Efavirenz Primary and Secondary Metabolism In Vitro and In Vivo: Identification of Novel Metabolic Pathways and Cytochrome P450 2A6 as the Principal Catalyst of Efavirenz 7-Hydroxylation

Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experim...

Full description

Saved in:
Bibliographic Details
Published inDrug metabolism and disposition Vol. 38; no. 7; pp. 1218 - 1229
Main Authors Ogburn, Evan T., Jones, David R., Masters, Andrea R., Xu, Cong, Guo, Yingying, Desta, Zeruesenay
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 01.07.2010
American Society for Pharmacology and Experimental Therapeutics
The American Society for Pharmacology and Experimental Therapeutics
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo.
AbstractList Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo.
Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo.Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted for 22.5 and 77.5% of the overall efavirenz metabolism, respectively. Kinetic, inhibition, and correlation analyses in HLM samples and experiments in expressed cytochrome P450 show that CYP2A6 is the principal catalyst of efavirenz 7-hydroxylation. Although CYP2B6 was the main enzyme catalyzing efavirenz 8-hydroxylation, CYP2A6 also seems to contribute. Both 7- and 8-hydroxyefavirenz were further oxidized to novel dihydroxylated metabolite(s) primarily by CYP2B6. These dihydroxylated metabolite(s) were not the same as 8,14-dihydroxyefavirenz, a metabolite that has been suggested to be directly formed via 14-hydroxylation of 8-hydroxyefavirenz, because 8,14-dihydroxyefavirenz was not detected in vitro when efavirenz, 7-, or 8-hydroxyefavirenz were used as substrates. Efavirenz and its primary and secondary metabolites that were identified in vitro were quantified in plasma samples obtained from subjects taking a single 600-mg oral dose of efavirenz. 8,14-Dihydroxyefavirenz was detected and quantified in these plasma samples, suggesting that the glucuronide or the sulfate of 8-hydroxyefavirenz might undergo 14-hydroxylation in vivo. In conclusion, efavirenz metabolism is complex, involving unique and novel secondary metabolism. Although efavirenz 8-hydroxylation by CYP2B6 remains the major clearance mechanism of efavirenz, CYP2A6-mediated 7-hydroxylation (and to some extent 8-hydroxylation) may also contribute. Efavirenz may be a valuable dual phenotyping tool to study CYP2B6 and CYP2A6, and this should be further tested in vivo.
Author Masters, Andrea R.
Guo, Yingying
Jones, David R.
Ogburn, Evan T.
Xu, Cong
Desta, Zeruesenay
Author_xml – sequence: 1
  givenname: Evan T.
  surname: Ogburn
  fullname: Ogburn, Evan T.
– sequence: 2
  givenname: David R.
  surname: Jones
  fullname: Jones, David R.
– sequence: 3
  givenname: Andrea R.
  surname: Masters
  fullname: Masters, Andrea R.
– sequence: 4
  givenname: Cong
  surname: Xu
  fullname: Xu, Cong
– sequence: 5
  givenname: Yingying
  surname: Guo
  fullname: Guo, Yingying
– sequence: 6
  givenname: Zeruesenay
  surname: Desta
  fullname: Desta, Zeruesenay
  email: zdesta@iupui.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22973291$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20335270$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vEzEQhleoiKaFK0fkC-K0wZ9ZmwNSFRUaqUAlPsTN8tpeYrRrp7YTWH4avw7noy0g9TS2_LzvjGfmpDrywduqeorgFCFMX5rBTBEUU0gQEeRBNUEMoxpC8fWompQAa8HY7Lg6Sek7hIhSIh5VxxgSwnADJ9Xv805tXLT-F7iKblBxBMob8NHq4M329s5m1YbepQEsPPjicgw7YnfZhFdgYazPrnNaZRc8CB14Hza2vxVqcKXy8oca0043H3PQyxgGC64ogwCfzYBKIC_ttgCv3Ur1YK6y6seUt253BTb1xWhi-Dn2u1SPq4ed6pN9coin1ec355_mF_Xlh7eL-dllrRmhueYt7xpmoNaN0a0gvGGkFUIhjCHkVHRGY2ops7ZTHSNGUMRhO2s15Nwy3ZLT6vXed7VuB2t0-W5UvVzt2yWDcvLfF--W8lvYSCwgF5wVgxcHgxiu1zZlObikbd8rb8M6yYYQQhmnsJDP_k51m-NmXgV4fgBU0qrvoiodS3ccFg3BAhWO7jkdQ0rRdlK7vOtaqdD1EkG5XR9Z1qechdyvT5FN_5PdON8r4HuBLQPYOBtl0s56bU0Zmc7SBHef9A_QZNzk
CODEN DMDSAI
CitedBy_id crossref_primary_10_1002_cpt_667
crossref_primary_10_1093_jac_dku286
crossref_primary_10_1124_dmd_111_042416
crossref_primary_10_1016_j_ejps_2018_04_012
crossref_primary_10_3389_fgene_2015_00356
crossref_primary_10_1002_jcph_208
crossref_primary_10_4236_pp_2015_611055
crossref_primary_10_1128_AAC_01000_16
crossref_primary_10_1038_s41397_019_0103_3
crossref_primary_10_1088_2399_6528_aac0f0
crossref_primary_10_1155_2017_6531709
crossref_primary_10_1111_j_1365_2125_2010_03883_x
crossref_primary_10_1007_s40262_013_0056_7
crossref_primary_10_1128_AAC_02532_14
crossref_primary_10_1093_jac_dkz329
crossref_primary_10_1124_pr_117_013706
crossref_primary_10_1038_clpt_2011_129
crossref_primary_10_1097_FTD_0b013e318274197e
