossref_primary_10_1134_S0003683818080045
crossref_primary_10_1080_15226514_2017_1413331
crossref_primary_10_3390_plants12071515
crossref_primary_10_3390_agronomy11102064
crossref_primary_10_1038_srep22145
crossref_primary_10_3390_plants9081002
crossref_primary_10_1080_15226514_2015_1045129
crossref_primary_10_1016_j_jenvman_2013_12_028
crossref_primary_10_3389_fmicb_2018_01853
crossref_primary_10_1016_j_ecoleng_2018_03_009
crossref_primary_10_3390_ijms20143412
crossref_primary_10_1002_tox_22100
crossref_primary_10_3390_su12145559
crossref_primary_10_1016_j_chemosphere_2016_07_104
crossref_primary_10_1007_s13205_014_0206_0
crossref_primary_10_1016_j_scitotenv_2022_156484
crossref_primary_10_1016_j_envexpbot_2015_05_001
crossref_primary_10_1002_jctb_3730
crossref_primary_10_1021_es503880t
crossref_primary_10_1016_j_ecoleng_2015_05_027
crossref_primary_10_1016_j_chemosphere_2014_06_078
crossref_primary_10_1134_S0026261716030097
crossref_primary_10_1016_j_biotechadv_2010_12_001
crossref_primary_10_1007_s42729_020_00201_5
crossref_primary_10_1016_j_envpol_2020_114801
crossref_primary_10_1515_opag_2019_0066
crossref_primary_10_3389_fmicb_2015_01450
crossref_primary_10_1080_15226514_2017_1337072
crossref_primary_10_1371_journal_pone_0208150
crossref_primary_10_1016_j_jhazmat_2012_06_013
crossref_primary_10_1016_j_ecss_2021_107488
crossref_primary_10_1007_s00284_013_0303_z
crossref_primary_10_1080_09593330_2014_983990
crossref_primary_10_1007_s11104_020_04569_2
crossref_primary_10_1016_j_jhazmat_2013_09_062
crossref_primary_10_1007_s11270_013_1645_7
crossref_primary_10_2166_ws_2022_312
crossref_primary_10_4236_fns_2019_1012102
crossref_primary_10_3390_microorganisms10122479
crossref_primary_10_1016_j_ecoenv_2018_08_069
crossref_primary_10_3389_fpls_2016_00075
crossref_primary_10_1016_j_ecoenv_2016_03_014
crossref_primary_10_1007_s11270_024_07538_y
crossref_primary_10_3390_microorganisms10122462
crossref_primary_10_1016_j_chemosphere_2019_05_193
crossref_primary_10_3390_plants12081653
crossref_primary_10_1007_s11356_015_5342_5
crossref_primary_10_1016_j_ecoenv_2020_110458
crossref_primary_10_1007_s11356_014_3309_6
crossref_primary_10_1007_s11356_021_15130_8
crossref_primary_10_1016_j_ecoenv_2021_112864
crossref_primary_10_1016_j_envres_2020_110425
crossref_primary_10_1080_15320383_2020_1849017
crossref_primary_10_1016_j_jenvman_2016_02_047
crossref_primary_10_1016_j_ibiod_2018_03_014
crossref_primary_10_1080_15226514_2013_828016
crossref_primary_10_3389_fpls_2015_00032
crossref_primary_10_1007_s11356_013_1997_y
crossref_primary_10_1016_j_jhazmat_2019_121473
crossref_primary_10_1080_15226514_2013_828013
crossref_primary_10_6064_2012_963401
crossref_primary_10_1080_15226514_2018_1460303
crossref_primary_10_1166_sam_2021_4004
crossref_primary_10_3109_17435390_2014_900583
crossref_primary_10_1007_s11104_015_2691_2
crossref_primary_10_1007_s11356_017_9045_y
crossref_primary_10_1007_s11356_023_29033_3
crossref_primary_10_1016_j_chemosphere_2013_10_089
crossref_primary_10_1016_j_jenvman_2017_04_060
crossref_primary_10_1002_rem_21380
crossref_primary_10_1016_j_chemosphere_2018_03_097
crossref_primary_10_1016_j_jksus_2015_05_009
crossref_primary_10_1016_j_apsoil_2024_105309
crossref_primary_10_3390_agriculture14122356
crossref_primary_10_1007_s00203_020_01849_4
crossref_primary_10_3389_fenvs_2023_1251938
crossref_primary_10_1007_s42452_020_04070_6
crossref_primary_10_4236_fns_2019_1012004
crossref_primary_10_1007_s10653_019_00425_0
crossref_primary_10_1016_j_ecoenv_2020_111441
crossref_primary_10_1016_j_bcab_2021_102236
crossref_primary_10_1016_j_scitotenv_2020_137475
crossref_primary_10_1007_s11738_022_03479_3
crossref_primary_10_3389_fmicb_2017_02538
crossref_primary_10_1007_s11356_014_3931_3
crossref_primary_10_1007_s10532_021_09952_z
crossref_primary_10_1007_s00344_016_9583_4
crossref_primary_10_1007_s11368_014_0921_5
crossref_primary_10_1051_matecconf_201817504026
crossref_primary_10_1016_j_envexpbot_2022_104911
crossref_primary_10_1016_j_jhazmat_2020_122661
crossref_primary_10_1016_j_eti_2018_02_011
crossref_primary_10_1007_s11756_021_00804_y
crossref_primary_10_1007_s41348_022_00642_3
crossref_primary_10_1016_j_jgeb_2018_06_004
crossref_primary_10_1016_j_jhazmat_2024_134110
crossref_primary_10_1007_s11356_014_4006_1
crossref_primary_10_2478_ebtj_2022_0017
crossref_primary_10_1016_j_chemosphere_2016_07_026
crossref_primary_10_1016_j_chemosphere_2023_138902
crossref_primary_10_1080_15226514_2017_1374330
crossref_primary_10_1016_j_jenvman_2021_112547
crossref_primary_10_1007_s11738_016_2123_9
crossref_primary_10_3389_fmicb_2019_01892
crossref_primary_10_1007_s11270_012_1357_4
crossref_primary_10_17100_nevbiltek_211001
crossref_primary_10_1007_s11356_021_17353_1
crossref_primary_10_1007_s11356_011_0679_x
crossref_primary_10_1080_15226514_2012_735287
crossref_primary_10_1016_j_envpol_2022_119775
crossref_primary_10_1016_j_envres_2016_01_019
crossref_primary_10_1021_es504956a
crossref_primary_10_1093_femsle_fnaa117
crossref_primary_10_1007_s11270_014_2232_2
crossref_primary_10_1080_07388551_2017_1304357
crossref_primary_10_3390_app11041923
crossref_primary_10_3390_min12020111
crossref_primary_10_1016_j_marpolbul_2017_02_008
crossref_primary_10_1016_j_scitotenv_2023_162327
crossref_primary_10_1016_j_btre_2019_e00374
crossref_primary_10_1016_j_heliyon_2022_e09009
crossref_primary_10_3389_fenvs_2018_00044
crossref_primary_10_3390_su142214997
crossref_primary_10_1007_s00248_016_0891_9
crossref_primary_10_1016_j_biocontrol_2020_104244
crossref_primary_10_3389_fenvs_2021_661423
crossref_primary_10_1080_03067319_2021_2014826
crossref_primary_10_1080_15226514_2011_552928
crossref_primary_10_1007_s11270_011_0889_3
crossref_primary_10_1007_s12010_022_04177_z
crossref_primary_10_1007_s00284_017_1197_y
crossref_primary_10_1016_S1002_0160_15_60084_4
crossref_primary_10_1007_s00284_021_02408_w
crossref_primary_10_1007_s13762_023_05414_6
crossref_primary_10_1016_j_ibiod_2013_10_017
crossref_primary_10_1016_S1002_0160_20_60091_1
crossref_primary_10_1080_03650340_2020_1735628
crossref_primary_10_1016_j_biteb_2023_101518
crossref_primary_10_1016_j_ecoenv_2019_06_024
crossref_primary_10_1186_1471_2229_14_51
crossref_primary_10_1007_s11356_015_4935_3
crossref_primary_10_3390_microorganisms10071380
crossref_primary_10_1007_s11306_020_01665_3
crossref_primary_10_3390_ijms161025576
crossref_primary_10_1080_15226514_2024_2420328
crossref_primary_10_1038_s41598_017_05834_8
crossref_primary_10_1007_s13762_013_0244_x
crossref_primary_10_1080_15226514_2020_1780410
crossref_primary_10_1016_j_ecoenv_2019_109382
crossref_primary_10_1111_ppl_13171
crossref_primary_10_1016_j_jhazmat_2014_08_005
crossref_primary_10_1002_clen_201700548
crossref_primary_10_1088_1755_1315_1060_1_012044
crossref_primary_10_1088_1755_1315_170_5_052033
crossref_primary_10_1371_journal_pone_0106618
crossref_primary_10_1371_journal_pone_0203285
crossref_primary_10_1007_s00284_018_1515_z
crossref_primary_10_1016_j_scitotenv_2015_10_061
crossref_primary_10_1038_s41598_021_86076_7
crossref_primary_10_1016_j_plgene_2019_100175
crossref_primary_10_1007_s13762_018_2165_1
crossref_primary_10_1016_j_jhazmat_2013_01_067
crossref_primary_10_3390_agronomy3040595
crossref_primary_10_1016_j_jenvman_2022_115123
crossref_primary_10_1007_s11356_016_7982_5
crossref_primary_10_1016_j_chemosphere_2016_03_120
crossref_primary_10_1093_jxb_erac184
crossref_primary_10_5897_AJB2017_15930
crossref_primary_10_3389_fpls_2022_993301
crossref_primary_10_1016_j_ecoenv_2021_112124
crossref_primary_10_1080_15320383_2019_1634001
crossref_primary_10_1007_s13213_016_1235_1
crossref_primary_10_1080_15226514_2017_1290580
crossref_primary_10_3389_fenvs_2018_00137
crossref_primary_10_1016_j_jhazmat_2016_05_034
crossref_primary_10_1080_07388551_2022_2129579
crossref_primary_10_1007_s00203_020_02140_2
crossref_primary_10_17816_snv20162109
crossref_primary_10_1016_j_jhazmat_2016_12_009
crossref_primary_10_1016_j_biotechadv_2011_04_006
crossref_primary_10_1016_j_ibiod_2013_01_003
crossref_primary_10_1007_s11356_015_4530_7
crossref_primary_10_1016_j_envint_2012_12_009
crossref_primary_10_1007_s42729_021_00702_x
crossref_primary_10_1080_15226514_2016_1183576
crossref_primary_10_1007_s13762_023_05078_2
crossref_primary_10_1111_lam_12185
crossref_primary_10_1016_j_jenvman_2012_05_005
crossref_primary_10_1371_journal_pone_0101355
crossref_primary_10_1080_15226514_2016_1216076
crossref_primary_10_1007_s11356_021_15948_2
crossref_primary_10_1080_15226514_2017_1290579
crossref_primary_10_3390_microorganisms8020153
crossref_primary_10_1007_s11356_021_12583_9
crossref_primary_10_1007_s13205_022_03212_4
crossref_primary_10_3390_microorganisms9122545
crossref_primary_10_2323_jgam_2018_11_004
crossref_primary_10_1007_s11356_014_3596_y
crossref_primary_10_3389_fenvs_2023_1157415
crossref_primary_10_1016_j_ecoleng_2017_08_027
crossref_primary_10_1080_15226514_2016_1183566
crossref_primary_10_1007_s11120_017_0357_z
crossref_primary_10_1016_j_ecoenv_2018_03_013
crossref_primary_10_3390_microorganisms7090348
crossref_primary_10_3390_agronomy10040547
crossref_primary_10_3390_ijerph20064964
crossref_primary_10_1016_j_jenvman_2013_07_001
crossref_primary_10_1029_2019WR025432
crossref_primary_10_1016_j_chemosphere_2013_03_008
crossref_primary_10_3389_fmicb_2019_00982
crossref_primary_10_1016_j_chemosphere_2012_02_036
crossref_primary_10_1007_s11356_014_2852_5
crossref_primary_10_1080_17429145_2018_1441450
crossref_primary_10_1016_j_jenvman_2019_05_069
crossref_primary_10_1016_j_micres_2017_11_004
crossref_primary_10_1016_S1001_0742_11_60776_6
crossref_primary_10_1007_s00253_011_3483_0
crossref_primary_10_1016_j_clet_2024_100845
crossref_primary_10_1016_j_jhazmat_2010_12_069
crossref_primary_10_3390_su14127083
crossref_primary_10_1007_s10532_012_9577_2
crossref_primary_10_1080_10643389_2011_592735
crossref_primary_10_1111_1442_1984_12039
crossref_primary_10_1016_j_plaphy_2017_08_021
crossref_primary_10_1088_1755_1315_418_1_012057
crossref_primary_10_1007_s00203_022_02780_6
