Anti-Inflammatory Therapy With Canakinumab for the Prevention and Management of Diabetes

Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. The authors randomized 10,061 patients with prio...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Cardiology Vol. 71; no. 21; pp. 2392 - 2401
Main Authors Everett, Brendan M., Donath, Marc Y., Pradhan, Aruna D., Thuren, Tom, Pais, Prem, Nicolau, Jose C., Glynn, Robert J., Libby, Peter, Ridker, Paul M
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 29.05.2018
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0735-1097
1558-3597
1558-3597
DOI10.1016/j.jacc.2018.03.002

Cover

Loading…
Abstract Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes. Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed. Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846) [Display omitted]
AbstractList AbstractBackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. ObjectivesThe authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. MethodsThe authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA 1c) in patients with and without established diabetes. ResultsOf the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA 1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA 1c or fasting plasma glucose were observed. ConclusionsAlthough IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846)
Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes. Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed. Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846) [Display omitted]
Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA ) in patients with and without established diabetes. Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA or fasting plasma glucose were observed. Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846).
Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.BACKGROUNDSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes.OBJECTIVESThe authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes.The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes.METHODSThe authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes.Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed.RESULTSOf the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed.Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846).CONCLUSIONSAlthough IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846).
BackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.ObjectivesThe authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes.MethodsThe authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes.ResultsOf the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed.ConclusionsAlthough IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846)
Author Libby, Peter
Donath, Marc Y.
Glynn, Robert J.
Pradhan, Aruna D.
Nicolau, Jose C.
Thuren, Tom
Ridker, Paul M
Everett, Brendan M.
Pais, Prem
Author_xml – sequence: 1
  givenname: Brendan M.
  surname: Everett
  fullname: Everett, Brendan M.
  email: beverett@bwh.harvard.edu
  organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts
– sequence: 2
  givenname: Marc Y.
  surname: Donath
  fullname: Donath, Marc Y.
  organization: Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland
– sequence: 3
  givenname: Aruna D.
  surname: Pradhan
  fullname: Pradhan, Aruna D.
  organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts
– sequence: 4
  givenname: Tom
  surname: Thuren
  fullname: Thuren, Tom
  organization: Novartis Pharmaceutical Corporation, East Hanover, New Jersey, and Basel, Switzerland
– sequence: 5
  givenname: Prem
  surname: Pais
  fullname: Pais, Prem
  organization: St. John’s Research Institute, Bangalore, India
– sequence: 6
  givenname: Jose C.
  surname: Nicolau
  fullname: Nicolau, Jose C.
  organization: Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
– sequence: 7
  givenname: Robert J.
  surname: Glynn
  fullname: Glynn, Robert J.
  organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts
– sequence: 8
  givenname: Peter
  surname: Libby
  fullname: Libby, Peter
  organization: Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 9
  givenname: Paul M
  surname: Ridker
  fullname: Ridker, Paul M
  organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29544870$$D View this record in MEDLINE/PubMed
BookMark eNqFkt9r1TAUx4NM3N30H_BBCr740pqfbSoyGFeng4mCE30LaXLqTdem16Qd3P9-KXfu4YITAoHw-ZwTvuecoCM_ekDoJcEFwaR82xWdNqagmMgCswJj-gStiBAyZ6KujtAKV0zkBNfVMTqJscMYl5LUz9AxrQXnssIr9OvcTy6_9G2vh0FPY9hl1xsIervLfrppk6211zfOz4NusnYM2bSB7FuAW0ja6DPtbfYlIb9hSC_Z2GYfnG5ggvgcPW11H-HF_X2Kflx8vF5_zq--frpcn1_lRjA-5Y3VglIrjOTSVhoMmIaQUhqwloGtKsyl4NDyktvKylJw1mBdlpZqaShU7BS92dfdhvHPDHFSg4sG-l57GOeoUjq85pWgZUJfH6DdOAeffpcoTolcTqJe3VNzM4BV2-AGHXbqb2YJoHvAhDHGAO0DQrBaBqM6tQxmaS0VZioNJknyQDJu0kuGU9Cuf1x9v1chxXjrIKhoHPiUkAtgJmVH97h-dqCb3nlndH8DO4gPERAVqcLq-7I0y84QyRiXjKQC7_5d4H_d7wCJstAp
