Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis
Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism. In this study, we hypothesized that S epidermi...
Saved in:
Published in | Journal of allergy and clinical immunology Vol. 147; no. 3; pp. 955 - 966.e16 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism.
In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier.
The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA.
S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis.
S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease.
[Display omitted] |
---|---|
AbstractList | Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism.
In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier.
The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA.
S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis.
S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease.
[Display omitted] BackgroundStaphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism.ObjectiveIn this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier.MethodsThe protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA.ResultsS epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis.ConclusionS epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease. Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism. In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier. The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA. S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis. S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease. Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism.BACKGROUNDStaphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is known to exacerbate AD, whereas S epidermidis has been considered a beneficial commensal organism.In this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier.OBJECTIVEIn this study, we hypothesized that S epidermidis could promote skin damage in AD by the production of a protease that damages the epidermal barrier.The protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA.METHODSThe protease activity of S epidermidis isolates was compared with that of other staphylococcal species. The capacity of S epidermidis to degrade the barrier and induce inflammation was examined by using human keratinocyte tissue culture and mouse models. Skin swabs from atopic and healthy adult subjects were analyzed for the presence of S epidermidis genomic DNA and mRNA.S epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis.RESULTSS epidermidis strains were observed to produce strong cysteine protease activity when grown at high density. The enzyme responsible for this activity was identified as EcpA, a cysteine protease under quorum sensing control. EcpA was shown to degrade desmoglein-1 and LL-37 in vitro, disrupt the physical barrier, and induce skin inflammation in mice. The abundance of S epidermidis and expression of ecpA mRNA were increased on the skin of some patients with AD, and this correlated with disease severity. Another commensal skin bacterial species, Staphylococcus hominis, can inhibit EcpA production by S epidermidis.S epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease.CONCLUSIONS epidermidis has commonly been regarded as a beneficial skin microbe, whereas S aureus has been considered deleterious. This study suggests that the overabundance of S epidermidis found on some atopic patients can act similarly to S aureus and damage the skin by expression of a cysteine protease. |
Author | Shafiq, Faiza Hata, Tissa R. Gallo, Richard L. Nakatsuji, Teruaki Kavanaugh, Jeffrey S. Horswill, Alexander R. Cheng, Joyce Y. Williams, Michael R. Higbee, Kyle Cau, Laura Butcher, Anna M. |
AuthorAffiliation | c Department of Immunology and Microbiology, University of Colorado Anschutz, Medical Campus, Aurora b R&D Department, SILAB, Brive d Department of Veterans Affairs Eastern Colorado Health Care System, Aurora a Department of Dermatology, University of California San Diego e Center for Microbiome Innovation, University of California San Diego |
AuthorAffiliation_xml | – name: e Center for Microbiome Innovation, University of California San Diego – name: b R&D Department, SILAB, Brive – name: c Department of Immunology and Microbiology, University of Colorado Anschutz, Medical Campus, Aurora – name: d Department of Veterans Affairs Eastern Colorado Health Care System, Aurora – name: a Department of Dermatology, University of California San Diego |
Author_xml | – sequence: 1 givenname: Laura surname: Cau fullname: Cau, Laura organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 2 givenname: Michael R. surname: Williams fullname: Williams, Michael R. organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 3 givenname: Anna M. surname: Butcher fullname: Butcher, Anna M. organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 4 givenname: Teruaki surname: Nakatsuji fullname: Nakatsuji, Teruaki organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 5 givenname: Jeffrey S. surname: Kavanaugh fullname: Kavanaugh, Jeffrey S. organization: Department of Immunology and Microbiology, University of Colorado Anschutz, Medical Campus, Aurora, Colo – sequence: 6 givenname: Joyce Y. surname: Cheng fullname: Cheng, Joyce Y. organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 7 givenname: Faiza surname: Shafiq fullname: Shafiq, Faiza organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 8 givenname: Kyle surname: Higbee fullname: Higbee, Kyle organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 9 givenname: Tissa R. surname: Hata fullname: Hata, Tissa R. organization: Department of Dermatology, University of California San Diego, San Diego, Calif – sequence: 10 givenname: Alexander R. surname: Horswill fullname: Horswill, Alexander R. organization: Department of Immunology and Microbiology, University of Colorado Anschutz, Medical Campus, Aurora, Colo – sequence: 11 givenname: Richard L. surname: Gallo fullname: Gallo, Richard L. email: rgallo@ucsd.edu organization: Department of Dermatology, University of California San Diego, San Diego, Calif |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32634452$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkd1rFDEUxYO02G31H_BBAr74stt8zGQyIkIp9QMKPqjPIcncde92ZjIm2cL-92bYWnQf6lO45HcO595zTk7GMAIhrzhbccbV5Xa1tR5Xggm2YmrFRPWMLDhrm6XSoj4hC8ZavlRN1Z6R85S2rMxSt8_JmRRKVlUtFiR9y3ba7Pvgg_e7RGHCDuKAHSY6xZDBJqA3frqi3o7UAbW0gx4yRAwF92GYSqgx07CmeQM03eFIB_QxOAwD0DLZHCb0dLa1GTOmF-R0bfsELx_eC_Lj483368_L26-fvlxf3S59Lau8tLBWUqrOK-k627ra8o45xWtvuWgVX2vp6g7AcuUaLbSsnGhaqxtVtQKckxfkw8F32rkBOl9iRtubKeJg494Ei-bfnxE35me4N5rVWitRDN4-GMTwawcpmwGTh763I5TtjagEr2otlS7omyN0G3ZxLOsVqlWCNYzPhq__TvQY5U8fBRAHoBwwpQjrR4QzM5dutmYu3cylG6ZMKb2I9JHIYy6nDvNW2D8tfX-QQunhHiGa5BFGDx1G8Nl0AZ-WvzuS-x5H9La_g_3_xL8B2PfdRw |