crossref_primary_10_3851_IMP2107
crossref_primary_10_1080_03602532_2016_1191843
crossref_primary_10_1080_15513815_2017_1354411
crossref_primary_10_1089_ten_teb_2016_0031
crossref_primary_10_1016_j_apsb_2022_08_018
crossref_primary_10_1124_dmd_122_000874
crossref_primary_10_1002_bmc_2959
crossref_primary_10_1007_s00228_011_1118_0
crossref_primary_10_1124_dmd_115_066985
crossref_primary_10_1124_dmd_112_049601
crossref_primary_10_1128_AAC_00207_17
crossref_primary_10_1016_j_pharmthera_2021_108045
crossref_primary_10_1038_clpt_2012_61
crossref_primary_10_3389_fphar_2019_00199
crossref_primary_10_1038_clpt_2011_255
crossref_primary_10_1177_1545109711435364
crossref_primary_10_3389_fphar_2018_00247
crossref_primary_10_1016_j_dmpk_2015_07_002
crossref_primary_10_1021_jm501371s
crossref_primary_10_1016_j_cbi_2013_06_006
crossref_primary_10_1111_jce_13032
crossref_primary_10_3851_IMP2877
crossref_primary_10_3109_03602532_2013_815200
crossref_primary_10_1002_cpt_1806
crossref_primary_10_1093_jac_dky190
crossref_primary_10_1007_s13318_018_0507_5
crossref_primary_10_3390_ijms23147669
crossref_primary_10_2217_pgs_16_7
crossref_primary_10_2133_dmpk_DMPK_13_RG_077
crossref_primary_10_1016_j_taap_2011_09_008
crossref_primary_10_1128_AAC_01252_18
crossref_primary_10_1093_cid_ciu976
crossref_primary_10_1124_jpet_112_195701
crossref_primary_10_1128_AAC_01813_16
crossref_primary_10_1021_acs_jmedchem_8b00843
crossref_primary_10_1093_jac_dkr304
crossref_primary_10_1016_j_neubiorev_2021_08_016
crossref_primary_10_1517_17425255_2016_1121381
crossref_primary_10_1097_FTD_0000000000001173
crossref_primary_10_1517_17425255_2011_562891
crossref_primary_10_1002_psp4_12088
crossref_primary_10_1186_2193_9616_1_4
crossref_primary_10_1128_AAC_01657_18
crossref_primary_10_1080_17425255_2017_1378342
crossref_primary_10_1097_FPC_0000000000000145
crossref_primary_10_1080_20786190_2019_1610233
crossref_primary_10_1016_j_ejmech_2015_11_025
crossref_primary_10_1038_s41598_018_34674_3
crossref_primary_10_1093_cid_ciab961
crossref_primary_10_1021_acsptsci_4c00229
crossref_primary_10_1021_acs_jmedchem_9b01383
crossref_primary_10_1039_D0AY02013C
crossref_primary_10_1021_ac400515s
crossref_primary_10_1111_cts_12671
crossref_primary_10_1124_jpet_113_212456
crossref_primary_10_1007_s00228_011_1166_5
crossref_primary_10_1080_01913123_2019_1673862
crossref_primary_10_1128_AAC_00980_10
crossref_primary_10_3389_fphar_2022_1076266
crossref_primary_10_1093_jac_dkv183
crossref_primary_10_1128_AAC_02129_15
crossref_primary_10_1016_j_antiviral_2013_11_011
crossref_primary_10_1016_j_ajme_2016_10_001
crossref_primary_10_1128_AAC_00883_10
crossref_primary_10_1111_bcp_16272
crossref_primary_10_1002_cmdc_201600519
crossref_primary_10_1002_jcph_756
crossref_primary_10_1080_17512433_2017_1259066
crossref_primary_10_1124_dmd_116_071076
crossref_primary_10_3109_00498254_2011_551849
crossref_primary_10_1021_acsptsci_0c00015
crossref_primary_10_1186_1471_2334_13_261
crossref_primary_10_1124_dmd_113_052548
crossref_primary_10_1002_cpt_690
crossref_primary_10_1038_clpt_2011_174
crossref_primary_10_1016_j_ejphar_2017_07_016
crossref_primary_10_3109_03602532_2011_624103
crossref_primary_10_2217_pgs_12_138
crossref_primary_10_3390_molecules17010851
crossref_primary_10_1021_ml500297n
crossref_primary_10_1007_s11064_013_1165_2
crossref_primary_10_1080_17425255_2018_1478964
crossref_primary_10_1038_clpt_2010_172
crossref_primary_10_1111_j_1365_2125_2012_04314_x
crossref_primary_10_1124_dmd_115_065839
crossref_primary_10_1093_jac_dku348
crossref_primary_10_1093_jac_dkz238
crossref_primary_10_1124_dmd_119_086348
crossref_primary_10_1016_j_xphs_2017_06_004
crossref_primary_10_1111_j_1365_2125_2010_03791_x
crossref_primary_10_1021_ci400518g
crossref_primary_10_3390_jpm7040018
crossref_primary_10_2217_pgs_14_73
crossref_primary_10_1124_jpet_122_001277
crossref_primary_10_2217_fvl_13_67
crossref_primary_10_1089_omi_2013_0140
crossref_primary_10_2147_PGPM_S306358
crossref_primary_10_1038_s41598_024_79965_0
crossref_primary_10_3390_biom13010088
crossref_primary_10_1097_QAD_0b013e3283427e05
crossref_primary_10_1124_dmd_122_000853
crossref_primary_10_1007_s11419_011_0112_7
crossref_primary_10_1097_QAD_0b013e328360dbb4
crossref_primary_10_2217_pgs_15_35
crossref_primary_10_1016_j_apsb_2016_07_016
crossref_primary_10_1124_dmd_113_051755
crossref_primary_10_2133_dmpk_DMPK_12_RG_124
crossref_primary_10_1016_j_chroma_2021_462650
crossref_primary_10_1002_jssc_201401401
crossref_primary_10_1371_journal_pone_0260872
crossref_primary_10_18097_BMCRM00176
crossref_primary_10_1002_jin2_21
Cites_doi 10.1016/S0300-483X(99)00200-0