CitedBy_id crossref_primary_10_1002_14651858_CD014741_pub2
crossref_primary_10_1016_j_ancard_2020_03_020
crossref_primary_10_1172_JCI162291
crossref_primary_10_1016_j_pcad_2019_08_004
crossref_primary_10_1080_07853890_2018_1498118
crossref_primary_10_1007_s12265_022_10286_1
crossref_primary_10_1016_j_ejpb_2020_12_016
crossref_primary_10_1186_s12933_024_02207_0
crossref_primary_10_1161_ATVBAHA_122_317163
crossref_primary_10_1002_mco2_349
crossref_primary_10_1016_j_cjco_2022_01_003
crossref_primary_10_3390_biomedicines10030666
crossref_primary_10_1253_circj_CJ_18_0405
crossref_primary_10_14412_1996_7012_2023_5_73_78
crossref_primary_10_1016_j_rec_2019_03_006
crossref_primary_10_1080_14656566_2018_1561867
crossref_primary_10_1016_j_cyto_2024_156852
crossref_primary_10_1016_j_coph_2018_08_002
crossref_primary_10_1111_nyas_14037
crossref_primary_10_1038_s42255_019_0044_9
crossref_primary_10_1016_j_addr_2021_113904
crossref_primary_10_2147_DDDT_S399423
crossref_primary_10_14412_1995_4484_2019_222_228
crossref_primary_10_3390_ijms19092576
crossref_primary_10_1155_2022_3706508
crossref_primary_10_1007_s00108_022_01416_7
crossref_primary_10_1038_s41421_020_0167_x
crossref_primary_10_3389_fcvm_2021_768119
crossref_primary_10_1016_j_dsx_2021_06_001
crossref_primary_10_1016_j_jacc_2018_06_082
crossref_primary_10_1155_2021_7297419
crossref_primary_10_1136_bmjopen_2020_044749
crossref_primary_10_3390_medicina58050571
crossref_primary_10_1016_j_tips_2024_12_003
crossref_primary_10_1016_S1280_4703_22_47395_6
crossref_primary_10_3389_fimmu_2023_1125116
crossref_primary_10_1016_j_cmet_2021_07_001
crossref_primary_10_1136_bmjdrc_2021_002285
crossref_primary_10_1161_CIRCRESAHA_119_315896
crossref_primary_10_1038_s41580_021_00390_6
crossref_primary_10_1161_CIR_0000000000001185
crossref_primary_10_1007_s40259_022_00561_7
crossref_primary_10_1186_s13098_024_01369_x
crossref_primary_10_1530_JOE_18_0468
crossref_primary_10_3390_cells13191662
crossref_primary_10_3390_cells9010231
crossref_primary_10_1136_annrheumdis_2020_219140
crossref_primary_10_1016_j_eclinm_2024_102835
crossref_primary_10_1002_fft2_433
crossref_primary_10_1007_s00281_019_00743_6
crossref_primary_10_1007_s00109_020_01941_8
crossref_primary_10_2337_dc23_S003
crossref_primary_10_3389_fphar_2018_01488
crossref_primary_10_1016_j_ctim_2024_103027
crossref_primary_10_1007_s11655_023_3630_3
crossref_primary_10_1038_s41577_019_0213_9
crossref_primary_10_1038_s41574_024_01047_y
crossref_primary_10_1038_s41467_019_09588_x
crossref_primary_10_1101_cshperspect_a041197
crossref_primary_10_1186_s41232_019_0101_5
crossref_primary_10_1038_s41574_020_0355_7
crossref_primary_10_1016_S1957_2557_19_30042_2
crossref_primary_10_1007_s11906_018_0880_0
crossref_primary_10_1038_s41591_024_03165_6
crossref_primary_10_1210_endrev_bnaa016
crossref_primary_10_1038_s41401_021_00797_z
crossref_primary_10_1161_ATVBAHA_119_310961
crossref_primary_10_1369_00221554241299862
crossref_primary_10_36290_vnl_2021_029
crossref_primary_10_1016_j_ebiom_2019_102615
crossref_primary_10_1016_j_dsx_2023_102901
crossref_primary_10_1161_CIRCRESAHA_122_321335
crossref_primary_10_1016_j_bbadis_2020_166044
crossref_primary_10_1016_j_deman_2024_100247
crossref_primary_10_1016_j_cjca_2022_02_002
crossref_primary_10_1186_s12933_018_0723_y
crossref_primary_10_47360_1995_4484_2021_708_714
crossref_primary_10_1002_btm2_10150
crossref_primary_10_1016_j_jhep_2023_10_039
crossref_primary_10_1016_S1283_0771_22_47366_X
crossref_primary_10_3390_brainsci11070896
crossref_primary_10_1101_gad_346312_120
crossref_primary_10_1152_ajpendo_00461_2017
crossref_primary_10_1038_s41598_021_85778_2
crossref_primary_10_3390_ijms23031831
crossref_primary_10_1007_s11357_024_01364_0
crossref_primary_10_2174_1381612825666190830181944
crossref_primary_10_3390_ijms25105212
crossref_primary_10_1016_j_coph_2020_09_008
crossref_primary_10_1016_j_amjmed_2018_10_013
crossref_primary_10_14412_1995_4484_2018_28_34
crossref_primary_10_1016_j_ajcnut_2024_04_029
crossref_primary_10_1111_joim_12862
crossref_primary_10_1016_j_medcle_2020_04_020
crossref_primary_10_1038_s41577_024_01103_8
crossref_primary_10_3892_mmr_2024_13219
crossref_primary_10_26599_FMH_2025_9420074
crossref_primary_10_3390_biomedicines11030662
crossref_primary_10_1016_j_medcli_2020_04_024
crossref_primary_10_3390_ijms21113798
crossref_primary_10_1080_13543784_2018_1538352
crossref_primary_10_3390_ijms21218178
crossref_primary_10_1073_pnas_2312621121
crossref_primary_10_1074_jbc_RA118_005627
crossref_primary_10_1038_s41577_019_0198_4
crossref_primary_10_1161_CIRCIMAGING_120_012174
crossref_primary_10_1038_s41569_020_0339_2
crossref_primary_10_3390_nu16101404
