Mechanism and regulation of DNA end resection in eukaryotes
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5′-terminated strands in a process termed end resection. End resection generates 3′-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA str...
Saved in:
Published in | Critical reviews in biochemistry and molecular biology Vol. 51; no. 3; pp. 195 - 212 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
03.05.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1040-9238 1549-7798 1549-7798 |
DOI | 10.3109/10409238.2016.1172552 |
Cover
Loading…
Abstract | The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5′-terminated strands in a process termed end resection. End resection generates 3′-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5′-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3′-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome. |
---|---|
AbstractList | The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome.The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a process termed end resection. End resection generates 3'-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5'-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3'-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome. The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5′-terminated strands in a process termed end resection. End resection generates 3′-single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and DNA strand exchange, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5′-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3′-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome. The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5′ terminated strands in a process termed end resection. End resection generates 3′ single-stranded DNA tails, substrates for Rad51 to catalyze homologous pairing and exchange of DNA strands, and for activation of the DNA damage checkpoint. The commonly accepted view is that end resection occurs by a two-step mechanism. In the first step, Sae2/CtIP activates the Mre11-Rad50-Xrs2/Nbs1 (MRX/N) complex to endonucleolytically cleave the 5′-terminated DNA strands close to break ends, and in the second step Exo1 and/or Dna2 nucleases extend the resected tracts to produce long 3′-ssDNA-tailed intermediates. Initiation of resection commits a cell to repair a DSB by HR because long ssDNA overhangs are poor substrates for non-homologous end joining (NHEJ). Thus, the initiation of end resection has emerged as a critical control point for repair pathway choice. Here, I review recent studies on the mechanism of end resection and how this process is regulated to ensure the most appropriate repair outcome. |
Author | Symington, Lorraine S. |
Author_xml | – sequence: 1 givenname: Lorraine S. surname: Symington fullname: Symington, Lorraine S. email: lss5@cumc.columbia.edu organization: Department of Microbiology & Immunology, Columbia University Medical Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27098756$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkVtvFSEUhYmpsRf7EzTz6MscgeGaJsam9dKkti_2mTCcTYvOQIUZTf99OTdTfdAnCHxrrZ29DtFeTBEQekXwoiNYvyWYYU07taCYiAUhknJOn6EDwplupdRqr94r066gfXRYyjdcSan4C7RPJdZKcnGATr6Au7MxlLGxcdlkuJ0HO4UUm-Sb86vTBtavBdz6McQG5u82P6QJykv03NuhwPH2PEI3Hz98PfvcXl5_ujg7vWwd79jUKtoRLYSjlC6Fp4B5z7AFpkQPjHnwCgTm3jGn67yi7wXTTmBdIUH7znZH6N3G937uR1g6iFO2g7nPYayTmGSD-fMnhjtzm34aprkUjFeDN1uDnH7MUCYzhuJgGGyENBdDpFKUciJZRV8_zfodsttYBU42gMuplAzeuDCtN1ajw2AINqt-zK4fs-rHbPupav6XehfwP937jS5En_Jof6U8LM1kH4aUfbbRhbKS_8viEYtRpgA |
CitedBy_id | crossref_primary_10_1073_pnas_1806513115 crossref_primary_10_1038_s41467_023_38617_z crossref_primary_10_1016_j_molcel_2020_12_019 crossref_primary_10_1016_j_tcb_2021_07_005 crossref_primary_10_1074_jbc_M117_796011 crossref_primary_10_1093_nar_gkx830 crossref_primary_10_1126_sciadv_abe9254 crossref_primary_10_1371_journal_pgen_1009459 crossref_primary_10_26508_lsa_202101244 crossref_primary_10_1016_j_gde_2021_08_005 crossref_primary_10_1016_j_dnarep_2019_03_011 crossref_primary_10_1074_jbc_TM117_000374 crossref_primary_10_1101_gad_295659_116 crossref_primary_10_7554_eLife_78917 crossref_primary_10_1002_1873_3468_12556 crossref_primary_10_1007_s00294_021_01186_z crossref_primary_10_1007_s42764_022_00066_1 crossref_primary_10_1073_pnas_2022600118 crossref_primary_10_1016_j_pharmthera_2020_107492 crossref_primary_10_1016_j_pbiomolbio_2020_11_008 crossref_primary_10_1016_j_isci_2020_101027 crossref_primary_10_3390_ijms241914956 crossref_primary_10_3389_fpls_2024_1396553 crossref_primary_10_3390_dna2010006 crossref_primary_10_3390_genes11050578 crossref_primary_10_1016_j_molcel_2020_12_020 crossref_primary_10_1186_s13046_021_02005_6 crossref_primary_10_1016_j_molcel_2019_08_017 crossref_primary_10_1038_s41556_021_00783_x crossref_primary_10_1038_nrm_2017_48 crossref_primary_10_1038_s41467_024_51225_9 crossref_primary_10_1371_journal_pgen_1008919 crossref_primary_10_1016_j_dnarep_2018_08_018 crossref_primary_10_18632_aging_202419 crossref_primary_10_3390_genes13101846 crossref_primary_10_18632_oncotarget_22075 crossref_primary_10_1073_pnas_1719825115 crossref_primary_10_1371_journal_pbio_3000464 crossref_primary_10_1093_jnci_djx059 crossref_primary_10_3390_genes12060920 crossref_primary_10_1080_15384101_2018_1553355 crossref_primary_10_1093_genetics_iyad122 crossref_primary_10_1016_j_semradonc_2021_09_007 crossref_primary_10_1016_j_tibs_2020_10_005 crossref_primary_10_1073_pnas_1715960114 crossref_primary_10_1016_j_dnarep_2021_103074 crossref_primary_10_1016_j_molcel_2020_04_006 crossref_primary_10_1038_s41467_022_30303_w crossref_primary_10_1093_nar_gkaa196 crossref_primary_10_1073_pnas_1816539115 crossref_primary_10_3390_ijms22083984 crossref_primary_10_1007_s00294_019_00995_7 crossref_primary_10_1038_s41467_023_41544_8 crossref_primary_10_3390_biom13040614 crossref_primary_10_1016_j_dnarep_2020_103035 crossref_primary_10_1016_j_dnarep_2017_06_018 crossref_primary_10_3390_cells9071657 crossref_primary_10_1038_s41418_024_01296_4 crossref_primary_10_3390_pharmaceutics15092241 crossref_primary_10_1093_plcell_koad139 crossref_primary_10_1016_j_dnarep_2017_06_013 crossref_primary_10_18632_aging_203519 crossref_primary_10_1073_pnas_1719029115 crossref_primary_10_1371_journal_pgen_1007486 crossref_primary_10_1007_s00294_018_0873_1 crossref_primary_10_1186_s13045_022_01360_x crossref_primary_10_1371_journal_pgen_1008217 crossref_primary_10_1093_nar_gkab178 crossref_primary_10_1093_nar_gkab293 crossref_primary_10_1073_pnas_1804823115 crossref_primary_10_1016_j_dnarep_2020_102996 crossref_primary_10_1093_nar_gkac506 crossref_primary_10_1093_nar_gkaa1232 crossref_primary_10_1038_s41467_021_27443_w crossref_primary_10_3390_ijms22115715 crossref_primary_10_1038_s12276_020_00519_1 crossref_primary_10_1093_nar_gkz814 crossref_primary_10_1146_annurev_biochem_062917_012415 crossref_primary_10_1093_nar_gkae807 crossref_primary_10_1093_nar_gkz810 crossref_primary_10_1074_jbc_RA118_006146 crossref_primary_10_1016_j_celrep_2023_112060 crossref_primary_10_1371_journal_pgen_1009816 crossref_primary_10_15252_embj_201798588 crossref_primary_10_3390_antiox9090786 crossref_primary_10_3390_ijms21051706 crossref_primary_10_1002_mco2_388 crossref_primary_10_7554_eLife_33402 crossref_primary_10_1534_genetics_116_186759 crossref_primary_10_3390_molecules23010191 crossref_primary_10_1016_j_molcel_2019_09_024 crossref_primary_10_1016_j_molcel_2019_09_015 