CitedBy_id | crossref_primary_10_5650_oleoscience_23_559 crossref_primary_10_3389_fcimb_2024_1518811 crossref_primary_10_3344_kjp_22397 crossref_primary_10_1016_j_micres_2023_127595 crossref_primary_10_1126_science_abo0693 crossref_primary_10_2340_actadv_v103_9413 crossref_primary_10_1371_journal_pone_0276960 crossref_primary_10_1007_s40521_023_00350_9 crossref_primary_10_1016_j_jaci_2021_10_002 crossref_primary_10_1016_j_jid_2024_03_033 crossref_primary_10_1111_all_15742 crossref_primary_10_1111_myc_70014 crossref_primary_10_1016_j_jid_2024_10_592 crossref_primary_10_5650_oleoscience_23_549 crossref_primary_10_1016_j_ijbiomac_2023_126819 crossref_primary_10_1016_j_jaci_2024_04_029 crossref_primary_10_1016_j_jid_2024_01_011 crossref_primary_10_1016_j_celrep_2023_112494 crossref_primary_10_3390_molecules26216392 crossref_primary_10_1093_skinhd_vzae029 crossref_primary_10_3389_fcimb_2023_1178650 crossref_primary_10_1111_all_16044 crossref_primary_10_1186_s12866_023_03165_5 crossref_primary_10_1016_j_jid_2023_05_014 crossref_primary_10_1021_jacs_4c02694 crossref_primary_10_1016_j_jaci_2024_03_032 crossref_primary_10_1111_apm_13464 crossref_primary_10_1111_exd_15158 crossref_primary_10_3389_fimmu_2023_1125635 crossref_primary_10_2147_IJN_S484473 crossref_primary_10_29089_paom_157118 crossref_primary_10_1186_s40168_023_01668_x crossref_primary_10_3389_fimmu_2023_1098160 crossref_primary_10_3389_fmicb_2022_896311 crossref_primary_10_1002_ctm2_865 crossref_primary_10_3390_ijms25126539 crossref_primary_10_1155_2022_4559982 crossref_primary_10_3389_fimmu_2023_1151527 crossref_primary_10_1016_j_jaci_2022_10_023 crossref_primary_10_3390_ijms241713460 crossref_primary_10_3390_antibiotics11111596 crossref_primary_10_1007_s11033_021_07081_7 crossref_primary_10_1007_s12016_024_08995_3 crossref_primary_10_1111_exd_14727 crossref_primary_10_1038_s41579_022_00780_3 crossref_primary_10_3390_ijms22168403 crossref_primary_10_15690_vsp_v22i5_2640 crossref_primary_10_1111_apm_13201 crossref_primary_10_1128_IAI_00397_21 crossref_primary_10_3390_jcm12186078 crossref_primary_10_1016_j_alit_2021_11_006 crossref_primary_10_3389_fimmu_2024_1352704 crossref_primary_10_3389_fcimb_2021_720674 crossref_primary_10_3389_fmicb_2022_818398 crossref_primary_10_3389_fimmu_2022_801579 crossref_primary_10_3389_fphar_2023_1220945 crossref_primary_10_1016_j_jaci_2022_11_019 crossref_primary_10_3390_pathogens11080935 crossref_primary_10_1186_s41232_022_00212_y crossref_primary_10_3390_pathogens11020121 crossref_primary_10_1099_mic_0_001381 crossref_primary_10_1016_j_xjidi_2022_100110 crossref_primary_10_1128_msphere_00917_21 crossref_primary_10_2147_JIR_S467327 crossref_primary_10_1016_j_mib_2022_102222 crossref_primary_10_1016_j_cell_2023_10_019 crossref_primary_10_1128_mbio_00930_22 crossref_primary_10_3389_fimmu_2022_927465 crossref_primary_10_1111_exd_14433 crossref_primary_10_1016_j_jid_2021_10_005 crossref_primary_10_1155_2022_4731675 crossref_primary_10_3389_fmicb_2021_728989 crossref_primary_10_1089_dna_2024_0134 crossref_primary_10_1111_exd_14429 crossref_primary_10_1111_jocd_14362 crossref_primary_10_3390_nu16183126 crossref_primary_10_3390_ijms241713190 crossref_primary_10_1016_j_jare_2024_03_001 crossref_primary_10_1128_msphere_01014_24 crossref_primary_10_1016_j_chom_2024_06_002 crossref_primary_10_1016_j_celrep_2023_113024 crossref_primary_10_1016_j_jid_2022_05_1092 crossref_primary_10_1016_j_tim_2023_01_009 crossref_primary_10_3389_fimmu_2022_999201 crossref_primary_10_1111_jdv_17911 crossref_primary_10_1016_j_jaci_2022_07_010 crossref_primary_10_1016_j_xjidi_2024_100269 crossref_primary_10_3390_microorganisms11051222 crossref_primary_10_1080_21505594_2024_2359483 crossref_primary_10_1016_j_coi_2021_09_001 crossref_primary_10_1038_s41435_021_00133_9 crossref_primary_10_1080_14712598_2022_2089560 crossref_primary_10_1016_j_anai_2023_07_008 crossref_primary_10_1111_jdv_19125 crossref_primary_10_1016_j_jid_2024_08_036 crossref_primary_10_1172_JCI184315 crossref_primary_10_1016_j_xjidi_2023_100239 crossref_primary_10_1186_s40168_024_02012_7 crossref_primary_10_3390_ijms23020860 crossref_primary_10_1007_s12088_024_01272_z crossref_primary_10_3390_pharmaceutics14071417 crossref_primary_10_1016_j_jid_2022_04_010 |
Cites_doi | 10.1016/j.jid.2016.05.127 10.1016/j.anai.2018.12.003 10.4103/0366-6999.209895 10.1515/BC.2004.064 10.1126/science.aat4326 10.1099/mic.0.26634-0 10.1016/j.cell.2017.12.033 10.1016/j.jaci.2007.11.004 10.1111/all.12049 10.1126/scitranslmed.aat8329 10.1038/nrmicro.2017.157 10.1016/j.jdermsci.2017.02.280 10.1128/JB.01882-14 10.1128/IAI.69.3.1957-1960.2001 10.1128/IAI.73.10.6771-6781.2005 10.1046/j.1365-2958.2003.03671.x 10.1101/gr.131029.111 10.1038/s41598-017-08046-2 10.1515/BC.2001.192 10.1084/jem.189.6.907 10.1046/j.1523-1747.2002.01758.x 10.1111/mmi.12943 10.1007/s12016-016-8548-5 10.1016/j.chom.2017.10.008 10.1111/ced.12866 10.1038/35106587 10.1126/sciadv.aao4502 10.1189/jlb.70.1.96 10.1111/jam.12296 10.1371/journal.ppat.1001133 10.1016/j.immuni.2016.06.021 10.1080/07853890802337045 10.1186/ar2086 10.1016/j.jaci.2018.11.015 10.1128/IAI.01087-15 10.1111/j.1365-2133.1974.tb06447.x 10.1038/nrmicro2182 10.1016/j.jid.2017.09.010 10.1038/nature14052 10.1016/j.jaad.2007.06.041 10.1016/j.tim.2017.11.008 10.1159/000489523 10.1111/j.1525-1470.2005.22303.x 10.3390/jcm4061217 10.1046/j.1523-1747.2002.19507.x 10.1016/j.jaci.2010.10.018 10.1016/j.chom.2017.11.001 10.1038/ng1767 10.1038/nm.2062 10.1126/scitranslmed.aah4680 10.1016/S0952-7915(01)00282-5 10.1038/s41590-018-0256-2 10.1016/j.jid.2016.10.008 10.1038/sj.jid.5700431 10.1038/ncomms2441 10.1586/edm.10.6 10.1016/j.chom.2017.10.006 10.1016/1380-2933(95)00006-2 10.1159/000370220 10.1126/scitranslmed.aal4651 10.1038/jid.2010.123 10.1056/NEJMra074081 10.1038/nature12655 10.3389/fmicb.2018.00359 10.1046/j.1365-2133.2003.05243.x 10.1016/j.chom.2019.02.002 10.1126/science.1260972 10.1080/21505594.2017.1419117 10.4049/jimmunol.1900520 10.1016/j.jaci.2017.04.004 10.1038/jid.2009.243 10.1016/j.chom.2017.10.015 10.1136/bmj.38069.512245.FE 10.1159/000323290 10.1515/BC.2004.062 10.1016/j.celrep.2020.02.021 |
ContentType | Journal Article |
Copyright | 2020 Copyright © 2020. Published by Elsevier Inc. Copyright Elsevier Limited Mar 2021 |
Copyright_xml | – notice: 2020 – notice: Copyright © 2020. Published by Elsevier Inc. – notice: Copyright Elsevier Limited Mar 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7T5 H94 K9. NAPCQ 7X8 5PM |
DOI | 10.1016/j.jaci.2020.06.024 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1097-6825 |
EndPage | 966.e16 |
ExternalDocumentID | PMC8058862 32634452 10_1016_j_jaci_2020_06_024 S0091674920309532 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US California |
GeographicLocations_xml | – name: United States--US – name: California |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01 AR076082; R37 AI052453; U19 AI117673 – fundername: NIAID NIH HHS grantid: R37 AI052453 – fundername: BLRD VA grantid: I01 BX002711 – fundername: NIAID NIH HHS grantid: U19 AI117673 – fundername: NIAMS NIH HHS grantid: R01 AR076082 – fundername: NIAID NIH HHS grantid: R01 AI153185 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .XZ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 354 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8F7 8FE 8FH 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV BPHCQ BVXVI C45 CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B LK8 LUGTX M27 M41 MO0 N4W N9A O-L O9- O9~ OAUVE OBH ODZKP OHH OHT OK0 OK1 OVD OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPCBC SSH SSI SSZ T5K TEORI TWZ UGJ UNMZH UV1 WH7 WOW WUQ X7M XFW YOC YQI YQJ Z5R ZGI ZXP ZY1 ~02 ~G- ~KM AACTN RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7SS 7T5 H94 K9. NAPCQ 7X8 5PM |
ID | FETCH-LOGICAL-c534t-aef6336dc63bda9b5a1d0b615ca12961f83b5deea16b782834b279a876492ebb3 |
IEDL.DBID | .~1 |
ISSN | 0091-6749 1097-6825 |
IngestDate | Thu Aug 21 18:31:52 EDT 2025 Fri Jul 11 10:54:45 EDT 2025 Wed Aug 13 07:52:53 EDT 2025 Mon Jul 21 06:04:51 EDT 2025 Thu Apr 24 23:10:08 EDT 2025 Tue Jul 01 04:21:45 EDT 2025 Sun Apr 06 06:58:49 EDT 2025 Tue Aug 26 17:44:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | cytokine TEWL TSB AD AMP skin AIP PSM microbiome agr EcpA HEK protease CoNS Staphylococcus epidermidis CFU Atopic dermatitis inflammation DSG-1 qPCR epidermal barrier WT IVL dysbiosis |