crossref_primary_10_1080_03007995_2022_2033049
crossref_primary_10_1136_annrheumdis_2021_220047
crossref_primary_10_1177_20587392211014416
crossref_primary_10_1152_physrev_00065_2017
crossref_primary_10_1007_s00125_024_06306_1
crossref_primary_10_1016_j_immuni_2021_12_013
crossref_primary_10_1042_CS20230226
crossref_primary_10_1016_j_jacc_2018_07_021
crossref_primary_10_1053_j_gastro_2021_05_008
crossref_primary_10_2147_DMSO_S346648
crossref_primary_10_1016_j_recesp_2019_02_021
crossref_primary_10_1126_scitranslmed_abh3831
crossref_primary_10_3389_fphar_2018_01157
crossref_primary_10_1093_cvr_cvz085
crossref_primary_10_1186_s12933_018_0733_9
crossref_primary_10_1093_eurheartj_ehaa099
crossref_primary_10_1146_annurev_pathmechdis_032521_102529
crossref_primary_10_1210_endrev_bnab021
crossref_primary_10_7554_eLife_68832
crossref_primary_10_1038_s41575_022_00658_y
crossref_primary_10_1210_clinem_dgaa036
crossref_primary_10_3389_fphys_2022_837723
crossref_primary_10_2337_dc22_0866
crossref_primary_10_3390_cells9081812
crossref_primary_10_1007_s00109_024_02449_1
crossref_primary_10_1016_j_intimp_2021_107765
crossref_primary_10_1097_CRD_0000000000000428
crossref_primary_10_1155_2020_4743904
crossref_primary_10_1016_j_mmm_2023_03_013
crossref_primary_10_1007_s11886_023_01990_8
crossref_primary_10_1016_j_biopha_2023_114545
crossref_primary_10_1016_j_celrep_2020_108326
crossref_primary_10_1016_j_atherosclerosis_2018_07_007
crossref_primary_10_1016_j_tem_2023_04_001
crossref_primary_10_1016_S0021_9258_17_49941_8
crossref_primary_10_1093_rheumatology_keaa810
crossref_primary_10_3389_fphys_2024_1328470
crossref_primary_10_3390_ijms242015078
crossref_primary_10_3390_nu12051505
crossref_primary_10_1186_s12986_020_00472_w
crossref_primary_10_1177_20420188231185958
crossref_primary_10_3390_jcm12186022
crossref_primary_10_1016_j_ejphar_2022_174998
crossref_primary_10_1038_s41598_020_66751_x
crossref_primary_10_1016_j_jacc_2018_04_093
crossref_primary_10_2337_dc22_S003
crossref_primary_10_15420_ecr_2018_33_1
crossref_primary_10_1038_s41574_019_0286_3
crossref_primary_10_1177_20420188221083530
crossref_primary_10_7555_JBR_34_20190124
crossref_primary_10_1007_s12325_022_02241_y
crossref_primary_10_1016_j_metabol_2024_156083
crossref_primary_10_1111_jgh_16750
crossref_primary_10_1016_j_atherosclerosis_2018_07_014
crossref_primary_10_1210_clinem_dgac074
crossref_primary_10_1016_j_molmed_2020_06_005
crossref_primary_10_1016_j_isci_2019_100775
crossref_primary_10_1016_j_biopha_2023_115734
crossref_primary_10_1038_s41423_020_00580_w
crossref_primary_10_1016_j_mmm_2021_07_010
crossref_primary_10_1038_s41590_023_01479_0
crossref_primary_10_3390_metabo14030153
crossref_primary_10_1007_s11883_018_0754_6
crossref_primary_10_1016_j_jdiacomp_2019_107413
crossref_primary_10_1177_1753944718778464
crossref_primary_10_1038_s41574_021_00575_1
crossref_primary_10_1038_s41586_019_1797_8
crossref_primary_10_1016_j_phrs_2020_104916
crossref_primary_10_1007_s00281_019_00747_2
crossref_primary_10_1038_s41598_020_59701_0
crossref_primary_10_1016_j_phrs_2021_105885
crossref_primary_10_1038_s41574_023_00898_1
crossref_primary_10_1016_j_diabres_2021_108991
crossref_primary_10_1016_j_jacc_2018_03_480
crossref_primary_10_2217_fca_2020_0211
crossref_primary_10_3390_ijms21051835
crossref_primary_10_1016_j_pcad_2019_07_006
crossref_primary_10_1186_s12933_023_02067_0
crossref_primary_10_1080_1744666X_2022_2045952
crossref_primary_10_1002_mnfr_201900482
crossref_primary_10_3389_fimmu_2020_583687
crossref_primary_10_1007_s11428_018_0365_4
crossref_primary_10_1016_j_phrs_2020_105216
crossref_primary_10_3390_nu12123663
crossref_primary_10_3390_molecules25092224
crossref_primary_10_1016_j_diabet_2018_09_005
crossref_primary_10_1016_j_coemr_2024_100560
crossref_primary_10_1186_s12933_023_01990_6
crossref_primary_10_3390_ijms21218108
crossref_primary_10_1016_j_atherosclerosis_2023_117313
crossref_primary_10_1038_s41584_019_0277_8
crossref_primary_10_7759_cureus_67070
crossref_primary_10_1002_acr_24328
crossref_primary_10_1038_nrcardio_2018_32
crossref_primary_10_1038_s41598_024_73672_6
crossref_primary_10_1161_CIRCRESAHA_118_313129
crossref_primary_10_3390_cells13151244
crossref_primary_10_1016_j_jdiacomp_2018_11_001
crossref_primary_10_1007_s00018_022_04289_z
crossref_primary_10_1136_annrheumdis_2021_220114
crossref_primary_10_1093_cvr_cvae142
crossref_primary_10_3390_biomedicines9070826
crossref_primary_10_1007_s00125_025_06393_8
crossref_primary_10_2337_dc25_S003
crossref_primary_10_1111_obr_13156
crossref_primary_10_3389_fcvm_2022_991716
crossref_primary_10_1111_bph_14642
crossref_primary_10_1038_s41598_020_62190_w
crossref_primary_10_3389_fcvm_2023_1244529
crossref_primary_10_7759_cureus_67065
crossref_primary_10_1016_j_ebiom_2020_103062
