Anti-Inflammatory Therapy With Canakinumab for the Prevention and Management of Diabetes
Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. The authors randomized 10,061 patients with prio...
Saved in:
Published in | Journal of the American College of Cardiology Vol. 71; no. 21; pp. 2392 - 2401 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
29.05.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0735-1097 1558-3597 1558-3597 |
DOI | 10.1016/j.jacc.2018.03.002 |
Cover
Loading…
Abstract | Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.
The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes.
The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes.
Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed.
Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846)
[Display omitted] |
---|---|
AbstractList | AbstractBackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. ObjectivesThe authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. MethodsThe authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA 1c) in patients with and without established diabetes. ResultsOf the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA 1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA 1c or fasting plasma glucose were observed. ConclusionsAlthough IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846) Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes. Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed. Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846) [Display omitted] Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion. The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes. The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA ) in patients with and without established diabetes. Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA or fasting plasma glucose were observed. Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846). Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.BACKGROUNDSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.The authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes.OBJECTIVESThe authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes.The authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes.METHODSThe authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes.Of the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed.RESULTSOf the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed.Although IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846).CONCLUSIONSAlthough IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846). BackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.ObjectivesThe authors tested the hypothesis that the IL-1β inhibitor canakinumab reduces incident diabetes.MethodsThe authors randomized 10,061 patients with prior myocardial infarction and high-sensitivity C-reactive protein (hsCRP) ≥2 mg/l to placebo or canakinumab at doses of 50 mg, 150 mg, or 300 mg subcutaneously once every 3 months. The authors tested the effects of canakinumab on major cardiovascular events in patients with and without diabetes at baseline, and evaluated as a pre-specified analysis whether canakinumab would reduce the risk of adjudicated cases of new-onset type 2 diabetes among those with protocol-defined pre-diabetes at trial entry. The authors also evaluated the effect of canakinumab on fasting plasma glucose and glycosylated hemoglobin (HbA1c) in patients with and without established diabetes.ResultsOf the participants, 4,057 (40.3%) had baseline diabetes, 4,960 (49.3%) had pre-diabetes, and 1,044 (10.4%) had normal glucose levels. Among those without diabetes, increasing tertiles of hsCRP at baseline associated with an increased risk of developing diabetes during the median follow-up period of 3.7 years (incidence rates 3.2, 4.1, and 4.4 per 100 person-years; p = 0.003). Canakinumab 150 mg as compared with placebo had similar magnitude effects on major cardiovascular event rates among those with diabetes (hazard ratio [HR]: 0.85; 95% confidence interval [CI]: 0.70 to 1.03), pre-diabetes (HR: 0.86; 95% CI: 0.70 to 1.06), and normoglycemia (HR: 0.81; 95% CI: 0.49 to 1.35). Despite large reductions in hsCRP and IL-6, canakinumab did not reduce the incidence of new-onset diabetes, with rates per 100 person-years in the placebo, 50 mg, 150 mg, and 300 mg canakinumab groups of 4.2, 4.2, 4.4, and 4.1, respectively (log-rank p = 0.84). The HR comparing all canakinumab doses to placebo was 1.02 (95% CI: 0.87 to 1.19; p = 0.82). Canakinumab reduced HbA1c during the first 6 to 9 months of treatment, but no consistent long-term benefits on HbA1c or fasting plasma glucose were observed.ConclusionsAlthough IL-1β inhibition with canakinumab had similar effects on major cardiovascular events among those with and without diabetes, treatment over a median period of 3.7 years did not reduce incident diabetes. (Canakinumab Anti-inflammatory Thrombosis Outcomes Study [CANTOS]; NCT01327846) |
Author | Libby, Peter Donath, Marc Y. Glynn, Robert J. Pradhan, Aruna D. Nicolau, Jose C. Thuren, Tom Ridker, Paul M Everett, Brendan M. Pais, Prem |