crossref_primary_10_1038_s41556_021_00663_4 crossref_primary_10_1093_nar_gkab785 crossref_primary_10_1038_s41388_024_03108_y crossref_primary_10_3389_fmolb_2019_00141 crossref_primary_10_1093_narcan_zcaa008 crossref_primary_10_1016_j_celrep_2020_107603 crossref_primary_10_1093_narcan_zcaa006 crossref_primary_10_1093_nar_gkad291 crossref_primary_10_1016_j_jbc_2022_102802 crossref_primary_10_1016_j_celrep_2020_107849 crossref_primary_10_1101_gad_310771_117 crossref_primary_10_1134_S0026893322060085 crossref_primary_10_1016_j_celrep_2019_11_012 crossref_primary_10_1038_s41556_018_0152_x crossref_primary_10_3390_genes12101550 crossref_primary_10_1016_j_molcel_2018_02_016 crossref_primary_10_1021_acs_biochem_7b00184 crossref_primary_10_1093_plcell_koad169 crossref_primary_10_3724_abbs_2022053 crossref_primary_10_1002_2211_5463_13071 crossref_primary_10_1016_j_tig_2021_02_008 crossref_primary_10_3724_abbs_2022051 crossref_primary_10_1186_s40035_023_00350_4 crossref_primary_10_3390_ijms222413296 crossref_primary_10_1074_jbc_RA119_008420 crossref_primary_10_1128_MCB_00056_21 crossref_primary_10_1016_j_celrep_2021_109756 crossref_primary_10_3389_fonc_2018_00681 crossref_primary_10_3389_fmolb_2018_00059 crossref_primary_10_3389_fgene_2021_823943 crossref_primary_10_1093_nar_gkx176 crossref_primary_10_1038_s41467_020_16718_3 crossref_primary_10_3389_fonc_2023_1117262 crossref_primary_10_1016_j_celrep_2023_112043 crossref_primary_10_1073_pnas_2008830117 crossref_primary_10_1186_s12934_023_02262_4 crossref_primary_10_1038_s41467_020_19202_0 crossref_primary_10_1073_pnas_1819276116 crossref_primary_10_1016_j_molcel_2018_02_002 crossref_primary_10_3390_cells12111530 crossref_primary_10_1074_jbc_M116_772475 crossref_primary_10_3390_ijms25168634 crossref_primary_10_1016_j_pbiomolbio_2016_08_001 crossref_primary_10_3390_v14071557 crossref_primary_10_2139_ssrn_3742313 crossref_primary_10_1093_nar_gkaa562 crossref_primary_10_1134_S0026893324700201 crossref_primary_10_1111_nph_15680 crossref_primary_10_1016_j_bpj_2019_03_001 crossref_primary_10_1016_j_celrep_2020_108680 crossref_primary_10_3389_fgene_2022_831620 crossref_primary_10_3390_ijms21186461 crossref_primary_10_1038_s41594_023_01072_x crossref_primary_10_1007_s00335_017_9688_5 crossref_primary_10_1016_j_tcb_2018_10_006 crossref_primary_10_3389_fmolb_2019_00055 crossref_primary_10_15252_embj_2021107974 crossref_primary_10_1016_j_celrep_2020_108565 crossref_primary_10_1016_j_celrep_2020_01_052 crossref_primary_10_1016_j_dnarep_2019_102662 crossref_primary_10_15252_embj_2021108813 crossref_primary_10_3390_ijms242316903 crossref_primary_10_1016_j_dnarep_2024_103774 crossref_primary_10_3389_fgene_2021_821543 crossref_primary_10_31857_S0026898424040029 crossref_primary_10_3389_fcell_2021_767624 crossref_primary_10_3390_ijms242115907 crossref_primary_10_1002_1873_3468_12724 crossref_primary_10_1002_bies_201800235 crossref_primary_10_7554_eLife_54098 crossref_primary_10_3389_fbioe_2022_973314 crossref_primary_10_1016_j_dnarep_2019_102653 crossref_primary_10_1042_BST20180518 crossref_primary_10_1371_journal_pgen_1007543 crossref_primary_10_1016_j_molcel_2023_12_039 crossref_primary_10_1038_s41596_020_00448_3 crossref_primary_10_1042_BST20170168 crossref_primary_10_1038_s41467_018_03475_7 crossref_primary_10_1186_s13048_023_01221_2 crossref_primary_10_3390_ijms26062405 crossref_primary_10_1093_nar_gkae501 crossref_primary_10_1016_j_dnarep_2021_103240 crossref_primary_10_1093_nar_gkab597 crossref_primary_10_3390_genes9120581 crossref_primary_10_1016_j_gde_2021_06_011 crossref_primary_10_3390_genes13061101 crossref_primary_10_1089_crispr_2020_0034 crossref_primary_10_1073_pnas_2402262121 crossref_primary_10_3389_fonc_2022_808757 crossref_primary_10_1126_sciadv_aay0922 crossref_primary_10_1038_s41580_021_00394_2 crossref_primary_10_1534_genetics_116_191205 crossref_primary_10_1038_s41467_019_08889_5 crossref_primary_10_3390_cancers14112804 crossref_primary_10_1038_s41388_023_02603_y crossref_primary_10_1038_s41467_022_29937_7 crossref_primary_10_1016_j_jbc_2024_105708 crossref_primary_10_1007_s42764_020_00028_5 crossref_primary_10_3390_cancers12071793 crossref_primary_10_3389_fcell_2021_708763 crossref_primary_10_1002_biot_202100413 crossref_primary_10_3390_genes7090067 crossref_primary_10_1002_jcp_31166 crossref_primary_10_1080_09553002_2018_1516911 crossref_primary_10_1016_j_dnarep_2021_103211 crossref_primary_10_1038_s41467_019_11105_z crossref_primary_10_2139_ssrn_3352501 crossref_primary_10_1016_j_celrep_2021_109941 crossref_primary_10_1080_23723556_2021_1935173 crossref_primary_10_1073_pnas_1915598117 crossref_primary_10_1038_s41388_020_1334_0 crossref_primary_10_1101_gad_328534_119 crossref_primary_10_1038_s41467_020_16997_w crossref_primary_10_3390_cells9081853 crossref_primary_10_1016_j_jbc_2022_101937 crossref_primary_10_1093_nar_gkx1128 crossref_primary_10_3389_fmolb_2020_00169 crossref_primary_10_3390_ijms21020446 crossref_primary_10_1016_j_jinorgbio_2019_110955 crossref_primary_10_3389_fgene_2019_00365 crossref_primary_10_1016_j_celrep_2019_07_018 crossref_primary_10_21769_BioProtoc_4413 crossref_primary_10_3389_fgene_2018_00390 crossref_primary_10_7554_eLife_75047 crossref_primary_10_1038_s41580_020_0218_z crossref_primary_10_15252_embj_2020104847 crossref_primary_10_1091_mbc_E20_07_0433 crossref_primary_10_3390_genes13020215 crossref_primary_10_3389_fgeed_2020_601541 crossref_primary_10_1016_j_tcb_2022_06_007 crossref_primary_10_1093_nar_gkz652 crossref_primary_10_1371_journal_pgen_1008689 crossref_primary_10_1016_j_molcel_2019_05_005 crossref_primary_10_1016_j_semcdb_2020_09_001 crossref_primary_10_1093_genetics_iyae112 crossref_primary_10_3389_fcimb_2021_802613 crossref_primary_10_1080_10409238_2019_1670131 crossref_primary_10_3389_fcell_2020_00416 crossref_primary_10_1016_j_arcmed_2024_103122 crossref_primary_10_1038_s41388_021_01698_5 crossref_primary_10_3390_biom11040550 crossref_primary_10_1002_JLB_2MA0321_064R crossref_primary_10_3390_genes12091390 crossref_primary_10_3390_genes14101908 crossref_primary_10_3390_ijms241813761 crossref_primary_10_1038_s41467_020_16750_3 crossref_primary_10_1002_2211_5463_13139 crossref_primary_10_3390_ijms25052462 crossref_primary_10_1016_j_dnarep_2018_12_001 crossref_primary_10_1080_09553002_2021_1956001 crossref_primary_10_1146_annurev_cellbio_111822_014426 crossref_primary_10_15252_embr_201846263 crossref_primary_10_1093_nar_gkad776 crossref_primary_10_3389_fgene_2016_00152 crossref_primary_10_1139_bcb_2016_0085 crossref_primary_10_1146_annurev_biochem_013118_111058 crossref_primary_10_7554_eLife_42733 crossref_primary_10_1038_srep32230 crossref_primary_10_1371_journal_pgen_1008787 crossref_primary_10_1093_nar_gkz076 crossref_primary_10_15252_embr_202256724 crossref_primary_10_1016_j_molcel_2017_07_009 crossref_primary_10_1093_nar_gkac214 crossref_primary_10_3390_cells9122590 crossref_primary_10_1002_1878_0261_13563 crossref_primary_10_1016_j_gde_2021_07_007 crossref_primary_10_15252_embj_2020105705 crossref_primary_10_3389_fcell_2021_642737 crossref_primary_10_1093_nar_gkx221 crossref_primary_10_1016_j_chembiol_2017_08_027 crossref_primary_10_1016_j_cell_2017_06_052 crossref_primary_10_1016_j_gde_2021_07_004 crossref_primary_10_1080_23723556_2018_1511208 crossref_primary_10_1101_gad_348667_121 crossref_primary_10_1139_cjpp_2022_0139 crossref_primary_10_1098_rstb_2016_0281 crossref_primary_10_3390_cancers13153755 |