crossref_primary_10_3389_fcvm_2020_00010
crossref_primary_10_6065_apem_2040188_094
crossref_primary_10_1111_dom_13646
crossref_primary_10_1038_s41574_023_00908_2
crossref_primary_10_1210_er_2019_00002
crossref_primary_10_2337_dc24_S003
crossref_primary_10_1126_sciadv_adj4686
crossref_primary_10_1080_10408398_2020_1799931
crossref_primary_10_1016_j_jacc_2021_02_070
crossref_primary_10_1038_s41598_023_45870_1
crossref_primary_10_1074_jbc_RA119_010340
crossref_primary_10_3389_fendo_2023_1076343
crossref_primary_10_1186_s41231_022_00124_6
crossref_primary_10_1007_s00281_019_00749_0
crossref_primary_10_1111_dom_14290
crossref_primary_10_1134_S0006297919110099
crossref_primary_10_3390_ijms252111409
crossref_primary_10_3389_fcvm_2021_650278
crossref_primary_10_4049_jimmunol_1900212
crossref_primary_10_1007_s00125_019_4844_y
crossref_primary_10_1371_journal_pone_0229184
crossref_primary_10_1111_imr_12901
crossref_primary_10_1016_j_jhepr_2019_02_004
crossref_primary_10_3389_fimmu_2022_896353
crossref_primary_10_1007_s13340_022_00607_9
crossref_primary_10_1097_FJC_0000000000000704
crossref_primary_10_1097_MED_0000000000000611
crossref_primary_10_1080_13543784_2020_1681397
crossref_primary_10_1038_s41591_018_0124_5
crossref_primary_10_1111_eci_14096
crossref_primary_10_1016_j_jri_2021_103463
Cites_doi 10.1001/jama.286.3.327
10.1038/nrd4275
10.7326/0003-4819-159-1-201307020-00003
10.2337/dc09-0533
10.1056/NEJMoa1501352
10.1001/archinte.166.8.902
10.1038/ni.1935
10.1016/j.ahj.2013.03.018
10.2337/dc12-1835
10.1159/000088261
10.1001/jama.2016.3609
10.2337/dc11-2219
10.1172/JCI29069
10.2337/diab.44.4.369
10.1172/JCI200215318
10.2337/diabetes.50.8.1683
10.1210/jc.2008-0396
10.1161/CIRCULATIONAHA.112.122556
10.1172/JCI88884
10.1056/NEJMoa1707914
10.1016/S0140-6736(12)61190-8
10.1056/NEJMoa1315878
10.1161/01.CIR.0000132467.45278.59
10.1056/NEJMoa065213
10.1126/science.7678183
10.1016/S0140-6736(17)32814-3
10.1056/NEJMoa1504720
10.1016/S0140-6736(17)32247-X
10.2337/diab.45.7.881
ContentType Journal Article
Copyright 2018 American College of Cardiology Foundation
American College of Cardiology Foundation
Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Copyright Elsevier Limited May 29, 2018
Copyright_xml – notice: 2018 American College of Cardiology Foundation
– notice: American College of Cardiology Foundation
– notice: Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
– notice: Copyright Elsevier Limited May 29, 2018
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
7X8
DOI 10.1016/j.jacc.2018.03.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Immunology Abstracts
Neurosciences Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Immunology Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList


MEDLINE
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-3597
EndPage 2401
ExternalDocumentID 29544870
10_1016_j_jacc_2018_03_002
S0735109718334831
1_s2_0_S0735109718334831
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
18M
1B1
1P~
1~.
1~5
2WC
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
AABNK
AABVL
AAEDT
AAEDW
AAIKJ
AALRI
AAOAW
AAQFI
AAQQT
AAXUO
ABBQC
ABFNM
ABFRF
ABLJU
ABMAC
ABMZM
ABOCM
ACGFO
ACGFS
ACIUM
ACJTP
ACPRK
ACVFH
ADBBV
ADCNI
ADEZE
ADVLN
AEFWE
AEKER
AENEX
AEUPX
AEVXI
AEXQZ
AFPUW
AFRAH
AFRHN
AFTJW
AGCQF
AGYEJ
AHMBA
AIGII
AITUG
AJRQY
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BLXMC
CS3
DIK
DU5
E3Z
EBS
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FNPLU
G-Q
GBLVA
GX1
H13
HVGLF
IHE
IXB
J1W
K-O
KQ8
L7B
MO0
N9A
O-L
O9-
OA.
OAUVE
OK1
OL~
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SSZ
TR2
UNMZH
UV1
W8F
WH7
WOQ
WOW
YYM
YZZ
Z5R
.55
.GJ
0SF
1CY
29L
3O-
3V.
6I.
7RV
AACTN
AAFTH
AAKUH
AAQXK
AAYOK
ABVKL
ABWVN
ABXDB
ACRPL
ADMUD
ADNMO
AFCTW
AFETI
AFFNX
AGHFR
AJOXV
AMFUW
ASPBG
AVWKF
AZFZN
BENPR
BPHCQ
FGOYB
HX~
HZ~
J5H
N4W
NCXOZ
PROAC
QTD
R2-
RIG
SEW
T5K
X7M
XPP
YYP
ZGI
ZXP
AAIAV
ABJNI
EFLBG
LCYCR
NAHTW
ZA5
AAYWO
AAYXX
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7TK
H94
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c534t-bda522d5c848d7aececb1168cedd3ed7704854ef464d7d86543b0a66d2a8c2e73
IEDL.DBID IXB
ISSN 0735-1097
1558-3597
IngestDate Fri Jul 11 09:19:33 EDT 2025
Fri Jul 25 09:25:19 EDT 2025
Wed Feb 19 02:31:19 EST 2025
Tue Jul 01 04:22:08 EDT 2025
Thu Apr 24 23:01:50 EDT 2025
Fri Feb 23 02:47:23 EST 2024
Sun Feb 23 10:18:56 EST 2025
Tue Aug 26 16:31:25 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords cardiovascular disease
NF-κB
IL
inflammation
randomized trial
CI
hsCRP
NLRP3
HR
IQR
diabetes
HbA1c
high-sensitivity C-reactive protein
interquartile range
NOD-like receptor pyrin-3
HbA 1c
hazard ratio
nuclear factor kappa-B
confidence interval
glycosylated hemoglobin
interleukin
Language English
License This article is made available under the Elsevier license.
Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-bda522d5c848d7aececb1168cedd3ed7704854ef464d7d86543b0a66d2a8c2e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0735109718334831
PMID 29544870
PQID 2042182182
PQPubID 2031078
PageCount 10
ParticipantIDs proquest_miscellaneous_2014947526
proquest_journals_2042182182
pubmed_primary_29544870
crossref_primary_10_1016_j_jacc_2018_03_002
crossref_citationtrail_10_1016_j_jacc_2018_03_002
elsevier_sciencedirect_doi_10_1016_j_jacc_2018_03_002
elsevier_clinicalkeyesjournals_1_s2_0_S0735109718334831
elsevier_clinicalkey_doi_10_1016_j_jacc_2018_03_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-29
PublicationDateYYYYMMDD 2018-05-29
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-29
  day: 29
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Journal of the American College of Cardiology
PublicationTitleAlternate J Am Coll Cardiol
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Green, Bethel, Armstrong (bib18) 2015; 373
O'Donoghue, Glaser, Cavender (bib28) 2016; 315
Boni-Schnetzler, Thorne, Parnaud (bib5) 2008; 93
Pradhan, Manson, Rifai, Buring, Ridker (bib1) 2001; 286
Ridker, MacFadyen, Thuren (bib14) 2017; 390
Ridker, MacFadyen, Everett (bib15) 2018; 391
Bernstein, Berry, Kim, Canavan, Grinspoon (bib23) 2006; 166
Ridker, Pradhan, MacFadyen, Libby, Glynn (bib16) 2012; 380
Ridker, Howard, Walter (bib17) 2012; 126
Everett, Pradhan, Solomon (bib26) 2013; 166
Stern (bib29) 1995; 44
Larsen, Faulenbach, Vaag (bib8) 2007; 356
Masters, Dunne, Subramanian (bib6) 2010; 11
Shoelson, Lee, Goldfine (bib25) 2006; 116
Maedler, Spinas, Lehmann (bib7) 2001; 50
Cavelti-Weder, Babians-Brunner, Keller (bib10) 2012; 35
Zinman, Wanner, Lachin (bib19) 2015; 373
Larsen, Faulenbach, Vaag, Ehses, Donath, Mandrup-Poulsen (bib9) 2009; 32
Ofei, Hurel, Newkirk, Sopwith, Taylor (bib21) 1996; 45
Goldfine, Shoelson (bib3) 2017; 127
White, Held, Stewart (bib27) 2014; 370
Dominguez, Storgaard, Rask-Madsen (bib22) 2005; 42
Ridker, Wilson, Grundy (bib30) 2004; 109
(bib13) 2014; 37 Suppl 1
Ridker, Everett, Thuren (bib12) 2017; 377
Goldfine, Fonseca, Jablonski (bib24) 2013; 159
Sloan-Lancaster, Abu-Raddad, Polzer (bib11) 2013; 36
Hotamisligil, Shargill, Spiegelman (bib20) 1993; 259
Maedler, Sergeev, Ris (bib4) 2002; 110
Donath (bib2) 2014; 13
Goldfine (10.1016/j.jacc.2018.03.002_bib3) 2017; 127
Maedler (10.1016/j.jacc.2018.03.002_bib4) 2002; 110
Larsen (10.1016/j.jacc.2018.03.002_bib9) 2009; 32
Everett (10.1016/j.jacc.2018.03.002_bib26) 2013; 166
Maedler (10.1016/j.jacc.2018.03.002_bib7) 2001; 50
Dominguez (10.1016/j.jacc.2018.03.002_bib22) 2005; 42
Ridker (10.1016/j.jacc.2018.03.002_bib15) 2018; 391
Ridker (10.1016/j.jacc.2018.03.002_bib30) 2004; 109
Green (10.1016/j.jacc.2018.03.002_bib18) 2015; 373
Pradhan (10.1016/j.jacc.2018.03.002_bib1) 2001; 286
Donath (10.1016/j.jacc.2018.03.002_bib2) 2014; 13
Bernstein (10.1016/j.jacc.2018.03.002_bib23) 2006; 166
Stern (10.1016/j.jacc.2018.03.002_bib29) 1995; 44
Ridker (10.1016/j.jacc.2018.03.002_bib16) 2012; 380
Masters (10.1016/j.jacc.2018.03.002_bib6) 2010; 11
Ridker (10.1016/j.jacc.2018.03.002_bib12) 2017; 377
Zinman (10.1016/j.jacc.2018.03.002_bib19) 2015; 373
Hotamisligil (10.1016/j.jacc.2018.03.002_bib20) 1993; 259
White (10.1016/j.jacc.2018.03.002_bib27) 2014; 370
Sloan-Lancaster (10.1016/j.jacc.2018.03.002_bib11) 2013; 36
(10.1016/j.jacc.2018.03.002_bib13) 2014; 37 Suppl 1
Goldfine (10.1016/j.jacc.2018.03.002_bib24) 2013; 159
Shoelson (10.1016/j.jacc.2018.03.002_bib25) 2006; 116
Boni-Schnetzler (10.1016/j.jacc.2018.03.002_bib5) 2008; 93
O'Donoghue (10.1016/j.jacc.2018.03.002_bib28) 2016; 315
Cavelti-Weder (10.1016/j.jacc.2018.03.002_bib10) 2012; 35
Ofei (10.1016/j.jacc.2018.03.002_bib21) 1996; 45
Larsen (10.1016/j.jacc.2018.03.002_bib8) 2007; 356
Ridker (10.1016/j.jacc.2018.03.002_bib14) 2017; 390
Ridker (10.1016/j.jacc.2018.03.002_bib17) 2012; 126
29793628 - J Am Coll Cardiol. 2018 May 29;71(21):2402-2404
30213342 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432-1433
30213341 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432
References_xml – volume: 373
  start-page: 2117
  year: 2015
  end-page: 2128
  ident: bib19
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N Engl J Med
– volume: 370
  start-page: 1702
  year: 2014
  end-page: 1711
  ident: bib27
  article-title: Darapladib for preventing ischemic events in stable coronary heart disease
  publication-title: N Engl J Med
– volume: 50
  start-page: 1683
  year: 2001
  end-page: 1690
  ident: bib7
  article-title: Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets
  publication-title: Diabetes
– volume: 390
  start-page: 1833
  year: 2017
  end-page: 1842
  ident: bib14
  article-title: Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial
  publication-title: Lancet
– volume: 259
  start-page: 87
  year: 1993
  end-page: 91
  ident: bib20
  article-title: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance
  publication-title: Science
– volume: 116
  start-page: 1793
  year: 2006
  end-page: 1801
  ident: bib25
  article-title: Inflammation and insulin resistance
  publication-title: J Clin Invest
– volume: 286
  start-page: 327
  year: 2001
  end-page: 334
  ident: bib1
  article-title: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus
  publication-title: JAMA
– volume: 13
  start-page: 465
  year: 2014
  end-page: 476
  ident: bib2
  article-title: Targeting inflammation in the treatment of type 2 diabetes: time to start
  publication-title: Nat Rev Drug Discov
– volume: 166
  start-page: 199
  year: 2013
  end-page: 207.e15
  ident: bib26
  article-title: Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis
  publication-title: Am Heart J
– volume: 93
  start-page: 4065
  year: 2008
  end-page: 4074
  ident: bib5
  article-title: Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation
  publication-title: J Clin Endocrinol Metab
– volume: 32
  start-page: 1663
  year: 2009
  end-page: 1668
  ident: bib9
  article-title: Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes
  publication-title: Diabetes Care
– volume: 315
  start-page: 1591
  year: 2016
  end-page: 1599
  ident: bib28
  article-title: Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial
  publication-title: JAMA
– volume: 159
  start-page: 1
  year: 2013
  end-page: 12
  ident: bib24
  article-title: Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial
  publication-title: Ann Intern Med
– volume: 391
  start-page: 319
  year: 2018
  end-page: 328
  ident: bib15
  article-title: Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial
  publication-title: Lancet
– volume: 44
  start-page: 369
  year: 1995
  end-page: 374
  ident: bib29
  article-title: Diabetes and cardiovascular disease. The “common soil” hypothesis
  publication-title: Diabetes
– volume: 36
  start-page: 2239
  year: 2013
  end-page: 2246
  ident: bib11
  article-title: Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes
  publication-title: Diabetes Care
– volume: 373
  start-page: 232
  year: 2015
  end-page: 242
  ident: bib18
  article-title: Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes
  publication-title: N Engl J Med
– volume: 37 Suppl 1
  start-page: S81
  year: 2014
  end-page: S90
  ident: bib13
  article-title: Diagnosis and classification of diabetes mellitus
  publication-title: Diabetes Care
– volume: 166
  start-page: 902
  year: 2006
  end-page: 908
  ident: bib23
  article-title: Effects of etanercept in patients with the metabolic syndrome
  publication-title: Arch Intern Med
– volume: 377
  start-page: 1119
  year: 2017
  end-page: 1131
  ident: bib12
  article-title: Antiinflammatory therapy with canakinumab for atherosclerotic disease
  publication-title: N Engl J Med
– volume: 35
  start-page: 1654
  year: 2012
  end-page: 1662
  ident: bib10
  article-title: Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes
  publication-title: Diabetes Care
– volume: 110
  start-page: 851
  year: 2002
  end-page: 860
  ident: bib4
  article-title: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets
  publication-title: J Clin Invest
– volume: 126
  start-page: 2739
  year: 2012
  end-page: 2748
  ident: bib17
  article-title: Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial
  publication-title: Circulation
– volume: 11
  start-page: 897
  year: 2010
  end-page: 904
  ident: bib6
  article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes
  publication-title: Nat Immunol
– volume: 45
  start-page: 881
  year: 1996
  end-page: 885
  ident: bib21
  article-title: Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM
  publication-title: Diabetes
– volume: 42
  start-page: 517
  year: 2005
  end-page: 525
  ident: bib22
  article-title: Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes
  publication-title: J Vasc Res
– volume: 356
  start-page: 1517
  year: 2007
  end-page: 1526
  ident: bib8
  article-title: Interleukin-1-receptor antagonist in type 2 diabetes mellitus
  publication-title: N Engl J Med
– volume: 380
  start-page: 565
  year: 2012
  end-page: 571
  ident: bib16
  article-title: Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial
  publication-title: Lancet
– volume: 127
  start-page: 83
  year: 2017
  end-page: 93
  ident: bib3
  article-title: Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk
  publication-title: J Clin Invest
– volume: 109
  start-page: 2818
  year: 2004
  end-page: 2825
  ident: bib30
  article-title: Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk?