Language | English |
License | Copyright © 2020. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-aef6336dc63bda9b5a1d0b615ca12961f83b5deea16b782834b279a876492ebb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. San Diego, Calif, Brive, France, and Aurora, Colo |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8058862 |
PMID | 32634452 |
PQID | 2496207012 |
PQPubID | 105664 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8058862 proquest_miscellaneous_2421458368 proquest_journals_2496207012 pubmed_primary_32634452 crossref_primary_10_1016_j_jaci_2020_06_024 crossref_citationtrail_10_1016_j_jaci_2020_06_024 elsevier_sciencedirect_doi_10_1016_j_jaci_2020_06_024 elsevier_clinicalkey_doi_10_1016_j_jaci_2020_06_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Louis |
PublicationTitle | Journal of allergy and clinical immunology |
PublicationTitleAlternate | J Allergy Clin Immunol |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Nakamura, Oscherwitz, Cease, Chan, Munoz-Planillo, Hasegawa (bib17) 2013; 503 Danby, Cork (bib43) 2018; 54 Linehan, Harrison, Han, Byrd, Vujkovic-Cvijin, Villarino (bib59) 2018; 172 Kanangat, Postlethwaite, Hasty, Kang, Smeltzer, Appling (bib51) 2006; 8 Nakatsuji, Chiang, Jiang, Nagarajan, Zengler, Gallo (bib42) 2013; 4 Nakatsuji, Chen, Butcher, Trzoss, Nam, Shirakawa (bib61) 2018; 4 Carroll, Balkrishnan, Feldman, Fleischer, Manuel (bib3) 2005; 22 Stacy, Belkaid (bib23) 2019; 363 Soares, Lopes, Tavaria, Delgado, Pintado (bib18) 2013; 115 Nakagawa, Matsumoto, Katayama, Oguma, Wakabayashi, Nygaard (bib16) 2017; 22 Byrd, Deming, Cassidy, Harrison, Ng, Conlan (bib20) 2017; 9 Mehlin, Headley, Klebanoff (bib63) 1999; 189 Flohr, Yeo (bib6) 2011; 41 Nizet, Ohtake, Lauth, Trowbridge, Rudisill, Dorschner (bib38) 2001; 414 Paller, Kong, Seed, Naik, Scharschmidt, Gallo (bib47) 2019; 143 Williams, Stewart, von Mutius, Cookson, Anderson (bib8) 2008; 121 Zhang, Guerrero-Juarez, Hata, Bapat, Ramos, Plikus (bib40) 2015; 347 Le, Park, Otto (bib28) 2018; 9 Dubin, Chmiel, Mak, Rakwalska, Rzychon, Dubin (bib34) 2001; 382 Williams, Nakatsuji, Gallo (bib11) 2017; 22 Cogen, Yamasaki, Sanchez, Dorschner, Lai, MacLeod (bib25) 2010; 130 Naik, Bouladoux, Linehan, Han, Harrison, Wilhelm (bib60) 2015; 520 Larrick, Hirata, Zhong, Wright (bib36) 1995; 1 Kong, Oh, Deming, Conlan, Grice, Beatson (bib10) 2012; 22 Liles, Thomsen, O'Mahony, Klebanoff (bib64) 2001; 70 Otto (bib29) 2009; 7 Otto, Echner, Voelter, Gotz (bib45) 2001; 69 Uckay, Pittet, Vaudaux, Sax, Lew, Waldvogel (bib30) 2009; 41 Kato, Fukai, Oiso, Hosomi, Murakami, Ishii (bib54) 2003; 148 Williams, Cau, Wang, Kaul, Sanford, Zaramela (bib35) 2020; 30 Leyden, Marples, Kligman (bib9) 1974; 90 Braff, Zaiou, Fierer, Nizet, Gallo (bib37) 2005; 73 Casagrande, Fluckiger, Linder, Johansson, Scheynius, Crameri (bib69) 2006; 126 Dong, Speer, Glaser (bib27) 2018; 9 Byrd, Belkaid, Segre (bib21) 2018; 16 Geoghegan, Irvine, Foster (bib12) 2018; 26 An, Sun, Qi, Zhang, Zhai, Hong (bib62) 2017; 130 Paharik, Parlet, Chung, Todd, Rodriguez, Van Dyke (bib46) 2017; 22 Ong, Leung (bib50) 2016; 51 Ring, Kramer, Schafer, Behrendt (bib7) 2001; 13 Shaw, Golonka, Potempa, Foster (bib52) 2004; 150 Kapoor, Menon, Hoffstad, Bilker, Leclerc, Margolis (bib2) 2008; 58 Liu, Archer, Dillen, Wang, Ashbaugh, Ortines (bib15) 2017; 22 Nakatsuji, Chen, Two, Chun, Narala, Geha (bib13) 2016; 136 Benn, Melbye, Wohlfahrt, Bjorksten, Aaby (bib5) 2004; 328 Nakatsuji, Gallo (bib22) 2019; 122 Palmer, Irvine, Terron-Kwiatkowski, Zhao, Liao, Lee (bib55) 2006; 38 Sparber, De Gregorio, Steckholzer, Ferreira, Dolowschiak, Ruchti (bib72) 2019; 25 Williams, Costa, Zaramela, Khalil, Todd, Winter (bib31) 2019; 11 Murakami, Ohtake, Dorschner, Schittek, Garbe, Gallo (bib39) 2002; 119 Nakatsuji, Chen, Narala, Chun, Two, Yun (bib26) 2017; 9 Oleksy, Golonka, Banbula, Szmyd, Moon, Kubica (bib44) 2004; 385 De Benedetto, Rafaels, McGirt, Ivanov, Georas, Cheadle (bib56) 2011; 127 Prohic, Jovovic Sadikovic, Kuskunovic-Vlahovljak, Baljic (bib71) 2016; 24 Nutten (bib4) 2015; 66 Williams, Nakatsuji, Sanford, Vrbanac, Gallo (bib33) 2017; 137 Sonesson, Przybyszewska, Eriksson, Morgelin, Kjellstrom, Davies (bib41) 2017; 7 Lai, Cogen, Radek, Park, Macleod, Leichtle (bib57) 2010; 130 Johansson, Eshaghi, Linder, Jakobson, Scheynius (bib70) 2002; 118 Dainichi, Kitoh, Otsuka, Nakajima, Nomura, Kaplan (bib67) 2018; 19 Glatz, Bosshard, Hoetzenecker, Schmid-Grendelmeier (bib49) 2015; 4 Otto (bib24) 2010; 5 Cheung, Rigby, Wang, Queck, Braughton, Whitney (bib65) 2010; 6 Hon, Tsang, Pong, Leung, Ip (bib19) 2016; 41 Williams, Gallo (bib48) 2017; 137 Dubin, Stec-Niemczyk, Dylag, Silberring, Dubin, Potempa (bib66) 2004; 385 Czarnowicki, Krueger, Guttman-Yassky (bib68) 2017; 139 Bieber (bib1) 2008; 358 Olson, Todd, Schaeffer, Paharik, Van Dyke, Buttner (bib32) 2014; 196 Bieber (bib53) 2012; 67 Syed, Reed, Clark, Boles, Kahlenberg (bib14) 2015; 83 Lai, Di Nardo, Nakatsuji, Leichtle, Yang, Cogen (bib58) 2009; 15 Braff (10.1016/j.jaci.2020.06.024_bib37) 2005; 73 Nakatsuji (10.1016/j.jaci.2020.06.024_bib26) 2017; 9 Dong (10.1016/j.jaci.2020.06.024_bib27) 2018; 9 Dubin (10.1016/j.jaci.2020.06.024_bib34) 2001; 382 Hon (10.1016/j.jaci.2020.06.024_bib19) 2016; 41 Kanangat (10.1016/j.jaci.2020.06.024_bib51) 2006; 8 Williams (10.1016/j.jaci.2020.06.024_bib8) 2008; 121 Cogen (10.1016/j.jaci.2020.06.024_bib25) 2010; 130 Mootz (10.1016/j.jaci.2020.06.024_bib80) 2015; 96 Larrick (10.1016/j.jaci.2020.06.024_bib36) 1995; 1 Nakatsuji (10.1016/j.jaci.2020.06.024_bib22) 2019; 122 Williams (10.1016/j.jaci.2020.06.024_bib35) 2020; 30 Nakatsuji (10.1016/j.jaci.2020.06.024_bib13) 2016; 136 Olson (10.1016/j.jaci.2020.06.024_bib74) 2014; 196 Byrd (10.1016/j.jaci.2020.06.024_bib20) 2017; 9 De Benedetto (10.1016/j.jaci.2020.06.024_bib56) 2011; 127 Lai (10.1016/j.jaci.2020.06.024_bib58) 2009; 15 Linehan (10.1016/j.jaci.2020.06.024_bib59) 2018; 172 Casagrande (10.1016/j.jaci.2020.06.024_bib69) 2006; 126 Stacy (10.1016/j.jaci.2020.06.024_bib23) 2019; 363 Nakatsuji (10.1016/j.jaci.2020.06.024_bib61) 2018; 4 Naik (10.1016/j.jaci.2020.06.024_bib60) 2015; 520 Sonesson (10.1016/j.jaci.2020.06.024_bib41) 2017; 7 Williams (10.1016/j.jaci.2020.06.024_bib33) 2017; 137 Otto (10.1016/j.jaci.2020.06.024_bib24) 2010; 5 Murakami (10.1016/j.jaci.2020.06.024_bib39) 2002; 119 Shaw (10.1016/j.jaci.2020.06.024_bib52) 2004; 150 Glatz (10.1016/j.jaci.2020.06.024_bib49) 2015; 4 Liu (10.1016/j.jaci.2020.06.024_bib15) 2017; 22 Paller (10.1016/j.jaci.2020.06.024_bib47) 2019; 143 Bieber (10.1016/j.jaci.2020.06.024_bib1) 2008; 358 Dubin (10.1016/j.jaci.2020.06.024_bib66) 2004; 385 Sparber (10.1016/j.jaci.2020.06.024_bib72) 2019; 25 Bieber (10.1016/j.jaci.2020.06.024_bib53) 2012; 67 Kato (10.1016/j.jaci.2020.06.024_bib54) 2003; 148 Zhang (10.1016/j.jaci.2020.06.024_bib77) 2003; 49 Cau (10.1016/j.jaci.2020.06.024_bib82) 2017; 86 Nutten (10.1016/j.jaci.2020.06.024_bib4) 2015; 66 Leyden (10.1016/j.jaci.2020.06.024_bib9) 1974; 90 Zhang (10.1016/j.jaci.2020.06.024_bib81) 2016; 45 Williams (10.1016/j.jaci.2020.06.024_bib48) 2017; 137 Nakagawa (10.1016/j.jaci.2020.06.024_bib16) 2017; 22 Paharik (10.1016/j.jaci.2020.06.024_bib46) 2017; 22 Otto (10.1016/j.jaci.2020.06.024_bib45) 2001; 69 Uckay (10.1016/j.jaci.2020.06.024_bib30) 2009; 41 An (10.1016/j.jaci.2020.06.024_bib62) 2017; 130 Williams (10.1016/j.jaci.2020.06.024_bib11) 2017; 22 Nakatsuji (10.1016/j.jaci.2020.06.024_bib76) 2013; 4 Nakamura (10.1016/j.jaci.2020.06.024_bib17) 