10.2174/138920009789895534
10.1124/dmd.32.6.626
10.2174/138920009789895507
10.1124/dmd.30.5.525
10.1097/QAD.0b013e3283319908
10.1016/S0090-9556(24)14935-5
10.1067/mcp.2002.124519
10.1016/j.clpt.2006.05.012
10.1124/jpet.103.049601
10.1067/mcp.2003.22
10.1016/S0090-9556(24)15024-6
10.1124/jpet.103.056127
10.1038/clpt.2008.271
10.1124/dmd.107.015883
10.1038/sj.clpt.6100072
10.1124/dmd.104.002097
10.1016/j.pharmthera.2006.10.002
10.1097/00002030-200101050-00011
10.1016/S0090-9556(25)06500-6
10.1111/j.1365-2125.2009.03368.x
10.1128/AAC.01123-08
10.1016/S0022-3565(25)12826-7
10.2217/14622416.8.7.743
10.1016/j.bbrc.2004.05.116
10.1124/dmd.106.012633
10.1081/DMR-100101942
10.1124/dmd.109.027706
10.1124/jpet.104.069112
10.2174/138920008785821710
10.1097/FPC.0b013e328328d577
10.1007/s00280-009-0935-7
10.1016/j.bcp.2004.10.008
10.1177/0091270008314254
10.2217/14622416.8.6.547
10.1007/978-3-540-69248-5_9
ContentType Journal Article
Copyright 2010 American Society for Pharmacology and Experimental Therapeutics
2015 INIST-CNRS
Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
Copyright_xml – notice: 2010 American Society for Pharmacology and Experimental Therapeutics
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1124/dmd.109.031393
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1521-009X
EndPage 1229
ExternalDocumentID PMC2908985
20335270
22973291
10_1124_dmd_109_031393
S0090955624024164
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM067308
– fundername: NIGMS NIH HHS
  grantid: GM067308
– fundername: NIGMS NIH HHS
  grantid: R56 GM067308
– fundername: NIGMS NIH HHS
  grantid: GM078501
– fundername: NIGMS NIH HHS
  grantid: R01 GM078501
– fundername: National Institutes of Health
  grantid: GM078501; GM067308
GroupedDBID ---
.GJ
0R~
18M
2WC
4.4
53G
5GY
5RE
5VS
AAXUO
ABJNI
ABSQV
ACGFO
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AERNN
AFFNX
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
F9R
FDB
GX1
H13
HZ~
IH2
INIJC
KQ8
LSO
M41
O9-
OK1
P2P
R0Z
RHI
ROL
RPT
SJN
TR2
VH1
W8F
WH7
WOQ
YCJ
YHG
ZGI
ZXP
~KM
AALRI
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c534t-8b8f75d0cc7dcb938753b99a12200849fdc24e45eefaf53d94180b6bc088e5cb3
ISSN 0090-9556
1521-009X
IngestDate Thu Aug 21 14:12:29 EDT 2025
Thu Jul 10 18:41:25 EDT 2025
Sat May 31 02:12:02 EDT 2025
Mon Jul 21 09:14:33 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Tue Jul 01 05:28:21 EDT 2025
Sun Apr 06 06:53:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords CLint
AUC0–72
LC/MS/MS
MS
HLM
MRM
P450
HPLC
Antiretroviral agent
Benzoxazine derivatives
RNA-directed DNA polymerase
Acetylenic compound
Hydroxylation
Enzyme
Non nucleoside compound
Transferases
Enzyme inhibitor
Identification
Metabolic pathway
Efavirenz
In vitro
Allosteric inhibitor
Nucleotidyltransferases
Reverse transcriptase inhibitor
Primary
Antiviral
Secondary metabolism
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-8b8f75d0cc7dcb938753b99a12200849fdc24e45eefaf53d94180b6bc088e5cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dmd.aspetjournals.org/content/dmd/38/7/1218.full.pdf
PMID 20335270
PQID 733345840
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2908985
proquest_miscellaneous_733345840
pubmed_primary_20335270
pascalfrancis_primary_22973291
crossref_citationtrail_10_1124_dmd_109_031393
crossref_primary_10_1124_dmd_109_031393
elsevier_sciencedirect_doi_10_1124_dmd_109_031393
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: Netherlands
PublicationTitle Drug metabolism and disposition
PublicationTitleAlternate Drug Metab Dispos
PublicationYear 2010
Publisher Elsevier Inc
American Society for Pharmacology and Experimental Therapeutics
The American Society for Pharmacology and Experimental Therapeutics
Publisher_xml – name: Elsevier Inc
– name: American Society for Pharmacology and Experimental Therapeutics
– name: The American Society for Pharmacology and Experimental Therapeutics
References Ekins, Wrighton (bib10) 1999; 31
Rotger, Tegude, Colombo, Cavassini, Furrer, Décosterd, Blievernicht, Saussele, Günthard, Schwab (bib32) 2007; 81
Turpeinen, Nieminen, Juntunen, Taavitsainen, Raunio, Pelkonen (bib34) 2004; 32
Jeong, Woo, Flockhart, Desta (bib15) 2009; 64
Di, Chow, Yang, Zhou (bib9) 2009; 10
Haas, Ribaudo, Kim, Tierney, Wilkinson, Gulick, Clifford, Hulgan, Marzolini, Acosta (bib11) 2004; 18
Newton, Wang, Lu (bib26) 1995; 23
Mo, Liu, Duan, Wei, Kanwar, Zhou (bib20) 2009; 10
Arab-Alameddine, Di Iulio, Buclin, Rotger, Lubomirov, Cavassini, Fayet, Décosterd, Eap, Biollaz (bib1) 2009; 85
Richter, Schwab, Eichelbaum, Zanger (bib31) 2005; 69
(updated September 2009), New York.