  publication-title: Circulation
– volume: 286
  start-page: 327
  year: 2001
  ident: 10.1016/j.jacc.2018.03.002_bib1
  article-title: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus
  publication-title: JAMA
  doi: 10.1001/jama.286.3.327
– volume: 13
  start-page: 465
  year: 2014
  ident: 10.1016/j.jacc.2018.03.002_bib2
  article-title: Targeting inflammation in the treatment of type 2 diabetes: time to start
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd4275
– volume: 159
  start-page: 1
  year: 2013
  ident: 10.1016/j.jacc.2018.03.002_bib24
  article-title: Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-159-1-201307020-00003
– volume: 32
  start-page: 1663
  year: 2009
  ident: 10.1016/j.jacc.2018.03.002_bib9
  article-title: Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc09-0533
– volume: 373
  start-page: 232
  year: 2015
  ident: 10.1016/j.jacc.2018.03.002_bib18
  article-title: Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1501352
– volume: 166
  start-page: 902
  year: 2006
  ident: 10.1016/j.jacc.2018.03.002_bib23
  article-title: Effects of etanercept in patients with the metabolic syndrome
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.166.8.902
– volume: 11
  start-page: 897
  year: 2010
  ident: 10.1016/j.jacc.2018.03.002_bib6
  article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes
  publication-title: Nat Immunol
  doi: 10.1038/ni.1935
– volume: 166
  start-page: 199
  year: 2013
  ident: 10.1016/j.jacc.2018.03.002_bib26
  article-title: Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis
  publication-title: Am Heart J
  doi: 10.1016/j.ahj.2013.03.018
– volume: 36
  start-page: 2239
  year: 2013
  ident: 10.1016/j.jacc.2018.03.002_bib11
  article-title: Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc12-1835
– volume: 42
  start-page: 517
  year: 2005
  ident: 10.1016/j.jacc.2018.03.002_bib22
  article-title: Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes
  publication-title: J Vasc Res
  doi: 10.1159/000088261
– volume: 315
  start-page: 1591
  year: 2016
  ident: 10.1016/j.jacc.2018.03.002_bib28
  article-title: Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial
  publication-title: JAMA
  doi: 10.1001/jama.2016.3609
– volume: 35
  start-page: 1654
  year: 2012
  ident: 10.1016/j.jacc.2018.03.002_bib10
  article-title: Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc11-2219
– volume: 37 Suppl 1
  start-page: S81
  year: 2014
  ident: 10.1016/j.jacc.2018.03.002_bib13
  article-title: Diagnosis and classification of diabetes mellitus
  publication-title: Diabetes Care
– volume: 116
  start-page: 1793
  year: 2006
  ident: 10.1016/j.jacc.2018.03.002_bib25
  article-title: Inflammation and insulin resistance
  publication-title: J Clin Invest
  doi: 10.1172/JCI29069
– volume: 44
  start-page: 369
  year: 1995
  ident: 10.1016/j.jacc.2018.03.002_bib29
  article-title: Diabetes and cardiovascular disease. The “common soil” hypothesis
  publication-title: Diabetes
  doi: 10.2337/diab.44.4.369
– volume: 110
  start-page: 851
  year: 2002
  ident: 10.1016/j.jacc.2018.03.002_bib4
  article-title: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets
  publication-title: J Clin Invest
  doi: 10.1172/JCI200215318
– volume: 50
  start-page: 1683
  year: 2001
  ident: 10.1016/j.jacc.2018.03.002_bib7
  article-title: Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets
  publication-title: Diabetes
  doi: 10.2337/diabetes.50.8.1683
– volume: 93
  start-page: 4065
  year: 2008
  ident: 10.1016/j.jacc.2018.03.002_bib5
  article-title: Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation
  publication-title: J Clin Endocrinol Metab
  doi: 10.1210/jc.2008-0396
– volume: 126
  start-page: 2739
  year: 2012
  ident: 10.1016/j.jacc.2018.03.002_bib17
  article-title: Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.122556
– volume: 127
  start-page: 83
  year: 2017
  ident: 10.1016/j.jacc.2018.03.002_bib3
  article-title: Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk
  publication-title: J Clin Invest
  doi: 10.1172/JCI88884
– volume: 377
  start-page: 1119
  year: 2017
  ident: 10.1016/j.jacc.2018.03.002_bib12
  article-title: Antiinflammatory therapy with canakinumab for atherosclerotic disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1707914
– volume: 380
  start-page: 565
  year: 2012
  ident: 10.1016/j.jacc.2018.03.002_bib16
  article-title: Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61190-8
– volume: 370
  start-page: 1702
  year: 2014
  ident: 10.1016/j.jacc.2018.03.002_bib27
  article-title: Darapladib for preventing ischemic events in stable coronary heart disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1315878
– volume: 109
  start-page: 2818
  year: 2004
  ident: 10.1016/j.jacc.2018.03.002_bib30
  article-title: Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk?
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000132467.45278.59
– volume: 356
  start-page: 1517
  year: 2007
  ident: 10.1016/j.jacc.2018.03.002_bib8
  article-title: Interleukin-1-receptor antagonist in type 2 diabetes mellitus
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa065213
– volume: 259
  start-page: 87
  year: 1993
  ident: 10.1016/j.jacc.2018.03.002_bib20
  article-title: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance
  publication-title: Science
  doi: 10.1126/science.7678183
– volume: 391
  start-page: 319
  year: 2018
  ident: 10.1016/j.jacc.2018.03.002_bib15
  article-title: Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)32814-3
– volume: 373
  start-page: 2117
  year: 2015
  ident: 10.1016/j.jacc.2018.03.002_bib19
  article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1504720
– volume: 390
  start-page: 1833
  year: 2017
  ident: 10.1016/j.jacc.2018.03.002_bib14
  article-title: Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)32247-X
– volume: 45
  start-page: 881
  year: 1996
  ident: 10.1016/j.jacc.2018.03.002_bib21
  article-title: Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM
  publication-title: Diabetes
  doi: 10.2337/diab.45.7.881
– reference: 29793628 - J Am Coll Cardiol. 2018 May 29;71(21):2402-2404
– reference: 30213342 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432-1433
– reference: 30213341 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432
SSID ssj0006819
Score 2.641306
Snippet Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The...
AbstractBackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic...
BackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin...
Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2392
SubjectTerms Aged
Anti-Inflammatory Agents - pharmacology
Anti-Inflammatory Agents - therapeutic use
Antibodies, Monoclonal - pharmacology
Antibodies, Monoclonal - therapeutic use
Antibodies, Monoclonal, Humanized
Blood Glucose - drug effects
Blood Glucose - metabolism
C-reactive protein
Cardiology
Cardiovascular
cardiovascular disease
Diabetes
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - drug therapy
Disease Management
Dose-Response Relationship, Drug
Double-Blind Method
Drug dosages
Fasting
Female
Glucose
Heart attacks
Hemoglobin
Humans
Inflammation
Insulin
Insulin resistance
Interleukin 6
Interleukin-1beta - antagonists & inhibitors
Laboratory testing
Male
Middle Aged
Monoclonal antibodies
Myocardial infarction
Pancreas
Patients
Prediabetic State - blood
Prediabetic State - diagnosis
Prediabetic State - drug therapy
randomized trial
Thrombosis
Title Anti-Inflammatory Therapy With Canakinumab for the Prevention and Management of Diabetes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0735109718334831
https://www.clinicalkey.es/playcontent/1-s2.0-S0735109718334831
https://dx.doi.org/10.1016/j.jacc.2018.03.002
https://www.ncbi.nlm.nih.gov/pubmed/29544870
https://www.proquest.com/docview/2042182182
https://www.proquest.com/docview/2014947526
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcKg9iBdp_UytZQVvEt9L9is5tsVShXqxxXdbdrP7MNXuK3151_52Z5JNRLQVhEBIMsMuk5nZGeYL4G2Qhcdzvs6VWNY59ZDKnVZUscyD1ME3RT8b8OyzOr0QnxZysQXHYy0MpVUm3T_o9F5bpzezRM3ZddvOviBzSoqfIlNyUfW11HSnIr7F0aSNVdUP9yDgnKBT4cyQ43VpG2pjWFRDo9PyrsPpLuOzP4ROduBxsh7Z4bDBXdgK8Qk8PEvx8aewOIxdm3-MS_zPV338nJ0PbQPY17b7xqgXwfc2bq6sY2itMrT-2NjEaRWZjZ79yodhqyVLCTPrZ3Bx8uH8-DRPsxPyRnLR5c5btKy8bCpReW1DExpXFKpCsnoevNYouVKEpVDCa19RhambW6V8aaumDJo_h-24iuElMK4857KuXeFrMjecVEE7H9CTQvNA2AyKkWimSY3Fab7FDzNmkF0aIrQhQps5N0joDN5NONdDW417ofn4L8xYMIoqzqDWvxdL_w0rrJOUrk1h1qWZmz84KQM5Yf7GjP9ccX9kFDMtUqJaRCcOrwzeTJ9RiCkyY2NYbQgGHVWhZakyeDEw2EQWCsSiVznf-89NvYJH9EQZD2W9D9vdzSa8RkOqcwfw4P1tcdDLy08pYRjX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIuiDcpBYzEDUW7iV_JsVRUu9Dtha3Ym2XHXpFCsxWb_f-dSZwgBC0SUk7xWLbGM-PPmhfAuyAzj_d8mSqxLlOqIZU6rShjmQepg6-yrjfg4kzNzsWnlVztwfGQC0NhldH29za9s9bxzyRyc3JV15MvKJyS_KcolFwUlEt9B9GAItGerz6M5lgVXXcPok6JPGbO9EFeF7aiOoZZ0Vc6zW-6nW5Cn90tdPIQHkT4yI76HT6CvdA8hruL6CB_Aqujpq3TebPGg77sHOhs2dcNYF_r9hujYgTf62Z3aR1DuMoQ_rGhitOmYbbx7FdADNusWYyY2T6F85OPy-NZGpsnpJXkok2dtwitvKwKUXhtQxUql2WqQL56HrzWqLpShLVQwmtfUIqpm1qlfG6LKg-aP4P9ZtOEF8C48pzLsnSZLwlvOKmCdj7gUwrxgbAJZAPTTBUri1ODix9mCCG7MMRoQ4w2U26Q0Qm8H-dc9XU1bqXmw1mYIWMUbZxBs3_rLP23WWEb1XRrMrPNzdT8IUoJyHHmb9L4zxUPB0Ex4yI52kV8xeGXwNtxGLWYXDO2CZsd0eBLVWiZqwSe9wI2soU8sfisnB7856bewL3ZcnFqTudnn1_CfRqh8Ie8PIT99ucuvEJU1brXndZcA78MGwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Inflammatory+Therapy+With+Canakinumab+for+the+Prevention+and+Management+of+Diabetes&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Everett%2C+Brendan+M.&rft.au=Donath%2C+Marc+Y.&rft.au=Pradhan%2C+Aruna+D.&rft.au=Thuren%2C+Tom&rft.date=2018-05-29&rft.issn=0735-1097&rft.volume=71&rft.issue=21&rft.spage=2392&rft.epage=2401&rft_id=info:doi/10.1016%2Fj.jacc.2018.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jacc_2018_03_002
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109717X00260%2Fcov150h.gif