2013; 503 Johansson (10.1016/j.jaci.2020.06.024_bib70) 2002; 118 Byrd (10.1016/j.jaci.2020.06.024_bib21) 2018; 16 Ong (10.1016/j.jaci.2020.06.024_bib50) 2016; 51 Dubin (10.1016/j.jaci.2020.06.024_bib73) 2001; 382 Le (10.1016/j.jaci.2020.06.024_bib28) 2018; 9 Olson (10.1016/j.jaci.2020.06.024_bib32) 2014; 196 Nakatsuji (10.1016/j.jaci.2020.06.024_bib75) 2016; 136 Kong (10.1016/j.jaci.2020.06.024_bib10) 2012; 22 Liles (10.1016/j.jaci.2020.06.024_bib64) 2001; 70 Nizet (10.1016/j.jaci.2020.06.024_bib38) 2001; 414 Carroll (10.1016/j.jaci.2020.06.024_bib3) 2005; 22 Flohr (10.1016/j.jaci.2020.06.024_bib6) 2011; 41 Cheung (10.1016/j.jaci.2020.06.024_bib65) 2010; 6 Nakatsuji (10.1016/j.jaci.2020.06.024_bib42) 2013; 4 Dainichi (10.1016/j.jaci.2020.06.024_bib67) 2018; 19 Lai (10.1016/j.jaci.2020.06.024_bib57) 2010; 130 Prohic (10.1016/j.jaci.2020.06.024_bib71) 2016; 24 Soares (10.1016/j.jaci.2020.06.024_bib18) 2013; 115 Syed (10.1016/j.jaci.2020.06.024_bib14) 2015; 83 Ring (10.1016/j.jaci.2020.06.024_bib7) 2001; 13 Williams (10.1016/j.jaci.2020.06.024_bib31) 2019; 11 Zhang (10.1016/j.jaci.2020.06.024_bib40) 2015; 347 Mehlin (10.1016/j.jaci.2020.06.024_bib63) 1999; 189 Benn (10.1016/j.jaci.2020.06.024_bib5) 2004; 328 Kapoor (10.1016/j.jaci.2020.06.024_bib2) 2008; 58 Palmer (10.1016/j.jaci.2020.06.024_bib55) 2006; 38 Oleksy (10.1016/j.jaci.2020.06.024_bib44) 2004; 385 Geoghegan (10.1016/j.jaci.2020.06.024_bib12) 2018; 26 Danby (10.1016/j.jaci.2020.06.024_bib43) 2018; 54 Nakatsuji (10.1016/j.jaci.2020.06.024_bib78) 2017; 9 Otto (10.1016/j.jaci.2020.06.024_bib29) 2009; 7 Liggins (10.1016/j.jaci.2020.06.024_bib83) 2019; 203 Czarnowicki (10.1016/j.jaci.2020.06.024_bib68) 2017; 139 Williams (10.1016/j.jaci.2020.06.024_bib79) 2019; 11 |
References_xml | – volume: 51 start-page: 329 year: 2016 end-page: 337 ident: bib50 article-title: Bacterial and viral infections in atopic dermatitis: a comprehensive review publication-title: Clin Rev Allergy Immunol – volume: 9 start-page: 359 year: 2018 ident: bib28 article-title: Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection publication-title: Front Microbiol – volume: 69 start-page: 1957 year: 2001 end-page: 1960 ident: bib45 article-title: Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis publication-title: Infect Immun – volume: 126 start-page: 2414 year: 2006 end-page: 2421 ident: bib69 article-title: Sensitization to the yeast Malassezia sympodialis is specific for extrinsic and intrinsic atopic eczema publication-title: J Invest Dermatol – volume: 143 start-page: 26 year: 2019 end-page: 35 ident: bib47 article-title: The microbiome in patients with atopic dermatitis publication-title: J Allergy Clin Immunol – volume: 121 start-page: 947 year: 2008 end-page: 954.e15 ident: bib8 article-title: International Study of Asthma and Allergies in Childhood (ISAAC) Phase One and Three Study Groups. Is eczema really on the increase worldwide? publication-title: J Allergy Clin Immunol – volume: 139 start-page: 1723 year: 2017 end-page: 1734 ident: bib68 article-title: Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march publication-title: J Allergy Clin Immunol – volume: 1 start-page: 65 year: 1995 end-page: 72 ident: bib36 article-title: Anti-microbial activity of human CAP18 peptides publication-title: Immunotechnology – volume: 137 start-page: 2460 year: 2017 end-page: 2461 ident: bib48 article-title: Evidence that human skin microbiome dysbiosis promotes atopic dermatitis publication-title: J Invest Dermatol – volume: 26 start-page: 484 year: 2018 end-page: 497 ident: bib12 article-title: Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship publication-title: Trends Microbiol – volume: 8 start-page: R176 year: 2006 ident: bib51 article-title: Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections publication-title: Arthritis Res Ther – volume: 22 start-page: 850 year: 2012 end-page: 859 ident: bib10 article-title: Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis publication-title: Genome Res – volume: 22 start-page: 653 year: 2017 end-page: 666.e5 ident: bib15 article-title: Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses publication-title: Cell Host Microbe – volume: 115 start-page: 1411 year: 2013 end-page: 1419 ident: bib18 article-title: A diversity profile from the staphylococcal community on atopic dermatitis skin: a molecular approach publication-title: J Appl Microbiol – volume: 130 start-page: 2211 year: 2010 end-page: 2221 ident: bib57 article-title: Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections publication-title: J Invest Dermatol – volume: 13 start-page: 701 year: 2001 end-page: 708 ident: bib7 article-title: Why are allergies increasing? publication-title: Curr Opin Immunol – volume: 503 start-page: 397 year: 2013 end-page: 401 ident: bib17 article-title: Staphylococcus delta-toxin induces allergic skin disease by activating mast cells publication-title: Nature – volume: 9 start-page: 621 year: 2018 end-page: 633 ident: bib27 article-title: Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity publication-title: Virulence – volume: 90 start-page: 525 year: 1974 end-page: 530 ident: bib9 article-title: Staphylococcus aureus in the lesions of atopic dermatitis publication-title: Br J Dermatol – volume: 9 year: 2017 ident: bib20 article-title: Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis publication-title: Sci Transl Med – volume: 41 start-page: 109 year: 2009 end-page: 119 ident: bib30 article-title: Foreign body infections due to Staphylococcus epidermidis publication-title: Ann Med – volume: 25 start-page: 389 year: 2019 end-page: 403.e6 ident: bib72 article-title: The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation publication-title: Cell Host Microbe – volume: 358 start-page: 1483 year: 2008 end-page: 1494 ident: bib1 article-title: Atopic dermatitis publication-title: N Engl J Med – volume: 385 start-page: 543 year: 2004 end-page: 546 ident: bib66 article-title: Characterisation of a highly specific, endogenous inhibitor of cysteine protease from Staphylococcus epidermidis, a new member of the staphostatin family publication-title: Biol Chem – volume: 363 start-page: 227 year: 2019 end-page: 228 ident: bib23 article-title: Microbial guardians of skin health publication-title: Science – volume: 119 start-page: 1090 year: 2002 end-page: 1095 ident: bib39 article-title: Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin publication-title: J Invest Dermatol – volume: 41 start-page: 659 year: 2016 end-page: 663 ident: bib19 article-title: Exploring Staphylococcus epidermidis in atopic eczema: friend or foe? publication-title: Clin Exp Dermatol – volume: 22 start-page: 746 year: 2017 end-page: 756.e5 ident: bib46 article-title: Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing publication-title: Cell Host Microbe – volume: 7 start-page: 555 year: 2009 end-page: 567 ident: bib29 article-title: Staphylococcus epidermidis--the ‘accidental’ pathogen publication-title: Nat Rev Microbiol – volume: 118 start-page: 1044 year: 2002 end-page: 1051 ident: bib70 article-title: Positive atopy patch test reaction to Malassezia furfur in atopic dermatitis correlates with a T helper 2-like peripheral blood mononuclear cells response publication-title: J Invest Dermatol – volume: 136 start-page: 2192 year: 2016 end-page: 2200 ident: bib13 article-title: Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression publication-title: J Invest Dermatol – volume: 41 start-page: 1 year: 2011 end-page: 34 ident: bib6 article-title: Atopic dermatitis and the hygiene hypothesis revisited publication-title: Curr Probl Dermatol – volume: 38 start-page: 441 year: 2006 end-page: 446 ident: bib55 article-title: Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis publication-title: Nat Genet – volume: 130 start-page: 1662 year: 2017 end-page: 1669 ident: bib62 article-title: High Staphylococcus epidermidis colonization and impaired permeability barrier in facial seborrheic dermatitis publication-title: Chin Med J (Engl) – volume: 83 start-page: 4450 year: 2015 ident: bib14 article-title: Erratum for Syed et al., Staphylococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation publication-title: Infect Immun – volume: 520 start-page: 104 year: 2015 end-page: 108 ident: bib60 article-title: Commensal-dendritic-cell interaction specifies a unique protective skin immune signature publication-title: Nature – volume: 22 start-page: 579 year: 2017 end-page: 581 ident: bib11 article-title: Staphylococcus aureus: master manipulator of the skin publication-title: Cell Host Microbe – volume: 24 start-page: 274 year: 2016 end-page: 281 ident: bib71 article-title: Distribution of Malassezia species in patients with different dermatological disorders and healthy individuals publication-title: Acta Dermatovenerol Croat – volume: 6 year: 2010 ident: bib65 article-title: Staphylococcus epidermidis strategies to avoid killing by human neutrophils publication-title: PLoS Pathog – volume: 16 start-page: 143 year: 2018 end-page: 155 ident: bib21 article-title: The human skin microbiome publication-title: Nat Rev Microbiol – volume: 9 year: 2017 ident: bib26 article-title: Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis publication-title: Sci Transl Med – volume: 15 start-page: 1377 year: 2009 end-page: 1382 ident: bib58 article-title: Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury publication-title: Nat Med – volume: 130 start-page: 192 year: 2010 end-page: 200 ident: bib25 article-title: Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin publication-title: J Invest Dermatol – volume: 73 start-page: 6771 year: 2005 end-page: 6781 ident: bib37 article-title: Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens publication-title: Infect Immun – volume: 150 start-page: 217 year: 2004 end-page: 228 ident: bib52 article-title: The role and regulation of the extracellular proteases of Staphylococcus aureus publication-title: Microbiology – volume: 66 start-page: 8 year: 2015 end-page: 16 ident: bib4 article-title: Atopic dermatitis: global epidemiology and risk factors publication-title: Ann Nutr Metab – volume: 189 start-page: 907 year: 1999 end-page: 918 ident: bib63 article-title: An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization publication-title: J Exp Med – volume: 19 start-page: 1286 year: 2018 end-page: 1298 ident: bib67 article-title: The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis publication-title: Nat Immunol – volume: 196 start-page: 3482 year: 2014 end-page: 3493 ident: bib32 article-title: Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization publication-title: J Bacteriol – volume: 382 start-page: 1575 year: 2001 end-page: 1582 ident: bib34 article-title: Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis publication-title: Biol Chem – volume: 137 start-page: 377 year: 2017 end-page: 384 ident: bib33 article-title: Staphylococcus aureus induces increased serine protease activity in keratinocytes publication-title: J Invest Dermatol – volume: 22 start-page: 192 year: 2005 end-page: 199 ident: bib3 article-title: The burden of atopic dermatitis: impact on the patient, family, and society publication-title: Pediatr Dermatol – volume: 4 start-page: 1217 year: 2015 end-page: 1228 ident: bib49 article-title: The role of Malassezia spp. in atopic dermatitis publication-title: J Clin Med – volume: 30 start-page: 2923 year: 2020 end-page: 2933.e7 ident: bib35 article-title: Interplay of staphylococcal and host proteases promotes skin barrier disruption in Netherton syndrome publication-title: Cell Rep – volume: 122 start-page: 263 year: 2019 end-page: 269 ident: bib22 article-title: The role of the skin microbiome in atopic dermatitis publication-title: Ann Allergy Asthma Immunol – volume: 148 start-page: 665 year: 2003 end-page: 669 ident: bib54 article-title: Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population publication-title: Br J Dermatol – volume: 70 start-page: 96 year: 2001 end-page: 102 ident: bib64 article-title: Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin publication-title: J Leukoc Biol – volume: 22 start-page: 667 year: 2017 end-page: 677.e5 ident: bib16 article-title: Staphylococcus aureus virulent psmalpha peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation publication-title: Cell Host Microbe – volume: 385 start-page: 525 year: 2004 end-page: 535 ident: bib44 article-title: Growth phase-dependent production of a cell wall-associated elastinolytic cysteine proteinase by Staphylococcus epidermidis publication-title: Biol Chem – volume: 4 start-page: 1431 year: 2013 ident: bib42 article-title: The microbiome extends to subepidermal compartments of normal skin publication-title: Nat Commun – volume: 11 year: 2019 ident: bib31 article-title: Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis publication-title: Sci Transl Med – volume: 5 start-page: 183 year: 2010 end-page: 195 ident: bib24 article-title: Staphylococcus colonization of the skin and antimicrobial peptides publication-title: Expert Rev Dermatol – volume: 347 start-page: 67 year: 2015 end-page: 71 ident: bib40 article-title: Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection publication-title: Science – volume: 58 start-page: 68 year: 2008 end-page: 73 ident: bib2 article-title: The prevalence of atopic triad in children with physician-confirmed atopic dermatitis publication-title: J Am Acad Dermatol – volume: 54 start-page: 95 year: 2018 end-page: 107 ident: bib43 article-title: pH in atopic dermatitis publication-title: Curr Probl Dermatol – volume: 414 start-page: 454 year: 2001 end-page: 457 ident: bib38 article-title: Innate antimicrobial peptide protects the skin from invasive bacterial infection publication-title: Nature – volume: 328 start-page: 1223 year: 2004 ident: bib5 article-title: Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis during first 18 months of life publication-title: BMJ – volume: 127 start-page: 773 year: 2011 end-page: 786.e1-7 ident: bib56 article-title: Tight junction defects in patients with atopic dermatitis publication-title: J Allergy Clin Immunol – volume: 172 start-page: 784 year: 2018 end-page: 796.e18 ident: bib59 article-title: Non-classical immunity controls microbiota impact on skin immunity and tissue repair publication-title: Cell – volume: 4 year: 2018 ident: bib61 article-title: A commensal strain of Staphylococcus epidermidis protects against skin neoplasia publication-title: Sci Adv – volume: 67 start-page: 1475 year: 2012 end-page: 1482 ident: bib53 article-title: Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine publication-title: Allergy – volume: 7 start-page: 8689 year: 2017 ident: bib41 article-title: Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis publication-title: Sci Rep – volume: 136 start-page: 2192 year: 2016 ident: 10.1016/j.jaci.2020.06.024_bib75 article-title: Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression publication-title: J Invest Dermatol doi: 10.1016/j.jid.2016.05.127 – volume: 122 start-page: 263 year: 2019 