Jeong, Nguyen, Desta (bib14) 2009; 53
Obach, Walsky, Venkatakrishnan (bib27) 2007; 35
Richter, Mürdter, Heinkele, Pleiss, Tatzel, Schwab, Eichelbaum, Zanger (bib30) 2004; 308
Kwara, Lartey, Sagoe, Kenu, Court (bib17) 2009; 23
Bélanger, Caron, Harvey, Zimmerman, Mehlotra, Guillemette (bib2) 2009; 37
Bourrié, Meunier, Berger, Fabre (bib3) 1996; 277
Zanger, Klein, Saussele, Blievernicht, Hofmann, Schwab (bib39) 2007; 8
Desta, Saussele, Ward, Blievernicht, Li, Klein, Flockhart, Zanger (bib7) 2007; 8
Marzolini, Telenti, Decosterd, Greub, Biollaz, Buclin (bib19) 2001; 15
Kwara, Lartey, Sagoe, Rzek, Court (bib18) 2009; 67
Walsky, Obach (bib36) 2007; 35
di Iulio, Fayet, Arab-Alameddine, Rotger, Lubomirov, Cavassini, Furrer, Günthard, Colombo, Csajka (bib8) 2009; 19
Hodgson, Rose (bib13) 2007; 113
Ward, Gorski, Jones, Hall, Flockhart, Desta (bib38) 2003; 306
Mouly, Lown, Kornhauser, Joseph, Fiske, Benedek, Watkins (bib21) 2002; 72
(bib35) 2006
Mutlib, Chen, Nemeth, Gan, Christ (bib22) 1999; 27
Mwenifumbo, Tyndale (bib24) 2009; 192
Rae, Soukhova, Flockhart, Desta (bib29) 2002; 30
Mutlib, Chen, Nemeth, Markwalder, Seitz, Gan, Christ (bib23) 1999; 27
Delaforge, Pruvost, Perrin, André (bib6) 2005; 33
Csajka, Marzolini, Fattinger, Décosterd, Fellay, Telenti, Biollaz, Buclin (bib5) 2003; 73
Nakajima, Fukami, Yamanaka, Higashi, Sakai, Yoshida, Kwon, McLeod, Yokoi (bib25) 2006; 80
Bristol-Myers Squibb Company (2009) Package insert of efavirenz (Sustiva) at
Harleton, Webster, Bumpus, Kent, Rae, Hollenberg (bib12) 2004; 310
Pelkonen, Rautio, Raunio, Pasanen (bib28) 2000; 144
Kharasch, Mitchell, Coles (bib16) 2008; 48
Tsuchiya, Gatanaga, Tachikawa, Teruya, Kikuchi, Yoshino, Kuwahara, Shirasaka, Kimura, Oka (bib33) 2004; 319
Wang, Tompkins (bib37) 2008; 9
Csajka (10.1124/dmd.109.031393_bib5) 2003; 73
Di (10.1124/dmd.109.031393_bib9) 2009; 10
Richter (10.1124/dmd.109.031393_bib30) 2004; 308
10.1124/dmd.109.031393_bib4
Mwenifumbo (10.1124/dmd.109.031393_bib24) 2009; 192
Bélanger (10.1124/dmd.109.031393_bib2) 2009; 37
Delaforge (10.1124/dmd.109.031393_bib6) 2005; 33
Turpeinen (10.1124/dmd.109.031393_bib34) 2004; 32
Arab-Alameddine (10.1124/dmd.109.031393_bib1) 2009; 85
Nakajima (10.1124/dmd.109.031393_bib25) 2006; 80
Kwara (10.1124/dmd.109.031393_bib18) 2009; 67
Rotger (10.1124/dmd.109.031393_bib32) 2007; 81
Jeong (10.1124/dmd.109.031393_bib15) 2009; 64
Richter (10.1124/dmd.109.031393_bib31) 2005; 69
(10.1124/dmd.109.031393_bib35) 2006
Hodgson (10.1124/dmd.109.031393_bib13) 2007; 113
Zanger (10.1124/dmd.109.031393_bib39) 2007; 8
Marzolini (10.1124/dmd.109.031393_bib19) 2001; 15
Mutlib (10.1124/dmd.109.031393_bib23) 1999; 27
Kharasch (10.1124/dmd.109.031393_bib16) 2008; 48
Jeong (10.1124/dmd.109.031393_bib14) 2009; 53
Bourrié (10.1124/dmd.109.031393_bib3) 1996; 277
Obach (10.1124/dmd.109.031393_bib27) 2007; 35
Desta (10.1124/dmd.109.031393_bib7) 2007; 8
Kwara (10.1124/dmd.109.031393_bib17) 2009; 23
Haas (10.1124/dmd.109.031393_bib11) 2004; 18
Pelkonen (10.1124/dmd.109.031393_bib28) 2000; 144
Newton (10.1124/dmd.109.031393_bib26) 1995; 23
Ward (10.1124/dmd.109.031393_bib38) 2003; 306
di Iulio (10.1124/dmd.109.031393_bib8) 2009; 19
Harleton (10.1124/dmd.109.031393_bib12) 2004; 310
Mo (10.1124/dmd.109.031393_bib20) 2009; 10
Ekins (10.1124/dmd.109.031393_bib10) 1999; 31
Walsky (10.1124/dmd.109.031393_bib36) 2007; 35
Mouly (10.1124/dmd.109.031393_bib21) 2002; 72
Mutlib (10.1124/dmd.109.031393_bib22) 1999; 27
Rae (10.1124/dmd.109.031393_bib29) 2002; 30
Tsuchiya (10.1124/dmd.109.031393_bib33) 2004; 319
Wang (10.1124/dmd.109.031393_bib37) 2008; 9
References_xml – volume: 8
  start-page: 743
  year: 2007
  end-page: 759
  ident: bib39
  article-title: Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance
  publication-title: Pharmacogenomics
– volume: 64
  start-page: 867
  year: 2009
  end-page: 875
  ident: bib15
  article-title: Inhibition of drug metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major oxidative metabolite 4,4′-methanol-bisbenzonitrile in vitro