Author_xml | – sequence: 1 givenname: Brendan M. surname: Everett fullname: Everett, Brendan M. email: beverett@bwh.harvard.edu organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts – sequence: 2 givenname: Marc Y. surname: Donath fullname: Donath, Marc Y. organization: Endocrinology, Diabetes & Metabolism, University Hospital Basel, Basel, Switzerland – sequence: 3 givenname: Aruna D. surname: Pradhan fullname: Pradhan, Aruna D. organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts – sequence: 4 givenname: Tom surname: Thuren fullname: Thuren, Tom organization: Novartis Pharmaceutical Corporation, East Hanover, New Jersey, and Basel, Switzerland – sequence: 5 givenname: Prem surname: Pais fullname: Pais, Prem organization: St. John’s Research Institute, Bangalore, India – sequence: 6 givenname: Jose C. surname: Nicolau fullname: Nicolau, Jose C. organization: Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil – sequence: 7 givenname: Robert J. surname: Glynn fullname: Glynn, Robert J. organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts – sequence: 8 givenname: Peter surname: Libby fullname: Libby, Peter organization: Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts – sequence: 9 givenname: Paul M surname: Ridker fullname: Ridker, Paul M organization: Center for Cardiovascular Disease Prevention, Harvard Medical School, Boston, Massachusetts |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29544870$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkt9r1TAUx4NM3N30H_BBCr740pqfbSoyGFeng4mCE30LaXLqTdem16Qd3P9-KXfu4YITAoHw-ZwTvuecoCM_ekDoJcEFwaR82xWdNqagmMgCswJj-gStiBAyZ6KujtAKV0zkBNfVMTqJscMYl5LUz9AxrQXnssIr9OvcTy6_9G2vh0FPY9hl1xsIervLfrppk6211zfOz4NusnYM2bSB7FuAW0ja6DPtbfYlIb9hSC_Z2GYfnG5ggvgcPW11H-HF_X2Kflx8vF5_zq--frpcn1_lRjA-5Y3VglIrjOTSVhoMmIaQUhqwloGtKsyl4NDyktvKylJw1mBdlpZqaShU7BS92dfdhvHPDHFSg4sG-l57GOeoUjq85pWgZUJfH6DdOAeffpcoTolcTqJe3VNzM4BV2-AGHXbqb2YJoHvAhDHGAO0DQrBaBqM6tQxmaS0VZioNJknyQDJu0kuGU9Cuf1x9v1chxXjrIKhoHPiUkAtgJmVH97h-dqCb3nlndH8DO4gPERAVqcLq-7I0y84QyRiXjKQC7_5d4H_d7wCJstAp |
CitedBy_id | crossref_primary_10_1002_14651858_CD014741_pub2 crossref_primary_10_1016_j_ancard_2020_03_020 crossref_primary_10_1172_JCI162291 crossref_primary_10_1016_j_pcad_2019_08_004 crossref_primary_10_1080_07853890_2018_1498118 crossref_primary_10_1007_s12265_022_10286_1 crossref_primary_10_1016_j_ejpb_2020_12_016 crossref_primary_10_1186_s12933_024_02207_0 crossref_primary_10_1161_ATVBAHA_122_317163 crossref_primary_10_1002_mco2_349 crossref_primary_10_1016_j_cjco_2022_01_003 crossref_primary_10_3390_biomedicines10030666 crossref_primary_10_1253_circj_CJ_18_0405 crossref_primary_10_14412_1996_7012_2023_5_73_78 crossref_primary_10_1016_j_rec_2019_03_006 crossref_primary_10_1080_14656566_2018_1561867 crossref_primary_10_1016_j_cyto_2024_156852 crossref_primary_10_1016_j_coph_2018_08_002 crossref_primary_10_1111_nyas_14037 crossref_primary_10_1038_s42255_019_0044_9 crossref_primary_10_1016_j_addr_2021_113904 crossref_primary_10_2147_DDDT_S399423 crossref_primary_10_14412_1995_4484_2019_222_228 crossref_primary_10_3390_ijms19092576 crossref_primary_10_1155_2022_3706508 crossref_primary_10_1007_s00108_022_01416_7 crossref_primary_10_1038_s41421_020_0167_x crossref_primary_10_3389_fcvm_2021_768119 crossref_primary_10_1016_j_dsx_2021_06_001 crossref_primary_10_1016_j_jacc_2018_06_082 crossref_primary_10_1155_2021_7297419 crossref_primary_10_1136_bmjopen_2020_044749 crossref_primary_10_3390_medicina58050571 crossref_primary_10_1016_j_tips_2024_12_003 crossref_primary_10_1016_S1280_4703_22_47395_6 crossref_primary_10_3389_fimmu_2023_1125116 crossref_primary_10_1016_j_cmet_2021_07_001 crossref_primary_10_1136_bmjdrc_2021_002285 crossref_primary_10_1161_CIRCRESAHA_119_315896 crossref_primary_10_1038_s41580_021_00390_6 crossref_primary_10_1161_CIR_0000000000001185 crossref_primary_10_1007_s40259_022_00561_7 crossref_primary_10_1186_s13098_024_01369_x crossref_primary_10_1530_JOE_18_0468 crossref_primary_10_3390_cells13191662 crossref_primary_10_3390_cells9010231 crossref_primary_10_1136_annrheumdis_2020_219140 crossref_primary_10_1016_j_eclinm_2024_102835 crossref_primary_10_1002_fft2_433 crossref_primary_10_1007_s00281_019_00743_6 crossref_primary_10_1007_s00109_020_01941_8 crossref_primary_10_2337_dc23_S003 crossref_primary_10_3389_fphar_2018_01488 crossref_primary_10_1016_j_ctim_2024_103027 crossref_primary_10_1007_s11655_023_3630_3 crossref_primary_10_1038_s41577_019_0213_9 crossref_primary_10_1038_s41574_024_01047_y crossref_primary_10_1038_s41467_019_09588_x crossref_primary_10_1101_cshperspect_a041197 crossref_primary_10_1186_s41232_019_0101_5 crossref_primary_10_1038_s41574_020_0355_7 crossref_primary_10_1016_S1957_2557_19_30042_2 crossref_primary_10_1007_s11906_018_0880_0 crossref_primary_10_1038_s41591_024_03165_6 crossref_primary_10_1210_endrev_bnaa016 crossref_primary_10_1038_s41401_021_00797_z crossref_primary_10_1161_ATVBAHA_119_310961 crossref_primary_10_1369_00221554241299862 crossref_primary_10_36290_vnl_2021_029 crossref_primary_10_1016_j_ebiom_2019_102615 crossref_primary_10_1016_j_dsx_2023_102901 crossref_primary_10_1161_CIRCRESAHA_122_321335 crossref_primary_10_1016_j_bbadis_2020_166044 crossref_primary_10_1016_j_deman_2024_100247 crossref_primary_10_1016_j_cjca_2022_02_002 crossref_primary_10_1186_s12933_018_0723_y crossref_primary_10_47360_1995_4484_2021_708_714 crossref_primary_10_1002_btm2_10150 crossref_primary_10_1016_j_jhep_2023_10_039 crossref_primary_10_1016_S1283_0771_22_47366_X crossref_primary_10_3390_brainsci11070896 crossref_primary_10_1101_gad_346312_120 