ident: 10.1016/j.jaci.2020.06.024_bib22 article-title: The role of the skin microbiome in atopic dermatitis publication-title: Ann Allergy Asthma Immunol doi: 10.1016/j.anai.2018.12.003 – volume: 130 start-page: 1662 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib62 article-title: High Staphylococcus epidermidis colonization and impaired permeability barrier in facial seborrheic dermatitis publication-title: Chin Med J (Engl) doi: 10.4103/0366-6999.209895 – volume: 385 start-page: 543 year: 2004 ident: 10.1016/j.jaci.2020.06.024_bib66 article-title: Characterisation of a highly specific, endogenous inhibitor of cysteine protease from Staphylococcus epidermidis, a new member of the staphostatin family publication-title: Biol Chem doi: 10.1515/BC.2004.064 – volume: 363 start-page: 227 year: 2019 ident: 10.1016/j.jaci.2020.06.024_bib23 article-title: Microbial guardians of skin health publication-title: Science doi: 10.1126/science.aat4326 – volume: 150 start-page: 217 year: 2004 ident: 10.1016/j.jaci.2020.06.024_bib52 article-title: The role and regulation of the extracellular proteases of Staphylococcus aureus publication-title: Microbiology doi: 10.1099/mic.0.26634-0 – volume: 172 start-page: 784 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib59 article-title: Non-classical immunity controls microbiota impact on skin immunity and tissue repair publication-title: Cell doi: 10.1016/j.cell.2017.12.033 – volume: 121 start-page: 947 year: 2008 ident: 10.1016/j.jaci.2020.06.024_bib8 article-title: International Study of Asthma and Allergies in Childhood (ISAAC) Phase One and Three Study Groups. Is eczema really on the increase worldwide? publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2007.11.004 – volume: 67 start-page: 1475 year: 2012 ident: 10.1016/j.jaci.2020.06.024_bib53 article-title: Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine publication-title: Allergy doi: 10.1111/all.12049 – volume: 11 year: 2019 ident: 10.1016/j.jaci.2020.06.024_bib79 article-title: Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aat8329 – volume: 16 start-page: 143 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib21 article-title: The human skin microbiome publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2017.157 – volume: 86 start-page: 106 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib82 article-title: Lowering relative humidity level increases epidermal protein deimination and drives human filaggrin breakdown publication-title: J Dermatol Sci doi: 10.1016/j.jdermsci.2017.02.280 – volume: 196 start-page: 3482 year: 2014 ident: 10.1016/j.jaci.2020.06.024_bib74 article-title: Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization publication-title: J Bacteriol doi: 10.1128/JB.01882-14 – volume: 69 start-page: 1957 year: 2001 ident: 10.1016/j.jaci.2020.06.024_bib45 article-title: Pheromone cross-inhibition between Staphylococcus aureus and Staphylococcus epidermidis publication-title: Infect Immun doi: 10.1128/IAI.69.3.1957-1960.2001 – volume: 196 start-page: 3482 year: 2014 ident: 10.1016/j.jaci.2020.06.024_bib32 article-title: Staphylococcus epidermidis agr quorum-sensing system: signal identification, cross talk, and importance in colonization publication-title: J Bacteriol doi: 10.1128/JB.01882-14 – volume: 73 start-page: 6771 year: 2005 ident: 10.1016/j.jaci.2020.06.024_bib37 article-title: Keratinocyte production of cathelicidin provides direct activity against bacterial skin pathogens publication-title: Infect Immun doi: 10.1128/IAI.73.10.6771-6781.2005 – volume: 49 start-page: 1577 year: 2003 ident: 10.1016/j.jaci.2020.06.024_bib77 article-title: Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228) publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03671.x – volume: 22 start-page: 850 year: 2012 ident: 10.1016/j.jaci.2020.06.024_bib10 article-title: Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis publication-title: Genome Res doi: 10.1101/gr.131029.111 – volume: 7 start-page: 8689 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib41 article-title: Identification of bacterial biofilm and the Staphylococcus aureus derived protease, staphopain, on the skin surface of patients with atopic dermatitis publication-title: Sci Rep doi: 10.1038/s41598-017-08046-2 – volume: 382 start-page: 1575 year: 2001 ident: 10.1016/j.jaci.2020.06.024_bib73 article-title: Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis publication-title: Biol Chem doi: 10.1515/BC.2001.192 – volume: 189 start-page: 907 year: 1999 ident: 10.1016/j.jaci.2020.06.024_bib63 article-title: An inflammatory polypeptide complex from Staphylococcus epidermidis: isolation and characterization publication-title: J Exp Med doi: 10.1084/jem.189.6.907 – volume: 118 start-page: 1044 year: 2002 ident: 10.1016/j.jaci.2020.06.024_bib70 article-title: Positive atopy patch test reaction to Malassezia furfur in atopic dermatitis correlates with a T helper 2-like peripheral blood mononuclear cells response publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.2002.01758.x – volume: 96 start-page: 388 year: 2015 ident: 10.1016/j.jaci.2020.06.024_bib80 article-title: Rot is a key regulator of Staphylococcus aureus biofilm formation publication-title: Mol Microbiol doi: 10.1111/mmi.12943 – volume: 51 start-page: 329 year: 2016 ident: 10.1016/j.jaci.2020.06.024_bib50 article-title: Bacterial and viral infections in atopic dermatitis: a comprehensive review publication-title: Clin Rev Allergy Immunol doi: 10.1007/s12016-016-8548-5 – volume: 22 start-page: 667 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib16 article-title: Staphylococcus aureus virulent psmalpha peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.10.008 – volume: 41 start-page: 659 year: 2016 ident: 10.1016/j.jaci.2020.06.024_bib19 article-title: Exploring Staphylococcus epidermidis in atopic eczema: friend or foe? publication-title: Clin Exp Dermatol doi: 10.1111/ced.12866 – volume: 382 start-page: 1575 year: 2001 ident: 10.1016/j.jaci.2020.06.024_bib34 article-title: Molecular cloning and biochemical characterisation of proteases from Staphylococcus epidermidis publication-title: Biol Chem doi: 10.1515/BC.2001.192 – volume: 414 start-page: 454 year: 2001 ident: 10.1016/j.jaci.2020.06.024_bib38 article-title: Innate antimicrobial peptide protects the skin from invasive bacterial infection publication-title: Nature doi: 10.1038/35106587 – volume: 4 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib61 article-title: A commensal strain of Staphylococcus epidermidis protects against skin neoplasia publication-title: Sci Adv doi: 10.1126/sciadv.aao4502 – volume: 136 start-page: 2192 year: 2016 ident: 10.1016/j.jaci.2020.06.024_bib13 article-title: Staphylococcus aureus exploits epidermal barrier defects in atopic dermatitis to trigger cytokine expression publication-title: J Invest Dermatol doi: 10.1016/j.jid.2016.05.127 – volume: 70 start-page: 96 year: 2001 ident: 10.1016/j.jaci.2020.06.024_bib64 article-title: Stimulation of human neutrophils and monocytes by staphylococcal phenol-soluble modulin publication-title: J Leukoc Biol doi: 10.1189/jlb.70.1.96 – volume: 115 start-page: 1411 year: 2013 ident: 10.1016/j.jaci.2020.06.024_bib18 article-title: A diversity profile from the staphylococcal community on atopic dermatitis skin: a molecular approach publication-title: J Appl Microbiol doi: 10.1111/jam.12296 – volume: 6 year: 2010 ident: 10.1016/j.jaci.2020.06.024_bib65 article-title: Staphylococcus epidermidis strategies to avoid killing by