  publication-title: Cancer Chemother Pharmacol
– volume: 27
  start-page: 1319
  year: 1999
  end-page: 1333
  ident: bib23
  article-title: Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz
  publication-title: Drug Metab Dispos
– volume: 72
  start-page: 1
  year: 2002
  end-page: 9
  ident: bib21
  article-title: Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans
  publication-title: Clin Pharmacol Ther
– volume: 31
  start-page: 719
  year: 1999
  end-page: 754
  ident: bib10
  article-title: The role of CYP2B6 in human xenobiotic metabolism
  publication-title: Drug Metab Rev
– volume: 306
  start-page: 287
  year: 2003
  end-page: 300
  ident: bib38
  article-title: The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity
  publication-title: J Pharmacol Exp Ther
– volume: 15
  start-page: 71
  year: 2001
  end-page: 75
  ident: bib19
  article-title: Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients
  publication-title: AIDS
– volume: 319
  start-page: 1322
  year: 2004
  end-page: 1326
  ident: bib33
  article-title: Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens
  publication-title: Biochem Biophys Res Commun
– volume: 9
  start-page: 598
  year: 2008
  end-page: 610
  ident: bib37
  article-title: CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme
  publication-title: Curr Drug Metab
– volume: 85
  start-page: 485
  year: 2009
  end-page: 494
  ident: bib1
  article-title: Pharmacogenetics-based population pharmacokinetic analysis of efavirenz in HIV-1-infected individuals
  publication-title: Clin Pharmacol Ther
– volume: 27
  start-page: 1045
  year: 1999
  end-page: 1056
  ident: bib22
  article-title: Liquid chromatography/mass spectrometry and high-field nuclear magnetic resonance characterization of novel mixed diconjugates of the non-nucleoside human immunodeficiency virus-1 reverse transcriptase inhibitor, efavirenz
  publication-title: Drug Metab Dispos
– volume: 53
  start-page: 541
  year: 2009
  end-page: 551
  ident: bib14
  article-title: Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A
  publication-title: Antimicrob Agents Chemother
– volume: 35
  start-page: 2053
  year: 2007
  end-page: 2059
  ident: bib36
  article-title: A comparison of 2-phenyl-2-(1-piperidinyl)propane (ppp), 1,1′,1″-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine as selective inactivators of human cytochrome P450 2B6
  publication-title: Drug Metab Dispos
– volume: 48
  start-page: 464
  year: 2008
  end-page: 474
  ident: bib16
  article-title: Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity
  publication-title: J Clin Pharmacol
– volume: 8
  start-page: 547
  year: 2007
  end-page: 558
  ident: bib7
  article-title: Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro
  publication-title: Pharmacogenomics
– volume: 37
  start-page: 1793
  year: 2009
  end-page: 1796
  ident: bib2
  article-title: Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine
  publication-title: Drug Metab Dispos
– volume: 73
  start-page: 20
  year: 2003
  end-page: 30
  ident: bib5
  article-title: Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection
  publication-title: Clin Pharmacol Ther
– volume: 23
  start-page: 154
  year: 1995
  end-page: 158
  ident: bib26
  article-title: Cytochrome P450 inhibitors. Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes
  publication-title: Drug Metab Dispos
– volume: 33
  start-page: 466
  year: 2005
  end-page: 473
  ident: bib6
  article-title: Cytochrome P450-mediated oxidation of glucuronide derivatives: example of estradiol-17beta-glucuronide oxidation to 2-hydroxy-estradiol-17beta-glucuronide by CYP 2C8
  publication-title: Drug Metab Dispos
– volume: 277
  start-page: 321
  year: 1996
  end-page: 332
  ident: bib3
  article-title: Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes
  publication-title: J Pharmacol Exp Ther
– reference: (updated September 2009), New York.