crossref_primary_10_1016_j_micres_2018_12_004
crossref_primary_10_1080_11263504_2015_1022238
crossref_primary_10_1007_s11368_016_1498_y
crossref_primary_10_1111_1462_2920_12007
crossref_primary_10_1007_s42729_021_00591_0
crossref_primary_10_3390_app12031231
crossref_primary_10_1016_j_chemosphere_2017_06_025
crossref_primary_10_1080_15226514_2019_1606782
crossref_primary_10_1016_j_scitotenv_2016_09_218
crossref_primary_10_1139_er_2019_0020
crossref_primary_10_1016_j_ecoenv_2019_109570
crossref_primary_10_1016_j_funeco_2013_08_001
crossref_primary_10_1080_15226514_2018_1523870
crossref_primary_10_1016_j_jhazmat_2014_08_057
crossref_primary_10_1080_15226514_2012_670315
crossref_primary_10_1016_j_jenvman_2016_04_055
crossref_primary_10_1080_15226514_2024_2372688
crossref_primary_10_1016_j_crvi_2016_04_015
crossref_primary_10_1016_j_eti_2021_102182
crossref_primary_10_7717_peerj_10109
crossref_primary_10_1016_j_geoderma_2018_07_025
crossref_primary_10_1007_s11104_013_1952_1
crossref_primary_10_1080_15287394_2015_1051205
crossref_primary_10_1007_s11356_020_07885_3
crossref_primary_10_1080_15226514_2012_751354
crossref_primary_10_1007_s11356_021_13585_3
crossref_primary_10_1016_j_jhazmat_2010_12_040
crossref_primary_10_1016_S1002_0160_18_60039_6
crossref_primary_10_3389_fpls_2014_00640
crossref_primary_10_3390_agronomy11101987
crossref_primary_10_7717_peerj_15997
crossref_primary_10_3390_f14030654
crossref_primary_10_1016_j_scitotenv_2019_05_414
crossref_primary_10_1080_01904167_2018_1500587
crossref_primary_10_3389_fmicb_2022_912701
crossref_primary_10_1016_j_watres_2013_08_011
crossref_primary_10_1080_15226514_2017_1303813
crossref_primary_10_1016_j_scitotenv_2017_12_169
crossref_primary_10_1016_j_apsoil_2012_09_009
crossref_primary_10_1016_j_jece_2022_107948
crossref_primary_10_1016_j_chemosphere_2021_132555
crossref_primary_10_1080_10643389_2024_2438444
crossref_primary_10_3389_fpls_2014_00755
crossref_primary_10_1139_er_2018_0023
crossref_primary_10_1007_s13205_021_02996_1
crossref_primary_10_1007_s12038_019_9936_9
crossref_primary_10_1016_j_cpb_2020_100173
crossref_primary_10_1007_s11356_013_2195_7
crossref_primary_10_1007_s11270_013_1696_9
crossref_primary_10_1104_pp_15_00284
crossref_primary_10_2323_jgam_2016_04_007
crossref_primary_10_1016_j_chemosphere_2015_09_102
crossref_primary_10_1016_j_ecoenv_2019_109756
crossref_primary_10_1007_s11356_016_6223_2
crossref_primary_10_1007_s13205_018_1237_8
crossref_primary_10_1016_j_sajb_2020_02_015
crossref_primary_10_1007_s11356_015_5318_5
crossref_primary_10_1007_s13762_013_0357_2
crossref_primary_10_1111_1751_7915_12038
crossref_primary_10_3390_ijerph17051471
crossref_primary_10_1007_s13762_014_0522_2
crossref_primary_10_1007_s11356_014_3699_5
crossref_primary_10_2166_wst_2018_004
crossref_primary_10_1016_j_ecoenv_2017_08_012
crossref_primary_10_1080_19443994_2015_1086896
crossref_primary_10_1111_aab_12420
crossref_primary_10_1016_j_jhazmat_2024_133966
crossref_primary_10_1039_C5RA13420J
crossref_primary_10_1128_AEM_06852_11
crossref_primary_10_1016_j_gexplo_2019_06_009
crossref_primary_10_7717_peerj_11373
crossref_primary_10_1007_s11356_022_19756_0
crossref_primary_10_1016_j_ecoenv_2025_117669
crossref_primary_10_1016_j_plaphy_2024_108652
crossref_primary_10_1590_1983_21252025v3812628rc
crossref_primary_10_1007_s11356_017_9654_5
crossref_primary_10_1016_j_chemosphere_2017_07_074
crossref_primary_10_1016_j_envexpbot_2024_105738
crossref_primary_10_1016_j_envpol_2021_116968
crossref_primary_10_1080_01904167_2024_2354198
crossref_primary_10_1002_jobm_201600464
crossref_primary_10_1016_j_plantsci_2020_110522
crossref_primary_10_1016_j_eti_2020_100602
crossref_primary_10_3389_fenvs_2021_604216
crossref_primary_10_1021_acs_jafc_6b01035
crossref_primary_10_1007_s10123_022_00232_1
crossref_primary_10_1016_j_jhazmat_2014_03_012
crossref_primary_10_3389_fpls_2020_587785
crossref_primary_10_1007_s11274_019_2757_z
crossref_primary_10_1111_nph_13009
crossref_primary_10_1016_j_jenvman_2019_109530
crossref_primary_10_3390_agronomy11091820
crossref_primary_10_1016_j_jhazmat_2020_123031
crossref_primary_10_1007_s11356_014_3510_7
crossref_primary_10_1111_aab_12528
crossref_primary_10_1016_j_ibiod_2014_03_024
crossref_primary_10_3390_microorganisms8091329
crossref_primary_10_1002_agg2_20042
crossref_primary_10_1016_j_rhisph_2021_100433
crossref_primary_10_1016_j_apsoil_2012_06_004
crossref_primary_10_1371_journal_pone_0132062
crossref_primary_10_18393_ejss_650546
crossref_primary_10_3389_fpls_2016_00918
crossref_primary_10_1016_j_ibiod_2013_08_022
crossref_primary_10_1371_journal_pone_0213016
crossref_primary_10_1007_s13762_020_02668_2
crossref_primary_10_1007_s42770_019_00041_1
crossref_primary_10_1016_j_jclepro_2019_01_258
crossref_primary_10_1371_journal_pone_0040653
crossref_primary_10_1080_01904167_2013_816733
crossref_primary_10_1007_s00344_022_10674_6
crossref_primary_10_3390_su15043126
crossref_primary_10_1007_s11356_016_7154_7
crossref_primary_10_1002_jctb_5357
crossref_primary_10_1007_s10265_017_0971_z
crossref_primary_10_1016_j_ecoenv_2017_08_032
crossref_primary_10_1111_jam_14252
crossref_primary_10_1139_w11_110
crossref_primary_10_1007_s13199_021_00774_4
crossref_primary_10_1016_j_marpolbul_2014_11_002
crossref_primary_10_1111_j_1574_6941_2011_01169_x
crossref_primary_10_1007_s13213_018_1389_0
crossref_primary_10_1007_s10661_020_08715_2
crossref_primary_10_1007_s11356_017_9092_4
crossref_primary_10_1016_j_micres_2013_09_009
crossref_primary_10_1007_s00344_016_9630_1
crossref_primary_10_1016_j_biotechadv_2013_12_005
crossref_primary_10_1016_j_pedsph_2022_06_028
crossref_primary_10_1016_j_jhazmat_2019_121806
crossref_primary_10_1016_j_eti_2023_103140
crossref_primary_10_1016_j_envres_2017_09_009
crossref_primary_10_1080_01904167_2020_1799004
crossref_primary_10_3390_molecules27134004
crossref_primary_10_1016_j_ecoenv_2014_03_008
crossref_primary_10_1016_j_envpol_2020_116314
crossref_primary_10_1007_s00344_021_10315_4
crossref_primary_10_1111_jam_15410
crossref_primary_10_3390_plants9080975
crossref_primary_10_1016_j_envint_2019_105281
crossref_primary_10_1021_es4047395
crossref_primary_10_1016_j_jhazmat_2020_123282
crossref_primary_10_1016_j_watres_2014_03_064
crossref_primary_10_1007_s11356_022_24381_y
crossref_primary_10_1007_s42452_019_0945_y
crossref_primary_10_1080_15226514_2019_1583637
crossref_primary_10_1007_s10725_022_00951_5
crossref_primary_10_1007_s11104_015_2434_4
crossref_primary_10_1016_j_ecoenv_2015_11_016
crossref_primary_10_1016_j_jhazmat_2021_127638
crossref_primary_10_1021_es502070m
crossref_primary_10_1007_s11356_022_21046_8
crossref_primary_10_1016_j_chemosphere_2016_10_097
crossref_primary_10_1016_j_gexplo_2016_09_005
crossref_primary_10_1007_s11270_020_04783_9
crossref_primary_10_1080_15226514_2012_702806
crossref_primary_10_1007_s11368_018_2116_y
crossref_primary_10_1080_15226514_2018_1501334
crossref_primary_10_1080_10643389_2018_1558891
crossref_primary_10_1080_15226514_2017_1377150
crossref_primary_10_1016_j_ecoenv_2019_109504
crossref_primary_10_1007_s13762_024_05654_0
crossref_primary_10_1080_15226514_2024_2427384
crossref_primary_10_1016_j_biotechadv_2015_09_003
crossref_primary_10_1007_s10498_014_9246_7
crossref_primary_10_1007_s00203_024_04228_5
crossref_primary_10_1080_15226514_2016_1225289
crossref_primary_10_1016_j_jhazmat_2018_02_013
crossref_primary_10_1080_15226514_2013_773273
crossref_primary_10_4236_jep_2024_154026
crossref_primary_10_5897_AJB2015_14549
crossref_primary_10_1016_S1002_0160_17_60448_X
crossref_primary_10_1371_journal_pone_0111208
crossref_primary_10_1007_s11356_020_07646_2
crossref_primary_10_1016_j_ecoenv_2021_113142
crossref_primary_10_1080_15226514_2016_1225280
crossref_primary_10_1016_j_envexpbot_2016_03_005
crossref_primary_10_1016_j_chemosphere_2011_04_069
crossref_primary_10_3390_agronomy11020404
crossref_primary_10_1007_s10265_014_0647_x
crossref_primary_10_1016_j_nbt_2016_12_005
crossref_primary_10_1080_15226514_2020_1842997
crossref_primary_10_1016_j_chemosphere_2020_125983
crossref_primary_10_1016_j_chemosphere_2018_07_064
crossref_primary_10_1007_s10661_023_11061_8
crossref_primary_10_1007_s42452_020_3020_9
crossref_primary_10_1007_s11356_020_10636_z
crossref_primary_10_1007_s13762_022_04420_4
crossref_primary_10_5424_sjar_2013111_2686
crossref_primary_10_1016_j_biotechadv_2012_04_011
crossref_primary_10_1016_j_micres_2016_05_001
crossref_primary_10_24190_ISSN2564_615X_2017_02_01
crossref_primary_10_1016_j_ecoleng_2013_07_018
crossref_primary_10_1016_j_stress_2023_100206
crossref_primary_10_1002_hyp_13965
crossref_primary_10_1016_j_marpolbul_2025_117795
crossref_primary_10_3389_fbioe_2023_1134310
crossref_primary_10_3389_fpls_2024_1428475
crossref_primary_10_1016_j_soilbio_2013_10_021
crossref_primary_10_1007_s42535_022_00541_w
Cites_doi 10.1111/j.1574-6941.2006.00121.x
10.1007/s11104-007-9517-9
10.1007/s00284-008-9099-7
10.1093/dnares/7.6.331
10.1016/j.plaphy.2004.05.009
10.1080/00103620701328040
10.1016/j.soilbio.2004.01.006
10.1016/j.femsec.2004.11.005
10.1093/jxb/erm274
10.1111/j.1365-2672.2006.03179.x
10.1139/m95-015
10.1023/A:1004658000815
10.4161/psb.3.4.5204
10.1016/j.biortech.2007.07.046
10.1007/s00128-008-9438-1
10.1111/j.1472-765X.2005.01827.x
10.1139/m95-070
10.1016/j.chemosphere.2008.02.006
10.1016/S0065-2164(04)56009-4
10.1016/j.plantsci.2003.10.025
10.1128/AEM.64.1.112-118.1998
10.1002/etc.5620160602
10.1016/j.chemosphere.2004.10.034
10.1080/15226510802363261
10.1016/S0734-9750(03)00055-7
10.1016/j.soilbio.2006.04.045
10.1016/j.envpol.2006.10.014
10.1139/W07-099
10.1139/m94-162
10.1021/es801540h
10.1128/AEM.72.2.1129-1134.2006
10.1016/j.envpol.2008.04.007
10.1016/S0960-8524(01)00016-5
10.1016/j.jenvman.2008.01.014
10.1002/cssc.200800125
10.1139/W09-010
10.5897/AJB2003.000-1032
10.1111/j.1469-8137.2008.02446.x
10.1016/j.envpol.2003.12.018
10.1080/07388550902913772
10.1016/j.tibtech.2007.05.005
10.1016/j.apsoil.2009.07.003
10.1080/16226510590915783
10.1111/j.1574-6976.2000.tb00552.x
10.1016/S0045-6535(99)00412-9
