G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling

Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control...

Full description

Saved in:
Bibliographic Details
Published inCell cycle (Georgetown, Tex.) Vol. 15; no. 1; pp. 52 - 63
Main Authors Suvorova, Irina I., Grigorash, Bogdan B., Chuykin, Ilya A., Pospelova, Tatiana V., Pospelov, Valery A.
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 02.01.2016
Subjects
Online AccessGet full text
ISSN1538-4101
1551-4005
1551-4005
DOI10.1080/15384101.2015.1120927

Cover

Loading…
Abstract Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs.
AbstractList Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs.
Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp . In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs.
Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs.Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53 localizes in the nuclei and up-regulates p21/Waf1 transcription but that does not lead to accumulation of p21/Waf1 protein. The negative control of the p21Waf1 expression appears to occur at 2 levels of regulation. First, both p21/Waf1 gene transcription and the p21/Waf1 protein content increase in mESCs treated with histone-deacetylase inhibitors, implying its epigenetic regulation. Second, proteasome inhibitors cause the p21/Waf1 accumulation, indicating that the protein is a subject of proteasome-dependent degradation in ESСs. Then, the dynamics of IR-induced p21Waf1 protein show its accumulation at long-term time points (3 and 5 days) that coincides with an increase in the proportion of G1-phase cells, down-regulation of Oct4 and Nanog pluripotent gene transcription and activation of endoderm-specific genes sox17 and afp. In addition, nutlin-dependent stabilization of p53 in mESC was also accompanied by the accumulation of p21/Waf1 as well as restoration of G1 checkpoint and an onset of differentiation. Thus, the lack of functional p21/Waf1 is indispensable for maintaining self-renewal and pluripotency of mESCs.
Author Pospelov, Valery A.
Suvorova, Irina I.
Pospelova, Tatiana V.
Grigorash, Bogdan B.
Chuykin, Ilya A.
Author_xml – sequence: 1
  givenname: Irina I.
  surname: Suvorova
  fullname: Suvorova, Irina I.
  organization: Saint-Petersburg State University, Saint-Petersburg State University
– sequence: 2
  givenname: Bogdan B.
  surname: Grigorash
  fullname: Grigorash, Bogdan B.
  organization: Saint-Petersburg State University, Saint-Petersburg State University
– sequence: 3
  givenname: Ilya A.
  surname: Chuykin
  fullname: Chuykin, Ilya A.
  organization: Mount Sinai School of Medicine
– sequence: 4
  givenname: Tatiana V.
  surname: Pospelova
  fullname: Pospelova, Tatiana V.
  organization: Saint-Petersburg State University, Saint-Petersburg State University
– sequence: 5
  givenname: Valery A.
  surname: Pospelov
  fullname: Pospelov, Valery A.
  email: Pospelov_v@mail.ru
  organization: Saint-Petersburg State University, Saint-Petersburg State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26636245$$D View this record in MEDLINE/PubMed
BookMark eNqFUctu1DAUtVAr-oBPAHnJJoOvHTuOkBBo1AdSJRaAWBqP40wNjh3shKp_X4eZVoUFrHylex7X55yggxCDRegFkBUQSV4DZ7IGAitKgK8AKGlp8wQdA-dQ1YTwg2VmslpAR-gk5--EUNm08BQdUSGYoDU_Rt8uAJtra36M0YUJu4xNHMYUB5dth13AQ5yzxWef1hl3s8VTxP0czORi0B6XKc6jd2GLY49HzqqRwlfdA85uWwBl8Qwd9tpn-3z_nqIv52ef15fV1ceLD-v3V5XhrJ4qLTrgpuXWdq0xvJai0ZLyXhBibStE-RzhlHWMUSOBNxtZG9s1G9Iyq00D7BS93emO82awnbFhStqrMblBp1sVtVN_boK7Vtv4S9XFpqlJEXi1F0jx52zzpEoGxnqvgy0ZKGgEkS2Q39CXj70eTO5jLQC-A5gUc062f4AAUUt96r4-tdSn9vUV3pu_eMZNegm7nOz8f9nvdmwX-pgGfROT79Skb31MfdLBuKzYvyXuALNfslw
CitedBy_id crossref_primary_10_3390_genes10050398
crossref_primary_10_1007_s00018_016_2358_z
crossref_primary_10_3390_cells13171462
crossref_primary_10_7554_eLife_28131
crossref_primary_10_3390_genes12111675
crossref_primary_10_1016_j_stemcr_2020_01_001
crossref_primary_10_1093_stmcls_sxac051
crossref_primary_10_1016_j_bbrc_2018_08_010
crossref_primary_10_1093_carcin_bgw092
crossref_primary_10_15252_embr_202256021
crossref_primary_10_3389_fgene_2018_00623
crossref_primary_10_1111_andr_12651
crossref_primary_10_1615_CritRevOncog_2022042332
crossref_primary_10_1016_j_bbrc_2020_07_133
crossref_primary_10_3390_biomedicines11071868
crossref_primary_10_1134_S0026893318030056
crossref_primary_10_3390_cells11050880
crossref_primary_10_1038_s41467_024_47219_2
crossref_primary_10_3390_biomedicines8100397
crossref_primary_10_1038_s41598_019_54350_4
crossref_primary_10_3390_genes12101461
crossref_primary_10_1007_s10815_018_1156_y
crossref_primary_10_3390_ijms21113975
crossref_primary_10_18632_oncotarget_10184
crossref_primary_10_1101_gad_341602_120
crossref_primary_10_3892_mmr_2017_7489
Cites_doi 10.1074/jbc.M610464200
10.1002/jcp.21735
10.1007/978-1-4419-7037-4_5
10.1038/nature08287
10.1186/1471-2121-10-46
10.1038/ncomms1909
10.1038/sj.onc.1203736
10.1634/stemcells.22-6-962
10.1038/ncb1211
10.1002/stem.1108
10.1016/B978-0-12-394310-1.00004-7
10.1016/S0960-9822(98)70061-2
10.1146/annurev.pharmtox.48.113006.094723
10.1038/onc.2008.166
10.1073/pnas.0308762101
10.1371/journal.pbio.1001268
10.1073/pnas.1100600108
10.1002/stem.123
10.1016/j.cell.2006.07.024
10.1038/sj.onc.1206015
10.1385/1-59259-973-7:073
10.1093/nar/gkt866
10.4161/cc.7.18.6699
10.1093/emboj/16.20.6217
10.1016/j.scr.2007.10.003
10.1002/stem.451
10.1038/nature08235
10.1038/sj.onc.1202436
10.1093/jn/133.7.2485S
10.1016/j.molcel.2012.01.020
10.1002/jcp.20776
10.1016/j.yexcr.2010.06.006
10.1634/stemcells.2007-0628
10.1385/SCR:1:2:131
ContentType Journal Article
Copyright 2016 Taylor & Francis Group, LLC 2016
2016 Taylor & Francis Group, LLC 2016 Taylor & Francis Group, LLC
Copyright_xml – notice: 2016 Taylor & Francis Group, LLC 2016
– notice: 2016 Taylor & Francis Group, LLC 2016 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1080/15384101.2015.1120927
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate I. I. Suvorova et al
EISSN 1551-4005
EndPage 63
ExternalDocumentID PMC4825740
26636245
10_1080_15384101_2015_1120927
1120927
Genre Article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0BK
0R~
29B
30N
4.4
53G
5GY
AAHBH
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACTIO
ADBBV
ADCVX
ADGTB
AEISY
AENEX
AEXWM
AEYOC
AGDLA
AHDZW
AIJEM
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AOIJS
AQRUH
AVBZW
AWYRJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
E3Z
EBS
EJD
EMOBN
F5P
GTTXZ
H13
HYE
IPNFZ
KRBQP
KWAYT
KYCEM
M4Z
O9-
OK1
P2P
RIG
RNANH
ROSJB
RPM
RTWRZ
SJN
SNACF
TBQAZ
TDBHL
TEI
TFL
TFT
TFW
TQWBC
TR2
TTHFI
TUROJ
ZGOLN
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
AAGME
ABFMO
ACDHJ
ACZPZ
ADOPC
AURDB
BFWEY
C1A
CGR
CUY
CVF
CWRZV
ECM
EIF
LJTGL
NPM
PCLFJ
TASJS
7X8
5PM
ID FETCH-LOGICAL-c534t-a6d15c95eed9cc54867a825f600ee9669270523d332c8157b84ced7b093eac713
ISSN 1538-4101
1551-4005
IngestDate Thu Aug 21 18:24:38 EDT 2025
Tue Aug 05 09:26:31 EDT 2025
Mon Jul 21 06:01:17 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Tue Jul 01 02:01:10 EDT 2025
Wed Dec 25 09:08:04 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords ATM/ATR signaling; checkpoint control; DNA damage; HDAC inhibitors; p53-p21/Waf1 pathway; proteasomal degradation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-a6d15c95eed9cc54867a825f600ee9669270523d332c8157b84ced7b093eac713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Current affiliation: Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, USA.
Supplemental material data for this article can be accessed on the publisher's website.
OpenAccessLink https://www.tandfonline.com/doi/pdf/10.1080/15384101.2015.1120927?needAccess=true
PMID 26636245
PQID 1760891040
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1080_15384101_2015_1120927
crossref_citationtrail_10_1080_15384101_2015_1120927
pubmed_primary_26636245
proquest_miscellaneous_1760891040
informaworld_taylorfrancis_310_1080_15384101_2015_1120927
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4825740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-02
PublicationDateYYYYMMDD 2016-01-02
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell cycle (Georgetown, Tex.)
PublicationTitleAlternate Cell Cycle
PublicationYear 2016
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
cit0030
Barta T (cit0015) 2010; 28
Malashicheva AB (cit0006) 2002; 44
cit0019
cit0017
cit0018
cit0016
cit0013
cit0035
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
cit0008
cit0009
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
18834305 - Annu Rev Pharmacol Toxicol. 2009;49:223-41
19383392 - Stem Cell Res. 2007 Nov;1(2):116-28
17179143 - J Biol Chem. 2007 Feb 23;282(8):5842-52
12455372 - Tsitologiia. 2002;44(7):643-8
19544417 - Stem Cells. 2009 Aug;27(8):1822-35
18055443 - Stem Cells. 2008 Feb;26(2):455-64
19668189 - Nature. 2009 Aug 27;460(7259):1149-53
10102623 - Oncogene. 1999 Feb 25;18(8):1537-44
10951579 - Oncogene. 2000 Aug 10;19(34):3858-65
16972248 - J Cell Physiol. 2006 Dec;209(3):883-93
18521083 - Oncogene. 2008 Sep 11;27(40):5277-87
19668191 - Nature. 2009 Aug 27;460(7259):1132-5
16904174 - Cell. 2006 Aug 25;126(4):663-76
12447695 - Oncogene. 2002 Nov 28;21(54):8320-33
17142847 - Stem Cell Rev. 2005;1(2):131-8
22387025 - Mol Cell. 2012 Apr 13;46(1):30-42
9321401 - EMBO J. 1997 Oct 15;16(20):6217-29
21222199 - Adv Exp Med Biol. 2010;695:59-75
19373864 - J Cell Physiol. 2009 Sep;220(3):586-92
12840228 - J Nutr. 2003 Jul;133(7 Suppl):2485S-2493S
15536187 - Stem Cells. 2004;22(6):962-71
15619621 - Nat Cell Biol. 2005 Feb;7(2):165-71
22389628 - PLoS Biol. 2012;10(2):e1001268
14982997 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2259-64
20542030 - Exp Cell Res. 2010 Sep 10;316(15):2434-46
20518019 - Stem Cells. 2010 Jul;28(7):1143-52
19534768 - BMC Cell Biol. 2009;10:46
18787397 - Cell Cycle. 2008 Sep 15;7(18):2922-8
21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5
9443911 - Curr Biol. 1998 Jan 29;8(3):145-55
22735451 - Nat Commun. 2012;3:923
24078252 - Nucleic Acids Res. 2014 Jan;42(1):205-23
16673875 - Methods Mol Biol. 2006;314:73-80
22511267 - Stem Cells. 2012 Jul;30(7):1362-72
22959303 - Int Rev Cell Mol Biol. 2012;299:161-98
References_xml – ident: cit0028
  doi: 10.1074/jbc.M610464200
– ident: cit0029
  doi: 10.1002/jcp.21735
– ident: cit0001
  doi: 10.1007/978-1-4419-7037-4_5
– ident: cit0035
  doi: 10.1038/nature08287
– ident: cit0010
  doi: 10.1186/1471-2121-10-46
– ident: cit0025
  doi: 10.1038/ncomms1909
– ident: cit0016
  doi: 10.1038/sj.onc.1203736
– ident: cit0004
  doi: 10.1634/stemcells.22-6-962
– ident: cit0012
  doi: 10.1038/ncb1211
– ident: cit0026
  doi: 10.1002/stem.1108
– ident: cit0003
  doi: 10.1016/B978-0-12-394310-1.00004-7
– ident: cit0009
  doi: 10.1016/S0960-9822(98)70061-2
– ident: cit0024
  doi: 10.1146/annurev.pharmtox.48.113006.094723
– ident: cit0032
  doi: 10.1038/onc.2008.166
– ident: cit0018
  doi: 10.1073/pnas.0308762101
– ident: cit0022
  doi: 10.1371/journal.pbio.1001268
– ident: cit0023
  doi: 10.1073/pnas.1100600108
– ident: cit0002
  doi: 10.1002/stem.123
– ident: cit0031
  doi: 10.1016/j.cell.2006.07.024
– ident: cit0013
  doi: 10.1038/sj.onc.1206015
– ident: cit0017
  doi: 10.1385/1-59259-973-7:073
– volume: 44
  start-page: 643
  year: 2002
  ident: cit0006
  publication-title: Tsitologiia
– ident: cit0030
  doi: 10.1093/nar/gkt866
– ident: cit0008
  doi: 10.4161/cc.7.18.6699
– ident: cit0020
  doi: 10.1093/emboj/16.20.6217
– ident: cit0027
  doi: 10.1016/j.scr.2007.10.003
– volume: 28
  start-page: 1143
  year: 2010
  ident: cit0015
  publication-title: Stem Cells
  doi: 10.1002/stem.451
– ident: cit0034
  doi: 10.1038/nature08235
– ident: cit0021
  doi: 10.1038/sj.onc.1202436
– ident: cit0019
  doi: 10.1093/jn/133.7.2485S
– ident: cit0033
  doi: 10.1016/j.molcel.2012.01.020
– ident: cit0007
  doi: 10.1002/jcp.20776
– ident: cit0011
  doi: 10.1016/j.yexcr.2010.06.006
– ident: cit0005
  doi: 10.1634/stemcells.2007-0628
– ident: cit0014
  doi: 10.1385/SCR:1:2:131
– reference: 20542030 - Exp Cell Res. 2010 Sep 10;316(15):2434-46
– reference: 18521083 - Oncogene. 2008 Sep 11;27(40):5277-87
– reference: 22959303 - Int Rev Cell Mol Biol. 2012;299:161-98
– reference: 19668189 - Nature. 2009 Aug 27;460(7259):1149-53
– reference: 15619621 - Nat Cell Biol. 2005 Feb;7(2):165-71
– reference: 22511267 - Stem Cells. 2012 Jul;30(7):1362-72
– reference: 19383392 - Stem Cell Res. 2007 Nov;1(2):116-28
– reference: 10951579 - Oncogene. 2000 Aug 10;19(34):3858-65
– reference: 9443911 - Curr Biol. 1998 Jan 29;8(3):145-55
– reference: 20518019 - Stem Cells. 2010 Jul;28(7):1143-52
– reference: 15536187 - Stem Cells. 2004;22(6):962-71
– reference: 12447695 - Oncogene. 2002 Nov 28;21(54):8320-33
– reference: 14982997 - Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2259-64
– reference: 19373864 - J Cell Physiol. 2009 Sep;220(3):586-92
– reference: 18834305 - Annu Rev Pharmacol Toxicol. 2009;49:223-41
– reference: 9321401 - EMBO J. 1997 Oct 15;16(20):6217-29
– reference: 19534768 - BMC Cell Biol. 2009;10:46
– reference: 22735451 - Nat Commun. 2012;3:923
– reference: 17142847 - Stem Cell Rev. 2005;1(2):131-8
– reference: 16904174 - Cell. 2006 Aug 25;126(4):663-76
– reference: 12840228 - J Nutr. 2003 Jul;133(7 Suppl):2485S-2493S
– reference: 18055443 - Stem Cells. 2008 Feb;26(2):455-64
– reference: 24078252 - Nucleic Acids Res. 2014 Jan;42(1):205-23
– reference: 22389628 - PLoS Biol. 2012;10(2):e1001268
– reference: 12455372 - Tsitologiia. 2002;44(7):643-8
– reference: 17179143 - J Biol Chem. 2007 Feb 23;282(8):5842-52
– reference: 16972248 - J Cell Physiol. 2006 Dec;209(3):883-93
– reference: 18787397 - Cell Cycle. 2008 Sep 15;7(18):2922-8
– reference: 22387025 - Mol Cell. 2012 Apr 13;46(1):30-42
– reference: 16673875 - Methods Mol Biol. 2006;314:73-80
– reference: 19668191 - Nature. 2009 Aug 27;460(7259):1132-5
– reference: 19544417 - Stem Cells. 2009 Aug;27(8):1822-35
– reference: 21222199 - Adv Exp Med Biol. 2010;695:59-75
– reference: 10102623 - Oncogene. 1999 Feb 25;18(8):1537-44
– reference: 21576488 - Proc Natl Acad Sci U S A. 2011 May 31;108(22):8990-5
SSID ssj0028791
Score 2.2970715
Snippet Mouse embryonic stem cells (mESCs) lack of G1 checkpoint despite that irradiation (IR) activates ATM/ATR-mediated DDR signaling pathway. The IR-induced p53...
SourceID pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 52
SubjectTerms Animals
ATM/ATR signaling; checkpoint control; DNA damage; HDAC inhibitors; p53-p21/Waf1 pathway; proteasomal degradation
Cell Survival - physiology
Cyclin-Dependent Kinase Inhibitor p21 - metabolism
Embryonic Stem Cells - metabolism
G1 Phase Cell Cycle Checkpoints - physiology
Mice
NIH 3T3 Cells
Signal Transduction - physiology
Tumor Suppressor Protein p53 - metabolism
Title G1 checkpoint is compromised in mouse ESCs due to functional uncoupling of p53-p21Waf1 signaling
URI https://www.tandfonline.com/doi/abs/10.1080/15384101.2015.1120927
https://www.ncbi.nlm.nih.gov/pubmed/26636245
https://www.proquest.com/docview/1760891040
https://pubmed.ncbi.nlm.nih.gov/PMC4825740
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj5swELbSXVXqpep705dcqTdEisEOcMym2016qCpttrvqhRpjdlEjiBKyavp_-j87xoaQh7R9XBCxA1iej_HMMP4Gobch57CoSGr70hc2jYVjh3Ec2Al3AxEHMqVxlSD7qT86px8v2WWn86uVtbQs4574uXdfyb9IFdpArmqX7F9ItrkpNMA5yBeOIGE4_pGMT4kFcy6-z4osL1VpcpUgPi9AdFJRKlnKrZfWydlwYSXLqkaGWsZM9A_OiuVsWmc9M8-eueSCp8RSOR18Wq9pNY2BCvKJFYygiizoULpx4SfyR68VUjhb3hTz4qYyS8fzLOfWuLfO88muAHWLKppzXFwloF-Om97h9XJl6oONpytuDZqez4rSfGpuOuFKL3HrS68dtCA6aLF2cSc79UO2VDAlJsQhTRtTnq7DNvQ228GnVsKaEtcs51p97iwUOrNSPUs9SqX4MbWbygk1U8EWB7fpuYMOXfBGQP8fDkbvv140nn3gh4aYVw-93ioWOO_2PmLDCNqgyN3n6Gzn67YMoMkDdN94LnigYfgQdWT-CN3VtUxXj9G3U4LXYMTZArfAiLMcV2DECowYwIjLAq_BiNdgxEWKW2DEDRifoPMPJ5PhyDblO2zBPFravJ8QJkIGVlgoBFPUjjxwWQomtpTgZcM8qG8Siee5IiDMjwMqZOLHTuiBNeAT7yk6yItcHiFMYxLDwuOlcQD-MvzwUsmJ7Lu0n_qJ63URreczEobbXpVYmUbEUODWYoiUGCIjhi7qNZfNNLnLbReEbWFFZYXjVEM48m659k0t2QimXn2X47mEqY-I33cCMNup00XPtKSb4YD9DCYmZV3kb2Cg-YOih9_sybPriiaewmT71Hn-H2N-ge6t396X6KCcL-UrMMLL-LV5BX4DZdLTbw
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BEaIX3pTlaSSuWeLYjuMjqloWKHuhFb0F23FgVZSs2uwBfj0zcbLarUA99JbImciejD2PzHwD8NZYi0olyEQH7RPpfJoY54qkslnhXRFq6foE2Xk-O5GfTtXpRi0MpVWSD11HoIj-rKbNTcHoMSXuHe1SibJEmVmKimBSk-mbcEuZXNPmFOl87XQV2gyYqUVCNGMVz_9es6WfttBL_2WDXk6l3NBNh_fAj6uKKSln01Xnpv7PJcDH6y37PtwdTFf2PsraA7gRmodwOzaz_P0Ivn_gDCXAny3bRdOxxQWjdPXzFgUpVGzRMAoyBHbwdf-CVavAupaRUo2xSIZX7Yqqg3-wtmZLJZJlxr_ZmjPKMLE08BhODg-O92fJ0L8h8UrILrF5xZU3CtWw8V4Rtp9Fh7RGGysEdLNw9hSUroTIfMGVdoX0odIuNQLVAXrPT2CnaZvwFJh03OHJI2pXoMOEN6IOloc8k3mtq0xMQI5frfQDuDn12PhV8gEDdWReScwrB-ZNYLomW0Z0j6sIzKZIlF0fVqljD5RSXEH7ZpSfEllPP2ZsE5D1Jdd5WqDdJtMJ7EV5Wk8HDSi0MaSagN6StPUDhA--PdIsfvY44RKZrWX67Bpzfg13Zsdfjsqjj_PPz2EXh2L8KXsBO935KrxEi6xzr_ot9xdf-iZU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bj9QgFCa6RuOL98t4xcRXxrZAoY9m3XG9ZGKiG31DoKCTNW2z03nQX-85pZ3sbDT7sG9tKA0cDpwLHx-EvKysBaMSBFNBeSacz1jlnGa1LbR3OkThBoDssjw8Eu-_yQlNuB5hlRhDx0QUMazVOLm7Ok6IuFc4SQWoEgKzJJ6ByapCXSZXStzkw1Mc2XIbc2lVjZSpmmGd6RDP_36zY552yEv_5YKeRVKeMk2Lm8RNnUqIlOP5pndz_-cM3-OFen2L3BgdV_o6adptcik0d8jVdJXl77vk-9ucwvj7465dNT1drSmC1U9aUKNQ01VDMcUQ6MHn_TWtN4H2LUWTmjKRFJ7aDZ4N_kHbSDvJWVfkX23MKeJLLBbcI0eLgy_7h2y8vYF5yUXPbFnn0lcSjHDlvURmPwvhaAQPKwQIsqD1mJKuOS-8zqVyWvhQK5dVHIwBxM73yV7TNuEhocLlDtYdHp2GcAleeAw2D2Uhyqjqgs-ImAbN-JHaHG_Y-GXykQF1Ep5B4ZlReDMy31brErfHeRWq0xph-iGpEtMNKIafU_fFpD4GRI_bMrYJIHqTqzLT4LWJbEYeJHXaNgfcJ_AwhJwRtaNo2w-QHXy3pFn9HFjCBQhbiezRBdr8nFz79GZhPr5bfnhMrkNJSj4VT8hef7IJT8Ed692zYcL9BZVUJPg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=G1+checkpoint+is+compromised+in+mouse+ESCs+due+to+functional+uncoupling+of+p53-p21Waf1+signaling&rft.jtitle=Cell+cycle+%28Georgetown%2C+Tex.%29&rft.au=Suvorova%2C+Irina+I.&rft.au=Grigorash%2C+Bogdan+B.&rft.au=Chuykin%2C+Ilya+A.&rft.au=Pospelova%2C+Tatiana+V.&rft.date=2016-01-02&rft.pub=Taylor+%26+Francis&rft.issn=1538-4101&rft.eissn=1551-4005&rft.volume=15&rft.issue=1&rft.spage=52&rft.epage=63&rft_id=info:doi/10.1080%2F15384101.2015.1120927&rft.externalDocID=1120927
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1538-4101&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1538-4101&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1538-4101&client=summon