G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling
Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control...
Saved in:
Published in | Cell cycle (Georgetown, Tex.) Vol. 15; no. 1; pp. 52 - 63 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
02.01.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1538-4101 1551-4005 1551-4005 |
DOI | 10.1080/15384101.2015.1120927 |
Cover
Loading…
Abstract | Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs. |
---|---|
AbstractList | Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs. Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp . In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs. Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs.Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs. |
Author | Pospelov, Valery A. Suvorova, Irina I. Pospelova, Tatiana V. Grigorash, Bogdan B. Chuykin, Ilya A. |
Author_xml | – sequence: 1 givenname: Irina I. surname: Suvorova fullname: Suvorova, Irina I. organization: Saint-Petersburg State University, Saint-Petersburg State University – sequence: 2 givenname: Bogdan B. surname: Grigorash fullname: Grigorash, Bogdan B. organization: Saint-Petersburg State University, Saint-Petersburg State University – sequence: 3 givenname: Ilya A. surname: Chuykin fullname: Chuykin, Ilya A. organization: Mount Sinai School of Medicine – sequence: 4 givenname: Tatiana V. surname: Pospelova fullname: Pospelova, Tatiana V. organization: Saint-Petersburg State University, Saint-Petersburg State University – sequence: 5 givenname: Valery A. surname: Pospelov fullname: Pospelov, Valery A. email: Pospelov_v@mail.ru organization: Saint-Petersburg State University, Saint-Petersburg State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26636245$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctu1DAUtVAr-oBPAHnJJoOvHTuOkBBo1AdSJRaAWBqP40wNjh3shKp_X4eZVoUFrHylex7X55yggxCDRegFkBUQSV4DZ7IGAitKgK8AKGlp8wQdA-dQ1YTwg2VmslpAR-gk5--EUNm08BQdUSGYoDU_Rt8uAJtra36M0YUJu4xNHMYUB5dth13AQ5yzxWef1hl3s8VTxP0czORi0B6XKc6jd2GLY49HzqqRwlfdA85uWwBl8Qwd9tpn-3z_nqIv52ef15fV1ceLD-v3V5XhrJ4qLTrgpuXWdq0xvJai0ZLyXhBibStE-RzhlHWMUSOBNxtZG9s1G9Iyq00D7BS93emO82awnbFhStqrMblBp1sVtVN_boK7Vtv4S9XFpqlJEXi1F0jx52zzpEoGxnqvgy0ZKGgEkS2Q39CXj70eTO5jLQC-A5gUc062f4AAUUt96r4-tdSn9vUV3pu_eMZNegm7nOz8f9nvdmwX-pgGfROT79Skb31MfdLBuKzYvyXuALNfslw |
CitedBy_id | crossref_primary_10_3390_genes10050398 crossref_primary_10_1007_s00018_016_2358_z crossref_primary_10_3390_cells13171462 crossref_primary_10_7554_eLife_28131 crossref_primary_10_3390_genes12111675 crossref_primary_10_1016_j_stemcr_2020_01_001 crossref_primary_10_1093_stmcls_sxac051 crossref_primary_10_1016_j_bbrc_2018_08_010 crossref_primary_10_1093_carcin_bgw092 crossref_primary_10_15252_embr_202256021 crossref_primary_10_3389_fgene_2018_00623 crossref_primary_10_1111_andr_12651 crossref_primary_10_1615_CritRevOncog_2022042332 crossref_primary_10_1016_j_bbrc_2020_07_133 crossref_primary_10_3390_biomedicines11071868 crossref_primary_10_1134_S0026893318030056 crossref_primary_10_3390_cells11050880 crossref_primary_10_1038_s41467_024_47219_2 crossref_primary_10_3390_biomedicines8100397 crossref_primary_10_1038_s41598_019_54350_4 crossref_primary_10_3390_genes12101461 crossref_primary_10_1007_s10815_018_1156_y crossref_primary_10_3390_ijms21113975 crossref_primary_10_18632_oncotarget_10184 crossref_primary_10_1101_gad_341602_120 crossref_primary_10_3892_mmr_2017_7489 |