10.1139/w99-143
10.1016/S0981-9428(00)01212-2
10.1007/s00374-005-0024-y
10.1007/s12088-008-0008-3
10.1016/j.jhazmat.2007.10.107
10.1139/w03-073
10.1046/j.1469-8137.2003.00721.x
10.1146/annurev.arplant.56.032604.144214
10.1111/j.1574-6941.2006.00082.x
10.1016/S0981-9428(03)00019-6
10.1016/j.chemosphere.2006.07.058
10.1139/W07-081
10.1007/s10658-007-9162-4
10.1080/07352680701572966
10.1111/j.1574-6941.1996.tb00307.x
10.1016/j.ecoenv.2009.03.006
10.1016/j.soilbio.2006.03.014
10.1007/s00244-007-9097-y
10.1016/S0981-9428(02)01375-X
10.1007/s11104-006-9119-y
10.1023/A:1023360919140
10.1016/0167-7799(89)90057-7
10.1128/AEM.61.5.1946-1952.1995
10.1016/j.copbio.2009.02.012
10.1016/j.chemosphere.2007.11.038
10.1016/j.tplants.2008.10.004
10.1093/jxb/erp140
10.1016/j.microc.2005.01.009
10.1016/S0065-2164(08)70450-7
10.1139/W08-020
10.1007/s00284-004-4459-4
10.1021/es048136a
10.1016/j.chemosphere.2005.12.057
10.1146/annurev.py.12.090174.001145
10.1038/nbt0595-468
10.1016/j.chemosphere.2006.01.051
10.1016/j.envpol.2005.06.023
10.1007/BF00301779
10.1128/AEM.00466-09
10.1007/s00284-008-9156-2
10.1128/AEM.68.8.3795-3801.2002
10.1007/s00572-003-0256-3
10.1128/AEM.72.4.2331-2342.2006
10.1111/j.1365-2389.1984.tb00288.x
10.1111/j.1462-2920.2006.01163.x
10.1016/j.ibiod.2007.12.003
10.1038/nbt960
10.3923/ijb.2008.437.443
10.1016/j.jhazmat.2009.04.132
10.1128/AEM.71.11.7556-7558.2005
10.1016/j.jtemb.2005.02.006
10.1016/j.chemosphere.2007.07.028
10.1016/j.micres.2004.08.004
10.1111/j.1574-6968.2009.01637.x
10.1007/s11738-009-0297-0
10.1126/science.228.4696.135
10.1128/AEM.70.5.2667-2677.2004
10.1016/j.chemosphere.2008.03.025
10.1016/j.copbio.2005.02.006
10.1016/j.tibtech.2004.11.010
10.1094/MPMI.2004.17.1.6
10.1016/j.envint.2006.12.005
10.1128/AEM.67.6.2683-2691.2001
10.1016/j.plantsci.2008.09.014
10.1139/w01-062
10.1139/W07-050
10.1016/j.chemosphere.2005.04.117
10.1080/15226510802096002
10.1080/15226510701232708
10.1128/AEM.71.12.8500-8505.2005
10.1046/j.1469-8137.2002.00460.x
10.1007/s00425-005-0211-y
10.1016/S0278-6915(97)00084-7
10.1890/1540-9295(2006)004[0203:ECUPBA]2.0.CO;2
10.1128/AEM.64.10.3663-3668.1998
10.1007/s11104-007-9327-0
10.1111/j.1365-2672.2009.04355.x
10.2307/3431895
10.1139/w05-094
10.1139/m96-032
10.1139/W09-005
10.1631/jzus.2007.B0192
10.1007/s00284-008-9181-1
10.1016/S0966-842X(00)01732-7
10.1016/j.soilbio.2004.07.033
10.1016/j.chemosphere.2005.07.020
10.1021/es001938v
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
(c) 2010 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: (c) 2010 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SU
7U5
8FD
C1K
FR3
L7M
7X8
7QL
7QO
7T7
7TV
P64
DOI 10.1016/j.biotechadv.2010.02.001
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Environmental Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Pollution Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
Biotechnology Research Abstracts
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1873-1899
EndPage 374
ExternalDocumentID 20149857
22685053
10_1016_j_biotechadv_2010_02_001
S0734975010000212
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JM
AAAJQ
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CJTIS
CNWQP
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLW
HMG
HVGLF
HZ~
IHE
J1W
KOM
LUGTX
LX3
M41
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBG
SDF
SDG
SDP
SES
SEW
SIN
SPC
SPCBC
SSG
SSI
SSU
SSZ
T5K
WUQ
XFK
XPP
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SU
7U5
8FD
C1K
FR3
L7M
7X8
7QL
7QO
7T7
7TV
P64
ID FETCH-LOGICAL-c534t-c4ab49ed9dbf21131f1bb2c30d6cfa077da4c68a8036a81b1747e6815ed68c033
IEDL.DBID .~1
ISSN 0734-9750
1873-1899
IngestDate Thu Jul 10 19:27:01 EDT 2025
Tue Aug 05 10:32:51 EDT 2025
Fri Jul 11 10:00:42 EDT 2025
Mon Jul 21 05:59:09 EDT 2025
Mon Jul 21 09:15:49 EDT 2025
Thu Apr 24 22:51:34 EDT 2025
Tue Jul 01 03:01:15 EDT 2025
Fri Feb 23 02:23:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Organics
Environmental contamination
Plant growth-promoting bacteria
Soil bacteria
Metals
Phytoremediation
Soils
Bacteria
Plant growth promoting rhizobacteria
Metal
Contamination
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
(c) 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-c4ab49ed9dbf21131f1bb2c30d6cfa077da4c68a8036a81b1747e6815ed68c033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 20149857
PQID 1770304072
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_746002245
proquest_miscellaneous_733498746
proquest_miscellaneous_1770304072
pubmed_primary_20149857
pascalfrancis_primary_22685053
crossref_citationtrail_10_1016_j_biotechadv_2010_02_001
crossref_primary_10_1016_j_biotechadv_2010_02_001
elsevier_sciencedirect_doi_10_1016_j_biotechadv_2010_02_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-01
PublicationDateYYYYMMDD 2010-05-01
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: England
PublicationTitle Biotechnology advances
PublicationTitleAlternate Biotechnol Adv
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Newman, Reynolds (bib95) 2005; 23
Crowley, Brennerova, Irwin, Brenner, Focht (bib26) 1996; 20
Sheng, Gong (bib117) 2006; 38
Kaneko, Nakamura, Sato, Asamizu, Kato, Sasamoto (bib71) 2000; 7
Frankenberger, Arshad (bib39) 1995
Lambrecht, Okon, Vande Broek, Vanderleyden (bib81) 2000; 8
Ziegler (bib148) 1993; 101
Jing, He, Yang (bib69) 2007; 8
Grichko, Glick (bib56) 2001; 39
Tank, Saraf (bib130) 2008; 48
Chakrabarty, A.M. March 1981. Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US patent 4,259,444.
Hontzeas, Richardson, Belimov, Safranova, Abu-Omar, Glick (bib61) 2005; 71
Sheng, Xia (bib118) 2006; 64
Someya, Sato, Yamaguchi, Hamamoto, Ichiman, Akutsu (bib127) 2007; 38
Arshad, Frankenberger (bib9) 2002
Raskin, Ensley (bib108) 2000
Germaine, Keogh, Ryan, Dowling (bib47) 2009; 296
Pilon-Smits (bib100) 2005; 56
Patten, Glick (bib99) 2002; 68
DeRosa, Johnson, Fay, Hansen, Mumtaz (bib29) 1996; 34
Patten, Glick (bib98) 1996; 42
Huang, El-Alawi, Penrose, Glick, Greenberg (bib62) 2004; 130
Shilev, Fernandez, Benlloch, Sancho (bib125) 2006
Brookes, McGrath (bib19) 1984; 35
Dey, Pal, Bhatt, Chaunhan (bib30) 2004; 159
Idris, Trifanova, Puschenreiter, Wenzel, Sessitsch (bib65) 2004; 70
Alarcón, Davies, Autenrieth, Zuberer (bib5) 2008; 10
Brown (bib20) 1974; 12
Barac, Taghavi, Borremans, Provoost, Oeyen, Colpaert (bib13) 2004; 22
Glick, Karaturovíc, Newell (bib53) 1995; 41
Sheng, He, Wang, Ye, Jiang (bib119) 2008; 155
Belimov, Safranova, Sergeyeva, Egorova, Matveyeva, Tsyganov (bib14) 2001; 47
Uhlik, Jecna, Macknova, Vlcek, Hroudova, Demnerova (bib132) 2009; 75
Ghosh, Penterman, Little, Chavez, Glick (bib49) 2003; 41
Gamalero, Trotta, Massa, Copetta, Martinotti, Berta (bib41) 2004; 14
Klee HJ Kishore GM. 1992. Control of Fruit Ripening and Senescence in Plants. US Patent 5,702,933.
Kumar, Singh, Behl, Srivastava (bib79) 2008; 72
Wild, Dent, Thomas, Jones (bib140) 2005; 39
Abou-Shanab, Angle, van Berkum (bib4) 2007; 9
Mayak, Tirosh, Glick (bib92) 2004; 42
Wu, Wood, Mulchandani, Chen (bib141) 2006; 72
Dobbelaere, Croonenborghs, Thys, Vande Broek, Vanderleyden (bib33) 1999; 212
Rodriguez, Vessely, Shah, Glick (bib111) 2008; 57
Tripathi, Munot, Shouche, Meyer, Goel (bib131) 2005; 50
Doty (bib34) 2008; 179
Sheng, He, Zhou, Shen (bib123) 2009; 55
Steenhoudt, Vanderleyden (bib128) 2000; 24
Cheng, Park, Glick (bib24) 2007; 53
Sheng, Jiang, He (bib121) 2008; 54
Mayak, Tirosh, Glick (bib91) 2004; 166
He, Chen, Ren, Zhang, Qian, Sheng (bib59) 2009; 72
Krämer (bib76) 2005; 16
Glick (bib51) 2003; 21
Vivas, Azcón, Biró, Barea, Ruiz-Lozano (bib134) 2003; 49
Lin, Li, Li, Zhang, Zhou (bib84) 2008; 81
Wang, Knill, Glick, Défago (bib135) 2000; 46
Daane, Harjono, Zylstra, Häggblom (bib27) 2001; 67
Abou-Shanab, Angle, Delorme, Chaney, van Berkum, Moawad (bib2) 2003; 158
Gamalero, Berta, Glick (bib42) 2009; 55
Germaine, Liu, Cabellos, Hogan, Ryan, Dowling (bib46) 2006; 57
Kuiper, Lagendijk, Bloemberg, Lugtenberg (bib78) 2004; 17
Kumar, Srivastava, Singh, Behl (bib80) 2009; 170
Leigh, Prouzova, Mackova, Macek, Nagle, Fletcher (bib82) 2006; 72
Nakamura, Motoyama, Suzuki, Yamaguchi (bib94) 2004; 35
Salt, Blaylock, Kumar, Dushenkov, Ensley, Chet (bib114) 1995; 13
Brazil, Kenefick, Callanan, Haro, deLorenzo, Dowling (bib18) 1995; 61
Gamalero, Martinotti, Trotta, Lemanceau, Berta (bib40) 2002; 155
Rajkumar, Freitas (bib104) 2008; 71
Burd, Dixon, Glick (bib22) 2000; 46
Kuffner, Puschenreiter, Wieshammer, Gorfer, Sessitsch (bib77) 2008; 304
Farwell, Vesely, Nero, McCormack, Rodriguez, Shah (bib38) 2007; 147
Jiang, Sheng, Qian, Wang (bib68) 2008; 72
Li, Ye, Wong (bib83) 2007; 58
Ortiz Castro, Valencia Cantero, Lopez Bucio (bib97) 2008; 3
Farwell, Vesely, Nero, Rodriguez, Shah, Dixon (bib37) 2006; 288
Belimov, Hontzeas, Safronova, Demchinskaya, Piluzza, Bullitta (bib15) 2005; 37
Hussein (bib64) 2008; 4
Zaidi, Usmani, Singh, Musarrat (bib146) 2006; 64
Alkorta, Garbisu (bib7) 2001; 79
Pilon-Smits, Freeman (bib101) 2006; 4
Whiting, de Souza, Terry (bib139) 2001; 35
Glick, Todorovic, Czarny, Cheng, Duan, McConkey (bib54) 2007; 26
Weyens, van der Lelie, Taghavi, Vangronsveld (bib138) 2009; 20
Wu, Cheung, Luo, Wong (bib142) 2006; 140
Yue, Mo, Li, Zheng, Li (bib145) 2007; 297
Rajkumar, Freitas (bib103) 2008; 99
Lindberg, Granhall, Tomenius (bib85) 1985; 1
Glick (bib50) 1995; 41
Dell'Amico, Cavalca, Andreoni (bib28) 2005; 52
Liu, Jiang, Liu, Wu, Han, Liu (bib86) 2007; 9
Garcia de Salamone, Hynes, Nelson (bib44) 2005
Yee, Maynard, Wood (bib144) 1998; 64
Shaharoona, Arshad, Zahir (bib116) 2006; 42
Jacobson, Pasternak, Glick (bib67) 1994; 40
Wani, Khan, Zaidi (bib137) 2008; 55
Glick, Cheng, Czarny, Duan (bib55) 2007; 119
Zhuang, Chen, Shim, Bai (bib147) 2007; 33
Glick (bib52) 2004; 56
Escalante-Espinosa, Gallegos-Martínez, Favela-Torres, Gutiérrez-Rojas (bib36) 2005; 59
Sicilano, Germida (bib126) 1997; 16
He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, et al. Effect of Zn-tolerant bacterial strains on growth and Zn accumlation in Orychophragmus violaceus. Appl Soil Ecol 2010;44:1–5.