crossref_primary_10_1152_ajpendo_00461_2017 crossref_primary_10_1038_s41598_021_85778_2 crossref_primary_10_3390_ijms23031831 crossref_primary_10_1007_s11357_024_01364_0 crossref_primary_10_2174_1381612825666190830181944 crossref_primary_10_3390_ijms25105212 crossref_primary_10_1016_j_coph_2020_09_008 crossref_primary_10_1016_j_amjmed_2018_10_013 crossref_primary_10_14412_1995_4484_2018_28_34 crossref_primary_10_1016_j_ajcnut_2024_04_029 crossref_primary_10_1111_joim_12862 crossref_primary_10_1016_j_medcle_2020_04_020 crossref_primary_10_1038_s41577_024_01103_8 crossref_primary_10_3892_mmr_2024_13219 crossref_primary_10_26599_FMH_2025_9420074 crossref_primary_10_3390_biomedicines11030662 crossref_primary_10_1016_j_medcli_2020_04_024 crossref_primary_10_3390_ijms21113798 crossref_primary_10_1080_13543784_2018_1538352 crossref_primary_10_3390_ijms21218178 crossref_primary_10_1073_pnas_2312621121 crossref_primary_10_1074_jbc_RA118_005627 crossref_primary_10_1038_s41577_019_0198_4 crossref_primary_10_1161_CIRCIMAGING_120_012174 crossref_primary_10_1038_s41569_020_0339_2 crossref_primary_10_3390_nu16101404 crossref_primary_10_1080_03007995_2022_2033049 crossref_primary_10_1136_annrheumdis_2021_220047 crossref_primary_10_1177_20587392211014416 crossref_primary_10_1152_physrev_00065_2017 crossref_primary_10_1007_s00125_024_06306_1 crossref_primary_10_1016_j_immuni_2021_12_013 crossref_primary_10_1042_CS20230226 crossref_primary_10_1016_j_jacc_2018_07_021 crossref_primary_10_1053_j_gastro_2021_05_008 crossref_primary_10_2147_DMSO_S346648 crossref_primary_10_1016_j_recesp_2019_02_021 crossref_primary_10_1126_scitranslmed_abh3831 crossref_primary_10_3389_fphar_2018_01157 crossref_primary_10_1093_cvr_cvz085 crossref_primary_10_1186_s12933_018_0733_9 crossref_primary_10_1093_eurheartj_ehaa099 crossref_primary_10_1146_annurev_pathmechdis_032521_102529 crossref_primary_10_1210_endrev_bnab021 crossref_primary_10_7554_eLife_68832 crossref_primary_10_1038_s41575_022_00658_y crossref_primary_10_1210_clinem_dgaa036 crossref_primary_10_3389_fphys_2022_837723 crossref_primary_10_2337_dc22_0866 crossref_primary_10_3390_cells9081812 crossref_primary_10_1007_s00109_024_02449_1 crossref_primary_10_1016_j_intimp_2021_107765 crossref_primary_10_1097_CRD_0000000000000428 crossref_primary_10_1155_2020_4743904 crossref_primary_10_1016_j_mmm_2023_03_013 crossref_primary_10_1007_s11886_023_01990_8 crossref_primary_10_1016_j_biopha_2023_114545 crossref_primary_10_1016_j_celrep_2020_108326 crossref_primary_10_1016_j_atherosclerosis_2018_07_007 crossref_primary_10_1016_j_tem_2023_04_001 crossref_primary_10_1016_S0021_9258_17_49941_8 crossref_primary_10_1093_rheumatology_keaa810 crossref_primary_10_3389_fphys_2024_1328470 crossref_primary_10_3390_ijms242015078 crossref_primary_10_3390_nu12051505 crossref_primary_10_1186_s12986_020_00472_w crossref_primary_10_1177_20420188231185958 crossref_primary_10_3390_jcm12186022 crossref_primary_10_1016_j_ejphar_2022_174998 crossref_primary_10_1038_s41598_020_66751_x crossref_primary_10_1016_j_jacc_2018_04_093 crossref_primary_10_2337_dc22_S003 crossref_primary_10_15420_ecr_2018_33_1 crossref_primary_10_1038_s41574_019_0286_3 crossref_primary_10_1177_20420188221083530 crossref_primary_10_7555_JBR_34_20190124 crossref_primary_10_1007_s12325_022_02241_y crossref_primary_10_1016_j_metabol_2024_156083 crossref_primary_10_1111_jgh_16750 crossref_primary_10_1016_j_atherosclerosis_2018_07_014 crossref_primary_10_1210_clinem_dgac074 crossref_primary_10_1016_j_molmed_2020_06_005 crossref_primary_10_1016_j_isci_2019_100775 crossref_primary_10_1016_j_biopha_2023_115734 crossref_primary_10_1038_s41423_020_00580_w crossref_primary_10_1016_j_mmm_2021_07_010 crossref_primary_10_1038_s41590_023_01479_0 crossref_primary_10_3390_metabo14030153 crossref_primary_10_1007_s11883_018_0754_6 crossref_primary_10_1016_j_jdiacomp_2019_107413 crossref_primary_10_1177_1753944718778464 crossref_primary_10_1038_s41574_021_00575_1 crossref_primary_10_1038_s41586_019_1797_8 crossref_primary_10_1016_j_phrs_2020_104916 crossref_primary_10_1007_s00281_019_00747_2 crossref_primary_10_1038_s41598_020_59701_0 crossref_primary_10_1016_j_phrs_2021_105885 crossref_primary_10_1038_s41574_023_00898_1 crossref_primary_10_1016_j_diabres_2021_108991 crossref_primary_10_1016_j_jacc_2018_03_480 crossref_primary_10_2217_fca_2020_0211 crossref_primary_10_3390_ijms21051835 crossref_primary_10_1016_j_pcad_2019_07_006 crossref_primary_10_1186_s12933_023_02067_0 crossref_primary_10_1080_1744666X_2022_2045952 crossref_primary_10_1002_mnfr_201900482 crossref_primary_10_3389_fimmu_2020_583687 crossref_primary_10_1007_s11428_018_0365_4 crossref_primary_10_1016_j_phrs_2020_105216 crossref_primary_10_3390_nu12123663 crossref_primary_10_3390_molecules25092224 crossref_primary_10_1016_j_diabet_2018_09_005 crossref_primary_10_1016_j_coemr_2024_100560 crossref_primary_10_1186_s12933_023_01990_6 crossref_primary_10_3390_ijms21218108 crossref_primary_10_1016_j_atherosclerosis_2023_117313 crossref_primary_10_1038_s41584_019_0277_8 crossref_primary_10_7759_cureus_67070 crossref_primary_10_1002_acr_24328 crossref_primary_10_1038_nrcardio_2018_32 crossref_primary_10_1038_s41598_024_73672_6 crossref_primary_10_1161_CIRCRESAHA_118_313129 crossref_primary_10_3390_cells13151244 crossref_primary_10_1016_j_jdiacomp_2018_11_001 