Cites_doi | 10.1074/jbc.M610464200 10.1002/jcp.21735 10.1007/978-1-4419-7037-4_5 10.1038/nature08287 10.1186/1471-2121-10-46 10.1038/ncomms1909 10.1038/sj.onc.1203736 10.1634/stemcells.22-6-962 10.1038/ncb1211 10.1002/stem.1108 10.1016/B978-0-12-394310-1.00004-7 10.1016/S0960-9822(98)70061-2 10.1146/annurev.pharmtox.48.113006.094723 10.1038/onc.2008.166 10.1073/pnas.0308762101 10.1371/journal.pbio.1001268 10.1073/pnas.1100600108 10.1002/stem.123 10.1016/j.cell.2006.07.024 10.1038/sj.onc.1206015 10.1385/1-59259-973-7:073 10.1093/nar/gkt866 10.4161/cc.7.18.6699 10.1093/emboj/16.20.6217 10.1016/j.scr.2007.10.003 10.1002/stem.451 10.1038/nature08235 10.1038/sj.onc.1202436 10.1093/jn/133.7.2485S 10.1016/j.molcel.2012.01.020 10.1002/jcp.20776 10.1016/j.yexcr.2010.06.006 10.1634/stemcells.2007-0628 10.1385/SCR:1:2:131 |
ContentType | Journal Article |
Copyright | 2016 Taylor & Francis Group, LLC 2016 2016 Taylor & Francis Group, LLC 2016 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2016 Taylor & Francis Group, LLC 2016 – notice: 2016 Taylor & Francis Group, LLC 2016 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/15384101.2015.1120927 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | I. I. Suvorova et al |
EISSN | 1551-4005 |
EndPage | 63 |
ExternalDocumentID | PMC4825740 26636245 10_1080_15384101_2015_1120927 1120927 |
Genre | Article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0BK 0R~ 29B 30N 4.4 53G 5GY AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEXWM AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EJD EMOBN F5P GTTXZ H13 HYE IPNFZ KRBQP KWAYT KYCEM M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SJN SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF LJTGL NPM PCLFJ TASJS 7X8 5PM |
ID | FETCH-LOGICAL-c534t-a6d15c95eed9cc54867a825f600ee9669270523d332c8157b84ced7b093eac713 |
ISSN | 1538-4101 1551-4005 |
IngestDate | Thu Aug 21 18:24:38 EDT 2025 Tue Aug 05 09:26:31 EDT 2025 Mon Jul 21 06:01:17 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Tue Jul 01 02:01:10 EDT 2025 Wed Dec 25 09:08:04 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | ATM/ATR signaling; checkpoint control; DNA damage; HDAC inhibitors; p53-p21/Waf1 pathway; proteasomal degradation |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-a6d15c95eed9cc54867a825f600ee9669270523d332c8157b84ced7b093eac713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Current affiliation: Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA. Supplemental material data for this article can be accessed on the publisher's website. |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15384101.2015.1120927?needAccess=true |
PMID | 26636245 |
PQID | 1760891040 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1080_15384101_2015_1120927 crossref_citationtrail_10_1080_15384101_2015_1120927 pubmed_primary_26636245 proquest_miscellaneous_1760891040 informaworld_taylorfrancis_310_1080_15384101_2015_1120927 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4825740 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-02 |