Hao, Charles, Glick (bib58) 2007; 53
Abou-Shanab, Angle, Chaney (bib3) 2006; 38
Reed, Glick (bib109) 2005; 51
Wani, Khan, Zaidi (bib136) 2007; 70
Safranova, Stepanok, Engqvist, Alekseyev, Belimov (bib112) 2006; 42
Arshad, Saleem, Hussain (bib10) 2007; 25
Ma, Rajkumar, Freitas (bib88) 2009; 90
Taghavi, Barac, Greenberg, Borremans, Vangronsveld, van der Lelie (bib129) 2005; 71
Ike, Sriprang, Ono, Murooka, Yamashita (bib66) 2007; 66
Dimpka, Merten, Svatos, Büchel, Kothe (bib32) 2009; 107
Huang, El-Alawai, Gurska, Glick, Greenberg (bib63) 2005; 81
Ghosal, You, Chatterjee, Chakrabarty (bib48) 1985; 228
Kamaludeen, Ramasamy (bib70) 2008; 48
Khan (bib72) 2005; 18
Madhaiyan, Poonguzhali, Ryu, Sa (bib89) 2006; 224
Rajkumar, Nagendran, Lee, Lee, Kim (bib105) 2006; 62
Abeles, Morgan, Saltveit (bib1) 1992
Ganesan (bib43) 2008; 56
Reichenauer, Germida (bib110) 2008; 1
Al-Awadhi, El-Nemr, Mahmoud, Sorkhoh, Radwan (bib6) 2009; 11
Di Gregorio, Barbafieri, Lampis, Sanangelantoni, Tassi, Vallini (bib31) 2006; 63
Burd, Dixon, Glick (bib21) 1998; 64
Egamberdieva (bib35) 2009; 31
Cork, Krueger (bib25) 1991; 36
Rajkumar, Prasad, Freitas, Ae (bib106) 2009; 29
Rani, Shouche, Goel (bib107) 2008; 57
Yang, Kloepper, Ryu (bib143) 2009; 14
Nadeem, Zahair, Naveed, Arshad (bib93) 2007; 53
Radwan, Dashti, El-Nemr (bib102) 2005; 7
Sheng, Xia, Jiang, He, Qian (bib120) 2008; 156
Gurska, Wang, Gerhardt, Khalid, Isherwood, Huang (bib57) 2009; 43
Ashour, El-Mergawi, Radwan (bib11) 2006; 2
Saravanakumar, Samiyappan (bib115) 2006; 102
Sheng, Chen, He (bib122) 2008; 62
Al-Qurainy, Abdel-Megeed (bib8) 2009; 6
Bianco, Defez (bib16) 2009; 60
Gerhardt, Huang, Glick, Greenberg (bib45) 2009; 176
Shilev, Ruso, Puig, Benlloch, Jorrin, Sancho (bib124) 2001; 13
Ma, Sebestianova, Sebestian, Burd, Guinel, Glick (bib87) 2003; 83
Babalola, Osir, Sanni, Odhiambo, Bulimo (bib12) 2003; 2
Nie, Shah, Burd, Dixon, Glick (bib96) 2002; 40
Blaha, Prigent-Combaret, Mirza, Moënne-Loccoz (bib17) 2006; 56
Kloepper, Lifshitz, Zablotowicz (bib75) 1989; 7
Mattoo, Suttle (bib90) 1991
Khan, Kuek, Chaudhry, Khoo, Hayes (bib73) 2000; 41
10.1016/j.biotechadv.2010.02.001_bib60
Kumar (10.1016/j.biotechadv.2010.02.001_bib80) 2009; 170
Rajkumar (10.1016/j.biotechadv.2010.02.001_bib104) 2008; 71
Al-Awadhi (10.1016/j.biotechadv.2010.02.001_bib6) 2009; 11
Gamalero (10.1016/j.biotechadv.2010.02.001_bib40) 2002; 155
Doty (10.1016/j.biotechadv.2010.02.001_bib34) 2008; 179
Hussein (10.1016/j.biotechadv.2010.02.001_bib64) 2008; 4
Mayak (10.1016/j.biotechadv.2010.02.001_bib92) 2004; 42
Daane (10.1016/j.biotechadv.2010.02.001_bib27) 2001; 67
Ganesan (10.1016/j.biotechadv.2010.02.001_bib43) 2008; 56
Grichko (10.1016/j.biotechadv.2010.02.001_bib56) 2001; 39
Huang (10.1016/j.biotechadv.2010.02.001_bib62) 2004; 130
Vivas (10.1016/j.biotechadv.2010.02.001_bib134) 2003; 49
Sheng (10.1016/j.biotechadv.2010.02.001_bib123) 2009; 55
Ortiz Castro (10.1016/j.biotechadv.2010.02.001_bib97) 2008; 3
Pilon-Smits (10.1016/j.biotechadv.2010.02.001_bib101) 2006; 4
Reed (10.1016/j.biotechadv.2010.02.001_bib109) 2005; 51
Jacobson (10.1016/j.biotechadv.2010.02.001_bib67) 1994; 40
Kamaludeen (10.1016/j.biotechadv.2010.02.001_bib70) 2008; 48
Wani (10.1016/j.biotechadv.2010.02.001_bib136) 2007; 70
Raskin (10.1016/j.biotechadv.2010.02.001_bib108) 2000
Nakamura (10.1016/j.biotechadv.2010.02.001_bib94) 2004; 35
Li (10.1016/j.biotechadv.2010.02.001_bib83) 2007; 58
Wu (10.1016/j.biotechadv.2010.02.001_bib141) 2006; 72
Newman (10.1016/j.biotechadv.2010.02.001_bib95) 2005; 23
Jiang (10.1016/j.biotechadv.2010.02.001_bib68) 2008; 72
Sheng (10.1016/j.biotechadv.2010.02.001_bib122) 2008; 62
Leigh (10.1016/j.biotechadv.2010.02.001_bib82) 2006; 72
Cheng (10.1016/j.biotechadv.2010.02.001_bib24) 2007; 53
Glick (10.1016/j.biotechadv.2010.02.001_bib53) 1995; 41
Alkorta (10.1016/j.biotechadv.2010.02.001_bib7) 2001; 79
Di Gregorio (10.1016/j.biotechadv.2010.02.001_bib31) 2006; 63
Glick (10.1016/j.biotechadv.2010.02.001_bib55) 2007; 119
Zhuang (10.1016/j.biotechadv.2010.02.001_bib147) 2007; 33
Ma (10.1016/j.biotechadv.2010.02.001_bib87) 2003; 83
Bianco (10.1016/j.biotechadv.2010.02.001_bib16) 2009; 60
Dimpka (10.1016/j.biotechadv.2010.02.001_bib32) 2009; 107
Patten (10.1016/j.biotechadv.2010.02.001_bib98) 1996; 42
Germaine (10.1016/j.biotechadv.2010.02.001_bib47) 2009; 296
Yang (10.1016/j.biotechadv.2010.02.001_bib143) 2009; 14
Gamalero (10.1016/j.biotechadv.2010.02.001_bib41) 2004; 14
Nadeem (10.1016/j.biotechadv.2010.02.001_bib93) 2007; 53
Ghosal (10.1016/j.biotechadv.2010.02.001_bib48) 1985; 228
Jing (10.1016/j.biotechadv.2010.02.001_bib69) 2007; 8
Khan (10.1016/j.biotechadv.2010.02.001_bib72) 2005; 18
Sicilano (10.1016/j.biotechadv.2010.02.001_bib126) 1997; 16
Brazil (10.1016/j.biotechadv.2010.02.001_bib18) 1995; 61
Frankenberger (10.1016/j.biotechadv.2010.02.001_bib39) 1995
Zaidi (10.1016/j.biotechadv.2010.02.001_bib146) 2006; 64
Burd (10.1016/j.biotechadv.2010.02.001_bib22) 2000; 46
Farwell (10.1016/j.biotechadv.2010.02.001_bib37) 2006; 288
Glick (10.1016/j.biotechadv.2010.02.001_bib50) 1995; 41
Blaha (10.1016/j.biotechadv.2010.02.001_bib17) 2006; 56
Gerhardt (10.1016/j.biotechadv.2010.02.001_bib45) 2009; 176
10.1016/j.biotechadv.2010.02.001_bib74
Dey (10.1016/j.biotechadv.2010.02.001_bib30) 2004; 159
Rajkumar (10.1016/j.biotechadv.2010.02.001_bib105) 2006; 62
Khan (10.1016/j.biotechadv.2010.02.001_bib73) 2000; 41
Kumar (10.1016/j.biotechadv.2010.02.001_bib79) 2008; 72
Safranova (10.1016/j.biotechadv.2010.02.001_bib112) 2006; 42
Liu (10.1016/j.biotechadv.2010.02.001_bib86) 2007; 9
Saravanakumar (10.1016/j.biotechadv.2010.02.001_bib115) 2006; 102
Glick (10.1016/j.biotechadv.2010.02.001_bib54) 2007; 26
Shaharoona (10.1016/j.biotechadv.2010.02.001_bib116) 2006; 42
Rajkumar (10.1016/j.biotechadv.2010.02.001_bib106) 2009; 29
Shilev (10.1016/j.biotechadv.2010.02.001_bib125) 2006
Ma (10.1016/j.biotechadv.2010.02.001_bib88) 2009; 90
Lindberg (10.1016/j.biotechadv.2010.02.001_bib85) 1985; 1
Shilev (10.1016/j.biotechadv.2010.02.001_bib124) 2001; 13
Kaneko (10.1016/j.biotechadv.2010.02.001_bib71) 2000; 7
Radwan (10.1016/j.biotechadv.2010.02.001_bib102) 2005; 7
Sheng (10.1016/j.biotechadv.2010.02.001_bib121) 2008; 54
Uhlik (10.1016/j.biotechadv.2010.02.001_bib132) 2009; 75
Abou-Shanab (10.1016/j.biotechadv.2010.02.001_bib3) 2006; 38
Egamberdieva (10.1016/j.biotechadv.2010.02.001_bib35) 2009; 31
Weyens (10.1016/j.biotechadv.2010.02.001_bib138) 2009; 20
Ashour (10.1016/j.biotechadv.2010.02.001_bib11) 2006; 2
Farwell (10.1016/j.biotechadv.2010.02.001_bib38) 2007; 147
10.1016/j.biotechadv.2010.02.001_bib23
Someya (10.1016/j.biotechadv.2010.02.001_bib127) 2007; 38
Kuffner (10.1016/j.biotechadv.2010.02.001_bib77) 2008; 304
Tripathi (10.1016/j.biotechadv.2010.02.001_bib131) 2005; 50
Mattoo (10.1016/j.biotechadv.2010.02.001_bib90) 1991
Glick (10.1016/j.biotechadv.2010.02.001_bib51) 2003; 21
Sheng (10.1016/j.biotechadv.2010.02.001_bib119) 2008; 155
Steenhoudt (10.1016/j.biotechadv.2010.02.001_bib128) 2000; 24
Abou-Shanab (10.1016/j.biotechadv.2010.02.001_bib2) 2003; 158
Dobbelaere (10.1016/j.biotechadv.2010.02.001_bib33) 1999; 212
Escalante-Espinosa (10.1016/j.biotechadv.2010.02.001_bib36) 2005; 59
Rodriguez (10.1016/j.biotechadv.2010.02.001_bib111) 2008; 57
Tank (10.1016/j.biotechadv.2010.02.001_bib130) 2008; 48
Kloepper (10.1016/j.biotechadv.2010.02.001_bib75) 1989; 7
Barac (10.1016/j.biotechadv.2010.02.001_bib13) 2004; 22
Cork (10.1016/j.biotechadv.2010.02.001_bib25) 1991; 36
Nie (10.1016/j.biotechadv.2010.02.001_bib96) 2002; 40
Pilon-Smits (10.1016/j.biotechadv.2010.02.001_bib100) 2005; 56
DeRosa (10.1016/j.biotechadv.2010.02.001_bib29) 1996; 34
Madhaiyan (10.1016/j.biotechadv.2010.02.001_bib89) 2006; 224
Gamalero (10.1016/j.biotechadv.2010.02.001_bib42) 2009; 55
Rajkumar (10.1016/j.biotechadv.2010.02.001_bib103) 2008; 99
Crowley (10.1016/j.biotechadv.2010.02.001_bib26) 1996; 20
Mayak (10.1016/j.biotechadv.2010.02.001_bib91) 2004; 166
Belimov (10.1016/j.biotechadv.2010.02.001_bib14) 2001; 47
Idris (10.1016/j.biotechadv.2010.02.001_bib65) 2004; 70
Patten (10.1016/j.biotechadv.2010.02.001_bib99) 2002; 68
Hontzeas (10.1016/j.biotechadv.2010.02.001_bib61) 2005; 71
Taghavi (10.1016/j.biotechadv.2010.02.001_bib129) 2005; 71
Alarcón (10.1016/j.biotechadv.2010.02.001_bib5) 2008; 10
Wild (10.1016/j.biotechadv.2010.02.001_bib140) 2005; 39
Belimov (10.1016/j.biotechadv.2010.02.001_bib15) 2005; 37
Hao (10.1016/j.biotechadv.2010.02.001_bib58) 2007; 53
He (10.1016/j.biotechadv.2010.02.001_bib59) 2009; 72
Wang (10.1016/j.biotechadv.2010.02.001_bib135) 2000; 46
Huang (10.1016/j.biotechadv.2010.02.001_bib63) 2005; 81
Brookes (10.1016/j.biotechadv.2010.02.001_bib19) 1984; 35
Germaine (10.1016/j.biotechadv.2010.02.001_bib46) 2006; 57
Ghosh (10.1016/j.biotechadv.2010.02.001_bib49) 2003; 41
Lin (10.1016/j.biotechadv.2010.02.001_bib84) 2008; 81
Wani (10.1016/j.biotechadv.2010.02.001_bib137) 2008; 55
Garcia de Salamone (10.1016/j.biotechadv.2010.02.001_bib44) 2005
Ike (10.1016/j.biotechadv.2010.02.001_bib66) 2007; 66
Gurska (10.1016/j.biotechadv.2010.02.001_bib57) 2009; 43
Brown (10.1016/j.biotechadv.2010.02.001_bib20) 1974; 12
Yee (10.1016/j.biotechadv.2010.02.001_bib144) 1998; 64
Abeles (10.1016/j.biotechadv.2010.02.001_bib1) 1992
Lambrecht (10.1016/j.biotechadv.2010.02.001_bib81) 2000; 8
Ziegler (10.1016/j.biotechadv.2010.02.001_bib148) 1993; 101
Arshad (10.1016/j.biotechadv.2010.02.001_bib9) 2002
Dell'Amico (10.1016/j.biotechadv.2010.02.001_bib28) 2005; 52
Sheng (10.1016/j.biotechadv.2010.02.001_bib118) 2006; 64
Al-Qurainy (10.1016/j.biotechadv.2010.02.001_bib8) 2009; 6
Rani (10.1016/j.biotechadv.2010.02.001_bib107) 2008; 57
Krämer (10.1016/j.biotechadv.2010.02.001_bib76) 2005; 16
Salt (10.1016/j.biotechadv.2010.02.001_bib114) 1995; 13
Glick (10.1016/j.biotechadv.2010.02.001_bib52) 2004; 56
Yue (10.1016/j.biotechadv.2010.02.001_bib145) 2007; 297
Abou-Shanab (10.1016/j.biotechadv.2010.02.001_bib4) 2007; 9
Reichenauer (10.1016/j.biotechadv.2010.02.001_bib110) 2008; 1
Babalola (10.1016/j.biotechadv.2010.02.001_bib12) 2003; 2
Sheng (10.1016/j.biotechadv.2010.02.001_bib120) 2008; 156
Burd (10.1016/j.biotechadv.2010.02.001_bib21) 1998; 64
Arshad (10.1016/j.biotechadv.2010.02.001_bib10) 2007; 25
Kuiper (10.1016/j.biotechadv.2010.02.001_bib78) 2004; 17
Sheng (10.1016/j.biotechadv.2010.02.001_bib117) 2006; 38
Whiting (10.1016/j.biotechadv.2010.02.001_bib139) 2001; 35
Wu (10.1016/j.biotechadv.2010.02.001_bib142) 2006; 140
References_xml – volume: 62
  start-page: 741
  year: 2006
  end-page: 746
  ident: bib105
  article-title: Influence of plant growth promoting bacteria and Cr
  publication-title: Chemosphere
– volume: 20
  start-page: 79
  year: 1996
  end-page: 89
  ident: bib26
  article-title: Rhizosphere effects on biodegradation of 2, 5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens
  publication-title: FEMS Microbiol Ecol
– volume: 48
  start-page: 1
  year: 2008
  end-page: 10
  ident: bib130
  article-title: Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR
  publication-title: J Basic Microbiol
– volume: 83
  start-page: 285
  year: 2003
  end-page: 291
  ident: bib87
  article-title: Prevalence of 1-aminocyclopropaqne-1-carboxylate in deaminase in
  publication-title: Anton Van Leeuwenhoek
– volume: 56
  start-page: 291
  year: 2004
  end-page: 312
  ident: bib52
  article-title: Bacterial ACC deaminase and the alleviation of plant stress
  publication-title: Adv Appl Microbiol
– volume: 159
  start-page: 371
  year: 2004
  end-page: 394
  ident: bib30
  article-title: Growth Promotion and yield enchancement of peanut (
  publication-title: Microbiol Res
– volume: 52
  start-page: 153
  year: 2005
  end-page: 162
  ident: bib28
  article-title: Analysis of rhizobacterial communities in perennial
  publication-title: FEMS Microbiol Ecol
– volume: 18
  start-page: 355
  year: 2005
  end-page: 364
  ident: bib72
  article-title: Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation
  publication-title: J Trace Elem Med Biol
– volume: 11
  start-page: 11
  year: 2009
  end-page: 27
  ident: bib6
  article-title: Plant-associated bacteria as tools for the phytoremediation of oily nitrogen-poor soils
  publication-title: Internat J Phytorem
– year: 2002
  ident: bib9
  publication-title: Ethylene: Agricultural Sources and Applications
– volume: 3
  start-page: 263
  year: 2008
  end-page: 265
  ident: bib97
  article-title: Plant growth promotion by
  publication-title: Plant Sign Behav
– volume: 72
  start-page: 1129
  year: 2006
  end-page: 1134
  ident: bib141
  article-title: Engineering plant-microbe symbiosis for rhizoremediation of heavy metals
  publication-title: Appl Environ Microbiol
– start-page: 35
  year: 1995
  end-page: 71
  ident: bib39
  article-title: Microbial synthesis of auxins
  publication-title: Phytohormones in Soils
– year: 2000
  ident: bib108
  publication-title: Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment
– volume: 2
  start-page: 375
  year: 2006
  end-page: 382
  ident: bib11
  article-title: Efficiency of
  publication-title: J Appl Sci Res
– volume: 66
  start-page: 1670
  year: 2007
  end-page: 1676
  ident: bib66
  article-title: Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the
  publication-title: Chemosphere
– volume: 57
  start-page: 170
  year: 2008
  end-page: 174
  ident: bib111
  article-title: Isolation and characterization of nickel resistant Pseudomonas strains and their effect on the growth of non-transformed and transgenic canola plants
  publication-title: Curr Microbiol
– volume: 9
  start-page: 465
  year: 2007
  end-page: 473
  ident: bib86
  article-title: Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with
  publication-title: Environ Microbiol
– volume: 60
  start-page: 3097
  year: 2009
  end-page: 3107
  ident: bib16
  publication-title: J Exp Bot
– volume: 62
  start-page: 88
  year: 2008
  end-page: 95
  ident: bib122
  article-title: Characteristics of an endophytic pyrene-degrading bacterium of
  publication-title: Internat Biodeter Biodegrad
– volume: 6
  start-page: 987
  year: 2009
  end-page: 998
  ident: bib8
  article-title: Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area
  publication-title: World Appl Sci J
– volume: 41
  start-page: 277
  year: 2003
  end-page: 281
  ident: bib49
  article-title: Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings
  publication-title: Plant Physiol Biochem
– volume: 72
  start-page: 2331
  year: 2006
  end-page: 2342
  ident: bib82
  article-title: Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site
  publication-title: Appl Environ Microbiol
– volume: 35
  start-page: 3144
  year: 2001
  end-page: 3150
  ident: bib139
  article-title: Rhizosphere bacteria mobilize Zn for hyperaccumulation by
  publication-title: Environ Sci Technol
– volume: 79
  start-page: 273
  year: 2001
  end-page: 276
  ident: bib7
  article-title: Phytoremediation of organic contaminants in soils
  publication-title: Bioresour Technol
– volume: 47
  start-page: 642
  year: 2001
  end-page: 652
  ident: bib14
  article-title: Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Can J Microbiol
– volume: 13
  start-page: 468
  year: 1995
  end-page: 474
  ident: bib114
  article-title: Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants
  publication-title: BioTechnol
– volume: 9
  start-page: 91
  year: 2007
  end-page: 105
  ident: bib4
  article-title: Chromate-tolerant bacteria for enhanced metal uptake by
  publication-title: Internat J Phytorem
– reference: Klee HJ Kishore GM. 1992. Control of Fruit Ripening and Senescence in Plants. US Patent 5,702,933.