Cites_doi | 10.1016/j.cell.2004.08.015 10.1128/MCB.25.13.5363-5379.2005 10.1101/cshperspect.a016477 10.1146/annurev.biochem.77.061306.125255 10.1126/science.1083430 10.1371/journal.pgen.1005685 10.1038/nsmb.2585 10.1074/jbc.M808906200 10.1038/nature10515 10.1073/pnas.0809380105 10.1534/genetics.107.076539 10.4161/cc.22215 10.1016/S0092-8674(02)00614-1 10.1093/nar/gkv1109 10.1038/emboj.2008.111 10.1038/emboj.2010.193 10.1371/journal.pgen.1000828 10.1038/nature06337 10.1016/S0092-8674(00)81640-2 10.1101/sqb.2015.80.027649 10.1083/jcb.201406100 10.1074/jbc.M110.104745 10.1016/S0092-8674(00)81547-0 10.1073/pnas.1516674113 10.1016/j.molcel.2009.12.002 10.1038/nsmb.1640 10.1038/nsmb.2105 10.1074/jbc.R600022200 10.1534/genetics.114.166140 10.1016/j.cell.2009.07.043 10.1101/gad.1099003 10.1101/cshperspect.a012773 10.1006/dbio.1996.0200 10.1016/j.molcel.2008.01.016 10.1016/S1097-2765(00)80097-0 10.1038/emboj.2008.171 10.1038/ncomms4561 10.1371/journal.pgen.1002271 10.1038/sj.embor.7400911 10.1038/nature06168 10.1101/gad.13.10.1276 10.15252/embj.201590973 10.1371/journal.pone.0124495 10.1016/j.cell.2014.06.028 10.1038/embor.2008.121 10.1038/sj.embor.7400593 10.1016/j.tcb.2013.09.003 10.1371/journal.pgen.1003026 10.1002/j.1460-2075.1990.tb08158.x 10.1016/j.cell.2009.07.033 10.1038/nature00922 10.1074/jbc.M115.660191 10.1371/journal.pgen.1001072 10.1038/nature14216 10.1128/MCB.01828-07 10.1074/jbc.M105482200 10.1126/science.1230624 10.1016/j.cell.2008.08.015 10.1074/jbc.M710245200 10.1091/mbc.11.7.2221 10.1016/S0092-8674(00)81175-7 10.1038/nsmb.1639 10.1016/j.molcel.2013.11.003 10.1126/science.1218498 10.1073/pnas.1305166110 10.1101/gad.2003811 10.1016/j.cell.2008.08.017 10.1126/science.1231573 10.1038/nchembio.63 10.1016/j.molcel.2013.04.032 10.1158/0008-5472.CAN-04-4069 10.1016/j.molcel.2007.09.009 10.1016/j.molcel.2010.09.019 10.1016/j.ajhg.2009.04.010 10.1016/j.molcel.2013.01.001 10.1016/j.cell.2008.09.054 10.1038/emboj.2012.314 10.1038/nsmb.2786 10.1002/bies.201400102 10.1016/j.molcel.2012.03.030 10.1146/annurev-genet-110410-132552 10.1038/nsmb.2323 10.1101/gad.252478.114 10.1074/jbc.M508339200 10.1016/j.dnarep.2009.04.017 10.1038/nsmb.1641 10.1007/s00018-012-0974-9 10.1038/nsmb.1957 10.1016/j.molcel.2015.12.013 10.1128/MCB.01956-06 10.1083/jcb.201005110 10.1016/j.molcel.2010.11.032 10.1038/sj.emboj.7600469 10.1073/pnas.93.26.15075 10.1534/genetics.113.157370 10.1038/ncb3259 10.1038/nrm3047 10.1101/gad.1315805 10.1038/nature11353 10.1128/MCB.24.10.4151-4165.2004 10.1242/jcs.105353 10.1074/jbc.M113.457440 10.1371/journal.pgen.1000110 10.1093/genetics/132.2.387 10.1074/jbc.M605044200 10.1093/genetics/146.3.797 10.1038/nsmb.2945 10.1038/nature03442 10.1091/mbc.E04-09-0782 10.1093/nar/gkv409 10.1128/MCB.05854-11 10.1074/jbc.M114.625293 10.1084/jem.20131939 10.1093/emboj/17.21.6412 10.1073/pnas.1309816110 10.1038/ncomms6004 10.1146/annurev-genet-110410-132435 10.1074/jbc.M110.165191 10.1016/j.molcel.2013.01.002 10.15252/embr.201439764 10.1016/j.molcel.2014.04.011 10.1038/nature07312 10.1073/pnas.95.14.7969 10.1093/nar/gkt1309 10.1093/nar/25.15.2985 10.1038/nature07215 10.1093/nar/gku746 10.1016/j.cell.2011.02.038 10.1371/journal.pgen.1004928 10.1073/pnas.1213431110 10.1038/nature16142 10.1101/gad.503108 10.1074/jbc.M112.355354 10.1093/genetics/146.3.781 10.1038/nature11355 10.1016/S0092-8674(02)00671-2 10.1038/nature09318 10.1093/nar/gkn616 10.1073/pnas.96.13.7376 10.1038/emboj.2010.219 10.1016/S0021-9258(19)50688-3 10.1371/journal.pgen.1003277 10.1146/annurev.genet.40.051206.105231 10.1371/journal.pone.0004267 10.1038/nature03872 10.1093/genetics/150.2.591 10.1016/j.cell.2013.05.023 10.1534/genetics.107.081331 10.1128/MCB.00566-12 10.1016/j.cell.2008.08.037 10.1093/emboj/17.6.1819 10.1016/S1568-7864(01)00003-9 10.1534/genetics.105.049478 10.1016/0092-8674(91)90270-9 10.1073/pnas.1503331112 10.1016/j.dnarep.2013.07.009 10.1038/nsmb.2038 10.1038/nature02964 10.1016/j.molcel.2007.11.001 10.1016/j.molcel.2009.01.024 10.1371/journal.pgen.1002263 10.1038/35086609 10.1128/MCB.19.1.556 10.1038/nsmb.2937 10.1534/genetics.108.095539 10.1016/j.dnarep.2012.01.006 10.1016/j.molcel.2012.02.015 10.1093/nar/gkt672 10.1016/j.tibs.2015.08.006 10.1038/embor.2010.157 10.1016/S0960-9822(01)00019-7 10.1016/0092-8674(90)90524-I 10.1016/S1097-2765(01)00270-2 10.1038/nature09355 10.1101/gad.946401 10.1083/jcb.201302145 10.1038/nature14328 10.1101/cshperspect.a012757 10.1038/nsmb.1831 10.1016/j.molcel.2014.04.012 10.1128/MCB.00963-13 10.1371/journal.pbio.0020021 10.1016/j.molcel.2015.09.027 10.1038/nature13771 10.1128/MCB.24.21.9682-9694.2004 10.1074/jbc.M110.104083 10.1126/science.7855597 10.1038/embor.2008.103 10.1093/genetics/159.4.1423 10.1101/gad.2037811 10.1074/jbc.M114.578823 10.1146/annurev.genom.7.080505.115648 10.1016/S0092-8674(00)81876-0 10.1016/S1097-2765(03)00428-3 10.1038/386414a0 10.1128/MCB.25.9.3535-3542.2005 10.1016/j.molcel.2012.11.020 10.1128/MMBR.63.2.349-404.1999 10.1016/j.cell.2010.03.012 |
ContentType | Journal Article |
Copyright | 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 |
Copyright_xml | – notice: 2016 Informa UK Limited, trading as Taylor & Francis Group 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.3109/10409238.2016.1172552 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1549-7798 |
EndPage | 212 |
ExternalDocumentID | PMC4957645 27098756 10_3109_10409238_2016_1172552 1172552 |
Genre | Review Journal Article |
GrantInformation_xml | – fundername: National Cancer Institute grantid: CA174653 – fundername: National Institute of General Medical Sciences grantid: GM041784,GM094386 – fundername: NCI NIH HHS grantid: P01 CA174653 – fundername: NIGMS NIH HHS grantid: R01 GM094386 – fundername: NIGMS NIH HHS grantid: R01 GM041784 |
GroupedDBID | --- 00X 03L 0BK 0R~ 29F 30N 36B 4.4 5GY 5RE 6J9 A8Z AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABLKL ABPAQ ABXUL ABXYU ACGEJ ACGFO ACGFS ACGOD ACIWK ACPRK ACTIO ACUHS ADCVX ADGTB ADRBQ ADXPE ADYSH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AHDZW AHMBA AIAGR AIJEM AIYEW AJWEG AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AMPGV AQRUH AWYRJ BABNJ BLEHA CCCUG COF CS3 DGEBU DKSSO DU5 EAP EBC EBD EBS EDH EJD EMB EMK EMOBN EPL EST ESX F5P H13 HZ~ H~9 IH2 KRBQP KWAYT KYCEM M4Z O9- P2P RNANH ROSJB RTWRZ RWL SV3 TAE TBQAZ TDBHL TFDNU TFL TFT TFW TQWBC TTHFI TUROJ TUS V1S ZGOLN ~1N AAGDL AAHIA AAYXX CITATION .GJ 0VX 34G 39C 53G 5VS 7X7 88E 8AO 8CJ 8FE 8FG 8FH 8FI 8FJ AAGME AALIY AAOAP AAPXX ABEFU ABFMO ABJCF ABTAA ABUWG ACBBU ACDHJ ACQMU ACZPZ ADBBV ADGTR ADOPC AFDYB AFFNX AFKRA AI. APNXG AURDB AZQEC BBNVY BENPR BFWEY BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU CGR CUY CVF CWRZV D1I D1J DWQXO ECM EIF FYUFA GNUQQ HCIFZ HGUVV HMCUK JEPSP KB. LJTGL LK8 M1P M2P M44 M7P MVM NPM NUSFT OHT OWHGL PCLFJ PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO RRB S0X TASJS UHS UKHRP VH1 XJT ZGI ZXP ~KM 7X8 5PM |
ID | FETCH-LOGICAL-c534t-8231966c222d6f2e05b40ae486be44fef8e605fc4c90406bb649c60940a62b3a3 |
ISSN | 1040-9238 1549-7798 |
IngestDate | Thu Aug 21 14:13:37 EDT 2025 Thu Jul 10 23:02:58 EDT 2025 Mon Jul 21 06:01:49 EDT 2025 Thu Apr 24 23:01:43 EDT 2025 Tue Jul 01 02:07:14 EDT 2025 Tue May 20 10:47:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | end joining Mre11 recombination Exo1 double-strand break Dna2 Sae2/CtIP DNA repair |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-8231966c222d6f2e05b40ae486be44fef8e605fc4c90406bb649c60940a62b3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4957645 |