PublicationDateYYYYMMDD | 2016-01-02 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell cycle (Georgetown, Tex.) |
PublicationTitleAlternate | Cell Cycle |
PublicationYear | 2016 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0011 cit0033 cit0012 cit0034 cit0031 cit0010 cit0032 cit0030 Barta T (cit0015) 2010; 28 Malashicheva AB (cit0006) 2002; 44 cit0019 cit0017 cit0018 cit0016 cit0013 cit0035 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 cit0008 cit0009 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 18834305 - Annu Rev Pharmacol Toxicol. 2009;49:223-41 19383392 - Stem Cell Res. 2007 Nov;1(2):116-28 17179143 - J Biol Chem. 2007 Feb 23;282(8):5842-52 12455372 - Tsitologiia. 2002;44(7):643-8 19544417 - Stem Cells. 2009 Aug;27(8):1822-35 18055443 - Stem Cells. 2008 Feb;26(2):455-64 19668189 - Nature. 2009 Aug 27;460(7259):1149-53 10102623 - Oncogene. 1999 Feb 25;18(8):1537-44 10951579 - Oncogene. 2000 Aug 10;19(34):3858-65 16972248 - J Cell Physiol. 2006 Dec;209(3):883-93 18521083 - Oncogene. 2008 Sep 11;27(40):5277-87 19668191 - Nature. 2009 Aug 27;460(7259):1132-5 16904174 - Cell. 2006 Aug 25;126(4):663-76 12447695 - Oncogene. 2002 Nov 28;21(54):8320-33 17142847 - Stem Cell Rev. 2005;1(2):131-8 22387025 - Mol Cell. 2012 Apr 13;46(1):30-42 9321401 - EMBO J. 1997 Oct 15;16(20):6217-29 21222199 - Adv Exp Med Biol. 2010;695:59-75 19373864 - J Cell Physiol. 2009 Sep;220(3):586-92 12840228 - J Nutr. 2003 Jul;133(7 Suppl):2485S-2493S 15536187 - Stem Cells. 2004;22(6):962-71 15619621 - Nat Cell Biol. 2005 Feb;7(2):165-71 22389628 - PLoS Biol. 2012;10(2):e1001268 14982997 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2259-64 20542030 - Exp Cell Res. 2010 Sep 10;316(15):2434-46 20518019 - Stem Cells. 2010 Jul;28(7):1143-52 19534768 - BMC Cell Biol. 2009;10:46 18787397 - Cell Cycle. 2008 Sep 15;7(18):2922-8 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5 9443911 - Curr Biol. 1998 Jan 29;8(3):145-55 22735451 - Nat Commun. 2012;3:923 24078252 - Nucleic Acids Res. 2014 Jan;42(1):205-23 16673875 - Methods Mol Biol. 2006;314:73-80 22511267 - Stem Cells. 2012 Jul;30(7):1362-72 22959303 - Int Rev Cell Mol Biol. 2012;299:161-98 |
References_xml | – ident: cit0028 doi: 10.1074/jbc.M610464200 – ident: cit0029 doi: 10.1002/jcp.21735 – ident: cit0001 doi: 10.1007/978-1-4419-7037-4_5 – ident: cit0035 doi: 10.1038/nature08287 – ident: cit0010 doi: 10.1186/1471-2121-10-46 – ident: cit0025 doi: 10.1038/ncomms1909 – ident: cit0016 doi: 10.1038/sj.onc.1203736 – ident: cit0004 doi: 10.1634/stemcells.22-6-962 – ident: cit0012 doi: 10.1038/ncb1211 – ident: cit0026 doi: 10.1002/stem.1108 – ident: cit0003 doi: 10.1016/B978-0-12-394310-1.00004-7 – ident: cit0009 doi: 10.1016/S0960-9822(98)70061-2 – ident: cit0024 doi: 10.1146/annurev.pharmtox.48.113006.094723 – ident: cit0032 doi: 10.1038/onc.2008.166 – ident: cit0018 doi: 10.1073/pnas.0308762101 – ident: cit0022 doi: 10.1371/journal.pbio.1001268 – ident: cit0023 doi: 10.1073/pnas.1100600108 – ident: cit0002 doi: 10.1002/stem.123 – ident: cit0031 doi: 10.1016/j.cell.2006.07.024 – ident: cit0013 doi: 10.1038/sj.onc.1206015 – ident: cit0017 doi: 10.1385/1-59259-973-7:073 – volume: 44 start-page: 643 year: 2002 ident: cit0006 publication-title: Tsitologiia – ident: cit0030 doi: 