– volume: 14
  start-page: 185
  year: 2004
  end-page: 192
  ident: bib41
  article-title: Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture, and P acquisition
  publication-title: Mycorrhiza
– volume: 102
  start-page: 1283
  year: 2006
  end-page: 1292
  ident: bib115
  article-title: ACC deaminase from
  publication-title: J Appl Microbiol
– volume: 156
  start-page: 1164
  year: 2008
  end-page: 1170
  ident: bib120
  article-title: Characterization of heavy metal-resistant endophytic bacteria from rape (
  publication-title: Envrion Pollut
– volume: 41
  start-page: 533
  year: 1995
  end-page: 536
  ident: bib53
  article-title: A novel procedure for rapid isolation of plant growth-promoting rhizobacteria
  publication-title: Can J Microbiol
– volume: 64
  start-page: 3663
  year: 1998
  end-page: 3668
  ident: bib21
  article-title: A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings
  publication-title: Appl Environ Microbiol
– volume: 41
  start-page: 197
  year: 2000
  end-page: 207
  ident: bib73
  article-title: Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation
  publication-title: Chemosphere
– volume: 42
  start-page: 207
  year: 1996
  end-page: 220
  ident: bib98
  article-title: Bacterial biosynthesis of indole-3-acetic acid
  publication-title: Can J Microbiol
– volume: 20
  start-page: 248
  year: 2009
  end-page: 254
  ident: bib138
  article-title: Phytoremediation: plant–endophyte partnerships take the challenge
  publication-title: Curr Opin Biotechnol
– volume: 297
  start-page: 139
  year: 2007
  end-page: 145
  ident: bib145
  article-title: The salt stress relief and growth promotion effect of Rs-5 on cotton
  publication-title: Plant Soil
– volume: 155
  start-page: 17
  year: 2008
  end-page: 22
  ident: bib119
  article-title: Effects of inoculation of biosurfactant-producing
  publication-title: J Hazard Mater
– volume: 14
  start-page: 1
  year: 2009
  end-page: 4
  ident: bib143
  article-title: Rhizosphere bacteria help plants tolerate abiotic stress
  publication-title: Trends Plant Sci
– volume: 119
  start-page: 329
  year: 2007
  end-page: 339
  ident: bib55
  article-title: Promotion of plant growth by ACC deaminase-containing soil bacteria
  publication-title: Eur J Plant Pathol
– volume: 53
  start-page: 1291
  year: 2007
  end-page: 1299
  ident: bib58
  article-title: ACC deaminase from plant growth promoting bacteria affects crown gall development
  publication-title: Can J Microbiol
– volume: 38
  start-page: 2882
  year: 2006
  end-page: 2889
  ident: bib3
  article-title: Bacterial inoculants affecting nickel uptake by
  publication-title: Soil Biol Biochem
– volume: 8
  start-page: 298
  year: 2000
  end-page: 300
  ident: bib81
  article-title: Indole-3-acetic acid: a reciprocal signaling molecule in bacteria-plant interactions
  publication-title: Trends Microbiol
– volume: 81
  start-page: 19
  year: 2008
  end-page: 24
  ident: bib84
  article-title: Evaluation of plant-microorganism synergy for the remediation of diesel fuel contaminated soil
  publication-title: Bull Environ Contam Toxicol
– year: 1991
  ident: bib90
  publication-title: The Plant Hormone Ethylene
– volume: 53
  start-page: 1141
  year: 2007
  end-page: 1149
  ident: bib93
  article-title: Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity
  publication-title: Can J Microbiol
– volume: 25
  start-page: 356
  year: 2007
  end-page: 362
  ident: bib10
  article-title: Perspectives of bacterial ACC deaminase in phytoremediation
  publication-title: Trends Biotechnol
– volume: 296
  start-page: 226
  year: 2009
  end-page: 234
  ident: bib47
  article-title: Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation
  publication-title: FEMS Microbiol Lett
– volume: 29
  start-page: 120
  year: 2009
  end-page: 130
  ident: bib106
  article-title: Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals
  publication-title: Crit Rev Biotechnol
– reference: Chakrabarty, A.M. March 1981. Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. US patent 4,259,444.
– volume: 16
  start-page: 1098
  year: 1997
  end-page: 1104
  ident: bib126
  article-title: Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil
  publication-title: Environ Toxicol Chem
– volume: 24
  start-page: 487
  year: 2000
  end-page: 506
  ident: bib128
  publication-title: FEMS Microbiol Rev
– volume: 179
  start-page: 318
  year: 2008
  end-page: 333
  ident: bib34
  article-title: Enhancing phytoremediation through the use of transgenics and endophytes
  publication-title: New Phytol
– volume: 39
  start-page: 3695
  year: 2005
  end-page: 3702
  ident: bib140
  article-title: Direct observation of organic contaminant uptake, storage, and metabolism within plant roots
  publication-title: Environ Sci Technol
– volume: 37
  start-page: 241
  year: 2005
  end-page: 250
  ident: bib15
  article-title: Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (
  publication-title: Soil Biol Biochem
– volume: 12
  start-page: 181
  year: 1974
  end-page: 197
  ident: bib20
  article-title: Seed and root bacterization
  publication-title: Annu Rev Phytopathol
– volume: 34
  start-page: 1131
  year: 1996
  end-page: 1138
  ident: bib29
  article-title: Public health implications of hazardous waste sites: findings, assessment and research
  publication-title: Food Chem Toxicol
– start-page: 173
  year: 2005
  end-page: 195
  ident: bib44
  article-title: Role of cytokinins in plant growth promotion by rhizosphere bacteria
  publication-title: PGPR: Biocontrol and Biofertilization
– volume: 4
  start-page: 437
  year: 2008
  end-page: 443
  ident: bib64
  article-title: Optimization of plant-bacteria complex for phytoremediation of contaminated soils
  publication-title: Internat J Bot
– volume: 42
  start-page: 155
  year: 2006
  end-page: 159
  ident: bib116
  article-title: Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (
  publication-title: Lett Appl Microbiol
– volume: 46
  start-page: 237
  year: 2000
  end-page: 245
  ident: bib22
  article-title: Plant growth-promoting bacteria that decrease heavy metal toxicity in plants
  publication-title: Can J Microbiol
– volume: 42
  start-page: 565
  year: 2004
  end-page: 572
  ident: bib92
  article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress
  publication-title: Plant Physiol Biochem
– volume: 158
  start-page: 219
  year: 2003
  end-page: 222
  ident: bib2
  article-title: Rhizobacterial effects on nickel extraction from soil and uptake by
  publication-title: New Phytol
– volume: 46
  start-page: 898
  year: 2000
  end-page: 907
  ident: bib135
  article-title: Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into
  publication-title: J Microbiol
– volume: 57
  start-page: 302
  year: 2006
  end-page: 310
  ident: bib46
  article-title: Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid
  publication-title: FEMS Microbiol Ecol
– volume: 16
  start-page: 133
  year: 2005
  end-page: 141
  ident: bib76
  article-title: Phytoremediation: novel approaches to cleaning up polluted soils
  publication-title: Curr Opin Biotechnol
– volume: 38
  start-page: 2587
  year: 2006
  end-page: 2592
  ident: bib117
  article-title: Increased degradation of phenanthrene in soil by
  publication-title: Soil Biol Biochem
– volume: 54
  start-page: 417
  year: 2008
  end-page: 422
  ident: bib121
  article-title: Characterization of plant growth-promoting
  publication-title: Can J Microbiol
– volume: 176
  start-page: 20
  year: 2009
  end-page: 30
  ident: bib45
  article-title: Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges
  publication-title: Plant Sci
– volume: 90
  start-page: 831
  year: 2009
  end-page: 837
  ident: bib88
  article-title: Inoculation of plant growth promoting bacterium
  publication-title: J Environ Manage
– volume: 7
  start-page: 39
  year: 1989
  end-page: 43
  ident: bib75
  article-title: Free-living bacterial inocula for enhancing crop productivity
  publication-title: Trends Biotechnol
– volume: 56
  start-page: 15
  year: 2005
  end-page: 39
  ident: bib100
  article-title: Phytoremediation
  publication-title: Annu Rev Plant Biol
– volume: 101
  start-page: 402
  year: 1993
  end-page: 406
  ident: bib148
  article-title: Health risk assessment research: the OTA report
  publication-title: Environ Health Perspect
– volume: 72
  start-page: 1343
  year: 2009
  end-page: 1348
  ident: bib59
  article-title: Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria
  publication-title: Exotoxicol Environ Safety
– volume: 4
  start-page: 203
  year: 2006
  end-page: 210
  ident: bib101
  article-title: Environmental cleanup using plants: biotechnological advances and ecological considerations
  publication-title: Front Ecol Environ
– volume: 56
  start-page: 455
  year: 2006
  end-page: 470
  ident: bib17
  article-title: Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminaseencodinggene
  publication-title: FEMS Microbiol Ecol
– volume: 51
  start-page: 1061
  year: 2005
  end-page: 1069
  ident: bib109
  article-title: Growth of canola (
  publication-title: Can J Microbiol
– volume: 8
  start-page: 192
  year: 2007
  end-page: 207
  ident: bib69
  article-title: Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils
  publication-title: J Zhejiang Univ Sci B
– volume: 170
  start-page: 51
  year: 2009
  end-page: 57
  ident: bib80
  article-title: Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of
  publication-title: J Hazard Mater
– volume: 1
  start-page: 123
  year: 1985
  end-page: 129
  ident: bib85
  article-title: Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (
  publication-title: Biol Fertil Soils
– volume: 55
  start-page: 33
  year: 2008
  end-page: 42
  ident: bib137
  article-title: Effect of metal-tolerant plant growth-promoting
  publication-title: Arch Environ Contam Toxicol
– volume: 64
  start-page: 991
  year: 2006
  end-page: 997
  ident: bib146
  article-title: Significance of
  publication-title: Chemosphere
– reference: He CQ, Tan GE, Liang X, Du W, Chen YL, Zhi GY, et al. Effect of Zn-tolerant bacterial strains on growth and Zn accumlation in Orychophragmus violaceus. Appl Soil Ecol 2010;44:1–5.
– volume: 48
  start-page: 80
  year: 2008
  end-page: 88
  ident: bib70
  article-title: Rhizomediation of metals: harnessing microbial communities
  publication-title: Ind J Microbiol
– volume: 71
  start-page: 8500
  year: 2005
  end-page: 8505
  ident: bib129
  article-title: Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene
  publication-title: Appl Environ Microbiol
– volume: 21
  start-page: 383
  year: 2003
  end-page: 393
  ident: bib51
  article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment
  publication-title: Biotechnol Adv
– volume: 81
  start-page: 139
  year: 2005
  end-page: 147
  ident: bib63
  article-title: A multi-process phytoremediation system for decontamination of Persistent Total Petroleum Hydrocarbons (TPHs) from soils
  publication-title: Microchem J
– volume: 22
  start-page: 583
  year: 2004
  end-page: 588
  ident: bib13
  article-title: Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants
  publication-title: Nat Biotechnol
– volume: 26
  start-page: 227
  year: 2007
  end-page: 242
  ident: bib54
  article-title: Promotion of plant growth by bacterial ACC deaminase
  publication-title: Crit Rev Plant Sci
– volume: 67
  start-page: 2683
  year: 2001
  end-page: 2691
  ident: bib27
  article-title: Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants
  publication-title: Appl Environ Microbiol
– volume: 212
  start-page: 155
  year: 1999
  end-page: 164
  ident: bib33
  article-title: Phytostimulatory effect of
  publication-title: Plant Soil
– volume: 71
  start-page: 834
  year: 2008
  end-page: 842
  ident: bib104
  article-title: Influence of metal resistant-plant growth-promoting bacteria on the growth of
  publication-title: Chemosphere
– volume: 140
  start-page: 124
  year: 2006
  end-page: 135
  ident: bib142
  article-title: Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by
  publication-title: Environ Pollut
– volume: 40
  start-page: 355
  year: 2002
  end-page: 361
  ident: bib96
  article-title: Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium
  publication-title: Plant Physiol Biochem
– volume: 63
  start-page: 293
  year: 2006
  end-page: 299
  ident: bib31
  article-title: Combined application of Triton X-100 and
  publication-title: Chemosphere
– volume: 39
  start-page: 11
  year: 2001
  end-page: 17
  ident: bib56
  article-title: Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria
  publication-title: Plant Physiol Biochem
– volume: 13
  start-page: 37
  year: 2001
  end-page: 39
  ident: bib124
  article-title: Rhizospheric bacteria promote sunflower (
  publication-title: Minerva Biotechnol
– volume: 166
  start-page: 525
  year: 2004
  end-page: 530
  ident: bib91
  article-title: Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper
  publication-title: Plant Sci
– volume: 41
  start-page: 109
  year: 1995
  end-page: 117
  ident: bib50
  article-title: The enhancement of plant growth by free-living bacteria
  publication-title: Can J Microbiol
– volume: 147
  start-page: 540
  year: 2007
  end-page: 545
  ident: bib38
  article-title: Tolerance of transgenic canola (
  publication-title: Environ Pollut
– volume: 43
  start-page: 4472
  year: 2009
  end-page: 4479
  ident: bib57
  article-title: Field test of a multi-process phytoremediation system at a petroleum sludge contaminated land farm
  publication-title: Environ Sci Technol
– volume: 75
  start-page: 6471
  year: 2009
  end-page: 6477
  ident: bib132
  article-title: Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing
  publication-title: Appl Environ Microbiol
– volume: 50
  start-page: 233
  year: 2005
  end-page: 237
  ident: bib131
  article-title: Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant
  publication-title: Curr Microbiol
– volume: 130
  start-page: 453
  year: 2004
  end-page: 463
  ident: bib62
  article-title: Responses of plants to creosote during phytoremdiation and their significance for remediation processes
  publication-title: Environ Pollut
– volume: 288
  start-page: 309
  year: 2006
  end-page: 318
  ident: bib37
  article-title: The use of transgenic canola (
  publication-title: Plant Soil
– volume: 53
  start-page: 912
  year: 2007
  end-page: 918
  ident: bib24
  article-title: 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from
  publication-title: Can J Microbiol
– volume: 33
  start-page: 406
  year: 2007
  end-page: 413
  ident: bib147
  article-title: New advances in plant growth-promoting rhizobacteria for bioremediation
  publication-title: Environ Internat
– volume: 304
  start-page: 35
  year: 2008
  end-page: 44
  ident: bib77
  article-title: Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows
  publication-title: Plant Soil
– volume: 35
  start-page: 341
  year: 1984
  end-page: 346
  ident: bib19
  article-title: Effect of metal toxicity on the size of the soil microbial biomass
  publication-title: Soil Sci
– volume: 7
  start-page: 331
  year: 2000
  end-page: 338
  ident: bib71
  article-title: Complete genome structure of the nitrogen-fixing symbiotic bacterium
  publication-title: DNA Res
– volume: 42
  start-page: 267
  year: 2006
  end-page: 272
  ident: bib112
  article-title: Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil
  publication-title: Biol Fertil Soils
– volume: 58
  start-page: 4173
  year: 2007
  end-page: 4182
  ident: bib83
  article-title: Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant,
  publication-title: J Exp Bot
– volume: 61
  start-page: 1946
  year: 1995
  end-page: 1952
  ident: bib18
  article-title: Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of
  publication-title: Appl Environ Microbiol
– volume: 55
  start-page: 501
  year: 2009
  end-page: 514
  ident: bib42
  article-title: Effects of plant growth promoting bacteria and AM fungi on the response of plants to heavy metal stress
  publication-title: Can J Microbiol
– volume: 49
  start-page: 577
  year: 2003
  end-page: 588
  ident: bib134
  article-title: Influence of bacterial strains isolated from lead-polluted oil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity
  publication-title: Can J Microbiol
– volume: 31
  start-page: 861
  year: 2009
  end-page: 864
  ident: bib35
  article-title: Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat
  publication-title: Acta Physiol Plant
– volume: 2
  start-page: 157
  year: 2003
  end-page: 160
  ident: bib12
  article-title: Amplification of 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase from plant growth promoting rhizobacteria in
  publication-title: Afr J Biotechnol
– volume: 1
  start-page: 708
  year: 2008
  end-page: 717
  ident: bib110
  article-title: Phytoremediation of organic contaminants in soil and groundwater
  publication-title: Chemsuschem
– volume: 68
  start-page: 3795
  year: 2002
  end-page: 3801
  ident: bib99
  article-title: The role of bacterial indoleacetic acid in the development of the host plant root system
  publication-title: Appl Environ Microbiol
– volume: 71
  start-page: 7556
  year: 2005
  end-page: 7558
  ident: bib61
  article-title: Evidence for horizontal gene transfer (HGT) of ACC deaminase genes
  publication-title: Appl Environ Microbiol
– volume: 35
  start-page: 787
  year: 2004
  end-page: 795
  ident: bib94
  article-title: Biotranaformation of pentachlorophenol by Chinese chive and a recombinant derivative of its rhizospher-competent microorganism,
  publication-title: Soil Biol Biochem
– volume: 72
  start-page: 678
  year: 2008
  end-page: 683
  ident: bib79
  article-title: Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in
  publication-title: Chemosphere
– volume: 228
  start-page: 135
  year: 1985
  end-page: 142
  ident: bib48
  article-title: Microbial degradation of halogenated compounds
  publication-title: Science
– volume: 224
  start-page: 268
  year: 2006
  end-page: 278
  ident: bib89
  article-title: Regulation of ethylene levels in canola (
  publication-title: Planta
– volume: 59
  start-page: 405
  year: 2005
  end-page: 413
  ident: bib36
  article-title: Improvement of the hydrocarbon phytoremdiation rate by
  publication-title: Chemosphere
– volume: 155
  start-page: 293
  year: 2002
  end-page: 300
  ident: bib40
  article-title: Morphogenetic modifications induced by
  publication-title: New Phytol
– volume: 56
  start-page: 403
  year: 2008
  end-page: 407
  ident: bib43
  article-title: Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad
  publication-title: Curr Microbiol
– start-page: 315
  year: 2006
  end-page: 326
  ident: bib125
  article-title: Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens
  publication-title: Phytoremediation of Metal-Contaminated Soils
– volume: 64
  start-page: 112
  year: 1998
  end-page: 118
  ident: bib144
  article-title: Rhizomediation of trichloroethylene by a recombinant root-colonizing
  publication-title: Appl Environ Microbiol
– volume: 70
  start-page: 36
  year: 2007
  end-page: 45
  ident: bib136
  article-title: Effect of metal tolerant plant growth promoting
  publication-title: Chemosphere
– volume: 36
  start-page: 1
  year: 1991
  end-page: 66
  ident: bib25
  article-title: Microbial transformation of herbicides and pesticides
  publication-title: Adv Appl Microbiol
– volume: 23
  start-page: 6
  year: 2005
  end-page: 8
  ident: bib95
  article-title: Bacteria and phytoremediation: new uses of endophytic bacteria in plants
  publication-title: Trends Biotechnol
– volume: 40
  start-page: 1019
  year: 1994
  end-page: 1025
  ident: bib67
  article-title: Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium
  publication-title: Can J Microbiol
– volume: 17
  start-page: 6
  year: 2004
  end-page: 15
  ident: bib78
  article-title: Rhizoremediation: a beneficial plant microbe interaction
  publication-title: Mol Plant Microbe Interact
– volume: 55
  start-page: 529
  year: 2009
  end-page: 535
  ident: bib123
  article-title: Characterization of
  publication-title: Can J Microbiol
– volume: 107
  start-page: 1687
  year: 2009
  end-page: 1696
  ident: bib32
  article-title: Siderophores mediate reduced and increased uptake of cadmium by
  publication-title: J Appl Microbiol
– volume: 64
  start-page: 1036
  year: 2006
  end-page: 1042
  ident: bib118
  article-title: Improvement of rape (
  publication-title: Chemosphere
– volume: 57
  start-page: 78
  year: 2008
  end-page: 82
  ident: bib107
  article-title: Decloination of copper toxicity in pigeon pea and soil system by growth-promoting
  publication-title: Curr Microbiol
– volume: 7
  start-page: 19
  year: 2005
  end-page: 32
  ident: bib102
  article-title: Enhancing the growth of
  publication-title: Int J Phytoremed
– volume: 99
  start-page: 3491
  year: 2008
  end-page: 3498
  ident: bib103
  article-title: Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard
  publication-title: Bioresour Technol
– year: 1992
  ident: bib1
  publication-title: Ethylene in Plant Biology
– volume: 70
  start-page: 2667
  year: 2004
  end-page: 2677
  ident: bib65
  article-title: Bacterial communities associated with flowering plants of the nickel hyperaccumulator Thlapsi goesingense
  publication-title: Appl Environ Microbiol
– volume: 72
  start-page: 157
  year: 2008
  end-page: 164
  ident: bib68
  article-title: Isolation and characterization of a heavy metal-resistant
  publication-title: Chemosphere
– volume: 38
  start-page: 1155
  year: 2007
  end-page: 1162
  ident: bib127
  article-title: Alleviation of nickel toxicity in plants by a rhizobacterium strain is not dependent on its siderophore production
  publication-title: Commun Soil Sci Plant Anal
– volume: 10
  start-page: 251
  year: 2008
  end-page: 263
  ident: bib5
  article-title: Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil
  publication-title: Internat J Phytorem
– volume: 57
  start-page: 302
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib46
  article-title: Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2, 4-dichlorophenoxyacetic acid
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2006.00121.x
– volume: 304
  start-page: 35
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib77
  article-title: Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9517-9
– volume: 56
  start-page: 403
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib43
  article-title: Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-008-9099-7
– volume: 7
  start-page: 331
  year: 2000
  ident: 10.1016/j.biotechadv.2010.02.001_bib71
  article-title: Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti
  publication-title: DNA Res
  doi: 10.1093/dnares/7.6.331
– volume: 42
  start-page: 565
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib92
  article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress
  publication-title: Plant Physiol Biochem
  doi: 10.1016/j.plaphy.2004.05.009
– volume: 2
  start-page: 375
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib11
  article-title: Efficiency of Pseudomonas to phytoremediate nickel by canola (Brassica napus L.)