PMID | 27098756 |
PQID | 1788225174 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | crossref_citationtrail_10_3109_10409238_2016_1172552 crossref_primary_10_3109_10409238_2016_1172552 pubmed_primary_27098756 informaworld_taylorfrancis_310_3109_10409238_2016_1172552 proquest_miscellaneous_1788225174 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4957645 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-03 |
PublicationDateYYYYMMDD | 2016-05-03 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Critical reviews in biochemistry and molecular biology |
PublicationTitleAlternate | Crit Rev Biochem Mol Biol |
PublicationYear | 2016 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | Kadyk LC (CIT0081) 1992; 132 CIT0111 CIT0110 CIT0113 CIT0112 CIT0115 CIT0117 CIT0116 CIT0119 CIT0118 CIT0120 CIT0001 CIT0122 CIT0121 CIT0003 CIT0124 CIT0002 CIT0123 CIT0005 CIT0126 CIT0004 CIT0125 CIT0007 CIT0128 CIT0006 CIT0127 CIT0009 CIT0008 CIT0129 CIT0010 CIT0130 CIT0012 CIT0133 CIT0011 CIT0132 CIT0014 CIT0135 CIT0013 CIT0134 CIT0016 CIT0015 CIT0136 CIT0139 CIT0017 CIT0138 CIT0019 CIT0140 CIT0021 CIT0142 CIT0020 CIT0141 CIT0023 CIT0144 CIT0022 CIT0143 CIT0025 CIT0146 CIT0024 CIT0145 CIT0027 CIT0148 CIT0026 CIT0147 CIT0029 CIT0028 CIT0149 CIT0201 CIT0200 CIT0202 Moreau S (CIT0114) 2001; 159 Clerici M (CIT0045) 2014; 33 Paques F (CIT0131) 1999; 63 White CI (CIT0183) 1990; 9 CIT0100 CIT0109 CIT0102 CIT0101 CIT0104 CIT0103 CIT0106 CIT0105 CIT0108 CIT0072 CIT0193 CIT0071 CIT0192 CIT0074 CIT0195 CIT0073 CIT0194 CIT0076 CIT0197 CIT0075 CIT0196 CIT0078 CIT0199 CIT0077 CIT0198 CIT0070 CIT0191 CIT0190 CIT0079 Lazzaro F (CIT0090) 2008; 27 CIT0083 CIT0082 CIT0085 CIT0084 CIT0087 CIT0086 CIT0089 CIT0088 CIT0080 CIT0094 CIT0093 CIT0096 CIT0095 CIT0098 CIT0097 CIT0099 McKee AH (CIT0107) 1997; 146 CIT0092 CIT0091 Tishkoff DX (CIT0162) 1998; 58 CIT0030 CIT0151 CIT0150 CIT0032 CIT0153 CIT0031 CIT0152 CIT0034 CIT0155 CIT0033 CIT0154 CIT0036 CIT0157 CIT0035 CIT0156 CIT0038 CIT0037 CIT0158 CIT0039 Prinz S (CIT0137) 1997; 146 CIT0160 CIT0041 CIT0040 CIT0161 CIT0043 CIT0164 CIT0042 CIT0163 CIT0166 CIT0044 CIT0165 CIT0047 CIT0168 Bressan DA (CIT0018) 1998; 150 CIT0046 CIT0167 CIT0049 CIT0048 CIT0169 CIT0050 CIT0171 CIT0170 CIT0052 CIT0173 CIT0051 CIT0172 CIT0054 CIT0175 CIT0053 CIT0174 CIT0056 CIT0177 CIT0055 CIT0176 Szankasi P (CIT0159) 1992; 267 CIT0058 CIT0179 CIT0057 CIT0178 CIT0059 CIT0061 CIT0182 CIT0060 CIT0181 CIT0063 CIT0184 CIT0062 CIT0065 CIT0186 CIT0064 CIT0185 CIT0067 CIT0188 CIT0066 CIT0187 CIT0180 CIT0069 CIT0068 CIT0189 11454871 - J Biol Chem. 2001 Sep 21;276(38):35458-64 22553214 - J Cell Sci. 2012 Aug 1;125(Pt 15):3529-34 16805667 - Annu Rev Genet. 2006;40:209-35 9215887 - Genetics. 1997 Jul;146(3):781-95 18820296 - Nucleic Acids Res. 2008 Nov;36(19):6091-100 26774285 - Mol Cell. 2016 Feb 4;61(3):405-18 19473888 - DNA Repair (Amst). 2009 Sep 2;8(9):983-95 25909997 - PLoS One. 2015 Apr 24;10(4):e0124495 15121837 - Mol Cell Biol. 2004 May;24(10):4151-65 26884156 - Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1170-9 17965729 - Nature. 2007 Nov 22;450(7169):509-14 10612394 - Cell. 1999 Dec 10;99(6):577-87 15964794 - Mol Cell Biol. 2005 Jul;25(13):5363-79 12509295 - DNA Repair (Amst). 2002 Jan 22;1(1):27-40 15496928 - Nature. 2004 Oct 21;431(7011):1011-7 9755192 - Genetics. 1998 Oct;150(2):591-600 9799249 - EMBO J. 1998 Nov 2;17(21):6412-25 22960744 - Nature. 2012 Sep 27;489(7417):581-4 15831459 - Mol Cell Biol. 2005 May;25(9):3535-42 19633670 - Nat Struct Mol Biol. 2009 Aug;16(8):808-13 9858579 - Mol Cell Biol. 1999 Jan;19(1):556-66 25637499 - EMBO Rep. 2015 Mar;16(3):351-61 11955432 - Cell. 2002 Mar 22;108(6):781-94 23468639 - PLoS Genet. 2013;9(2):e1003277 24362840 - Nucleic Acids Res. 2014 Feb;42(3):e19 11779786 - Genetics. 2001 Dec;159(4):1423-33 16959775 - J Biol Chem. 2006 Nov 3;281(44):33198-205 25381364 - Genetics. 2014 Nov;198(3):795-835 25925573 - Nucleic Acids Res. 2015 May 26;43(10):5017-32 19202191 - J Biol Chem. 2009 Apr 3;284(14):9558-65 21263027 - J Cell Biol. 2011 Jan 24;192(2):251-61 15867354 - Cancer Res. 2005 May 1;65(9):3604-9 18176557 - Nat Chem Biol. 2008 Feb;4(2):119-25 18584027 - PLoS Genet. 2008 Jun 27;4(6):e1000110 23007155 - Mol Cell Biol. 2012 Nov;32(22):4727-40 21854230 - Annu Rev Genet. 2011;45:167-202 23486525 - J Biol Chem. 2013 Apr 19;288(16):11135-43 15485933 - Mol Cell Biol. 2004 Nov;24(21):9682-94 23144625 - PLoS Genet. 2012;8(11):e1003026 20107609 - PLoS Genet. 2010 Jan 22;6(1):e1000828 19165339 - PLoS One. 2009;4(1):e4267 15548595 - Mol Biol Cell. 2005 Feb;16(2):597-608 20834227 - EMBO J. 2010 Oct 6;29(19):3370-80 23727112 - Cell. 2013 Jun 6;153(6):1266-80 18832348 - Genetics. 2008 Dec;180(4):1809-19 23728291 - Nat Struct Mol Biol. 2013 Jul;20(7):836-42 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72 21841787 - Nat Struct Mol Biol. 2011 Aug 14;18(9):1015-9 22607975 - Mol Cell. 2012 May 25;46(4):424-35 17178837 - Mol Cell Biol. 2007 Mar;27(5):1602-13 9653124 - Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7969-74 18583988 - EMBO Rep. 2008 Aug;9(8):795-801 23273981 - Mol Cell. 2013 Feb 21;49(4):657-67 18854157 - Cell. 2008 Oct 3;135(1):85-96 16107854 - Nature. 2005 Aug 18;436(7053):1053-7 22326273 - DNA Repair (Amst). 2012 Apr 1;11(4):441-8 19804756 - Cell. 2009 Oct 2;139(1):100-11 21252998 - Nat Rev Mol Cell Biol. 2011 Feb;12(2):90-103 15549137 - EMBO J. 2004 Dec 8;23(24):4868-75 22705791 - Nat Struct Mol Biol. 2012 Jun 17;19(7):693-700 11751629 - Genes Dev. 2001 Dec 15;15(24):3237-42 21876003 - Mol Cell Biol. 2011 Nov;31(21):4379-89 16162495 - J Biol Chem. 2005 Nov 18;280(46):38631-8 12791985 - Science. 2003 Jun 6;300(5625):1542-8 20150422 - J Biol Chem. 2010 Apr 9;285(15):11628-37 15369670 - Cell. 2004 Sep 17;118(6):699-713 16143598 - Genetics. 2005 Dec;171(4):1561-70 21325134 - Genes Dev. 2011 Feb 15;25(4):350-62 21458667 - Cell. 2011 Apr 1;145(1):54-66 18275380 - Annu Rev Biochem. 2008;77:229-57 18756267 - EMBO J. 2008 Sep 17;27(18):2400-10 1737756 - J Biol Chem. 1992 Feb 15;267(5):3014-23 11473323 - Nature. 2001 Jul 26;412(6845):456-61 18418382 - EMBO J. 2008 May 21;27(10):1502-12 25254351 - Nat Commun. 2014 Sep 25;5:5004 14636568 - Mol Cell. 2003 Nov;12 (5):1077-86 21052091 - EMBO Rep. 2010 Dec;11(12):962-8 21901114 - PLoS Genet. 2011 Aug;7(8):e1002263 25231868 - Nature. 2014 Oct 2;514(7520):122-5 25580577 - Nat Struct Mol Biol. 2015 Feb;22(2):158-66 26370409 - Cold Spring Harb Symp Quant Biol. 2015 ;80:103-9 22445484 - Mol Cell. 2012 Apr 27;46(2):125-35 26439531 - Trends Biochem Sci. 2015 Nov;40(11):701-14 21441914 - Nat Struct Mol Biol. 2011 Apr;18(4):423-31 18805091 - Cell. 2008 Sep 19;134(6):981-94 22556254 - Science. 2012 May 4;336(6081):593-7 25122752 - Nucleic Acids Res. 2014;42(16):10516-28 25558984 - Nat Struct Mol Biol. 2015 Feb;22(2):150-7 9501103 - EMBO J. 1998 Mar 16;17 (6):1819-28 18511906 - EMBO J. 2008 Jul 9;27(13):1875-85 11430828 - Mol Cell. 2001 Jun;7(6):1255-66 23306437 - Science. 2013 Feb 8;339(6120):700-4 25831494 - Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1880-7 18957200 - Cell. 2008 Oct 17;135(2):250-60 18406328 - Mol Cell. 2008 Apr 11;30(1):73-85 25799992 - Nature. 