10.1093/nar/gkt866 – ident: cit0008 doi: 10.4161/cc.7.18.6699 – ident: cit0020 doi: 10.1093/emboj/16.20.6217 – ident: cit0027 doi: 10.1016/j.scr.2007.10.003 – volume: 28 start-page: 1143 year: 2010 ident: cit0015 publication-title: Stem Cells doi: 10.1002/stem.451 – ident: cit0034 doi: 10.1038/nature08235 – ident: cit0021 doi: 10.1038/sj.onc.1202436 – ident: cit0019 doi: 10.1093/jn/133.7.2485S – ident: cit0033 doi: 10.1016/j.molcel.2012.01.020 – ident: cit0007 doi: 10.1002/jcp.20776 – ident: cit0011 doi: 10.1016/j.yexcr.2010.06.006 – ident: cit0005 doi: 10.1634/stemcells.2007-0628 – ident: cit0014 doi: 10.1385/SCR:1:2:131 – reference: 20542030 - Exp Cell Res. 2010 Sep 10;316(15):2434-46 – reference: 18521083 - Oncogene. 2008 Sep 11;27(40):5277-87 – reference: 22959303 - Int Rev Cell Mol Biol. 2012;299:161-98 – reference: 19668189 - Nature. 2009 Aug 27;460(7259):1149-53 – reference: 15619621 - Nat Cell Biol. 2005 Feb;7(2):165-71 – reference: 22511267 - Stem Cells. 2012 Jul;30(7):1362-72 – reference: 19383392 - Stem Cell Res. 2007 Nov;1(2):116-28 – reference: 10951579 - Oncogene. 2000 Aug 10;19(34):3858-65 – reference: 9443911 - Curr Biol. 1998 Jan 29;8(3):145-55 – reference: 20518019 - Stem Cells. 2010 Jul;28(7):1143-52 – reference: 15536187 - Stem Cells. 2004;22(6):962-71 – reference: 12447695 - Oncogene. 2002 Nov 28;21(54):8320-33 – reference: 14982997 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2259-64 – reference: 19373864 - J Cell Physiol. 2009 Sep;220(3):586-92 – reference: 18834305 - Annu Rev Pharmacol Toxicol. 2009;49:223-41 – reference: 9321401 - EMBO J. 1997 Oct 15;16(20):6217-29 – reference: 19534768 - BMC Cell Biol. 2009;10:46 – reference: 22735451 - Nat Commun. 2012;3:923 – reference: 17142847 - Stem Cell Rev. 2005;1(2):131-8 – reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76 – reference: 12840228 - J Nutr. 2003 Jul;133(7 Suppl):2485S-2493S – reference: 18055443 - Stem Cells. 2008 Feb;26(2):455-64 – reference: 24078252 - Nucleic Acids Res. 2014 Jan;42(1):205-23 – reference: 22389628 - PLoS Biol. 2012;10(2):e1001268 – reference: 12455372 - Tsitologiia. 2002;44(7):643-8 – reference: 17179143 - J Biol Chem. 2007 Feb 23;282(8):5842-52 – reference: 16972248 - J Cell Physiol. 2006 Dec;209(3):883-93 – reference: 18787397 - Cell Cycle. 2008 Sep 15;7(18):2922-8 – reference: 22387025 - Mol Cell. 2012 Apr 13;46(1):30-42 – reference: 16673875 - Methods Mol Biol. 2006;314:73-80 – reference: 19668191 - Nature. 2009 Aug 27;460(7259):1132-5 – reference: 19544417 - Stem Cells. 2009 Aug;27(8):1822-35 – reference: 21222199 - Adv Exp Med Biol. 2010;695:59-75 – reference: 10102623 - Oncogene. 1999 Feb 25;18(8):1537-44 – reference: 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5 |
SSID | ssj0028791 |
Score | 2.2970715 |
Snippet | Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 52 |
SubjectTerms | Animals ATM/ATR signaling; checkpoint control; DNA damage; HDAC inhibitors; p53-p21/Waf1 pathway; proteasomal degradation Cell Survival - physiology Cyclin-Dependent Kinase Inhibitor p21 - metabolism Embryonic Stem Cells - metabolism G1 Phase Cell Cycle Checkpoints - physiology Mice NIH 3T3 Cells Signal Transduction - physiology Tumor Suppressor Protein p53 - metabolism |