– volume: 113
  start-page: 420
  year: 2007
  end-page: 428
  ident: bib13
  article-title: The importance of cytochrome P450 2B6 in the human metabolism of environmental chemicals
  publication-title: Pharmacol Ther
– volume: 144
  start-page: 139
  year: 2000
  end-page: 147
  ident: bib28
  article-title: CYP2A6: a human coumarin 7-hydroxylase
  publication-title: Toxicology
– volume: 308
  start-page: 189
  year: 2004
  end-page: 197
  ident: bib30
  article-title: Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine
  publication-title: J Pharmacol Exp Ther
– volume: 81
  start-page: 557
  year: 2007
  end-page: 566
  ident: bib32
  article-title: Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals
  publication-title: Clin Pharmacol Ther
– volume: 310
  start-page: 1011
  year: 2004
  end-page: 1019
  ident: bib12
  article-title: Metabolism of N,N′,N″-triethylenethiophosphoramide by CYP2B1 and CYP2B6 results in the inactivation of both isoforms by two distinct mechanisms
  publication-title: J Pharmacol Exp Ther
– reference: Bristol-Myers Squibb Company (2009) Package insert of efavirenz (Sustiva) at
– volume: 10
  start-page: 730
  year: 2009
  end-page: 753
  ident: bib20
  article-title: Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6
  publication-title: Curr Drug Metab
– volume: 32
  start-page: 626
  year: 2004
  end-page: 631
  ident: bib34
  article-title: Selective inhibition of CYP2B6-catalyzed bupropion hydroxylation in human liver microsomes in vitro
  publication-title: Drug Metab Dispos
– volume: 35
  start-page: 246
  year: 2007
  end-page: 255
  ident: bib27
  article-title: Mechanism-based inactivation of human cytochrome P450 enzymes and the prediction of drug-drug interactions
  publication-title: Drug Metab Dispos
– volume: 23
  start-page: 2101
  year: 2009
  end-page: 2106
  ident: bib17
  article-title: CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients
  publication-title: AIDS
– volume: 18
  start-page: 2391
  year: 2004
  end-page: 2400
  ident: bib11
  article-title: Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study
  publication-title: AIDS
– volume: 30
  start-page: 525
  year: 2002
  end-page: 530
  ident: bib29
  article-title: Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism
  publication-title: Drug Metab Dispos
– volume: 19
  start-page: 300
  year: 2009
  end-page: 309
  ident: bib8
  article-title: In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function
  publication-title: Pharmacogenet Genomics
– volume: 69
  start-page: 517
  year: 2005
  end-page: 524
  ident: bib31
  article-title: Inhibition of human CYP2B6 by N,N′,N″-triethylenethiophosphoramide is irreversible and mechanism-based
  publication-title: Biochem Pharmacol
– year: 2006
  ident: bib35
  article-title: Draft Guidance for Industry: Drug Interaction Studies—Study Design, Data Analysis and Implications for Dosing and Labeling
– volume: 67
  start-page: 427
  year: 2009
  end-page: 436
  ident: bib18
  article-title: CYP2B6 (c.516G–>T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients
  publication-title: Br J Clin Pharmacol
– volume: 10
  start-page: 754
  year: 2009
  end-page: 780
  ident: bib9
  article-title: Structure, function, regulation and polymorphism of human cytochrome P450 2A6
  publication-title: Curr Drug Metab
– volume: 192
  start-page: 235
  year: 2009
  end-page: 259
  ident: bib24
  article-title: Molecular genetics of nicotine metabolism
  publication-title: Handb Exp Pharmacol
– volume: 80
  start-page: 282
  year: 2006
  end-page: 297
  ident: bib25
  article-title: Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations
  publication-title: Clin Pharmacol Ther
– volume: 144
  start-page: 139
  year: 2000
  ident: 10.1124/dmd.109.031393_bib28
  article-title: CYP2A6: a human coumarin 7-hydroxylase
  publication-title: Toxicology
  doi: 10.1016/S0300-483X(99)00200-0
– volume: 10
  start-page: 730
  year: 2009
  ident: 10.1124/dmd.109.031393_bib20
  article-title: Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6
  publication-title: Curr Drug Metab
  doi: 10.2174/138920009789895534
– volume: 32
  start-page: 626
  year: 2004
  ident: 10.1124/dmd.109.031393_bib34
  article-title: Selective inhibition of CYP2B6-catalyzed bupropion hydroxylation in human liver microsomes in vitro
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.32.6.626
– volume: 10
  start-page: 754
  year: 2009
  ident: 10.1124/dmd.109.031393_bib9
  article-title: Structure, function, regulation and polymorphism of human cytochrome P450 2A6
  publication-title: Curr Drug Metab
  doi: 10.2174/138920009789895507
– volume: 30
  start-page: 525
  year: 2002
  ident: 10.1124/dmd.109.031393_bib29
  article-title: Triethylenethiophosphoramide is a specific inhibitor of cytochrome P450 2B6: implications for cyclophosphamide metabolism
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.30.5.525
– volume: 23
  start-page: 2101
  year: 2009
  ident: 10.1124/dmd.109.031393_bib17
  article-title: CYP2B6, CYP2A6 and UGT2B7 genetic polymorphisms are predictors of efavirenz mid-dose concentration in HIV-infected patients
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e3283319908
– volume: 27
  start-page: 1319
  year: 1999
  ident: 10.1124/dmd.109.031393_bib23
  article-title: Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrometry and high field NMR: species differences in the metabolism of efavirenz
  publication-title: Drug Metab Dispos
  doi: 10.1016/S0090-9556(24)14935-5
– volume: 72
  start-page: 1