2015 May 28;521(7553):541-4 24191051 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18868-73 20965415 - Mol Cell. 2010 Oct 22;40(2):179-204 24842372 - J Exp Med. 2014 Jun 2;211(6):1027-36 17936710 - Mol Cell. 2007 Oct 12;28(1):134-46 25122754 - J Biol Chem. 2014 Sep 26;289(39):27314-26 24608368 - Nat Struct Mol Biol. 2014 Apr;21(4):405-12 20233726 - J Biol Chem. 2010 May 7;285(19):14565-71 17565964 - Genetics. 2007 Aug;176(4):2003-14 20729809 - EMBO J. 2010 Oct 6;29(19):3358-69 11231126 - Curr Biol. 2001 Jan 23;11(2):105-9 14737196 - PLoS Biol. 2004 Jan;2(1):E21 18806779 - Nature. 2008 Oct 9;455(7214):770-4 23589858 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):E1661-8 2004421 - Cell. 1991 Mar 22;64(6):1155-61 10357855 - Microbiol Mol Biol Rev. 1999 Jun;63(2):349-404 26503252 - Nucleic Acids Res. 2016 Jan 29;44(2):695-704 21511873 - Genes Dev. 2011 May 15;25(10):1091-104 23333306 - Mol Cell. 2013 Mar 7;49(5):872-83 18245357 - Genetics. 2008 Feb;178(2):711-23 2659437 - Genetics. 1989 May;122(1):47-57 20811461 - Nature. 2010 Sep 2;467(7311):112-6 21931565 - PLoS Genet. 2011 Sep;7(9):e1002271 2178924 - EMBO J. 1990 Mar;9(3):663-73 23706822 - Mol Cell. 2013 May 23;50(4):589-600 18378696 - Mol Cell Biol. 2008 Jun;28(11):3639-51 9121560 - Nature. 1997 Mar 27;386(6623):414-7 12923051 - Genes Dev. 2003 Aug 15;17 (16):1957-62 9651580 - Mol Cell. 1998 Jun;1(7):969-79 18171670 - J Biol Chem. 2008 Mar 21;283(12):7713-20 22002605 - Nature. 2011 Oct 16;479(7372):241-4 22481439 - Cell Mol Life Sci. 2012 Sep;69(18):3037-51 10888664 - Mol Biol Cell. 2000 Jul;11(7):2221-33 11832209 - Cell. 2002 Jan 25;108(2):183-93 12152085 - Nature. 2002 Aug 1;418(6897):562-6 23178594 - EMBO J. 2013 Jan 9;32(1):126-39 9215888 - Genetics. 1997 Jul;146(3):797-816 24344201 - Mol Cell Biol. 2014 Mar;34(5):778-93 10346816 - Genes Dev. 1999 May 15;13(10 ):1276-88 20362325 - Cell. 2010 Apr 16;141(2):243-54 18042458 - Mol Cell. 2007 Nov 30;28(4):638-51 26502055 - Nat Cell Biol. 2015 Nov;17 (11):1446-57 25512557 - Genes Dev. 2014 Dec 15;28(24):2693-8 24705021 - Nat Commun. 2014 Apr 07;5:3561 26067273 - J Biol Chem. 2015 Jul 24;290(30):18806-16 23939618 - Nucleic Acids Res. 2013 Nov;41(20):9325-38 20453858 - Nat Struct Mol Biol. 2010 Jun;17 (6):688-95 26649820 - Nature. 2015 Dec 17;528(7582):422-6 24316220 - Mol Cell. 2014 Jan 9;53(1):7-18 9224597 - Nucleic Acids Res. 1997 Aug 1;25(15):2985-91 25213441 - Bioessays. 2014 Dec;36(12):1170-8 23209155 - Cold Spring Harb Perspect Biol. 2012 Dec 01;4(12):null 25762720 - J Biol Chem. 2015 Apr 24;290(17 ):10751-63 23306439 - Science. 2013 Feb 8;339(6120):711-5 9590181 - Cell. 1998 May 1;93(3):477-86 25799990 - Nature. 2015 May 28;521(7553):537-40 25569305 - PLoS Genet. 2015 Jan 08;11(1):e1004928 8986766 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15075-80 24357557 - EMBO J. 2014 Feb 3;33(3):198-216 19285939 - Mol Cell. 2009 Mar 13;33(5):547-58 23953933 - DNA Repair (Amst). 2013 Oct;12 (10 ):791-9 22987153 - Cell Cycle. 2012 Nov 1;11(21):3983-96 16905530 - J Biol Chem. 2006 Oct 13;281(41):30305-9 18971343 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16906-11 25899817 - EMBO J. 2015 Jun 3;34(11):1509-22 9823303 - Cancer Res. 1998 Nov 15;58(22):5027-31 26545079 - Mol Cell. 2015 Nov 5;60(3):500-8 26584331 - PLoS Genet. 2015 Nov 19;11(11):e1005685 21172664 - Mol Cell. 2010 Dec 22;40(6):1001-15 22544744 - J Biol Chem. 2012 Jun 15;287(25):21471-80 20929864 - J Biol Chem. 2010 Dec 10;285(50):38861-8 18600234 - EMBO Rep. 2008 Aug;9(8):810-8 19633668 - Nat Struct Mol Biol. 2009 Aug;16(8):819-24 21102445 - Nat Struct Mol Biol. 2010 Dec;17(12):1478-85 23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5 23712259 - J Cell Biol. 2013 May 27;201(5):693-707 19633669 - Nat Struct Mol Biol. 2009 Aug;16(8):814-8 24094932 - Trends Cell Biol. 2014 Feb;24(2):108-17 20808892 - PLoS Genet. 2010 Aug 19;6(8):e1001072 18716619 - Nature. 2008 Oct 2;455(7213):689-92 2185891 - Cell. 1990 May 4;61(3):419-36 10377422 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7376-81 16374511 - EMBO Rep. 2006 Feb;7(2):212-8 1427035 - Genetics. 1992 Oct;132(2):387-402 19804755 - Cell. 2009 Oct 2;139(1):87-99 22960743 - Nature. 2012 Sep 27;489(7417):576-80 8812111 - Dev Biol. 1996 Aug 25;178(1):90-100 24097410 - Genetics. 2013 Dec;195(4):1241-51 9039264 - Cell. 1997 Feb 7;88(3):375-84 23637284 - Cold Spring Harb Perspect Biol. 2013 May 01;5(5):a012757 20811460 - Nature. 2010 Sep 2;467(7311):108-11 24837675 - Mol Cell. 2014 Jun 19;54(6):1012-21 17347674 - EMBO Rep. 2007 Apr;8(4):380-7 17887919 - Annu Rev Genomics Hum Genet. 2007;8:37-55 7855597 - Science. 1995 Feb 24;267(5201):1166-9 9845372 - Cell. 1998 Nov 25;95(5):705-16 25126790 - Cell. 2014 Aug 14;158(4):861-73 17898768 - Nature. 2007 Sep 27;449(7161):483-6 25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62 24837676 - Mol Cell. 2014 Jun 19;54(6):1022-33 19409520 - Am J Hum Genet. 2009 May;84(5):605-16 15937224 - Genes Dev. 2005 Jun 1;19(11):1390-9 20064462 - Mol Cell. 2009 Dec 25;36(6):954-69 24984776 - Cold Spring Harb Perspect Biol. 2014 Jul 01;6(7):a016477 15758953 - Nature. 2005 Mar 31;434(7033):605-11 21910633 - Annu Rev Genet. 2011;45:247-71 23333305 - Mol Cell. 2013 Mar 7;49(5):858-71 18854158 - Cell. 2008 Oct 3;135(1):97-109 |
References_xml | – ident: CIT0098 doi: 10.1016/j.cell.2004.08.015 – ident: CIT0193 doi: 10.1128/MCB.25.13.5363-5379.2005 – ident: CIT0013 doi: 10.1101/cshperspect.a016477 – ident: CIT0143 doi: 10.1146/annurev.biochem.77.061306.125255 – ident: CIT0202 doi: 10.1126/science.1083430 – ident: CIT0069 doi: 10.1371/journal.pgen.1005685 – ident: CIT0001 doi: 10.1038/nsmb.2585 – ident: CIT0078 doi: 10.1074/jbc.M808906200 – ident: CIT0066 doi: 10.1038/nature10515 – ident: CIT0126 doi: 10.1073/pnas.0809380105 – ident: CIT0091 doi: 10.1534/genetics.107.076539 – ident: CIT0082 doi: 10.4161/cc.22215 – ident: CIT0101 doi: 10.1016/S0092-8674(02)00614-1 – ident: CIT0182 doi: 10.1093/nar/gkv1109 – ident: CIT0199 doi: 10.1038/emboj.2008.111 – ident: CIT0111 doi: 10.1038/emboj.2010.193 – ident: CIT0119 doi: 10.1371/journal.pgen.1000828 – ident: CIT0144 doi: 10.1038/nature06337 – ident: CIT0173 doi: 10.1016/S0092-8674(00)81640-2 – ident: CIT0181 doi: 10.1101/sqb.2015.80.027649 – ident: CIT0161 doi: 10.1083/jcb.201406100 – ident: CIT0187 doi: 10.1074/jbc.M110.104745 – ident: CIT0153 doi: 10.1016/S0092-8674(00)81547-0 – ident: CIT0117 doi: 10.1073/pnas.1516674113 – ident: CIT0194 doi: 10.1016/j.molcel.2009.12.002 – ident: CIT0189 doi: 10.1038/nsmb.1640 – ident: CIT0038 doi: 10.1038/nsmb.2105 – ident: CIT0112 doi: 10.1074/jbc.R600022200 – ident: CIT0158 doi: 10.1534/genetics.114.166140 – ident: CIT0100 doi: 10.1016/j.cell.2009.07.043 – ident: CIT0118 doi: 10.1101/gad.1099003 – volume: 27 start-page: 1502 year: 2008 ident: CIT0090 publication-title: EMBO J – ident: CIT0128 doi: 10.1101/cshperspect.a012773 – ident: CIT0053 doi: 10.1006/dbio.1996.0200 – ident: CIT0008 doi: 10.1016/j.molcel.2008.01.016 – ident: CIT0132 doi: 10.1016/S1097-2765(00)80097-0 – ident: CIT0115 doi: 10.1038/emboj.2008.171 – ident: CIT0165 doi: 10.1038/ncomms4561 – ident: CIT0089 doi: 10.1371/journal.pgen.1002271 – ident: CIT0106 doi: 10.1038/sj.embor.7400911 – ident: CIT0047 doi: 10.1038/nature06168 – ident: CIT0133 doi: 10.1101/gad.13.10.1276 – ident: CIT0138 doi: 10.15252/embj.201590973 – ident: CIT0073 doi: 10.1371/journal.pone.0124495 – ident: CIT0116 doi: 10.1016/j.cell.2014.06.028 – ident: CIT0042 doi: 10.1038/embor.2008.121 – ident: CIT0044 doi: 10.1038/sj.embor.7400593 – ident: CIT0200 doi: 10.1016/j.tcb.2013.09.003 – ident: CIT0174 doi: 10.1371/journal.pgen.1003026 – volume: 9 