Title | G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling |
URI | https://www.tandfonline.com/doi/abs/10.1080/15384101.2015.1120927 https://www.ncbi.nlm.nih.gov/pubmed/26636245 https://www.proquest.com/docview/1760891040 https://pubmed.ncbi.nlm.nih.gov/PMC4825740 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj5swELbSXVXqpep705dcqTdEisEOcMym2016qCpttrvqhRpjdlEjiBKyavp_-j87xoaQh7R9XBCxA1iej_HMMP4Gobch57CoSGr70hc2jYVjh3Ec2Al3AxEHMqVxlSD7qT86px8v2WWn86uVtbQs4574uXdfyb9IFdpArmqX7F9ItrkpNMA5yBeOIGE4_pGMT4kFcy6-z4osL1VpcpUgPi9AdFJRKlnKrZfWydlwYSXLqkaGWsZM9A_OiuVsWmc9M8-eueSCp8RSOR18Wq9pNY2BCvKJFYygiizoULpx4SfyR68VUjhb3hTz4qYyS8fzLOfWuLfO88muAHWLKppzXFwloF-Om97h9XJl6oONpytuDZqez4rSfGpuOuFKL3HrS68dtCA6aLF2cSc79UO2VDAlJsQhTRtTnq7DNvQ228GnVsKaEtcs51p97iwUOrNSPUs9SqX4MbWbygk1U8EWB7fpuYMOXfBGQP8fDkbvv140nn3gh4aYVw-93ioWOO_2PmLDCNqgyN3n6Gzn67YMoMkDdN94LnigYfgQdWT-CN3VtUxXj9G3U4LXYMTZArfAiLMcV2DECowYwIjLAq_BiNdgxEWKW2DEDRifoPMPJ5PhyDblO2zBPFravJ8QJkIGVlgoBFPUjjxwWQomtpTgZcM8qG8Siee5IiDMjwMqZOLHTuiBNeAT7yk6yItcHiFMYxLDwuOlcQD-MvzwUsmJ7Lu0n_qJ63URreczEobbXpVYmUbEUODWYoiUGCIjhi7qNZfNNLnLbReEbWFFZYXjVEM48m659k0t2QimXn2X47mEqY-I33cCMNup00XPtKSb4YD9DCYmZV3kb2Cg-YOih9_sybPriiaewmT71Hn-H2N-ge6t396X6KCcL-UrMMLL-LV5BX4DZdLTbw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEaIX3pTlaSSuWeLYjuMjqloWKHuhFb0F23FgVZSs2uwBfj0zcbLarUA99JbImciejD2PzHwD8NZYi0olyEQH7RPpfJoY54qkslnhXRFq6foE2Xk-O5GfTtXpRi0MpVWSD11HoIj-rKbNTcHoMSXuHe1SibJEmVmKimBSk-mbcEuZXNPmFOl87XQV2gyYqUVCNGMVz_9es6WfttBL_2WDXk6l3NBNh_fAj6uKKSln01Xnpv7PJcDH6y37PtwdTFf2PsraA7gRmodwOzaz_P0Ivn_gDCXAny3bRdOxxQWjdPXzFgUpVGzRMAoyBHbwdf-CVavAupaRUo2xSIZX7Yqqg3-wtmZLJZJlxr_ZmjPKMLE08BhODg-O92fJ0L8h8UrILrF5xZU3CtWw8V4Rtp9Fh7RGGysEdLNw9hSUroTIfMGVdoX0odIuNQLVAXrPT2CnaZvwFJh03OHJI2pXoMOEN6IOloc8k3mtq0xMQI5frfQDuDn12PhV8gEDdWReScwrB-ZNYLomW0Z0j6sIzKZIlF0fVqljD5RSXEH7ZpSfEllPP2ZsE5D1Jdd5WqDdJtMJ7EV5Wk8HDSi0MaSagN6StPUDhA--PdIsfvY44RKZrWX67Bpzfg13Zsdfjsqjj_PPz2EXh2L8KXsBO935KrxEi6xzr_ot9xdf-iZU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bj9QgFCa6RuOL98t4xcRXxrZAoY9m3XG9ZGKiG31DoKCTNW2z03nQX-85pZ3sbDT7sG9tKA0cDpwLHx-EvKysBaMSBFNBeSacz1jlnGa1LbR3OkThBoDssjw8Eu-_yQlNuB5hlRhDx0QUMazVOLm7Ok6IuFc4SQWoEgKzJJ6ByapCXSZXStzkw1Mc2XIbc2lVjZSpmmGd6RDP_36zY552yEv_5YKeRVKeMk2Lm8RNnUqIlOP5pndz_-cM3-OFen2L3BgdV_o6adptcik0d8jVdJXl77vk-9ucwvj7465dNT1drSmC1U9aUKNQ01VDMcUQ6MHn_TWtN4H2LUWTmjKRFJ7aDZ4N_kHbSDvJWVfkX23MKeJLLBbcI0eLgy_7h2y8vYF5yUXPbFnn0lcSjHDlvURmPwvhaAQPKwQIsqD1mJKuOS-8zqVyWvhQK5dVHIwBxM73yV7TNuEhocLlDtYdHp2GcAleeAw2D2Uhyqjqgs-ImAbN-JHaHG_Y-GXykQF1Ep5B4ZlReDMy31brErfHeRWq0xph-iGpEtMNKIafU_fFpD4GRI_bMrYJIHqTqzLT4LWJbEYeJHXaNgfcJ_AwhJwRtaNo2w-QHXy3pFn9HFjCBQhbiezRBdr8nFz79GZhPr5bfnhMrkNJSj4VT8hef7IJT8Ed692zYcL9BZVUJPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G1+checkpoint+is+compromised+in+mouse+ESCs+due+to+functional+uncoupling+of+p53-p21Waf1+signaling&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Suvorova%2C+Irina+I.&rft.au=Grigorash%2C+Bogdan+B.&rft.au=Chuykin%2C+Ilya+A.&rft.au=Pospelova%2C+Tatiana+V.&rft.date=2016-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1538-4101&rft.eissn=1551-4005&rft.volume=15&rft.issue=1&rft.spage=52&rft.epage=63&rft_id=info:doi/10.1080%2F15384101.2015.1120927&rft.externalDocID=1120927 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon |