Using a panel of multiple tumor-associated antigens to enhance autoantibody detection for immunodiagnosis of gastric cancer

Autoantibodies against tumor-associated antigens (TAAs) are attractive non-invasive biomarkers for detection of cancer due to their inherently stable in serum. Serum autoantibodies against 9 TAAs from gastric cancer (GC) patients and healthy controls were measured by enzyme-linked immunosorbent assa...

Full description

Saved in:
Bibliographic Details
Published inOncoimmunology Vol. 7; no. 8; p. e1452582
Main Authors Wang, Shuaibing, Qin, Jiejie, Ye, Hua, Wang, Keyan, Shi, Jianxiang, Ma, Yan, Duan, Yitao, Song, Chunhua, Wang, Xiao, Dai, Liping, Wang, Kaijuan, Wang, Peng, Zhang, Jianying
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 01.01.2018
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autoantibodies against tumor-associated antigens (TAAs) are attractive non-invasive biomarkers for detection of cancer due to their inherently stable in serum. Serum autoantibodies against 9 TAAs from gastric cancer (GC) patients and healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). A logistic regression model predicting the risk of being diagnosed with GC in the training cohort (n = 558) was generated and then validated in an independent cohort (n = 372). Area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance. Finally, an optimal prediction model with 6 TAAs (p62, c-Myc, NPM1, 14-3-3ξ, MDM2 and p16) showed a great diagnostic performance of GC with AUC of 0.841 in the training cohort and 0.856 in the validation cohort. The proportion of subjects being correctly defined were 78.49% in the training cohort and 81.99% in the validation cohort. This prediction model could also differentiate early-stage (stage I-II) GC patients from healthy controls with sensitivity/specificity of 76.60%/72.34% and 80.56%/79.17% in the training and validation cohort, respectively, and the overall sensitivity/specificity for early-stage GC were 78.92%/74.70% when being combined with two cohorts. This prediction model presented no significant difference for the diagnostic accuracy between early-stage and late-stage (stage III - IV) GC patients. The model with 6 TAAs showed a high diagnostic performance for GC detection, particularly for early-stage GC. This study further supported the hypothesis that a customized array of multiple TAAs was able to enhance autoantibody detection in the immunodiagnosis of GC.
AbstractList Autoantibodies against tumor-associated antigens (TAAs) are attractive non-invasive biomarkers for detection of cancer due to their inherently stable in serum. Serum autoantibodies against 9 TAAs from gastric cancer (GC) patients and healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). A logistic regression model predicting the risk of being diagnosed with GC in the training cohort (n = 558) was generated and then validated in an independent cohort (n = 372). Area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance. Finally, an optimal prediction model with 6 TAAs (p62, c-Myc, NPM1, 14-3-3ξ, MDM2 and p16) showed a great diagnostic performance of GC with AUC of 0.841 in the training cohort and 0.856 in the validation cohort. The proportion of subjects being correctly defined were 78.49% in the training cohort and 81.99% in the validation cohort. This prediction model could also differentiate early-stage (stage I-II) GC patients from healthy controls with sensitivity/specificity of 76.60%/72.34% and 80.56%/79.17% in the training and validation cohort, respectively, and the overall sensitivity/specificity for early-stage GC were 78.92%/74.70% when being combined with two cohorts. This prediction model presented no significant difference for the diagnostic accuracy between early-stage and late-stage (stage III - IV) GC patients. The model with 6 TAAs showed a high diagnostic performance for GC detection, particularly for early-stage GC. This study further supported the hypothesis that a customized array of multiple TAAs was able to enhance autoantibody detection in the immunodiagnosis of GC.
Autoantibodies against tumor-associated antigens (TAAs) are attractive non-invasive biomarkers for detection of cancer due to their inherently stable in serum. Serum autoantibodies against 9 TAAs from gastric cancer (GC) patients and healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). A logistic regression model predicting the risk of being diagnosed with GC in the training cohort (n = 558) was generated and then validated in an independent cohort (n = 372). Area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance. Finally, an optimal prediction model with 6 TAAs (p62, c-Myc, NPM1, 14-3-3ξ, MDM2 and p16) showed a great diagnostic performance of GC with AUC of 0.841 in the training cohort and 0.856 in the validation cohort. The proportion of subjects being correctly defined were 78.49% in the training cohort and 81.99% in the validation cohort. This prediction model could also differentiate early-stage (stage I-II) GC patients from healthy controls with sensitivity/specificity of 76.60%/72.34% and 80.56%/79.17% in the training and validation cohort, respectively, and the overall sensitivity/specificity for early-stage GC were 78.92%/74.70% when being combined with two cohorts. This prediction model presented no significant difference for the diagnostic accuracy between early-stage and late-stage (stage III - IV) GC patients. The model with 6 TAAs showed a high diagnostic performance for GC detection, particularly for early-stage GC. This study further supported the hypothesis that a customized array of multiple TAAs was able to enhance autoantibody detection in the immunodiagnosis of GC.Autoantibodies against tumor-associated antigens (TAAs) are attractive non-invasive biomarkers for detection of cancer due to their inherently stable in serum. Serum autoantibodies against 9 TAAs from gastric cancer (GC) patients and healthy controls were measured by enzyme-linked immunosorbent assay (ELISA). A logistic regression model predicting the risk of being diagnosed with GC in the training cohort (n = 558) was generated and then validated in an independent cohort (n = 372). Area under the receiver operating characteristic curve (AUC) was used to assess the diagnostic performance. Finally, an optimal prediction model with 6 TAAs (p62, c-Myc, NPM1, 14-3-3ξ, MDM2 and p16) showed a great diagnostic performance of GC with AUC of 0.841 in the training cohort and 0.856 in the validation cohort. The proportion of subjects being correctly defined were 78.49% in the training cohort and 81.99% in the validation cohort. This prediction model could also differentiate early-stage (stage I-II) GC patients from healthy controls with sensitivity/specificity of 76.60%/72.34% and 80.56%/79.17% in the training and validation cohort, respectively, and the overall sensitivity/specificity for early-stage GC were 78.92%/74.70% when being combined with two cohorts. This prediction model presented no significant difference for the diagnostic accuracy between early-stage and late-stage (stage III - IV) GC patients. The model with 6 TAAs showed a high diagnostic performance for GC detection, particularly for early-stage GC. This study further supported the hypothesis that a customized array of multiple TAAs was able to enhance autoantibody detection in the immunodiagnosis of GC.
Author Wang, Peng
Dai, Liping
Duan, Yitao
Shi, Jianxiang
Ye, Hua
Wang, Shuaibing
Zhang, Jianying
Song, Chunhua
Qin, Jiejie
Wang, Kaijuan
Wang, Keyan
Wang, Xiao
Ma, Yan
Author_xml – sequence: 1
  givenname: Shuaibing
  surname: Wang
  fullname: Wang, Shuaibing
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 2
  givenname: Jiejie
  surname: Qin
  fullname: Qin, Jiejie
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 3
  givenname: Hua
  surname: Ye
  fullname: Ye, Hua
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 4
  givenname: Keyan
  surname: Wang
  fullname: Wang, Keyan
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 5
  givenname: Jianxiang
  surname: Shi
  fullname: Shi, Jianxiang
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 6
  givenname: Yan
  surname: Ma
  fullname: Ma, Yan
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 7
  givenname: Yitao
  surname: Duan
  fullname: Duan, Yitao
  organization: Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University
– sequence: 8
  givenname: Chunhua
  surname: Song
  fullname: Song, Chunhua
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 9
  givenname: Xiao
  surname: Wang
  fullname: Wang, Xiao
  organization: Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University
– sequence: 10
  givenname: Liping
  surname: Dai
  fullname: Dai, Liping
  organization: Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University
– sequence: 11
  givenname: Kaijuan
  surname: Wang
  fullname: Wang, Kaijuan
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 12
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  email: wangpeng1658@hotmail.com
  organization: Henan Key Laboratory of Tumor Epidemiology
– sequence: 13
  givenname: Jianying
  surname: Zhang
  fullname: Zhang, Jianying
  email: jianyingzhang@hotmail.com
  organization: Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30221047$$D View this record in MEDLINE/PubMed
BookMark eNqFkl9vFCEUxSemxtbaj6Dh0ZddgRnYmZgYTeOfJk18sYlv5A7cmdIwsAKj2fjlZdxd0_qgvACXe34n4dyn1YkPHqvqOaNrRlv6ijPJG8q_rjll7Zo1gouWP6rOlvpqeTi5dz6tLlK6o2VJKmTdPalOa8o5o83mrPp5k6wfCZAteHQkDGSaXbZbhyTPU4grSCloCxkNAZ_tiD6RHAj6W_AaCcw5LPU-mB0xmFFnGzwZQiR2mmYfjIXRh2TTwh4h5Wg10Ys2PqseD-ASXhz28-rmw_svl59W158_Xl2-u15pUTd51dHGSNGwTmuNuOlwoGg4l-XSiY3kRvKWIa2hlY2EoRc105qyvhPIGbSmPq-u9lwT4E5to50g7lQAq34XQhwVxGy1Q8XMZhA9FErbNZ0xoMuNGibqYgEIhfVmz9rO_YRGo88R3APowxdvb9UYvivJatm2dQG8PABi-DZjymqySaNz5f_DnFTJpeWyhMVK64v7Xn9MjumVhtf7Bh1DShEHpW2GJYBibZ1iVC3joo7jopZxUYdxKWrxl_po8D_d273O-hLzBD9CdEZl2LkQh1iStUnV_0b8Ao882pE
CitedBy_id crossref_primary_10_14309_ctg_0000000000000546
crossref_primary_10_1007_s00259_020_05005_4
crossref_primary_10_1007_s12325_020_01571_z
crossref_primary_10_3389_fonc_2024_1463480
crossref_primary_10_3389_fonc_2021_637871
crossref_primary_10_1111_cas_15217
crossref_primary_10_14309_ctg_0000000000000284
crossref_primary_10_1111_cas_14732
crossref_primary_10_1002_cam4_2792
crossref_primary_10_1111_cas_15021
crossref_primary_10_1016_j_imbio_2019_09_007
crossref_primary_10_3390_cancers12051271
crossref_primary_10_1038_s41467_023_39042_y
crossref_primary_10_1038_s41571_021_00508_x
crossref_primary_10_1093_cei_uxac030
crossref_primary_10_1111_cas_14013
crossref_primary_10_1186_s12885_022_10012_9
crossref_primary_10_3389_fgene_2022_872253
crossref_primary_10_1080_2162402X_2019_1682382
crossref_primary_10_1038_s41598_022_10174_3
crossref_primary_10_3390_cancers13040813
Cites_doi 10.1111/j.1742-4658.2009.07396.x
10.1111/cas.13158
10.1016/j.lungcan.2016.07.018
10.1128/MCB.19.2.1262
10.1128/MCB.19.1.1
10.1016/j.cell.2012.03.003
10.1016/j.ygyno.2017.07.138
10.1016/j.ygyno.2017.04.005
10.1038/srep25467
10.1074/mcp.M115.051250
10.1080/15384101.2015.1044174
10.2307/2531595
10.1016/j.autrev.2010.12.002
10.1002/jso.21919
10.1016/j.clim.2014.03.007
10.1016/j.autrev.2006.09.009
10.1002/ijc.29210
10.1007/s00018-012-1186-z
10.1038/bjc.2013.51
10.1007/s00262-016-1886-6
10.1016/j.cell.2004.11.022
10.1093/jnci/93.14.1054
10.1038/ncb2641
10.1007/s10120-011-0091-8
10.3892/or_00000719
10.1002/ijc.28807
10.1111/j.1600-065X.2008.00611.x
10.1080/2162402X.2017.1310359
10.1158/1055-9965.EPI-13-0621
10.3748/wjg.15.2689
10.1016/j.cgh.2006.03.025
10.1586/erm.10.12
10.1002/ijc.27316
10.1016/j.jprot.2012.03.004
10.1002/ijc.27667
10.1002/pros.23217
10.1021/acs.jproteome.6b00559
10.1016/S0140-6736(16)30354-3
10.1186/s12885-017-3738-y
10.1158/0008-5472.CAN-03-2646
10.1016/j.cell.2006.11.042
10.1038/nrc1885
10.1016/S1470-2045(08)70072-X
10.1016/j.cell.2009.04.050
ContentType Journal Article
Copyright 2018 Taylor & Francis Group, LLC 2018
2018 Taylor & Francis Group, LLC 2018 Taylor & Francis Group, LLC
Copyright_xml – notice: 2018 Taylor & Francis Group, LLC 2018
– notice: 2018 Taylor & Francis Group, LLC 2018 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1080/2162402X.2018.1452582
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate S. WANG ET AL
EISSN 2162-402X
ExternalDocumentID oai_doaj_org_article_1d7f5baafb8949ddac5ba0d15381eaea
PMC6136883
30221047
10_1080_2162402X_2018_1452582
1452582
Genre Original Article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Zhongyuan Scholars Program of Henan province
  grantid: 162101510006
– fundername: General Program of National Natural Science Foundation of China
  grantid: 81372371
– fundername: Major Project of Science and Technology in Henan Province
  grantid: 16110311400
– fundername: ;
  grantid: 81372371
– fundername: ;
  grantid: 16110311400
– fundername: ;
  grantid: 162101510006
GroupedDBID 00X
0YH
53G
AAKDD
ABUPF
ACENM
ACGFS
ADBBV
ADCVX
AENEX
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BABNJ
BLEHA
CCCUG
DEAQA
DGEBU
DGFLZ
EBS
EJD
EUPTU
GROUPED_DOAJ
H13
HYE
KRBQP
KSSTO
KTTOD
KWAYT
KYCEM
M4Z
O9-
OK1
RPM
TDBHL
TFL
TFW
TNTFI
TTHFI
AAYXX
CITATION
4.4
ABDBF
ACUHS
EBD
LJTGL
NPM
OVD
TEORI
7X8
5PM
EMOBN
ID FETCH-LOGICAL-c534t-904d65419cccee79ef0ed226cee95762d6281e03a8646afb531cc01b95e21a8d3
IEDL.DBID DOA
ISSN 2162-402X
2162-4011
IngestDate Wed Aug 27 00:43:33 EDT 2025
Thu Aug 21 14:12:36 EDT 2025
Fri Jul 11 10:17:53 EDT 2025
Thu Apr 03 06:57:56 EDT 2025
Tue Jul 01 02:07:48 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Wed Dec 25 09:08:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords tumor-associated antigens
Autoantibody
cancer immunodiagnosis
gastric cancer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-904d65419cccee79ef0ed226cee95762d6281e03a8646afb531cc01b95e21a8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Shuaibing Wang and Jiejie Qin contributed equally to this work.
Supplemental data for this article can be accessed at https://doi.org/10.1080/2162402X.2018.1452582
OpenAccessLink https://doaj.org/article/1d7f5baafb8949ddac5ba0d15381eaea
PMID 30221047
PQID 2108260001
PQPubID 23479
ParticipantIDs crossref_citationtrail_10_1080_2162402X_2018_1452582
crossref_primary_10_1080_2162402X_2018_1452582
proquest_miscellaneous_2108260001
informaworld_taylorfrancis_310_1080_2162402X_2018_1452582
doaj_primary_oai_doaj_org_article_1d7f5baafb8949ddac5ba0d15381eaea
pubmed_primary_30221047
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6136883
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Oncoimmunology
PublicationTitleAlternate Oncoimmunology
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References cit0011
cit0033
cit0012
cit0034
cit0031
cit0010
cit0032
Joshi S (cit0030) 2017; 7
cit0019
cit0017
cit0039
cit0018
cit0015
cit0037
cit0016
cit0038
cit0013
cit0035
cit0014
cit0036
cit0022
cit0044
cit0001
cit0023
cit0045
cit0020
cit0042
cit0021
cit0043
cit0040
cit0041
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0046
cit0003
cit0025
cit0047
References_xml – ident: cit0016
  doi: 10.1111/j.1742-4658.2009.07396.x
– ident: cit0043
  doi: 10.1111/cas.13158
– ident: cit0018
  doi: 10.1016/j.lungcan.2016.07.018
– ident: cit0025
  doi: 10.1128/MCB.19.2.1262
– ident: cit0027
  doi: 10.1128/MCB.19.1.1
– ident: cit0028
  doi: 10.1016/j.cell.2012.03.003
– ident: cit0034
  doi: 10.1016/j.ygyno.2017.07.138
– volume: 7
  start-page: 1654
  issue: 8
  year: 2017
  ident: cit0030
  publication-title: Am J Cancer Res
– ident: cit0041
  doi: 10.1016/j.ygyno.2017.04.005
– ident: cit0038
  doi: 10.1038/srep25467
– ident: cit0005
  doi: 10.1074/mcp.M115.051250
– ident: cit0022
  doi: 10.1080/15384101.2015.1044174
– ident: cit0033
  doi: 10.2307/2531595
– ident: cit0012
  doi: 10.1016/j.autrev.2010.12.002
– ident: cit0009
  doi: 10.1002/jso.21919
– ident: cit0036
  doi: 10.1016/j.clim.2014.03.007
– ident: cit0040
  doi: 10.1016/j.autrev.2006.09.009
– ident: cit0001
  doi: 10.1002/ijc.29210
– ident: cit0026
  doi: 10.1007/s00018-012-1186-z
– ident: cit0037
  doi: 10.1038/bjc.2013.51
– ident: cit0024
  doi: 10.1007/s00018-012-1186-z
– ident: cit0019
  doi: 10.1007/s00262-016-1886-6
– ident: cit0032
  doi: 10.1016/j.cell.2004.11.022
– ident: cit0045
  doi: 10.1093/jnci/93.14.1054
– ident: cit0021
  doi: 10.1038/ncb2641
– ident: cit0008
  doi: 10.1007/s10120-011-0091-8
– ident: cit0039
  doi: 10.3892/or_00000719
– ident: cit0044
  doi: 10.1002/ijc.28807
– ident: cit0011
  doi: 10.1111/j.1600-065X.2008.00611.x
– ident: cit0014
  doi: 10.1080/2162402X.2017.1310359
– ident: cit0017
  doi: 10.1158/1055-9965.EPI-13-0621
– ident: cit0004
  doi: 10.3748/wjg.15.2689
– ident: cit0007
  doi: 10.1016/j.cgh.2006.03.025
– ident: cit0013
  doi: 10.1586/erm.10.12
– ident: cit0029
  doi: 10.1002/ijc.27316
– ident: cit0042
  doi: 10.1016/j.jprot.2012.03.004
– ident: cit0003
  doi: 10.1002/ijc.27667
– ident: cit0046
  doi: 10.1002/pros.23217
– ident: cit0035
  doi: 10.1021/acs.jproteome.6b00559
– ident: cit0002
  doi: 10.1016/S0140-6736(16)30354-3
– ident: cit0010
  doi: 10.1186/s12885-017-3738-y
– ident: cit0015
  doi: 10.1016/j.ygyno.2017.04.005
– ident: cit0047
  doi: 10.1158/0008-5472.CAN-03-2646
– ident: cit0023
  doi: 10.1016/j.cell.2006.11.042
– ident: cit0031
  doi: 10.1038/nrc1885
– ident: cit0006
  doi: 10.1016/S1470-2045(08)70072-X
– ident: cit0020
  doi: 10.1016/j.cell.2009.04.050
SSID ssj0000605639
Score 2.294154
Snippet Autoantibodies against tumor-associated antigens (TAAs) are attractive non-invasive biomarkers for detection of cancer due to their inherently stable in serum....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1452582
SubjectTerms Autoantibody
cancer immunodiagnosis
gastric cancer
Original Research
tumor-associated antigens
Title Using a panel of multiple tumor-associated antigens to enhance autoantibody detection for immunodiagnosis of gastric cancer
URI https://www.tandfonline.com/doi/abs/10.1080/2162402X.2018.1452582
https://www.ncbi.nlm.nih.gov/pubmed/30221047
https://www.proquest.com/docview/2108260001
https://pubmed.ncbi.nlm.nih.gov/PMC6136883
https://doaj.org/article/1d7f5baafb8949ddac5ba0d15381eaea
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNOnLfQQVenVjWw9Lx7QkhEJ7amBvQtajWUjtsus9hP75zkj2shsKe8nND8lImhnNJ3n0DSGfhHTgNZUtreS-5NpJuGKxFLwD990x13o8jfz9h7y-4d8WYrGT6gtjwjI9cB6489q3UXTWxk5prr23Du4qj4ZaBxsSNAKft7OYynMwOHam5yM7qjpvaok_EhYYzaVgfhCNUM2eM0qc_Q8YS_-HOx-GT-74o6vn5NkEJOlF7sAJeRL6U3KcU0vevyB_UywAtRSsPdzRIdI5dJCOm9_DqrSTXIKnMLjIybmm40BDf4t6QO1mHPB5N_h76sOYIrZ6Cm2mSzxSMvgco7dc47d_WUz_4ajDuquX5Obq8ufX63JKtFA6wfhY6op7zAeunQOf2eoQq-ABl8GNhvVI42UDg10xqySXIAmwW-equtMiNLVVnr0iR_3QhzeENlzUzgLMcDHyKirtmWpZaH1tKxCcKwifR9y4iYUck2HcmXoiK50FZVBQZhJUQT5vq_3JNByHKnxBcW4LI4t2egC6ZSbdMod0qyB6VxnMmDZRYs54YtiBBnycNceAxeJvGJD3sFlDcYBdEsF1QV5nTdo2kwGkQvKMgrR7OrbXj_03_fI2sYIDLpNKsbeP0fF35Cn2JW81vSdH42oTPgD4GruzZGdnaVfsH0wCLxg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+panel+of+multiple+tumor-associated+antigens+to+enhance+autoantibody+detection+for+immunodiagnosis+of+gastric+cancer&rft.jtitle=Oncoimmunology&rft.au=Wang%2C+Shuaibing&rft.au=Qin%2C+Jiejie&rft.au=Ye%2C+Hua&rft.au=Wang%2C+Keyan&rft.date=2018-01-01&rft.issn=2162-4011&rft.volume=7&rft.issue=8&rft.spage=e1452582&rft_id=info:doi/10.1080%2F2162402X.2018.1452582&rft_id=info%3Apmid%2F30221047&rft.externalDocID=30221047
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-402X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-402X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-402X&client=summon