start-page: 663 year: 1990 ident: CIT0183 publication-title: EMBO J doi: 10.1002/j.1460-2075.1990.tb08158.x – ident: CIT0185 doi: 10.1016/j.cell.2009.07.033 – ident: CIT0074 doi: 10.1038/nature00922 – ident: CIT0086 doi: 10.1074/jbc.M115.660191 – ident: CIT0123 doi: 10.1371/journal.pgen.1001072 – ident: CIT0014 doi: 10.1038/nature14216 – ident: CIT0002 doi: 10.1128/MCB.01828-07 – ident: CIT0168 doi: 10.1074/jbc.M105482200 – ident: CIT0052 doi: 10.1126/science.1230624 – ident: CIT0021 doi: 10.1016/j.cell.2008.08.015 – ident: CIT0035 doi: 10.1074/jbc.M710245200 – ident: CIT0170 doi: 10.1091/mbc.11.7.2221 – ident: CIT0028 doi: 10.1016/S0092-8674(00)81175-7 – ident: CIT0054 doi: 10.1038/nsmb.1639 – ident: CIT0149 doi: 10.1016/j.molcel.2013.11.003 – ident: CIT0147 doi: 10.1126/science.1218498 – ident: CIT0025 doi: 10.1073/pnas.1305166110 – ident: CIT0125 doi: 10.1101/gad.2003811 – ident: CIT0186 doi: 10.1016/j.cell.2008.08.017 – ident: CIT0201 doi: 10.1126/science.1231573 – ident: CIT0055 doi: 10.1038/nchembio.63 – ident: CIT0034 doi: 10.1016/j.molcel.2013.04.032 – ident: CIT0058 doi: 10.1158/0008-5472.CAN-04-4069 – ident: CIT0097 doi: 10.1016/j.molcel.2007.09.009 – ident: CIT0041 doi: 10.1016/j.molcel.2010.09.019 – ident: CIT0175 doi: 10.1016/j.ajhg.2009.04.010 – ident: CIT0059 doi: 10.1016/j.molcel.2013.01.001 – ident: CIT0076 doi: 10.1016/j.cell.2008.09.054 – ident: CIT0192 doi: 10.1038/emboj.2012.314 – ident: CIT0050 doi: 10.1038/nsmb.2786 – ident: CIT0075 doi: 10.1002/bies.201400102 – ident: CIT0142 doi: 10.1016/j.molcel.2012.03.030 – ident: CIT0145 doi: 10.1146/annurev-genet-110410-132552 – ident: CIT0146 doi: 10.1038/nsmb.2323 – ident: CIT0179 doi: 10.1101/gad.252478.114 – ident: CIT0043 doi: 10.1074/jbc.M508339200 – ident: CIT0110 doi: 10.1016/j.dnarep.2009.04.017 – ident: CIT0139 doi: 10.1038/nsmb.1641 – ident: CIT0084 doi: 10.1007/s00018-012-0974-9 – ident: CIT0124 doi: 10.1038/nsmb.1957 – ident: CIT0163 doi: 10.1016/j.molcel.2015.12.013 – ident: CIT0151 doi: 10.1128/MCB.01956-06 – ident: CIT0191 doi: 10.1083/jcb.201005110 – ident: CIT0195 doi: 10.1016/j.molcel.2010.11.032 – ident: CIT0005 doi: 10.1038/sj.emboj.7600469 – ident: CIT0019 doi: 10.1073/pnas.93.26.15075 – ident: CIT0012 doi: 10.1534/genetics.113.157370 – ident: CIT0080 doi: 10.1038/ncb3259 – ident: CIT0154 doi: 10.1038/nrm3047 – ident: CIT0140 doi: 10.1101/gad.1315805 – ident: CIT0048 doi: 10.1038/nature11353 – ident: CIT0009 doi: 10.1128/MCB.24.10.4151-4165.2004 – ident: CIT0032 doi: 10.1242/jcs.105353 – ident: CIT0061 doi: 10.1074/jbc.M113.457440 – ident: CIT0010 doi: 10.1371/journal.pgen.1000110 – volume: 132 start-page: 387 year: 1992 ident: CIT0081 publication-title: Genetics doi: 10.1093/genetics/132.2.387 – ident: CIT0164 doi: 10.1074/jbc.M605044200 – volume: 146 start-page: 797 year: 1997 ident: CIT0107 publication-title: Genetics doi: 10.1093/genetics/146.3.797 – ident: CIT0004 doi: 10.1038/nsmb.2945 – ident: CIT0060 doi: 10.1038/nature03442 – ident: CIT0171 doi: 10.1091/mbc.E04-09-0782 – ident: CIT0122 doi: 10.1093/nar/gkv409 – ident: CIT0063 doi: 10.1128/MCB.05854-11 – ident: CIT0094 doi: 10.1074/jbc.M114.625293 – ident: CIT0136 doi: 10.1084/jem.20131939 – ident: CIT0065 doi: 10.1093/emboj/17.21.6412 – ident: CIT0027 doi: 10.1073/pnas.1309816110 – ident: CIT0071 doi: 10.1038/ncomms6004 – ident: CIT0157 doi: 10.1146/annurev-genet-110410-132435 – ident: CIT0007 doi: 10.1074/jbc.M110.165191 – ident: CIT0030 doi: 10.1016/j.molcel.2013.01.002 – ident: CIT0015 doi: 10.15252/embr.201439764 – ident: CIT0104 doi: 10.1016/j.molcel.2014.04.011 – ident: CIT0109 doi: 10.1038/nature07312 – ident: CIT0046 doi: 10.1073/pnas.95.14.7969 – ident: CIT0196 doi: 10.1093/nar/gkt1309 – ident: CIT0188 doi: 10.1093/nar/25.15.2985 – ident: CIT0077 doi: 10.1038/nature07215 – ident: CIT0121 doi: 10.1093/nar/gku746 – ident: CIT0088 doi: 10.1016/j.cell.2011.02.038 – ident: CIT0062 doi: 10.1371/journal.pgen.1004928 – ident: CIT0169 doi: 10.1073/pnas.1213431110 – ident: CIT0129 doi: 10.1038/nature16142 – ident: CIT0070 doi: 10.1101/gad.503108 – ident: CIT0177 doi: 10.1074/jbc.M112.355354 – volume: 146 start-page: 781 year: 1997 ident: CIT0137 publication-title: Genetics doi: 10.1093/genetics/146.3.781 – ident: CIT0037 doi: 10.1038/nature11355 – ident: CIT0103 doi: 10.1016/S0092-8674(02)00671-2 – ident: CIT0127 doi: 10.1038/nature09318 – ident: CIT0095 doi: 10.1093/nar/gkn616 – ident: CIT0102 doi: 10.1073/pnas.96.13.7376 – ident: CIT0150 doi: 10.1038/emboj.2010.219 – volume: 267 start-page: 3014 year: 1992 ident: CIT0159 publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)50688-3 – ident: CIT0178 doi: 10.1371/journal.pgen.1003277 – ident: CIT0072 doi: 10.1146/annurev.genet.40.051206.105231 – ident: CIT0020 doi: 10.1371/journal.pone.0004267 – ident: CIT0120 doi: 10.1038/nature03872 – volume: 150 start-page: 591 year: 1998 ident: CIT0018 publication-title: Genetics doi: 10.1093/genetics/150.2.591 – ident: CIT0024 doi: 10.1016/j.cell.2013.05.023 – volume: 33 start-page: 198 year: 2014 ident: CIT0045 publication-title: EMBO J – ident: CIT0085 doi: 10.1534/genetics.107.081331 – ident: CIT0056 doi: 10.1128/MCB.00566-12 – ident: CIT0198 doi: 10.1016/j.cell.2008.08.037 – ident: CIT0016 doi: 10.1093/emboj/17.6.1819 – ident: CIT0092 doi: 10.1016/S1568-7864(01)00003-9 – ident: CIT0087 doi: 10.1534/genetics.105.049478 – ident: CIT0156 doi: 10.1016/0092-8674(91)90270-9 – ident: CIT0033 doi: 10.1073/pnas.1503331112 – ident: CIT0068 doi: 10.1016/j.dnarep.2013.07.009 – ident: CIT0184 doi: 10.1038/nsmb.2038 – ident: CIT0079 doi: 10.1038/nature02964 – ident: CIT0093 doi: 10.1016/j.molcel.2007.11.001 – ident: CIT0152 doi: 10.1016/j.molcel.2009.01.024 – ident: CIT0167 doi: 10.1371/journal.pgen.1002263 – ident: CIT0006 doi: 10.1038/35086609 – ident: CIT0113 doi: 10.1128/MCB.19.1.556 – ident: CIT0049 doi: 10.1038/nsmb.2937 – ident: CIT0130 doi: 10.1534/genetics.108.095539 – ident: CIT0166 doi: 10.1016/j.dnarep.2012.01.006 – ident: CIT0022 doi: 10.1016/j.molcel.2012.02.015 – ident: CIT0039 doi: 10.1093/nar/gkt672 – ident: CIT0148 doi: 10.1016/j.tibs.2015.08.006 – ident: CIT0057 doi: 10.1038/embor.2010.157 – ident: CIT0197 doi: 10.1016/S0960-9822(01)00019-7 – ident: CIT0003 doi: 10.1016/0092-8674(90)90524-I – ident: CIT0172 doi: 10.1016/S1097-2765(01)00270-2 – ident: CIT0029 doi: 10.1038/nature09355 – ident: CIT0135 doi: 10.1101/gad.946401 – ident: CIT0141 doi: 10.1083/jcb.201302145 – ident: CIT0190 doi: 10.1038/nature14328 – ident: CIT0040 doi: 10.1101/cshperspect.a012757 – ident: CIT0017 doi: 10.1038/nsmb.1831 – ident: CIT0176 doi: 10.1016/j.molcel.2014.04.012 – ident: CIT0064 doi: 10.1128/MCB.00963-13 – ident: CIT0180 doi: 10.1371/journal.pbio.0020021 – ident: CIT0051 doi: 10.1016/j.molcel.2015.09.027 – ident: CIT0026 doi: 10.1038/nature13771 – ident: CIT0099 doi: 10.1128/MCB.24.21.9682-9694.2004 – ident: CIT0105 doi: 10.1074/jbc.M110.104083 – volume: 58 start-page: 5027 year: 1998 ident: CIT0162 publication-title: Cancer Res – ident: CIT0160 doi: 10.1126/science.7855597 – ident: CIT0031 doi: 10.1038/embor.2008.103 – volume: 159 start-page: 1423 year: 2001 ident: CIT0114 publication-title: Genetics doi: 10.1093/genetics/159.4.1423 – ident: CIT0096 doi: 10.1101/gad.2037811 – ident: CIT0155 doi: 10.1074/jbc.M114.578823 – ident: CIT0108 doi: 10.1146/annurev.genom.7.080505.115648 – ident: CIT0083 doi: 10.1016/S0092-8674(00)81876-0 – ident: CIT0067 doi: 10.1016/S1097-2765(03)00428-3 – ident: CIT0011 doi: 10.1038/386414a0 – ident: CIT0036 doi: 10.1128/MCB.25.9.3535-3542.2005 – ident: CIT0134 doi: 10.1016/j.molcel.2012.11.020 – volume: 63 start-page: 349 year: 1999 ident: CIT0131 publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.63.2.349-404.1999 – ident: CIT0023 doi: 10.1016/j.cell.2010.03.012 – reference: 20107609 - PLoS Genet. 