crossref_primary_10_1007_s00018_022_04289_z crossref_primary_10_1136_annrheumdis_2021_220114 crossref_primary_10_1093_cvr_cvae142 crossref_primary_10_3390_biomedicines9070826 crossref_primary_10_1007_s00125_025_06393_8 crossref_primary_10_2337_dc25_S003 crossref_primary_10_1111_obr_13156 crossref_primary_10_3389_fcvm_2022_991716 crossref_primary_10_1111_bph_14642 crossref_primary_10_1038_s41598_020_62190_w crossref_primary_10_3389_fcvm_2023_1244529 crossref_primary_10_7759_cureus_67065 crossref_primary_10_1016_j_ebiom_2020_103062 crossref_primary_10_3389_fcvm_2020_00010 crossref_primary_10_6065_apem_2040188_094 crossref_primary_10_1111_dom_13646 crossref_primary_10_1038_s41574_023_00908_2 crossref_primary_10_1210_er_2019_00002 crossref_primary_10_2337_dc24_S003 crossref_primary_10_1126_sciadv_adj4686 crossref_primary_10_1080_10408398_2020_1799931 crossref_primary_10_1016_j_jacc_2021_02_070 crossref_primary_10_1038_s41598_023_45870_1 crossref_primary_10_1074_jbc_RA119_010340 crossref_primary_10_3389_fendo_2023_1076343 crossref_primary_10_1186_s41231_022_00124_6 crossref_primary_10_1007_s00281_019_00749_0 crossref_primary_10_1111_dom_14290 crossref_primary_10_1134_S0006297919110099 crossref_primary_10_3390_ijms252111409 crossref_primary_10_3389_fcvm_2021_650278 crossref_primary_10_4049_jimmunol_1900212 crossref_primary_10_1007_s00125_019_4844_y crossref_primary_10_1371_journal_pone_0229184 crossref_primary_10_1111_imr_12901 crossref_primary_10_1016_j_jhepr_2019_02_004 crossref_primary_10_3389_fimmu_2022_896353 crossref_primary_10_1007_s13340_022_00607_9 crossref_primary_10_1097_FJC_0000000000000704 crossref_primary_10_1097_MED_0000000000000611 crossref_primary_10_1080_13543784_2020_1681397 crossref_primary_10_1038_s41591_018_0124_5 crossref_primary_10_1111_eci_14096 crossref_primary_10_1016_j_jri_2021_103463 |
Cites_doi | 10.1001/jama.286.3.327 10.1038/nrd4275 10.7326/0003-4819-159-1-201307020-00003 10.2337/dc09-0533 10.1056/NEJMoa1501352 10.1001/archinte.166.8.902 10.1038/ni.1935 10.1016/j.ahj.2013.03.018 10.2337/dc12-1835 10.1159/000088261 10.1001/jama.2016.3609 10.2337/dc11-2219 10.1172/JCI29069 10.2337/diab.44.4.369 10.1172/JCI200215318 10.2337/diabetes.50.8.1683 10.1210/jc.2008-0396 10.1161/CIRCULATIONAHA.112.122556 10.1172/JCI88884 10.1056/NEJMoa1707914 10.1016/S0140-6736(12)61190-8 10.1056/NEJMoa1315878 10.1161/01.CIR.0000132467.45278.59 10.1056/NEJMoa065213 10.1126/science.7678183 10.1016/S0140-6736(17)32814-3 10.1056/NEJMoa1504720 10.1016/S0140-6736(17)32247-X 10.2337/diab.45.7.881 |
ContentType | Journal Article |
Copyright | 2018 American College of Cardiology Foundation American College of Cardiology Foundation Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. Copyright Elsevier Limited May 29, 2018 |
Copyright_xml | – notice: 2018 American College of Cardiology Foundation – notice: American College of Cardiology Foundation – notice: Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. – notice: Copyright Elsevier Limited May 29, 2018 |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ 7X8 |
DOI | 10.1016/j.jacc.2018.03.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-3597 |
EndPage | 2401 |
ExternalDocumentID | 29544870 10_1016_j_jacc_2018_03_002 S0735109718334831 1_s2_0_S0735109718334831 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 18M 1B1 1P~ 1~. 1~5 2WC 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ AABNK AABVL AAEDT AAEDW AAIKJ AALRI AAOAW AAQFI AAQQT AAXUO ABBQC ABFNM ABFRF ABLJU ABMAC ABMZM ABOCM ACGFO ACGFS ACIUM ACJTP ACPRK ACVFH ADBBV ADCNI ADEZE ADVLN AEFWE AEKER AENEX AEUPX AEVXI AEXQZ AFPUW AFRAH AFRHN AFTJW AGCQF AGYEJ AHMBA AIGII AITUG AJRQY AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BLXMC CS3 DIK DU5 E3Z EBS EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FNPLU G-Q GBLVA GX1 H13 HVGLF IHE IXB J1W K-O KQ8 L7B MO0 N9A O-L O9- OA. OAUVE OK1 OL~ OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SCC SDF SDG SDP SES SSZ TR2 UNMZH UV1 W8F WH7 WOQ WOW YYM YZZ Z5R .55 .GJ 0SF 1CY 29L 3O- 3V. 6I. 7RV AACTN AAFTH AAKUH AAQXK AAYOK ABVKL ABWVN ABXDB ACRPL ADMUD ADNMO AFCTW AFETI AFFNX AGHFR AJOXV AMFUW ASPBG AVWKF AZFZN BENPR BPHCQ FGOYB HX~ HZ~ J5H N4W NCXOZ PROAC QTD R2- RIG SEW T5K X7M XPP YYP ZGI ZXP AAIAV ABJNI EFLBG LCYCR NAHTW ZA5 AAYWO AAYXX AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7T5 7TK H94 K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c534t-bda522d5c848d7aececb1168cedd3ed7704854ef464d7d86543b0a66d2a8c2e73 |
IEDL.DBID | IXB |
ISSN | 0735-1097 1558-3597 |
IngestDate | Fri Jul 11 09:19:33 EDT 2025 Fri Jul 25 09:25:19 EDT 2025 Wed Feb 19 02:31:19 EST 2025 Tue Jul 01 04:22:08 EDT 2025 Thu Apr 24 23:01:50 EDT 2025 Fri Feb 23 02:47:23 EST 2024 Sun Feb 23 10:18:56 EST 2025 Tue Aug 26 16:31:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | cardiovascular disease NF-κB IL inflammation randomized trial CI hsCRP NLRP3 HR IQR diabetes HbA1c high-sensitivity C-reactive protein interquartile range NOD-like receptor pyrin-3 HbA 1c hazard ratio nuclear factor kappa-B confidence interval glycosylated hemoglobin interleukin |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-bda522d5c848d7aececb1168cedd3ed7704854ef464d7d86543b0a66d2a8c2e73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0735109718334831 |
PMID | 29544870 |
PQID | 2042182182 |
PQPubID | 2031078 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2014947526 proquest_journals_2042182182 pubmed_primary_29544870 crossref_primary_10_1016_j_jacc_2018_03_002 crossref_citationtrail_10_1016_j_jacc_2018_03_002 elsevier_sciencedirect_doi_10_1016_j_jacc_2018_03_002 elsevier_clinicalkeyesjournals_1_s2_0_S0735109718334831 elsevier_clinicalkey_doi_10_1016_j_jacc_2018_03_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-29 |
PublicationDateYYYYMMDD | 2018-05-29 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Journal of the American College of Cardiology |
PublicationTitleAlternate | J Am Coll Cardiol |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Green, Bethel, Armstrong (bib18) 2015; 373 O'Donoghue, Glaser, Cavender (bib28) 2016; 315 Boni-Schnetzler, Thorne, Parnaud (bib5) 2008; 93 Pradhan, Manson, Rifai, Buring, Ridker (bib1) 2001; 286 Ridker, MacFadyen, Thuren (bib14) 2017; 390 Ridker, MacFadyen, Everett (bib15) 2018; 391 Bernstein, Berry, Kim, Canavan, Grinspoon (bib23) 2006; 166 Ridker, Pradhan, MacFadyen, Libby, Glynn (bib16) 2012; 380 Ridker, Howard, Walter (bib17) 2012; 126 Everett, Pradhan, Solomon (bib26) 2013; 166 Stern (bib29) 1995; 44 Larsen, Faulenbach, Vaag (bib8) 2007; 356 Masters, Dunne, Subramanian (bib6) 2010; 11 Shoelson, Lee, Goldfine (bib25) 2006; 116 Maedler, Spinas, Lehmann (bib7) 2001; 50 Cavelti-Weder, Babians-Brunner, Keller (bib10) 2012; 35 Zinman, Wanner, Lachin (bib19) 2015; 373 Larsen, Faulenbach, Vaag, Ehses, Donath, Mandrup-Poulsen (bib9) 2009; 32 Ofei, Hurel, Newkirk, Sopwith, Taylor (bib21) 1996; 45 Goldfine, Shoelson (bib3) 2017; 127 White, Held, Stewart (bib27) 2014; 370 Dominguez, Storgaard, Rask-Madsen (bib22) 2005; 42 Ridker, Wilson, Grundy (bib30) 2004; 109 (bib13) 2014; 37 Suppl 1 Ridker, Everett, Thuren (bib12) 2017; 377 Goldfine, Fonseca, Jablonski (bib24) 2013; 159 Sloan-Lancaster, Abu-Raddad, Polzer (bib11) 2013; 36 Hotamisligil, Shargill, Spiegelman (bib20) 1993; 259 Maedler, Sergeev, Ris (bib4) 2002; 110 Donath (bib2) 2014; 13 Goldfine (10.1016/j.jacc.2018.03.002_bib3) 2017; 127 Maedler (10.1016/j.jacc.2018.03.002_bib4) 2002; 110 Larsen (10.1016/j.jacc.2018.03.002_bib9) 2009; 32 Everett (10.1016/j.jacc.2018.03.002_bib26) 2013; 166 Maedler (10.1016/j.jacc.2018.03.002_bib7) 2001; 50 Dominguez (10.1016/j.jacc.2018.03.002_bib22) 2005; 42 Ridker (10.1016/j.jacc.2018.03.002_bib15) 2018; 391 Ridker (10.1016/j.jacc.2018.03.002_bib30) 2004; 109 Green (10.1016/j.jacc.2018.03.002_bib18) 2015; 373 Pradhan (10.1016/j.jacc.2018.03.002_bib1) 2001; 286 Donath (10.1016/j.jacc.2018.03.002_bib2) 2014; 13 Bernstein (10.1016/j.jacc.2018.03.002_bib23) 2006; 166 Stern (10.1016/j.jacc.2018.03.002_bib29) 1995; 44 Ridker (10.1016/j.jacc.2018.03.002_bib16) 2012; 380 Masters (10.1016/j.jacc.2018.03.002_bib6) 2010; 11 Ridker (10.1016/j.jacc.2018.03.002_bib12) 2017; 377 Zinman (10.1016/j.jacc.2018.03.002_bib19) 2015; 373 Hotamisligil (10.1016/j.jacc.2018.03.002_bib20) 1993; 259 White (10.1016/j.jacc.2018.03.002_bib27) 2014; 370 Sloan-Lancaster (10.1016/j.jacc.2018.03.002_bib11) 2013; 36 (10.1016/j.jacc.2018.03.002_bib13) 2014; 37 Suppl 1 Goldfine (10.1016/j.jacc.2018.03.002_bib24) 2013; 159 Shoelson (10.1016/j.jacc.2018.03.002_bib25) 2006; 116 Boni-Schnetzler (10.1016/j.jacc.2018.03.002_bib5) 2008; 93 O'Donoghue (10.1016/j.jacc.2018.03.002_bib28) 2016; 315 Cavelti-Weder (10.1016/j.jacc.2018.03.002_bib10) 2012; 35 Ofei (10.1016/j.jacc.2018.03.002_bib21) 1996; 45 Larsen (10.1016/j.jacc.2018.03.002_bib8) 2007; 356 Ridker (10.1016/j.jacc.2018.03.002_bib14) 2017; 390 Ridker (10.1016/j.jacc.2018.03.002_bib17) 2012; 126 29793628 - J Am Coll Cardiol. 2018 May 29;71(21):2402-2404 30213342 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432-1433 30213341 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432 |
References_xml | – volume: 373 start-page: 2117 year: 2015 end-page: 2128 ident: bib19 article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes publication-title: N Engl J Med – volume: 370 start-page: 1702 year: 2014 end-page: 1711 ident: bib27 article-title: Darapladib for preventing ischemic events in stable coronary heart disease publication-title: N Engl J Med – volume: 50 start-page: 1683 year: 2001 end-page: 1690 ident: bib7 article-title: Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets publication-title: Diabetes – volume: 390 start-page: 1833 year: 2017 end-page: 1842 ident: bib14 article-title: Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial publication-title: Lancet – volume: 259 start-page: 87 year: 1993 end-page: 91 ident: bib20 article-title: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance publication-title: Science – volume: 116 start-page: 1793 year: 2006 end-page: 1801 ident: bib25 article-title: Inflammation and insulin resistance publication-title: J Clin Invest – volume: 286 start-page: 327 year: 2001 end-page: 334 ident: bib1 article-title: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus publication-title: JAMA – volume: 13 start-page: 465 year: 2014 end-page: 476 ident: bib2 article-title: Targeting inflammation in the treatment of type 2 diabetes: time to start publication-title: Nat Rev Drug Discov – volume: 166 start-page: 199 year: 2013 end-page: 207.e15 ident: bib26 article-title: Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis publication-title: Am Heart J – volume: 93 start-page: 4065 year: 2008 end-page: 4074 ident: bib5 article-title: Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation publication-title: J Clin Endocrinol Metab – volume: 32 start-page: 1663 year: 2009 end-page: 1668 ident: bib9 article-title: Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes publication-title: Diabetes Care – volume: 315 start-page: 1591 year: 2016 end-page: 1599 ident: bib28 article-title: Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial publication-title: JAMA – volume: 159 start-page: 1 year: 2013 end-page: 12 ident: bib24 article-title: Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial publication-title: Ann Intern Med – volume: 391 start-page: 319 year: 2018 end-page: 328 ident: bib15 article-title: Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial publication-title: Lancet – volume: 44 start-page: 369 year: 1995 end-page: 374 ident: bib29 article-title: Diabetes and cardiovascular disease. The “common soil” hypothesis publication-title: Diabetes – volume: 36 start-page: 2239 year: 2013 end-page: 2246 ident: bib11 article-title: Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes publication-title: Diabetes Care – volume: 373 start-page: 232 year: 2015 end-page: 242 ident: bib18 article-title: Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes publication-title: N Engl J Med – volume: 37 Suppl 1 start-page: S81 year: 2014 end-page: S90 ident: bib13 article-title: Diagnosis and classification of diabetes mellitus publication-title: Diabetes Care – volume: 166 start-page: 902 year: 2006 end-page: 908 ident: bib23 article-title: Effects of etanercept in patients with the metabolic syndrome publication-title: Arch Intern Med – volume: 377 start-page: 1119 year: 2017 end-page: 1131 ident: bib12 article-title: Antiinflammatory therapy with canakinumab for atherosclerotic disease publication-title: N Engl J Med – volume: 35 start-page: 1654 year: 2012 end-page: 1662 ident: bib10 article-title: Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes publication-title: Diabetes Care – volume: 110 start-page: 851 year: 2002 end-page: 860 ident: bib4 article-title: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets publication-title: J Clin Invest – volume: 126 start-page: 2739 year: 2012 end-page: 2748 ident: bib17 article-title: Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial publication-title: Circulation – volume: 11 start-page: 897 year: 2010 end-page: 904 ident: bib6 article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes publication-title: Nat Immunol – volume: 45 start-page: 881 year: 1996 end-page: 885 ident: bib21 article-title: Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM publication-title: Diabetes – volume: 42 start-page: 517 year: 2005 end-page: 525 ident: bib22 article-title: Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes publication-title: J Vasc Res – volume: 356 start-page: 1517 year: 2007 end-page: 1526 ident: bib8 article-title: Interleukin-1-receptor antagonist in type 2 diabetes mellitus publication-title: N Engl J Med – volume: 380 start-page: 565 year: 2012 end-page: 571 ident: bib16 article-title: Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial publication-title: Lancet – volume: 127 start-page: 83 year: 2017 end-page: 93 ident: bib3 article-title: Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk publication-title: J Clin Invest – volume: 109 start-page: 2818 year: 2004 end-page: 2825 ident: bib30 article-title: Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? publication-title: Circulation – volume: 286 start-page: 327 year: 2001 ident: 10.1016/j.jacc.2018.03.002_bib1 article-title: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus publication-title: JAMA doi: 10.1001/jama.286.3.327 – volume: 13 start-page: 465 year: 2014 ident: 10.1016/j.jacc.2018.03.002_bib2 article-title: Targeting inflammation in the treatment of type 2 diabetes: time to start publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4275 – volume: 159 start-page: 1 year: 2013 ident: 10.1016/j.jacc.2018.03.002_bib24 article-title: Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial publication-title: Ann Intern Med doi: 10.7326/0003-4819-159-1-201307020-00003 – volume: 32 start-page: 1663 year: 2009 ident: 10.1016/j.jacc.2018.03.002_bib9 article-title: Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc09-0533 – volume: 373 start-page: 232 year: 2015 ident: 10.1016/j.jacc.2018.03.002_bib18 article-title: Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa1501352 – volume: 166 start-page: 902 year: 2006 ident: 10.1016/j.jacc.2018.03.002_bib23 article-title: Effects of etanercept in patients with the metabolic syndrome publication-title: Arch Intern Med doi: 10.1001/archinte.166.8.902 – volume: 11 start-page: 897 year: 2010 ident: 10.1016/j.jacc.2018.03.002_bib6 article-title: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes publication-title: Nat Immunol doi: 10.1038/ni.1935 – volume: 166 start-page: 199 year: 2013 ident: 10.1016/j.jacc.2018.03.002_bib26 article-title: Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis publication-title: Am Heart J doi: 10.1016/j.ahj.2013.03.018 – volume: 36 start-page: 2239 year: 2013 ident: 10.1016/j.jacc.2018.03.002_bib11 article-title: Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1beta antibody, in patients with type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc12-1835 – volume: 42 start-page: 517 year: 2005 ident: 10.1016/j.jacc.2018.03.002_bib22 article-title: Metabolic and vascular effects of tumor necrosis factor-alpha blockade with etanercept in obese patients with type 2 diabetes publication-title: J Vasc Res doi: 10.1159/000088261 – volume: 315 start-page: 1591 year: 2016 ident: 10.1016/j.jacc.2018.03.002_bib28 article-title: Effect of losmapimod on cardiovascular outcomes in patients hospitalized with acute myocardial infarction: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2016.3609 – volume: 35 start-page: 1654 year: 2012 ident: 10.1016/j.jacc.2018.03.002_bib10 article-title: Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc11-2219 – volume: 37 Suppl 1 start-page: S81 year: 2014 ident: 10.1016/j.jacc.2018.03.002_bib13 article-title: Diagnosis and classification of diabetes mellitus publication-title: Diabetes Care – volume: 116 start-page: 1793 year: 2006 ident: 10.1016/j.jacc.2018.03.002_bib25 article-title: Inflammation and insulin resistance publication-title: J Clin Invest doi: 10.1172/JCI29069 – volume: 44 start-page: 369 year: 1995 ident: 10.1016/j.jacc.2018.03.002_bib29 article-title: Diabetes and cardiovascular disease. The “common soil” hypothesis publication-title: Diabetes doi: 10.2337/diab.44.4.369 – volume: 110 start-page: 851 year: 2002 ident: 10.1016/j.jacc.2018.03.002_bib4 article-title: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets publication-title: J Clin Invest doi: 10.1172/JCI200215318 – volume: 50 start-page: 1683 year: 2001 ident: 10.1016/j.jacc.2018.03.002_bib7 article-title: Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets publication-title: Diabetes doi: 10.2337/diabetes.50.8.1683 – volume: 93 start-page: 4065 year: 2008 ident: 10.1016/j.jacc.2018.03.002_bib5 article-title: Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 diabetes and regulation of IL-1beta in human islets by glucose and autostimulation publication-title: J Clin Endocrinol Metab doi: 10.1210/jc.2008-0396 – volume: 126 start-page: 2739 year: 2012 ident: 10.1016/j.jacc.2018.03.002_bib17 article-title: Effects of interleukin-1beta inhibition with canakinumab on hemoglobin A1c, lipids, C-reactive protein, interleukin-6, and fibrinogen: a phase IIb randomized, placebo-controlled trial publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.122556 – volume: 127 start-page: 83 year: 2017 ident: 10.1016/j.jacc.2018.03.002_bib3 article-title: Therapeutic approaches targeting inflammation for diabetes and associated cardiovascular risk publication-title: J Clin Invest doi: 10.1172/JCI88884 – volume: 377 start-page: 1119 year: 2017 ident: 10.1016/j.jacc.2018.03.002_bib12 article-title: Antiinflammatory therapy with canakinumab for atherosclerotic disease publication-title: N Engl J Med doi: 10.1056/NEJMoa1707914 – volume: 380 start-page: 565 year: 2012 ident: 10.1016/j.jacc.2018.03.002_bib16 article-title: Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial publication-title: Lancet doi: 10.1016/S0140-6736(12)61190-8 – volume: 370 start-page: 1702 year: 2014 ident: 10.1016/j.jacc.2018.03.002_bib27 article-title: Darapladib for preventing ischemic events in stable coronary heart disease publication-title: N Engl J Med doi: 10.1056/NEJMoa1315878 – volume: 109 start-page: 2818 year: 2004 ident: 10.1016/j.jacc.2018.03.002_bib30 article-title: Should C-reactive protein be added to metabolic syndrome and to assessment of global cardiovascular risk? publication-title: Circulation doi: 10.1161/01.CIR.0000132467.45278.59 – volume: 356 start-page: 1517 year: 2007 ident: 10.1016/j.jacc.2018.03.002_bib8 article-title: Interleukin-1-receptor antagonist in type 2 diabetes mellitus publication-title: N Engl J Med doi: 10.1056/NEJMoa065213 – volume: 259 start-page: 87 year: 1993 ident: 10.1016/j.jacc.2018.03.002_bib20 article-title: Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance publication-title: Science doi: 10.1126/science.7678183 – volume: 391 start-page: 319 year: 2018 ident: 10.1016/j.jacc.2018.03.002_bib15 article-title: Relationship of C-reactive protein reduction to cardiovascular event reduction following treatment with canakinumab: a secondary analysis from the CANTOS randomised controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(17)32814-3 – volume: 373 start-page: 2117 year: 2015 ident: 10.1016/j.jacc.2018.03.002_bib19 article-title: Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes publication-title: N Engl J Med doi: 10.1056/NEJMoa1504720 – volume: 390 start-page: 1833 year: 2017 ident: 10.1016/j.jacc.2018.03.002_bib14 article-title: Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial publication-title: Lancet doi: 10.1016/S0140-6736(17)32247-X – volume: 45 start-page: 881 year: 1996 ident: 10.1016/j.jacc.2018.03.002_bib21 article-title: Effects of an engineered human anti-TNF-alpha antibody (CDP571) on insulin sensitivity and glycemic control in patients with NIDDM publication-title: Diabetes doi: 10.2337/diab.45.7.881 – reference: 29793628 - J Am Coll Cardiol. 2018 May 29;71(21):2402-2404 – reference: 30213342 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432-1433 – reference: 30213341 - J Am Coll Cardiol. 2018 Sep 18;72(12):1432 |
SSID | ssj0006819 |
Score | 2.641306 |
Snippet | Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin secretion.
The... AbstractBackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic... BackgroundSubclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin... Subclinical inflammation mediated in part by interleukin (IL)-1β participates in peripheral insulin resistance and impaired pancreatic insulin... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2392 |
SubjectTerms | Aged Anti-Inflammatory Agents - pharmacology Anti-Inflammatory Agents - therapeutic use Antibodies, Monoclonal - pharmacology Antibodies, Monoclonal - therapeutic use Antibodies, Monoclonal, Humanized Blood Glucose - drug effects Blood Glucose - metabolism C-reactive protein Cardiology Cardiovascular cardiovascular disease Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - drug therapy Disease Management Dose-Response Relationship, Drug Double-Blind Method Drug dosages Fasting Female Glucose Heart attacks Hemoglobin Humans Inflammation Insulin Insulin resistance Interleukin 6 Interleukin-1beta - antagonists & inhibitors Laboratory testing Male Middle Aged Monoclonal antibodies Myocardial infarction Pancreas Patients Prediabetic State - blood Prediabetic State - diagnosis Prediabetic State - drug therapy randomized trial Thrombosis |
Title | Anti-Inflammatory Therapy With Canakinumab for the Prevention and Management of Diabetes |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0735109718334831 https://www.clinicalkey.es/playcontent/1-s2.0-S0735109718334831 https://dx.doi.org/10.1016/j.jacc.2018.03.002 https://www.ncbi.nlm.nih.gov/pubmed/29544870 https://www.proquest.com/docview/2042182182 https://www.proquest.com/docview/2014947526 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9VAcKg9iBdp_UytZQVvEt9L9is5tsVShXqxxXdbdrP7MNXuK3151_52Z5JNRLQVhEBIMsMuk5nZGeYL4G2Qhcdzvs6VWNY59ZDKnVZUscyD1ME3RT8b8OyzOr0QnxZysQXHYy0MpVUm3T_o9F5bpzezRM3ZddvOviBzSoqfIlNyUfW11HSnIr7F0aSNVdUP9yDgnKBT4cyQ43VpG2pjWFRDo9PyrsPpLuOzP4ROduBxsh7Z4bDBXdgK8Qk8PEvx8aewOIxdm3-MS_zPV338nJ0PbQPY17b7xqgXwfc2bq6sY2itMrT-2NjEaRWZjZ79yodhqyVLCTPrZ3Bx8uH8-DRPsxPyRnLR5c5btKy8bCpReW1DExpXFKpCsnoevNYouVKEpVDCa19RhambW6V8aaumDJo_h-24iuElMK4857KuXeFrMjecVEE7H9CTQvNA2AyKkWimSY3Fab7FDzNmkF0aIrQhQps5N0joDN5NONdDW417ofn4L8xYMIoqzqDWvxdL_w0rrJOUrk1h1qWZmz84KQM5Yf7GjP9ccX9kFDMtUqJaRCcOrwzeTJ9RiCkyY2NYbQgGHVWhZakyeDEw2EQWCsSiVznf-89NvYJH9EQZD2W9D9vdzSa8RkOqcwfw4P1tcdDLy08pYRjX |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRQIuiDcpBYzEDUW7iV_JsVRUu9Dtha3Ym2XHXpFCsxWb_f-dSZwgBC0SUk7xWLbGM-PPmhfAuyAzj_d8mSqxLlOqIZU6rShjmQepg6-yrjfg4kzNzsWnlVztwfGQC0NhldH29za9s9bxzyRyc3JV15MvKJyS_KcolFwUlEt9B9GAItGerz6M5lgVXXcPok6JPGbO9EFeF7aiOoZZ0Vc6zW-6nW5Cn90tdPIQHkT4yI76HT6CvdA8hruL6CB_Aqujpq3TebPGg77sHOhs2dcNYF_r9hujYgTf62Z3aR1DuMoQ_rGhitOmYbbx7FdADNusWYyY2T6F85OPy-NZGpsnpJXkok2dtwitvKwKUXhtQxUql2WqQL56HrzWqLpShLVQwmtfUIqpm1qlfG6LKg-aP4P9ZtOEF8C48pzLsnSZLwlvOKmCdj7gUwrxgbAJZAPTTBUri1ODix9mCCG7MMRoQ4w2U26Q0Qm8H-dc9XU1bqXmw1mYIWMUbZxBs3_rLP23WWEb1XRrMrPNzdT8IUoJyHHmb9L4zxUPB0Ex4yI52kV8xeGXwNtxGLWYXDO2CZsd0eBLVWiZqwSe9wI2soU8sfisnB7856bewL3ZcnFqTudnn1_CfRqh8Ie8PIT99ucuvEJU1brXndZcA78MGwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anti-Inflammatory+Therapy+With+Canakinumab+for+the+Prevention+and+Management+of+Diabetes&rft.jtitle=Journal+of+the+American+College+of+Cardiology&rft.au=Everett%2C+Brendan+M.&rft.au=Donath%2C+Marc+Y.&rft.au=Pradhan%2C+Aruna+D.&rft.au=Thuren%2C+Tom&rft.date=2018-05-29&rft.issn=0735-1097&rft.volume=71&rft.issue=21&rft.spage=2392&rft.epage=2401&rft_id=info:doi/10.1016%2Fj.jacc.2018.03.002&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jacc_2018_03_002 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F07351097%2FS0735109717X00260%2Fcov150h.gif |