  year: 2002
  ident: 10.1124/dmd.109.031393_bib21
  article-title: Hepatic but not intestinal CYP3A4 displays dose-dependent induction by efavirenz in humans
  publication-title: Clin Pharmacol Ther
  doi: 10.1067/mcp.2002.124519
– volume: 80
  start-page: 282
  year: 2006
  ident: 10.1124/dmd.109.031393_bib25
  article-title: Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2006.05.012
– volume: 306
  start-page: 287
  year: 2003
  ident: 10.1124/dmd.109.031393_bib38
  article-title: The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: implication for HIV/AIDS therapy and utility of efavirenz as a substrate marker of CYP2B6 catalytic activity
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.103.049601
– year: 2006
  ident: 10.1124/dmd.109.031393_bib35
– volume: 73
  start-page: 20
  year: 2003
  ident: 10.1124/dmd.109.031393_bib5
  article-title: Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection
  publication-title: Clin Pharmacol Ther
  doi: 10.1067/mcp.2003.22
– volume: 27
  start-page: 1045
  year: 1999
  ident: 10.1124/dmd.109.031393_bib22
  article-title: Liquid chromatography/mass spectrometry and high-field nuclear magnetic resonance characterization of novel mixed diconjugates of the non-nucleoside human immunodeficiency virus-1 reverse transcriptase inhibitor, efavirenz
  publication-title: Drug Metab Dispos
  doi: 10.1016/S0090-9556(24)15024-6
– volume: 308
  start-page: 189
  year: 2004
  ident: 10.1124/dmd.109.031393_bib30
  article-title: Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.103.056127
– volume: 85
  start-page: 485
  year: 2009
  ident: 10.1124/dmd.109.031393_bib1
  article-title: Pharmacogenetics-based population pharmacokinetic analysis of efavirenz in HIV-1-infected individuals
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.2008.271
– volume: 35
  start-page: 2053
  year: 2007
  ident: 10.1124/dmd.109.031393_bib36
  article-title: A comparison of 2-phenyl-2-(1-piperidinyl)propane (ppp), 1,1′,1″-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine as selective inactivators of human cytochrome P450 2B6
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.107.015883
– volume: 81
  start-page: 557
  year: 2007
  ident: 10.1124/dmd.109.031393_bib32
  article-title: Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/sj.clpt.6100072
– volume: 33
  start-page: 466
  year: 2005
  ident: 10.1124/dmd.109.031393_bib6
  article-title: Cytochrome P450-mediated oxidation of glucuronide derivatives: example of estradiol-17beta-glucuronide oxidation to 2-hydroxy-estradiol-17beta-glucuronide by CYP 2C8
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.104.002097
– volume: 113
  start-page: 420
  year: 2007
  ident: 10.1124/dmd.109.031393_bib13
  article-title: The importance of cytochrome P450 2B6 in the human metabolism of environmental chemicals
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2006.10.002
– volume: 15
  start-page: 71
  year: 2001
  ident: 10.1124/dmd.109.031393_bib19
  article-title: Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients
  publication-title: AIDS
  doi: 10.1097/00002030-200101050-00011
– volume: 23
  start-page: 154
  year: 1995
  ident: 10.1124/dmd.109.031393_bib26
  article-title: Cytochrome P450 inhibitors. Evaluation of specificities in the in vitro metabolism of therapeutic agents by human liver microsomes
  publication-title: Drug Metab Dispos
  doi: 10.1016/S0090-9556(25)06500-6
– volume: 67
  start-page: 427
  year: 2009
  ident: 10.1124/dmd.109.031393_bib18
  article-title: CYP2B6 (c.516G–>T) and CYP2A6 (*9B and/or *17) polymorphisms are independent predictors of efavirenz plasma concentrations in HIV-infected patients
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2009.03368.x
– volume: 53
  start-page: 541
  year: 2009
  ident: 10.1124/dmd.109.031393_bib14
  article-title: Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9, 2C19, and 3A
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01123-08
– volume: 277
  start-page: 321
  year: 1996
  ident: 10.1124/dmd.109.031393_bib3
  article-title: Cytochrome P450 isoform inhibitors as a tool for the investigation of metabolic reactions catalyzed by human liver microsomes
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(25)12826-7
– volume: 18
  start-page: 2391
  year: 2004
  ident: 10.1124/dmd.109.031393_bib11
  article-title: Pharmacogenetics of efavirenz and central nervous system side effects: an Adult AIDS Clinical Trials Group study
  publication-title: AIDS
– volume: 8
  start-page: 743
  year: 2007
  ident: 10.1124/dmd.109.031393_bib39
  article-title: Polymorphic CYP2B6: molecular mechanisms and emerging clinical significance
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.8.7.743
– volume: 319
  start-page: 1322
  year: 2004
  ident: 10.1124/dmd.109.031393_bib33
  article-title: Homozygous CYP2B6 *6 (Q172H and K262R) correlates with high plasma efavirenz concentrations in HIV-1 patients treated with standard efavirenz-containing regimens
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2004.05.116
– volume: 35
  start-page: 246
  year: 2007
  ident: 10.1124/dmd.109.031393_bib27
  article-title: Mechanism-based inactivation of human cytochrome P450 enzymes and the prediction of drug-drug interactions
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.106.012633
– volume: 31
  start-page: 719
  year: 1999
  ident: 10.1124/dmd.109.031393_bib10
  article-title: The role of CYP2B6 in human xenobiotic metabolism
  publication-title: Drug Metab Rev
  doi: 10.1081/DMR-100101942