2010 Jan 22;6(1):e1000828 – reference: 21172664 - Mol Cell. 2010 Dec 22;40(6):1001-15 – reference: 18042458 - Mol Cell. 2007 Nov 30;28(4):638-51 – reference: 22481439 - Cell Mol Life Sci. 2012 Sep;69(18):3037-51 – reference: 18378696 - Mol Cell Biol. 2008 Jun;28(11):3639-51 – reference: 14737196 - PLoS Biol. 2004 Jan;2(1):E21 – reference: 9121560 - Nature. 1997 Mar 27;386(6623):414-7 – reference: 24097410 - Genetics. 2013 Dec;195(4):1241-51 – reference: 25733713 - J Cell Biol. 2015 Mar 2;208(5):545-62 – reference: 17565964 - Genetics. 2007 Aug;176(4):2003-14 – reference: 14636568 - Mol Cell. 2003 Nov;12 (5):1077-86 – reference: 9823303 - Cancer Res. 1998 Nov 15;58(22):5027-31 – reference: 25126790 - Cell. 2014 Aug 14;158(4):861-73 – reference: 20811460 - Nature. 2010 Sep 2;467(7311):108-11 – reference: 18176557 - Nat Chem Biol. 2008 Feb;4(2):119-25 – reference: 11231126 - Curr Biol. 2001 Jan 23;11(2):105-9 – reference: 23333305 - Mol Cell. 2013 Mar 7;49(5):858-71 – reference: 21458667 - Cell. 2011 Apr 1;145(1):54-66 – reference: 18957200 - Cell. 2008 Oct 17;135(2):250-60 – reference: 12152085 - Nature. 2002 Aug 1;418(6897):562-6 – reference: 11955432 - Cell. 2002 Mar 22;108(6):781-94 – reference: 17898768 - Nature. 2007 Sep 27;449(7161):483-6 – reference: 24316220 - Mol Cell. 2014 Jan 9;53(1):7-18 – reference: 18854158 - Cell. 2008 Oct 3;135(1):97-109 – reference: 19473888 - DNA Repair (Amst). 2009 Sep 2;8(9):983-95 – reference: 24984776 - Cold Spring Harb Perspect Biol. 2014 Jul 01;6(7):a016477 – reference: 18832348 - Genetics. 2008 Dec;180(4):1809-19 – reference: 22960743 - Nature. 2012 Sep 27;489(7417):576-80 – reference: 23209155 - Cold Spring Harb Perspect Biol. 2012 Dec 01;4(12):null – reference: 24362840 - Nucleic Acids Res. 2014 Feb;42(3):e19 – reference: 11751629 - Genes Dev. 2001 Dec 15;15(24):3237-42 – reference: 23712259 - J Cell Biol. 2013 May 27;201(5):693-707 – reference: 21325134 - Genes Dev. 2011 Feb 15;25(4):350-62 – reference: 18511906 - EMBO J. 2008 Jul 9;27(13):1875-85 – reference: 15369670 - Cell. 2004 Sep 17;118(6):699-713 – reference: 23273981 - Mol Cell. 2013 Feb 21;49(4):657-67 – reference: 24842372 - J Exp Med. 2014 Jun 2;211(6):1027-36 – reference: 23468639 - PLoS Genet. 2013;9(2):e1003277 – reference: 19285939 - Mol Cell. 2009 Mar 13;33(5):547-58 – reference: 23486525 - J Biol Chem. 2013 Apr 19;288(16):11135-43 – reference: 23728291 - Nat Struct Mol Biol. 2013 Jul;20(7):836-42 – reference: 25122754 - J Biol Chem. 2014 Sep 26;289(39):27314-26 – reference: 20965415 - Mol Cell. 2010 Oct 22;40(2):179-204 – reference: 25231868 - Nature. 2014 Oct 2;514(7520):122-5 – reference: 24344201 - Mol Cell Biol. 2014 Mar;34(5):778-93 – reference: 18971343 - Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16906-11 – reference: 26370409 - Cold Spring Harb Symp Quant Biol. 2015 ;80:103-9 – reference: 25925573 - Nucleic Acids Res. 2015 May 26;43(10):5017-32 – reference: 10357855 - Microbiol Mol Biol Rev. 1999 Jun;63(2):349-404 – reference: 18923075 - Genes Dev. 2008 Oct 15;22(20):2767-72 – reference: 19202191 - J Biol Chem. 2009 Apr 3;284(14):9558-65 – reference: 16905530 - J Biol Chem. 2006 Oct 13;281(41):30305-9 – reference: 20362325 - Cell. 2010 Apr 16;141(2):243-54 – reference: 23727112 - Cell. 2013 Jun 6;153(6):1266-80 – reference: 15549137 - EMBO J. 2004 Dec 8;23(24):4868-75 – reference: 18716619 - Nature. 2008 Oct 2;455(7213):689-92 – reference: 12509295 - DNA Repair (Amst). 2002 Jan 22;1(1):27-40 – reference: 9039264 - Cell. 1997 Feb 7;88(3):375-84 – reference: 9215887 - Genetics. 1997 Jul;146(3):781-95 – reference: 1427035 - Genetics. 1992 Oct;132(2):387-402 – reference: 20811461 - Nature. 2010 Sep 2;467(7311):112-6 – reference: 9651580 - Mol Cell. 1998 Jun;1(7):969-79 – reference: 18245357 - Genetics. 2008 Feb;178(2):711-23 – reference: 23333306 - Mol Cell. 2013 Mar 7;49(5):872-83 – reference: 25558984 - Nat Struct Mol Biol. 2015 Feb;22(2):150-7 – reference: 2659437 - Genetics. 1989 May;122(1):47-57 – reference: 25762720 - J Biol Chem. 2015 Apr 24;290(17 ):10751-63 – reference: 8812111 - Dev Biol. 1996 Aug 25;178(1):90-100 – reference: 17347674 - EMBO Rep. 2007 Apr;8(4):380-7 – reference: 24608368 - Nat Struct Mol Biol. 2014 Apr;21(4):405-12 – reference: 23610439 - Proc Natl Acad Sci U S A. 2013 May 7;110(19):7720-5 – reference: 23953933 - DNA Repair (Amst). 2013 Oct;12 (10 ):791-9 – reference: 25213441 - Bioessays. 2014 Dec;36(12):1170-8 – reference: 2004421 - Cell. 1991 Mar 22;64(6):1155-61 – reference: 20233726 - J Biol Chem. 2010 May 7;285(19):14565-71 – reference: 15548595 - Mol Biol Cell. 2005 Feb;16(2):597-608 – reference: 26502055 - Nat Cell Biol. 2015 Nov;17 (11):1446-57 – reference: 26503252 - Nucleic Acids Res. 2016 Jan 29;44(2):695-704 – reference: 18806779 - Nature. 2008 Oct 9;455(7214):770-4 – reference: 25569305 - PLoS Genet. 2015 Jan 08;11(1):e1004928 – reference: 9653124 - Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):7969-74 – reference: 24357557 - EMBO J. 2014 Feb 3;33(3):198-216 – reference: 21252998 - Nat Rev Mol Cell Biol. 2011 Feb;12(2):90-103 – reference: 26545079 - Mol Cell. 2015 Nov 5;60(3):500-8 – reference: 10346816 - Genes Dev. 1999 May 15;13(10 ):1276-88 – reference: 11473323 - Nature. 2001 Jul 26;412(6845):456-61 – reference: 21910633 - Annu Rev Genet. 2011;45:247-71 – reference: 15758953 - Nature. 2005 Mar 31;434(7033):605-11 – reference: 26439531 - Trends Biochem Sci. 2015 Nov;40(11):701-14 – reference: 25381364 - Genetics. 2014 Nov;198(3):795-835 – reference: 23007155 - Mol Cell Biol. 2012 Nov;32(22):4727-40 – reference: 23306439 - Science. 2013 Feb 8;339(6120):711-5 – reference: 19633668 - Nat Struct Mol Biol. 2009 Aug;16(8):819-24 – reference: 9799249 - EMBO J. 1998 Nov 2;17(21):6412-25 – reference: 11779786 - Genetics. 2001 Dec;159(4):1423-33 – reference: 25899817 - EMBO J. 2015 Jun 3;34(11):1509-22 – reference: 8986766 - Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15075-80 – reference: 20834227 - EMBO J. 2010 Oct 6;29(19):3370-80 – reference: 22607975 - Mol Cell. 2012 May 25;46(4):424-35 – reference: 15121837 - Mol Cell Biol. 2004 May;24(10):4151-65 – reference: 25637499 - EMBO Rep. 2015 Mar;16(3):351-61 – reference: 16162495 - J Biol Chem. 2005 Nov 18;280(46):38631-8 – reference: 26584331 - PLoS Genet. 2015 Nov 19;11(11):e1005685 – reference: 21052091 - EMBO Rep. 2010 Dec;11(12):962-8 – reference: 23939618 - Nucleic Acids Res. 2013 Nov;41(20):9325-38 – reference: 10888664 - Mol Biol Cell. 2000 Jul;11(7):2221-33 – reference: 17965729 - Nature. 2007 Nov 22;450(7169):509-14 – reference: 21876003 - Mol Cell Biol. 2011 Nov;31(21):4379-89 – reference: 15496928 - Nature. 2004 Oct 21;431(7011):1011-7 – reference: 2178924 - EMBO J. 1990 Mar;9(3):663-73 – reference: 18406328 - Mol Cell. 2008 Apr 11;30(1):73-85 – reference: 22960744 - Nature. 2012 Sep 27;489(7417):581-4 – reference: 16107854 - Nature. 2005 Aug 18;436(7053):1053-7 – reference: 19165339 - PLoS One. 2009;4(1):e4267 – reference: 16143598 - Genetics. 