human neutrophils publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1001133 – volume: 45 start-page: 119 year: 2016 ident: 10.1016/j.jaci.2020.06.024_bib81 article-title: Antimicrobial peptide LL37 and MAVS signaling drive interferon-beta production by epidermal keratinocytes during skin injury publication-title: Immunity doi: 10.1016/j.immuni.2016.06.021 – volume: 41 start-page: 109 year: 2009 ident: 10.1016/j.jaci.2020.06.024_bib30 article-title: Foreign body infections due to Staphylococcus epidermidis publication-title: Ann Med doi: 10.1080/07853890802337045 – volume: 8 start-page: R176 year: 2006 ident: 10.1016/j.jaci.2020.06.024_bib51 article-title: Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections publication-title: Arthritis Res Ther doi: 10.1186/ar2086 – volume: 143 start-page: 26 year: 2019 ident: 10.1016/j.jaci.2020.06.024_bib47 article-title: The microbiome in patients with atopic dermatitis publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2018.11.015 – volume: 83 start-page: 4450 year: 2015 ident: 10.1016/j.jaci.2020.06.024_bib14 article-title: Erratum for Syed et al., Staphylococcus aureus phenol-soluble modulins stimulate the release of proinflammatory cytokines from keratinocytes and are required for induction of skin inflammation publication-title: Infect Immun doi: 10.1128/IAI.01087-15 – volume: 24 start-page: 274 year: 2016 ident: 10.1016/j.jaci.2020.06.024_bib71 article-title: Distribution of Malassezia species in patients with different dermatological disorders and healthy individuals publication-title: Acta Dermatovenerol Croat – volume: 90 start-page: 525 year: 1974 ident: 10.1016/j.jaci.2020.06.024_bib9 article-title: Staphylococcus aureus in the lesions of atopic dermatitis publication-title: Br J Dermatol doi: 10.1111/j.1365-2133.1974.tb06447.x – volume: 7 start-page: 555 year: 2009 ident: 10.1016/j.jaci.2020.06.024_bib29 article-title: Staphylococcus epidermidis--the ‘accidental’ pathogen publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2182 – volume: 137 start-page: 2460 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib48 article-title: Evidence that human skin microbiome dysbiosis promotes atopic dermatitis publication-title: J Invest Dermatol doi: 10.1016/j.jid.2017.09.010 – volume: 520 start-page: 104 year: 2015 ident: 10.1016/j.jaci.2020.06.024_bib60 article-title: Commensal-dendritic-cell interaction specifies a unique protective skin immune signature publication-title: Nature doi: 10.1038/nature14052 – volume: 58 start-page: 68 year: 2008 ident: 10.1016/j.jaci.2020.06.024_bib2 article-title: The prevalence of atopic triad in children with physician-confirmed atopic dermatitis publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2007.06.041 – volume: 26 start-page: 484 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib12 article-title: Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship publication-title: Trends Microbiol doi: 10.1016/j.tim.2017.11.008 – volume: 54 start-page: 95 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib43 article-title: pH in atopic dermatitis publication-title: Curr Probl Dermatol doi: 10.1159/000489523 – volume: 22 start-page: 192 year: 2005 ident: 10.1016/j.jaci.2020.06.024_bib3 article-title: The burden of atopic dermatitis: impact on the patient, family, and society publication-title: Pediatr Dermatol doi: 10.1111/j.1525-1470.2005.22303.x – volume: 4 start-page: 1217 year: 2015 ident: 10.1016/j.jaci.2020.06.024_bib49 article-title: The role of Malassezia spp. in atopic dermatitis publication-title: J Clin Med doi: 10.3390/jcm4061217 – volume: 119 start-page: 1090 year: 2002 ident: 10.1016/j.jaci.2020.06.024_bib39 article-title: Cathelicidin anti-microbial peptide expression in sweat, an innate defense system for the skin publication-title: J Invest Dermatol doi: 10.1046/j.1523-1747.2002.19507.x – volume: 127 start-page: 773 year: 2011 ident: 10.1016/j.jaci.2020.06.024_bib56 article-title: Tight junction defects in patients with atopic dermatitis publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2010.10.018 – volume: 22 start-page: 746 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib46 article-title: Coagulase-negative staphylococcal strain prevents Staphylococcus aureus colonization and skin infection by blocking quorum sensing publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.11.001 – volume: 38 start-page: 441 year: 2006 ident: 10.1016/j.jaci.2020.06.024_bib55 article-title: Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis publication-title: Nat Genet doi: 10.1038/ng1767 – volume: 15 start-page: 1377 year: 2009 ident: 10.1016/j.jaci.2020.06.024_bib58 article-title: Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury publication-title: Nat Med doi: 10.1038/nm.2062 – volume: 9 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib26 article-title: Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aah4680 – volume: 13 start-page: 701 year: 2001 ident: 10.1016/j.jaci.2020.06.024_bib7 article-title: Why are allergies increasing? publication-title: Curr Opin Immunol doi: 10.1016/S0952-7915(01)00282-5 – volume: 19 start-page: 1286 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib67 article-title: The epithelial immune microenvironment (EIME) in atopic dermatitis and psoriasis publication-title: Nat Immunol doi: 10.1038/s41590-018-0256-2 – volume: 137 start-page: 377 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib33 article-title: Staphylococcus aureus induces increased serine protease activity in keratinocytes publication-title: J Invest Dermatol doi: 10.1016/j.jid.2016.10.008 – volume: 126 start-page: 2414 year: 2006 ident: 10.1016/j.jaci.2020.06.024_bib69 article-title: Sensitization to the yeast Malassezia sympodialis is specific for extrinsic and intrinsic atopic eczema publication-title: J Invest Dermatol doi: 10.1038/sj.jid.5700431 – volume: 4 start-page: 1431 year: 2013 ident: 10.1016/j.jaci.2020.06.024_bib76 article-title: The microbiome extends to subepidermal compartments of normal skin publication-title: Nat Commun doi: 10.1038/ncomms2441 – volume: 5 start-page: 183 year: 2010 ident: 10.1016/j.jaci.2020.06.024_bib24 article-title: Staphylococcus colonization of the skin and antimicrobial peptides publication-title: Expert Rev Dermatol doi: 10.1586/edm.10.6 – volume: 22 start-page: 653 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib15 article-title: Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.10.006 – volume: 1 start-page: 65 year: 1995 ident: 10.1016/j.jaci.2020.06.024_bib36 article-title: Anti-microbial activity of human CAP18 peptides publication-title: Immunotechnology doi: 10.1016/1380-2933(95)00006-2 – volume: 66 start-page: 8 issue: Suppl 1 year: 2015 ident: 10.1016/j.jaci.2020.06.024_bib4 article-title: Atopic dermatitis: global epidemiology and risk factors publication-title: Ann Nutr Metab doi: 10.1159/000370220 – volume: 9 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib20 article-title: Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aal4651 – volume: 130 start-page: 2211 year: 2010 ident: 10.1016/j.jaci.2020.06.024_bib57 article-title: Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections publication-title: J Invest Dermatol doi: 10.1038/jid.2010.123 – volume: 358 start-page: 1483 year: 2008 ident: 10.1016/j.jaci.2020.06.024_bib1 article-title: Atopic dermatitis publication-title: N Engl J Med doi: 10.1056/NEJMra074081 – volume: 503 start-page: 397 year: 2013 ident: 10.1016/j.jaci.2020.06.024_bib17 article-title: Staphylococcus delta-toxin induces allergic skin disease by activating mast cells publication-title: Nature doi: 10.1038/nature12655 – volume: 9 start-page: 359 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib28 article-title: Immune evasion mechanisms of Staphylococcus epidermidis biofilm infection publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00359 – volume: 148 start-page: 665 year: 2003 ident: 10.1016/j.jaci.2020.06.024_bib54 article-title: Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population publication-title: Br J Dermatol doi: 10.1046/j.1365-2133.2003.05243.x – volume: 25 start-page: 389 year: 2019 ident: 10.1016/j.jaci.2020.06.024_bib72 article-title: The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.02.002 – volume: 347 start-page: 67 year: 2015 ident: 10.1016/j.jaci.2020.06.024_bib40 article-title: Innate immunity. Dermal adipocytes protect against invasive Staphylococcus aureus skin infection publication-title: Science doi: 10.1126/science.1260972 – volume: 4 start-page: 1431 year: 2013 ident: 10.1016/j.jaci.2020.06.024_bib42 article-title: The microbiome extends to subepidermal compartments of normal skin publication-title: Nat Commun doi: 10.1038/ncomms2441 – volume: 9 start-page: 621 year: 2018 ident: 10.1016/j.jaci.2020.06.024_bib27 article-title: Beyond sepsis: Staphylococcus epidermidis is an underestimated but significant contributor to neonatal morbidity publication-title: Virulence doi: 10.1080/21505594.2017.1419117 – volume: 203 start-page: 1589 year: 2019 ident: 10.1016/j.jaci.2020.06.024_bib83 article-title: Retinoids enhance the expression of cathelicidin antimicrobial peptide during reactive dermal adipogenesis publication-title: J Immunol doi: 10.4049/jimmunol.1900520 – volume: 9 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib78 article-title: Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aah4680 – volume: 139 start-page: 1723 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib68 article-title: Novel concepts of prevention and treatment of atopic dermatitis through barrier and immune manipulations with implications for the atopic march publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2017.04.004 – volume: 130 start-page: 192 year: 2010 ident: 10.1016/j.jaci.2020.06.024_bib25 article-title: Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin publication-title: J Invest Dermatol doi: 10.1038/jid.2009.243 – volume: 22 start-page: 579 year: 2017 ident: 10.1016/j.jaci.2020.06.024_bib11 article-title: Staphylococcus aureus: master manipulator of the skin publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.10.015 – volume: 11 year: 2019 ident: 10.1016/j.jaci.2020.06.024_bib31 article-title: Quorum sensing between bacterial species on the skin protects against epidermal injury in atopic dermatitis publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aat8329 – volume: 328 start-page: 1223 year: 2004 ident: 10.1016/j.jaci.2020.06.024_bib5 article-title: Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis during first 18 months of life publication-title: BMJ doi: 10.1136/bmj.38069.512245.FE – volume: 41 start-page: 1 year: 2011 ident: 10.1016/j.jaci.2020.06.024_bib6 article-title: Atopic dermatitis and the hygiene hypothesis revisited publication-title: Curr Probl Dermatol doi: 10.1159/000323290 – volume: 385 start-page: 525 year: 2004 ident: 10.1016/j.jaci.2020.06.024_bib44 article-title: Growth phase-dependent production of a cell wall-associated elastinolytic cysteine proteinase by Staphylococcus epidermidis publication-title: Biol Chem doi: 10.1515/BC.2004.062 – volume: 30 start-page: 2923 year: 2020 ident: 10.1016/j.jaci.2020.06.024_bib35 article-title: Interplay of staphylococcal and host proteases promotes skin barrier disruption in Netherton syndrome publication-title: Cell Rep doi: 10.1016/j.celrep.2020.02.021 |
SSID | ssj0009389 |
Score | 2.6338568 |
Snippet | Staphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S aureus is... BackgroundStaphylococcus aureus and Staphylococcus epidermidis are the most abundant bacteria found on the skin of patients with atopic dermatitis (AD). S... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 955 |
SubjectTerms | Animal models Animals Antibiotics Antimicrobial Cationic Peptides - metabolism Atopic dermatitis Bacteria Bacterial Proteins - metabolism Cathelicidins Cells, Cultured Cysteine Cysteine Proteases - metabolism Cysteine proteinase cytokine Dermatitis Dermatitis, Atopic - microbiology Dermatitis, Atopic - pathology Desmoglein 1 - metabolism DNA, Bacterial - genetics dysbiosis Eczema Enzymes epidermal barrier Experiments Gene expression Human subjects Humans Inflammation Keratinocytes - microbiology Keratinocytes - pathology Mice Mice, Inbred C57BL microbiome Microbiomes Microbiota mRNA Pathogens protease Quorum sensing Severity of Illness Index Skin Skin - microbiology Skin - pathology Skin diseases Staphylococcal Skin Infections - microbiology Staphylococcal Skin Infections - pathology Staphylococcus epidermidis Staphylococcus epidermidis - enzymology Statistical analysis Tissue culture |
Title | Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0091674920309532 https://dx.doi.org/10.1016/j.jaci.2020.06.024 https://www.ncbi.nlm.nih.gov/pubmed/32634452 https://www.proquest.com/docview/2496207012 https://www.proquest.com/docview/2421458368 https://pubmed.ncbi.nlm.nih.gov/PMC8058862 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIiEuiDcLpTISNxQaP5McV1WrBdSeqNSb5VeEC82uyPbKb2cmcQILokgcs_FskpnxzGfNi5A3QXkZaxsLz4MopPascKX2RSkEKkC0lcZ657NzvbqQHy7V5R45nmphMK0y2_7Rpg_WOv9ylLl5tEkJa3wbTKFvOEYJlEA7LGWFWv7u-880j0bUIwRuWIGrc-HMmON1ZX2CMyIvhx6eXP7NOf0JPn_PofzFKZ0-IPczmqTL8YUfkr3YPSJ3z3K8_DHpAUsCH8Fhrb2_6WnEebAg2pB6OnRoAB9GT_xmSYHD1EVqKQ7Gwf7Na1iO-ebrDh5N1y0FpEj7L6mj12ls3nQdKVzBoX2TPMW_Rc1L_RNycXry6XhV5DELhVdCbgsbWy2EDl4LF2zjlGWhdIB0vAUwoFlbC6dCjJZpB3iiFtLxqrFgRoH30TnxlOx38DLPCQ2sZVXpbAuGAmcaW8BPOgqLPeBdUNWCsIm_xuce5DgK46uZks2uDMrEoEwMZtxxuSBvZ5rN2IHj1tViEpuZakvBGhpwELdSqZlqR_v-SXcwaYbJe783cKDVHCwp4wvyer4NuxZDMbaLID-DgXiMWOt6QZ6NijR_HABqIaUC6mpHxeYF2BF8906XPg-dwetS1XBEffGfn_OS3OOYsjOk2B2Q_e23m_gKMNfWHQ6b6pDcWb7_uDr_AcHVLP0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELemTgJeEOOzsIGReEPREn8leaymTR1b-7RJe7NsxxHeWFqR7v_nLnECBbFJe0zja5K78_ln-e53hHyppBO-MD5xrOKJUC5LbKpcknKODuBNrrDeebFU80vx7Upe7ZCjoRYG0ypj7O9jehet4y-HUZuH6xCwxrfEFPqS4SmB5BCHd5GdSk7I7uz0bL78zb3Lix4Fl1mCArF2pk_zujYuwDaRpR2NJxP_W5_-xZ9_p1H-sS6dvCDPI6Cks_6d98iOb16SJ4t4ZP6KtAAnQZWwZq2cu2upx5awYN0qtLQjaYBljB679YyCkqn11FDsjYMUzisYjinnqwYeTVc1BbBI25vQ0NvQ8zfdegpXsG9fB0fxb9H5QvuaXJ4cXxzNk9hpIXGSi01ifK04V5VT3FamtNJkVWoB7DgDeEBldcGtrLw3mbIAKQouLMtLA5EU1O-t5W_IpIGXeUdoldVZnlpTQ6zAtsYGIJTy3CANvK1kPiXZoF_tIg05dsP4oYd8s2uNNtFoE41Jd0xMyddRZt2TcNw7mg9m00N5KQREDWvEvVJylNpywAfl9gfP0HH6txr2tIpBMM3YlHweb8PExdMY03iwn8azeDy0VsWUvO0dafw4wNRcCAnS-ZaLjQOQFHz7ThO-d-TgRSoL2KW-f-TnfCJP5xeLc31-ujz7QJ4xzODpMu72yWTz884fAATb2I9xiv0C9R0vrg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Staphylococcus+epidermidis+protease+EcpA+can+be+a+deleterious+component+of+the+skin+microbiome+in+atopic+dermatitis&rft.jtitle=Journal+of+allergy+and+clinical+immunology&rft.au=Cau%2C+Laura&rft.au=Williams%2C+Michael+R.&rft.au=Butcher%2C+Anna+M.&rft.au=Nakatsuji%2C+Teruaki&rft.date=2021-03-01&rft.issn=0091-6749&rft.eissn=1097-6825&rft.volume=147&rft.issue=3&rft.spage=955&rft.epage=966.e16&rft_id=info:doi/10.1016%2Fj.jaci.2020.06.024&rft_id=info%3Apmid%2F32634452&rft.externalDocID=PMC8058862 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6749&client=summon |