– ident: 10.1124/dmd.109.031393_bib4
– volume: 37
  start-page: 1793
  year: 2009
  ident: 10.1124/dmd.109.031393_bib2
  article-title: Glucuronidation of the antiretroviral drug efavirenz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.109.027706
– volume: 310
  start-page: 1011
  year: 2004
  ident: 10.1124/dmd.109.031393_bib12
  article-title: Metabolism of N,N′,N″-triethylenethiophosphoramide by CYP2B1 and CYP2B6 results in the inactivation of both isoforms by two distinct mechanisms
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.104.069112
– volume: 9
  start-page: 598
  year: 2008
  ident: 10.1124/dmd.109.031393_bib37
  article-title: CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme
  publication-title: Curr Drug Metab
  doi: 10.2174/138920008785821710
– volume: 19
  start-page: 300
  year: 2009
  ident: 10.1124/dmd.109.031393_bib8
  article-title: In vivo analysis of efavirenz metabolism in individuals with impaired CYP2A6 function
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/FPC.0b013e328328d577
– volume: 64
  start-page: 867
  year: 2009
  ident: 10.1124/dmd.109.031393_bib15
  article-title: Inhibition of drug metabolizing cytochrome P450s by the aromatase inhibitor drug letrozole and its major oxidative metabolite 4,4′-methanol-bisbenzonitrile in vitro
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-009-0935-7
– volume: 69
  start-page: 517
  year: 2005
  ident: 10.1124/dmd.109.031393_bib31
  article-title: Inhibition of human CYP2B6 by N,N′,N″-triethylenethiophosphoramide is irreversible and mechanism-based
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2004.10.008
– volume: 48
  start-page: 464
  year: 2008
  ident: 10.1124/dmd.109.031393_bib16
  article-title: Stereoselective bupropion hydroxylation as an in vivo phenotypic probe for cytochrome P4502B6 (CYP2B6) activity
  publication-title: J Clin Pharmacol
  doi: 10.1177/0091270008314254
– volume: 8
  start-page: 547
  year: 2007
  ident: 10.1124/dmd.109.031393_bib7
  article-title: Impact of CYP2B6 polymorphism on hepatic efavirenz metabolism in vitro
  publication-title: Pharmacogenomics
  doi: 10.2217/14622416.8.6.547
– volume: 192
  start-page: 235
  year: 2009
  ident: 10.1124/dmd.109.031393_bib24
  article-title: Molecular genetics of nicotine metabolism
  publication-title: Handb Exp Pharmacol
  doi: 10.1007/978-3-540-69248-5_9
SSID ssj0014439
Score 2.3586469
Snippet Efavirenz primary and secondary metabolism was investigated in vitro and in vivo. In human liver microsome (HLM) samples, 7- and 8-hydroxyefavirenz accounted...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1218
SubjectTerms Alkynes
Aryl Hydrocarbon Hydroxylases - antagonists & inhibitors
Aryl Hydrocarbon Hydroxylases - metabolism
Benzoxazines - pharmacokinetics
Biological and medical sciences
Cyclopropanes
Cytochrome P-450 CYP2A6
Cytochrome P-450 CYP2B6
Enzyme Inhibitors - pharmacology
Humans
Hydroxylation - drug effects
In Vitro Techniques
Inactivation, Metabolic
Kinetics
Medical sciences
Metabolic Networks and Pathways - drug effects
Microsomes, Liver - drug effects
Microsomes, Liver - enzymology
Oxidoreductases, N-Demethylating - antagonists & inhibitors
Oxidoreductases, N-Demethylating - metabolism
Pharmacology. Drug treatments
Title Efavirenz Primary and Secondary Metabolism In Vitro and In Vivo: Identification of Novel Metabolic Pathways and Cytochrome P450 2A6 as the Principal Catalyst of Efavirenz 7-Hydroxylation
URI https://dx.doi.org/10.1124/dmd.109.031393
https://www.ncbi.nlm.nih.gov/pubmed/20335270
https://www.proquest.com/docview/733345840
https://pubmed.ncbi.nlm.nih.gov/PMC2908985
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYovVSqqtIX2wfyoaKHJTQbJyTpjdItjwrYFrbiFiW2U5BogtjsVstP66_rjO3ECQX1cVltHo6tzHzxzPjzDCGv04jlcSBCh7MgdHzc2wNWkevEAZeMD0QgGe4d3j_Y2Bn7eyfBycKdpRZraVpl6_zqxn0l_yNVOAdyxV2y_yDZ5qFwAv6DfOEXJAy_fyXjYZ7O4JNVXPVHJmmEImKijyvwaF9WIONzrIOxW_S_nlWXpeH_wsEMu-_rjbq5idyp-EE5U2xX3ZRjEv_TH-lc53LemlclP8UUB_2RH7h9b3MDK9Wg9TrSYXsMRmBIaD5RHAM7xNDZmQskzZxbZTBW8YfL6TesZV0PFnsSZw2hrAkEb78ff1G0BLT_Lb177_BgeNQQ9C0Fcn_zCIz1o4a3mdpLW4cH2_2TcTvmgcv1YYc_Ui9mtZmtI5vqW7_tYbtEwrHdzdYOgroxqqVObV7PByxq6X3Y-rgPPDNVSHOoYzW_T0KeD5ojvgvM1bWOyTF1Echutu9rs3DDjfSwmpiHCRnueuD6YFWOT5_typjvM-3SmZGbRKTQ59tuj7cZWvcv0gnAP9d1W25yrK7zg1sG1_FD8sB4SnRTq_0SWZDFI7Jq3v98jbbf9RpdpW3JPCY_G8WjBhsUpEUbbFCLDbpbUIUNdYc6mJXvaBcZtMypQkbTkNMaGaqdRQZFZFBABk0nFJBBG2TQGhn4NDvAa8h4QsYfh8dbO46pU-LwgPmVE2VRHgbC5TwUPIsZhgCyOE5BQbBcRZwL7vnSD6TM0zxgIvYHkZttZBxmeBnwjD0li0VZyGVCpesJcHjEwAfTPuJBJLAuTsQYuPVpHno94tRCTbhJ4o-1ZM4T5cx7fgJKgKySRCtBj7xp7r_Qb_vWOwe1jiTG-NZGdQJqfWublY4yNV3UOtwjtNauBKYtXItMC1lOJ0nIGEOKhtsjz7Sy2cYu7gMN4UrYUcPmBsyI371SnJ2qzPgeshii4PmfxvWC3LOflZdksbqcylfgXFTZikLbL40vK_k
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efavirenz+Primary+and+Secondary+Metabolism+In+Vitro+and+In+Vivo%3A+Identification+of+Novel+Metabolic+Pathways+and+Cytochrome+P450+2A6+as+the+Principal+Catalyst+of+Efavirenz+7-Hydroxylation&rft.jtitle=Drug+metabolism+and+disposition&rft.au=OGBURN%2C+Evan+T&rft.au=JONES%2C+David+R&rft.au=MASTERS%2C+Andrea+R&rft.au=CONG+XU&rft.date=2010-07-01&rft.pub=American+Society+for+Pharmacology+and+Experimental+Therapeutics&rft.issn=0090-9556&rft.volume=38&rft.issue=7&rft.spage=1218&rft.epage=1229&rft_id=info:doi/10.1124%2Fdmd.109.031393&rft.externalDBID=n%2Fa&rft.externalDocID=22973291
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-9556&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-9556&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-9556&client=summon