  publication-title: J Appl Sci Res
– volume: 38
  start-page: 1155
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib127
  article-title: Alleviation of nickel toxicity in plants by a rhizobacterium strain is not dependent on its siderophore production
  publication-title: Commun Soil Sci Plant Anal
  doi: 10.1080/00103620701328040
– volume: 35
  start-page: 787
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib94
  article-title: Biotranaformation of pentachlorophenol by Chinese chive and a recombinant derivative of its rhizospher-competent microorganism, Pseudomonas gladioli M-2196
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2004.01.006
– volume: 6
  start-page: 987
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib8
  article-title: Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area
  publication-title: World Appl Sci J
– volume: 52
  start-page: 153
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib28
  article-title: Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria
  publication-title: FEMS Microbiol Ecol
  doi: 10.1016/j.femsec.2004.11.005
– volume: 58
  start-page: 4173
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib83
  article-title: Effects of bacteria on enhanced metal uptake of the Cd/Zn-hyperaccumulating plant, Sedum alfredii
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erm274
– year: 2002
  ident: 10.1016/j.biotechadv.2010.02.001_bib9
– volume: 102
  start-page: 1283
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib115
  article-title: ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2006.03179.x
– start-page: 173
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib44
  article-title: Role of cytokinins in plant growth promotion by rhizosphere bacteria
– volume: 41
  start-page: 109
  year: 1995
  ident: 10.1016/j.biotechadv.2010.02.001_bib50
  article-title: The enhancement of plant growth by free-living bacteria
  publication-title: Can J Microbiol
  doi: 10.1139/m95-015
– volume: 212
  start-page: 155
  year: 1999
  ident: 10.1016/j.biotechadv.2010.02.001_bib33
  article-title: Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat
  publication-title: Plant Soil
  doi: 10.1023/A:1004658000815
– volume: 3
  start-page: 263
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib97
  article-title: Plant growth promotion by Bacillus megaterium involves cytokinin signaling
  publication-title: Plant Sign Behav
  doi: 10.4161/psb.3.4.5204
– volume: 99
  start-page: 3491
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib103
  article-title: Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2007.07.046
– year: 1992
  ident: 10.1016/j.biotechadv.2010.02.001_bib1
– volume: 81
  start-page: 19
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib84
  article-title: Evaluation of plant-microorganism synergy for the remediation of diesel fuel contaminated soil
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/s00128-008-9438-1
– volume: 42
  start-page: 155
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib116
  article-title: Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L)
  publication-title: Lett Appl Microbiol
  doi: 10.1111/j.1472-765X.2005.01827.x
– volume: 41
  start-page: 533
  year: 1995
  ident: 10.1016/j.biotechadv.2010.02.001_bib53
  article-title: A novel procedure for rapid isolation of plant growth-promoting rhizobacteria
  publication-title: Can J Microbiol
  doi: 10.1139/m95-070
– volume: 72
  start-page: 157
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib68
  article-title: Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.02.006
– volume: 56
  start-page: 291
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib52
  article-title: Bacterial ACC deaminase and the alleviation of plant stress
  publication-title: Adv Appl Microbiol
  doi: 10.1016/S0065-2164(04)56009-4
– volume: 48
  start-page: 1
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib130
  article-title: Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR
  publication-title: J Basic Microbiol
– volume: 166
  start-page: 525
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib91
  article-title: Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2003.10.025
– volume: 13
  start-page: 37
  year: 2001
  ident: 10.1016/j.biotechadv.2010.02.001_bib124
  article-title: Rhizospheric bacteria promote sunflower (Helianthus annus L.) plant growth and tolerance to heavy metals
  publication-title: Minerva Biotechnol
– volume: 46
  start-page: 898
  year: 2000
  ident: 10.1016/j.biotechadv.2010.02.001_bib135
  article-title: Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities Can
  publication-title: J Microbiol
– volume: 64
  start-page: 112
  year: 1998
  ident: 10.1016/j.biotechadv.2010.02.001_bib144
  article-title: Rhizomediation of trichloroethylene by a recombinant root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenase constitutively
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.1.112-118.1998
– volume: 16
  start-page: 1098
  year: 1997
  ident: 10.1016/j.biotechadv.2010.02.001_bib126
  article-title: Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil
  publication-title: Environ Toxicol Chem
  doi: 10.1002/etc.5620160602
– volume: 59
  start-page: 405
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib36
  article-title: Improvement of the hydrocarbon phytoremdiation rate by Cyperus laxus Lam. inoculated with a microbial consortiumin a model system
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2004.10.034
– volume: 11
  start-page: 11
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib6
  article-title: Plant-associated bacteria as tools for the phytoremediation of oily nitrogen-poor soils
  publication-title: Internat J Phytorem
  doi: 10.1080/15226510802363261
– volume: 21
  start-page: 383
  year: 2003
  ident: 10.1016/j.biotechadv.2010.02.001_bib51
  article-title: Phytoremediation: synergistic use of plants and bacteria to clean up the environment
  publication-title: Biotechnol Adv
  doi: 10.1016/S0734-9750(03)00055-7
– volume: 38
  start-page: 2882
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib3
  article-title: Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2006.04.045
– volume: 147
  start-page: 540
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib38
  article-title: Tolerance of transgenic canola (Brassica napus) amended with ACC deaminase-containing plant growth-promoting bacteria to flooding stress at a metal-contaminated field site
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2006.10.014
– volume: 53
  start-page: 1291
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib58
  article-title: ACC deaminase from plant growth promoting bacteria affects crown gall development
  publication-title: Can J Microbiol
  doi: 10.1139/W07-099
– volume: 40
  start-page: 1019
  year: 1994
  ident: 10.1016/j.biotechadv.2010.02.001_bib67
  article-title: Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2
  publication-title: Can J Microbiol
  doi: 10.1139/m94-162
– volume: 43
  start-page: 4472
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib57
  article-title: Field test of a multi-process phytoremediation system at a petroleum sludge contaminated land farm
  publication-title: Environ Sci Technol
  doi: 10.1021/es801540h
– volume: 72
  start-page: 1129
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib141
  article-title: Engineering plant-microbe symbiosis for rhizoremediation of heavy metals
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.72.2.1129-1134.2006
– volume: 156
  start-page: 1164
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib120
  article-title: Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape
  publication-title: Envrion Pollut
  doi: 10.1016/j.envpol.2008.04.007
– volume: 79
  start-page: 273
  year: 2001
  ident: 10.1016/j.biotechadv.2010.02.001_bib7
  article-title: Phytoremediation of organic contaminants in soils
  publication-title: Bioresour Technol
  doi: 10.1016/S0960-8524(01)00016-5
– volume: 90
  start-page: 831
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib88
  article-title: Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2008.01.014
– volume: 1
  start-page: 708
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib110
  article-title: Phytoremediation of organic contaminants in soil and groundwater
  publication-title: Chemsuschem
  doi: 10.1002/cssc.200800125
– volume: 55
  start-page: 501
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib42
  article-title: Effects of plant growth promoting bacteria and AM fungi on the response of plants to heavy metal stress
  publication-title: Can J Microbiol
  doi: 10.1139/W09-010
– volume: 2
  start-page: 157
  year: 2003
  ident: 10.1016/j.biotechadv.2010.02.001_bib12
  article-title: Amplification of 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil
  publication-title: Afr J Biotechnol
  doi: 10.5897/AJB2003.000-1032
– ident: 10.1016/j.biotechadv.2010.02.001_bib23
– volume: 179
  start-page: 318
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib34
  article-title: Enhancing phytoremediation through the use of transgenics and endophytes
  publication-title: New Phytol
  doi: 10.1111/j.1469-8137.2008.02446.x
– volume: 130
  start-page: 453
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib62
  article-title: Responses of plants to creosote during phytoremdiation and their significance for remediation processes
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2003.12.018
– volume: 29
  start-page: 120
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib106
  article-title: Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals
  publication-title: Crit Rev Biotechnol
  doi: 10.1080/07388550902913772
– volume: 25
  start-page: 356
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib10
  article-title: Perspectives of bacterial ACC deaminase in phytoremediation
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2007.05.005
– ident: 10.1016/j.biotechadv.2010.02.001_bib60
  doi: 10.1016/j.apsoil.2009.07.003
– volume: 7
  start-page: 19
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib102
  article-title: Enhancing the growth of Vicia faba plants by microbial inoculation to improve their phytoremediation potential for oily desert areas
  publication-title: Int J Phytoremed
  doi: 10.1080/16226510590915783
– volume: 24
  start-page: 487
  year: 2000
  ident: 10.1016/j.biotechadv.2010.02.001_bib128
  article-title: Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2000.tb00552.x
– volume: 41
  start-page: 197
  year: 2000
  ident: 10.1016/j.biotechadv.2010.02.001_bib73
  article-title: Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation
  publication-title: Chemosphere
  doi: 10.1016/S0045-6535(99)00412-9
– volume: 46
  start-page: 237
  year: 2000
  ident: 10.1016/j.biotechadv.2010.02.001_bib22
  article-title: Plant growth-promoting bacteria that decrease heavy metal toxicity in plants
  publication-title: Can J Microbiol
  doi: 10.1139/w99-143
– volume: 39
  start-page: 11
  year: 2001
  ident: 10.1016/j.biotechadv.2010.02.001_bib56
  article-title: Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria
  publication-title: Plant Physiol Biochem
  doi: 10.1016/S0981-9428(00)01212-2
– volume: 42
  start-page: 267
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib112
  article-title: Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-005-0024-y
– volume: 48
  start-page: 80
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib70
  article-title: Rhizomediation of metals: harnessing microbial communities
  publication-title: Ind J Microbiol
  doi: 10.1007/s12088-008-0008-3
– volume: 155
  start-page: 17
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib119
  article-title: Effects of inoculation of biosurfactant-producing Bacillus sp. J119 on plant growth and cadmium uptake in cadmium-amended soil
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2007.10.107
– volume: 49
  start-page: 577
  year: 2003
  ident: 10.1016/j.biotechadv.2010.02.001_bib134
  article-title: Influence of bacterial strains isolated from lead-polluted oil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity
  publication-title: Can J Microbiol
  doi: 10.1139/w03-073
– volume: 158
  start-page: 219
  year: 2003
  ident: 10.1016/j.biotechadv.2010.02.001_bib2
  article-title: Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2003.00721.x
– volume: 56
  start-page: 15
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib100
  article-title: Phytoremediation
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev.arplant.56.032604.144214
– volume: 56
  start-page: 455
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib17
  article-title: Phylogeny of the 1-aminocyclopropane-1-carboxylic acid deaminaseencodinggene acdS in phytobeneficial and pathogenic Proteobacteria and relation with strain biogeography
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2006.00082.x
– volume: 41
  start-page: 277
  year: 2003
  ident: 10.1016/j.biotechadv.2010.02.001_bib49
  article-title: Three newly isolated plant growth-promoting bacilli facilitate the growth of canola seedlings
  publication-title: Plant Physiol Biochem
  doi: 10.1016/S0981-9428(03)00019-6
– volume: 66
  start-page: 1670
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib66
  article-title: Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.07.058
– volume: 53
  start-page: 1141
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib93
  article-title: Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity
  publication-title: Can J Microbiol
  doi: 10.1139/W07-081
– volume: 119
  start-page: 329
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib55
  article-title: Promotion of plant growth by ACC deaminase-containing soil bacteria
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-007-9162-4
– volume: 26
  start-page: 227
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib54
  article-title: Promotion of plant growth by bacterial ACC deaminase
  publication-title: Crit Rev Plant Sci
  doi: 10.1080/07352680701572966
– volume: 20
  start-page: 79
  year: 1996
  ident: 10.1016/j.biotechadv.2010.02.001_bib26
  article-title: Rhizosphere effects on biodegradation of 2, 5-dichlorobenzoate by a bioluminescent strain of root-colonizing Pseudomonas fluorescens
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.1996.tb00307.x
– volume: 72
  start-page: 1343
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib59
  article-title: Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria
  publication-title: Exotoxicol Environ Safety
  doi: 10.1016/j.ecoenv.2009.03.006
– volume: 38
  start-page: 2587
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib117
  article-title: Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3 in the presence of wheat
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2006.03.014
– volume: 55
  start-page: 33
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib137
  article-title: Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil
  publication-title: Arch Environ Contam Toxicol
  doi: 10.1007/s00244-007-9097-y
– start-page: 315
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib125
  article-title: Sunflower growth and tolerance to arsenic is increased by the rhizospheric bacteria Pseudomonas fluorescens
– volume: 40
  start-page: 355
  year: 2002
  ident: 10.1016/j.biotechadv.2010.02.001_bib96
  article-title: Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2
  publication-title: Plant Physiol Biochem
  doi: 10.1016/S0981-9428(02)01375-X
– volume: 288
  start-page: 309
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib37
  article-title: The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site
  publication-title: Plant Soil
  doi: 10.1007/s11104-006-9119-y
– volume: 83
  start-page: 285
  year: 2003
  ident: 10.1016/j.biotechadv.2010.02.001_bib87
  article-title: Prevalence of 1-aminocyclopropaqne-1-carboxylate in deaminase in Rhizobia spp
  publication-title: Anton Van Leeuwenhoek
  doi: 10.1023/A:1023360919140
– volume: 7
  start-page: 39
  year: 1989
  ident: 10.1016/j.biotechadv.2010.02.001_bib75
  article-title: Free-living bacterial inocula for enhancing crop productivity
  publication-title: Trends Biotechnol
  doi: 10.1016/0167-7799(89)90057-7
– volume: 61
  start-page: 1946
  year: 1995
  ident: 10.1016/j.biotechadv.2010.02.001_bib18
  article-title: Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.61.5.1946-1952.1995
– volume: 20
  start-page: 248
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib138
  article-title: Phytoremediation: plant–endophyte partnerships take the challenge
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2009.02.012
– volume: 71
  start-page: 834
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib104
  article-title: Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.11.038
– volume: 14
  start-page: 1
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib143
  article-title: Rhizosphere bacteria help plants tolerate abiotic stress
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2008.10.004
– volume: 60
  start-page: 3097
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib16
  article-title: Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain
  publication-title: J Exp Bot
  doi: 10.1093/jxb/erp140
– volume: 81
  start-page: 139
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib63
  article-title: A multi-process phytoremediation system for decontamination of Persistent Total Petroleum Hydrocarbons (TPHs) from soils
  publication-title: Microchem J
  doi: 10.1016/j.microc.2005.01.009
– volume: 36
  start-page: 1
  year: 1991
  ident: 10.1016/j.biotechadv.2010.02.001_bib25
  article-title: Microbial transformation of herbicides and pesticides
  publication-title: Adv Appl Microbiol
  doi: 10.1016/S0065-2164(08)70450-7
– volume: 54
  start-page: 417
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib121
  article-title: Characterization of plant growth-promoting Bacillus edaphicus NBT and its effect on lead uptake by Indian mustard in a lead-amended soil
  publication-title: Can J Microbiol
  doi: 10.1139/W08-020
– volume: 50
  start-page: 233
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib131
  article-title: Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-004-4459-4
– volume: 39
  start-page: 3695
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib140
  article-title: Direct observation of organic contaminant uptake, storage, and metabolism within plant roots
  publication-title: Environ Sci Technol
  doi: 10.1021/es048136a
– volume: 64
  start-page: 991
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib146
  article-title: Significance of Bacillus subtilis SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.12.057
– volume: 12
  start-page: 181
  year: 1974
  ident: 10.1016/j.biotechadv.2010.02.001_bib20
  article-title: Seed and root bacterization
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.py.12.090174.001145
– ident: 10.1016/j.biotechadv.2010.02.001_bib74
– volume: 13
  start-page: 468
  year: 1995
  ident: 10.1016/j.biotechadv.2010.02.001_bib114
  article-title: Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants
  publication-title: BioTechnol
  doi: 10.1038/nbt0595-468
– volume: 64
  start-page: 1036
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib118
  article-title: Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.01.051
– volume: 140
  start-page: 124
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib142
  article-title: Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2005.06.023
– volume: 1
  start-page: 123
  year: 1985
  ident: 10.1016/j.biotechadv.2010.02.001_bib85
  article-title: Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions
  publication-title: Biol Fertil Soils
  doi: 10.1007/BF00301779
– volume: 75
  start-page: 6471
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib132
  article-title: Biphenyl-metabolizing bacteria in the rhizosphere of horseradish and bulk soil contaminated by polychlorinated biphenyls as revealed by stable isotope probing
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00466-09
– volume: 57
  start-page: 78
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib107
  article-title: Decloination of copper toxicity in pigeon pea and soil system by growth-promoting Proteus vulgaris KNP3 strain
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-008-9156-2
– volume: 68
  start-page: 3795
  year: 2002
  ident: 10.1016/j.biotechadv.2010.02.001_bib99
  article-title: The role of bacterial indoleacetic acid in the development of the host plant root system
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.68.8.3795-3801.2002
– volume: 14
  start-page: 185
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib41
  article-title: Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture, and P acquisition
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-003-0256-3
– volume: 72
  start-page: 2331
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib82
  article-title: Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.72.4.2331-2342.2006
– volume: 35
  start-page: 341
  year: 1984
  ident: 10.1016/j.biotechadv.2010.02.001_bib19
  article-title: Effect of metal toxicity on the size of the soil microbial biomass
  publication-title: Soil Sci
  doi: 10.1111/j.1365-2389.1984.tb00288.x
– volume: 9
  start-page: 465
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib86
  article-title: Plant-microbe association for rhizoremediation of chloronitroaromatic pollutants with Comamonas sp. strain CNB-1
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2006.01163.x
– volume: 62
  start-page: 88
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib122
  article-title: Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge
  publication-title: Internat Biodeter Biodegrad
  doi: 10.1016/j.ibiod.2007.12.003
– volume: 22
  start-page: 583
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib13
  article-title: Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt960
– volume: 4
  start-page: 437
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib64
  article-title: Optimization of plant-bacteria complex for phytoremediation of contaminated soils
  publication-title: Internat J Bot
  doi: 10.3923/ijb.2008.437.443
– volume: 170
  start-page: 51
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib80
  article-title: Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2009.04.132
– volume: 71
  start-page: 7556
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib61
  article-title: Evidence for horizontal gene transfer (HGT) of ACC deaminase genes
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.11.7556-7558.2005
– volume: 18
  start-page: 355
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib72
  article-title: Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation
  publication-title: J Trace Elem Med Biol
  doi: 10.1016/j.jtemb.2005.02.006
– volume: 70
  start-page: 36
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib136
  article-title: Effect of metal tolerant plant growth promoting Bradyrhizobium sp. (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2007.07.028
– volume: 159
  start-page: 371
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib30
  article-title: Growth Promotion and yield enchancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2004.08.004
– volume: 296
  start-page: 226
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib47
  article-title: Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2009.01637.x
– volume: 31
  start-page: 861
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib35
  article-title: Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat
  publication-title: Acta Physiol Plant
  doi: 10.1007/s11738-009-0297-0
– volume: 228
  start-page: 135
  year: 1985
  ident: 10.1016/j.biotechadv.2010.02.001_bib48
  article-title: Microbial degradation of halogenated compounds
  publication-title: Science
  doi: 10.1126/science.228.4696.135
– volume: 70
  start-page: 2667
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib65
  article-title: Bacterial communities associated with flowering plants of the nickel hyperaccumulator Thlapsi goesingense
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.5.2667-2677.2004
– volume: 72
  start-page: 678
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib79
  article-title: Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2008.03.025
– volume: 16
  start-page: 133
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib76
  article-title: Phytoremediation: novel approaches to cleaning up polluted soils
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2005.02.006
– volume: 23
  start-page: 6
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib95
  article-title: Bacteria and phytoremediation: new uses of endophytic bacteria in plants
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2004.11.010
– volume: 17
  start-page: 6
  year: 2004
  ident: 10.1016/j.biotechadv.2010.02.001_bib78
  article-title: Rhizoremediation: a beneficial plant microbe interaction
  publication-title: Mol Plant Microbe Interact
  doi: 10.1094/MPMI.2004.17.1.6
– volume: 33
  start-page: 406
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib147
  article-title: New advances in plant growth-promoting rhizobacteria for bioremediation
  publication-title: Environ Internat
  doi: 10.1016/j.envint.2006.12.005
– volume: 67
  start-page: 2683
  year: 2001
  ident: 10.1016/j.biotechadv.2010.02.001_bib27
  article-title: Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.6.2683-2691.2001
– volume: 176
  start-page: 20
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib45
  article-title: Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges
  publication-title: Plant Sci
  doi: 10.1016/j.plantsci.2008.09.014
– volume: 47
  start-page: 642
  year: 2001
  ident: 10.1016/j.biotechadv.2010.02.001_bib14
  article-title: Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase
  publication-title: Can J Microbiol
  doi: 10.1139/w01-062
– start-page: 35
  year: 1995
  ident: 10.1016/j.biotechadv.2010.02.001_bib39
  article-title: Microbial synthesis of auxins
– volume: 53
  start-page: 912
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib24
  article-title: 1-Aminocyclopropane-1-carboxylate (ACC) deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt
  publication-title: Can J Microbiol
  doi: 10.1139/W07-050
– volume: 62
  start-page: 741
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib105
  article-title: Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.04.117
– volume: 10
  start-page: 251
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib5
  article-title: Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil
  publication-title: Internat J Phytorem
  doi: 10.1080/15226510802096002
– volume: 9
  start-page: 91
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib4
  article-title: Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.)
  publication-title: Internat J Phytorem
  doi: 10.1080/15226510701232708
– volume: 71
  start-page: 8500
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib129
  article-title: Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8500-8505.2005
– volume: 155
  start-page: 293
  year: 2002
  ident: 10.1016/j.biotechadv.2010.02.001_bib40
  article-title: Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions
  publication-title: New Phytol
  doi: 10.1046/j.1469-8137.2002.00460.x
– volume: 224
  start-page: 268
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib89
  article-title: Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense
  publication-title: Planta
  doi: 10.1007/s00425-005-0211-y
– volume: 34
  start-page: 1131
  year: 1996
  ident: 10.1016/j.biotechadv.2010.02.001_bib29
  article-title: Public health implications of hazardous waste sites: findings, assessment and research
  publication-title: Food Chem Toxicol
  doi: 10.1016/S0278-6915(97)00084-7
– volume: 4
  start-page: 203
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib101
  article-title: Environmental cleanup using plants: biotechnological advances and ecological considerations
  publication-title: Front Ecol Environ
  doi: 10.1890/1540-9295(2006)004[0203:ECUPBA]2.0.CO;2
– volume: 64
  start-page: 3663
  year: 1998
  ident: 10.1016/j.biotechadv.2010.02.001_bib21
  article-title: A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.10.3663-3668.1998
– volume: 297
  start-page: 139
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib145
  article-title: The salt stress relief and growth promotion effect of Rs-5 on cotton
  publication-title: Plant Soil
  doi: 10.1007/s11104-007-9327-0
– volume: 107
  start-page: 1687
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib32
  article-title: Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively
  publication-title: J Appl Microbiol
  doi: 10.1111/j.1365-2672.2009.04355.x
– volume: 101
  start-page: 402
  year: 1993
  ident: 10.1016/j.biotechadv.2010.02.001_bib148
  article-title: Health risk assessment research: the OTA report
  publication-title: Environ Health Perspect
  doi: 10.2307/3431895
– volume: 51
  start-page: 1061
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib109
  article-title: Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons
  publication-title: Can J Microbiol
  doi: 10.1139/w05-094
– volume: 42
  start-page: 207
  year: 1996
  ident: 10.1016/j.biotechadv.2010.02.001_bib98
  article-title: Bacterial biosynthesis of indole-3-acetic acid
  publication-title: Can J Microbiol
  doi: 10.1139/m96-032
– year: 1991
  ident: 10.1016/j.biotechadv.2010.02.001_bib90
– volume: 55
  start-page: 529
  year: 2009
  ident: 10.1016/j.biotechadv.2010.02.001_bib123
  article-title: Characterization of Microbacterium sp. F10a and its role in polycyclic aromatic hydrocarbon removal in low-temperature soil
  publication-title: Can J Microbiol
  doi: 10.1139/W09-005
– volume: 8
  start-page: 192
  year: 2007
  ident: 10.1016/j.biotechadv.2010.02.001_bib69
  article-title: Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils
  publication-title: J Zhejiang Univ Sci B
  doi: 10.1631/jzus.2007.B0192
– year: 2000
  ident: 10.1016/j.biotechadv.2010.02.001_bib108
– volume: 57
  start-page: 170
  year: 2008
  ident: 10.1016/j.biotechadv.2010.02.001_bib111
  article-title: Isolation and characterization of nickel resistant Pseudomonas strains and their effect on the growth of non-transformed and transgenic canola plants
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-008-9181-1
– volume: 8
  start-page: 298
  year: 2000
  ident: 10.1016/j.biotechadv.2010.02.001_bib81
  article-title: Indole-3-acetic acid: a reciprocal signaling molecule in bacteria-plant interactions
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(00)01732-7
– volume: 37
  start-page: 241
  year: 2005
  ident: 10.1016/j.biotechadv.2010.02.001_bib15
  article-title: Cadmium-tolerant plant growth-promoting rhizobacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.)
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2004.07.033
– volume: 63
  start-page: 293
  year: 2006
  ident: 10.1016/j.biotechadv.2010.02.001_bib31
  article-title: Combined application of Triton X-100 and Sinorhizobium sp Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2005.07.020
– volume: 35
  start-page: 3144
  year: 2001
  ident: 10.1016/j.biotechadv.2010.02.001_bib139
  article-title: Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlapsi caerulescens
  publication-title: Environ Sci Technol
  doi: 10.1021/es001938v
SSID ssj0015053
Score 2.5295167
SecondaryResourceType review_article
Snippet In the past twenty years or so, researchers have endeavored to utilize plants to facilitate the removal of both organic and inorganic contaminants from the...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 367
SubjectTerms Bacteria
Biodegradation, Environmental
Biological and medical sciences
Biotechnology
Contaminants
Environmental contamination
Fundamental and applied biological sciences. Psychology
Metals
Organics
Phytoremediation
Plant growth-promoting bacteria
Plants (organisms)
Plants - metabolism
Plants - microbiology
Scientists
Soil bacteria
Soil Microbiology
Soil Pollutants - metabolism
Strategy
Title Using soil bacteria to facilitate phytoremediation
URI https://dx.doi.org/10.1016/j.biotechadv.2010.02.001
https://www.ncbi.nlm.nih.gov/pubmed/20149857
https://www.proquest.com/docview/1770304072
https://www.proquest.com/docview/733498746
https://www.proquest.com/docview/746002245
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fSxwxEB7EglhEqvbHantswdftbTbZTY4-iVSuir5UwbeQZLP0itwdvdPH_u2dSbKnPlwR-rpM2OzMJDOz-eYLwDGrumrk26bgiv5WOV8WxjJX1B2zhivV1RX1O19eNeMbcX5b327Aad8LQ7DKtPfHPT3s1unJMGlzOJ9Mhj_QOcUIA174Q12Fm4aFkOTlX_6sYB6Y70QmShQuSDqheSLGy06IC-GnaR8SyIvYO9m6ELUzNwtUXBdvvFifkobQdPYGdlNOmZ_Eae_Bhp_uw-snTIP7sHWZztAPoAoogXwxm9zlNnI1m3w5yzvjImO3z1H1WIr70FVChnsLN2ffrk_HRbo5oXA1F8vCCWMFmmDU2g4rPM5Q87ZyvGwb15lSytYI1yijMH4ZTFyxLJG-UaxGqylXcv4ONqezqf8AeRe6ayWubKtEbaRlzFANJollhnGfgeyVpV2iFafbLe50jx_7pR_VrEnNuqwISpcBW42cR2qNF4z52ttDP3MTjRHgBaMHz0y4ei3moIocJYPPvU01LjM6OzFTP7tfaCZpayQ2uQzyNTKSo0MqKZp_iIgmZE11Bu-jyzzOgYpVVcvD__rEI9ju8Q0l-wiby9_3_hOmTUs7COtiAK9Ovl-Mr_4CKGcWHA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED5NQxogNI3xKwOGkeAxNE6c2BXaAxpMHVv3wibtzdiOI4qmtqIdiJf9U_yD3MVOtz0UTUJ7rWL1cnf-fOd8_gzwhudN3vd1lRaKdqucz1JjuUvLhltTKNWUOZ13Hh5VgxPx-bQ8XYE_3VkYolVG7A-Y3qJ1_KUXvdmbjka9L5icoo8LXrtDjQgcmZUH_vcv7NtmO_sfMchv83zv0_HuII1XC6SuLMQ8dcJYgTb2a9tgC1RwNM3mrsjqyjUmk7I2wlXKKAR4g5Ud1u3SV4qX-FrKZbQLirh_RyBc0LUJ7y4WvBIssIL0JVqXknmRPhRIZXZE4gvfTP0zsspILpQvWxMfTM0MI9WEKzaW18DtWri3AeuxiGUfgp8ewoofb8L9K9KGm7A2jB_tH0He0hLYbDI6YzaIQxs2n7DGuCAR7hnGGnt_3x5joUx5DCe34s8nsDqejP0zYE17nFcilFglSiMt54aaPkmyNrzwCcjOWdpFHXO6TuNMd4S17_rSzZrcrLOcuHsJ8MXIadDyuMGY91089LW81Ljk3GD09rUQLv4Wi15FiZLA6y6mGuc1fawxYz85n2kuCYtJvi4BtuQZWeAMUFJU_3hEVG2ZVibwNKTMpQ3UHatSbv3XK76Cu4Pj4aE-3D86eA73OnJFxl_A6vzHuX-JNdvcbrdzhMHX256UfwGme1Ie
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+soil+bacteria+to+facilitate+phytoremediation&rft.jtitle=Biotechnology+advances&rft.au=Glick%2C+Bernard+R&rft.date=2010-05-01&rft.issn=0734-9750&rft.volume=28&rft.issue=3&rft.spage=367&rft.epage=374&rft_id=info:doi/10.1016%2Fj.biotechadv.2010.02.001&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-9750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-9750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-9750&client=summon