2005 Dec;171(4):1561-70 – reference: 25580577 - Nat Struct Mol Biol. 2015 Feb;22(2):158-66 – reference: 20150422 - J Biol Chem. 2010 Apr 9;285(15):11628-37 – reference: 21931565 - PLoS Genet. 2011 Sep;7(9):e1002271 – reference: 11454871 - J Biol Chem. 2001 Sep 21;276(38):35458-64 – reference: 19409520 - Am J Hum Genet. 2009 May;84(5):605-16 – reference: 25799990 - Nature. 2015 May 28;521(7553):537-40 – reference: 23306437 - Science. 2013 Feb 8;339(6120):700-4 – reference: 9215888 - Genetics. 1997 Jul;146(3):797-816 – reference: 22553214 - J Cell Sci. 2012 Aug 1;125(Pt 15):3529-34 – reference: 21841787 - Nat Struct Mol Biol. 2011 Aug 14;18(9):1015-9 – reference: 18584027 - PLoS Genet. 2008 Jun 27;4(6):e1000110 – reference: 21854230 - Annu Rev Genet. 2011;45:167-202 – reference: 17178837 - Mol Cell Biol. 2007 Mar;27(5):1602-13 – reference: 16959775 - J Biol Chem. 2006 Nov 3;281(44):33198-205 – reference: 15937224 - Genes Dev. 2005 Jun 1;19(11):1390-9 – reference: 10377422 - Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7376-81 – reference: 23178594 - EMBO J. 2013 Jan 9;32(1):126-39 – reference: 23706822 - Mol Cell. 2013 May 23;50(4):589-600 – reference: 19633669 - Nat Struct Mol Biol. 2009 Aug;16(8):814-8 – reference: 12923051 - Genes Dev. 2003 Aug 15;17 (16):1957-62 – reference: 25512557 - Genes Dev. 2014 Dec 15;28(24):2693-8 – reference: 16374511 - EMBO Rep. 2006 Feb;7(2):212-8 – reference: 22326273 - DNA Repair (Amst). 2012 Apr 1;11(4):441-8 – reference: 26649820 - Nature. 2015 Dec 17;528(7582):422-6 – reference: 18418382 - EMBO J. 2008 May 21;27(10):1502-12 – reference: 18600234 - EMBO Rep. 2008 Aug;9(8):810-8 – reference: 25122752 - Nucleic Acids Res. 2014;42(16):10516-28 – reference: 19633670 - Nat Struct Mol Biol. 2009 Aug;16(8):808-13 – reference: 24191051 - Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18868-73 – reference: 15964794 - Mol Cell Biol. 2005 Jul;25(13):5363-79 – reference: 16805667 - Annu Rev Genet. 2006;40:209-35 – reference: 24094932 - Trends Cell Biol. 2014 Feb;24(2):108-17 – reference: 7855597 - Science. 1995 Feb 24;267(5201):1166-9 – reference: 21441914 - Nat Struct Mol Biol. 2011 Apr;18(4):423-31 – reference: 19804755 - Cell. 2009 Oct 2;139(1):87-99 – reference: 23637284 - Cold Spring Harb Perspect Biol. 2013 May 01;5(5):a012757 – reference: 15867354 - Cancer Res. 2005 May 1;65(9):3604-9 – reference: 25831494 - Proc Natl Acad Sci U S A. 2015 Apr 14;112(15):E1880-7 – reference: 12791985 - Science. 2003 Jun 6;300(5625):1542-8 – reference: 20929864 - J Biol Chem. 2010 Dec 10;285(50):38861-8 – reference: 20064462 - Mol Cell. 2009 Dec 25;36(6):954-69 – reference: 25254351 - Nat Commun. 2014 Sep 25;5:5004 – reference: 20808892 - PLoS Genet. 2010 Aug 19;6(8):e1001072 – reference: 18171670 - J Biol Chem. 2008 Mar 21;283(12):7713-20 – reference: 19804756 - Cell. 2009 Oct 2;139(1):100-11 – reference: 18756267 - EMBO J. 2008 Sep 17;27(18):2400-10 – reference: 18275380 - Annu Rev Biochem. 2008;77:229-57 – reference: 22705791 - Nat Struct Mol Biol. 2012 Jun 17;19(7):693-700 – reference: 18805091 - Cell. 2008 Sep 19;134(6):981-94 – reference: 24837675 - Mol Cell. 2014 Jun 19;54(6):1012-21 – reference: 2185891 - Cell. 1990 May 4;61(3):419-36 – reference: 23144625 - PLoS Genet. 2012;8(11):e1003026 – reference: 20729809 - EMBO J. 2010 Oct 6;29(19):3358-69 – reference: 9845372 - Cell. 1998 Nov 25;95(5):705-16 – reference: 22987153 - Cell Cycle. 2012 Nov 1;11(21):3983-96 – reference: 15485933 - Mol Cell Biol. 2004 Nov;24(21):9682-94 – reference: 26067273 - J Biol Chem. 2015 Jul 24;290(30):18806-16 – reference: 25909997 - PLoS One. 2015 Apr 24;10(4):e0124495 – reference: 9858579 - Mol Cell Biol. 1999 Jan;19(1):556-66 – reference: 9590181 - Cell. 1998 May 1;93(3):477-86 – reference: 24837676 - Mol Cell. 2014 Jun 19;54(6):1022-33 – reference: 1737756 - J Biol Chem. 1992 Feb 15;267(5):3014-23 – reference: 9501103 - EMBO J. 1998 Mar 16;17 (6):1819-28 – reference: 17936710 - Mol Cell. 2007 Oct 12;28(1):134-46 – reference: 22544744 - J Biol Chem. 2012 Jun 15;287(25):21471-80 – reference: 15831459 - Mol Cell Biol. 2005 May;25(9):3535-42 – reference: 25799992 - Nature. 2015 May 28;521(7553):541-4 – reference: 22002605 - Nature. 2011 Oct 16;479(7372):241-4 – reference: 22445484 - Mol Cell. 2012 Apr 27;46(2):125-35 – reference: 21511873 - Genes Dev. 2011 May 15;25(10):1091-104 – reference: 21102445 - Nat Struct Mol Biol. 2010 Dec;17(12):1478-85 – reference: 9224597 - Nucleic Acids Res. 1997 Aug 1;25(15):2985-91 – reference: 26884156 - Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):E1170-9 – reference: 18583988 - EMBO Rep. 2008 Aug;9(8):795-801 – reference: 21263027 - J Cell Biol. 2011 Jan 24;192(2):251-61 – reference: 17887919 - Annu Rev Genomics Hum Genet. 2007;8:37-55 – reference: 10612394 - Cell. 1999 Dec 10;99(6):577-87 – reference: 9755192 - Genetics. 1998 Oct;150(2):591-600 – reference: 11430828 - Mol Cell. 2001 Jun;7(6):1255-66 – reference: 21901114 - PLoS Genet. 2011 Aug;7(8):e1002263 – reference: 26774285 - Mol Cell. 2016 Feb 4;61(3):405-18 – reference: 23589858 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):E1661-8 – reference: 18854157 - Cell. 2008 Oct 3;135(1):85-96 – reference: 22556254 - Science. 2012 May 4;336(6081):593-7 – reference: 11832209 - Cell. 2002 Jan 25;108(2):183-93 – reference: 18820296 - Nucleic Acids Res. 2008 Nov;36(19):6091-100 – reference: 20453858 - Nat Struct Mol Biol. 2010 Jun;17 (6):688-95 – reference: 24705021 - Nat Commun. 2014 Apr 07;5:3561 |
SSID | ssj0016785 |
Score | 2.5815635 |
SecondaryResourceType | review_article |
Snippet | The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5′-terminated strands in a... The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5'-terminated strands in a... The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is initiated by nucleolytic degradation of the 5′ terminated strands in a... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 195 |
SubjectTerms | Animals Cell Cycle DNA Breaks DNA Repair DNA Repair Enzymes - metabolism DNA, Single-Stranded - metabolism DNA-Binding Proteins - metabolism Dna2 double-strand break end joining Endonucleases - metabolism Exo1 Exodeoxyribonucleases - metabolism Humans Mre11 Rad51 Recombinase - metabolism recombination Sae2/CtIP |
Title | Mechanism and regulation of DNA end resection in eukaryotes |
URI | https://www.tandfonline.com/doi/abs/10.3109/10409238.2016.1172552 https://www.ncbi.nlm.nih.gov/pubmed/27098756 https://www.proquest.com/docview/1788225174 https://pubmed.ncbi.nlm.nih.gov/PMC4957645 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZg98IFAcujvGQkxKVqaR3HicWpYkEVYvdCV6y4RLaxtRU0Qd30UH49M7GdpEvF8xJFThxbnslkJp75PkKey8wpmRqDaRVyxBWoscrcBEIVN7VauYQprEY-ORXzM_7uPD2PFPehuqTWY_N9b13Jv0gV2kCuWCX7F5JtHwoNcA7yhSNIGI5_JOMTi3W7keZi7Wnlgwd4fDob2qb10pqY0Wg3X9R6W9UhcTAiFES6gwBNinfqJVJpeS645umryKM7DLhN7b-Z7arLwn9frZFzwg4_jPv_E6aiyd5LWg1Y_ETt0bOOmH4IHqE3mDZYTC7BRfdU0tGkBgzZZT_ibuzj1DNqhk8t8xnUV6144kFQcTQcDPPvBG4uQ_TDus9Wm0wYrlwnhwxCBTDOh7P58aeP7V4SfI5Tj0nhJ-_ruHCQl3uH2PFQdvBr90UhV5Npe97J4ha5GcIKOvM6cptcs-UdcjQrVV2ttvQFbRJ9G7EdkVet2lAQLO3UhlaOgtpQ27QGtaHLknZqc5ecvX2zeD0fBQ6NkUkTXo9wlxciWgNu4GfhmJ2kmk-U5bnQlnNnXW4hoHWGGwlrIbQWXBqBoIpKMJ2o5B45KKvSPiCUMYfcNCzLdcJNnihjpy6XIpdKpeBqDQiP61aYADCPPCdfCwg0cbmLuNwFLncRlntAxm23bx5h5XcdZF8oRd1orPPKiv1-2fdZlGABrxBujqnSVpvLYppBrIn4fXxA7nuJttNh2URCXC8GJNuRdXsDYrTvXimXFw1WO5cQ0PP04X_M-RG50b2nj8lBvd7YJ-AJ1_ppUPUf7HqtOA |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH-a2GG7DDbYKOzDSIhbSpo4Tqydqm2oG7QnkLhZtrG1ipGiNj2Uv5737LZqK7YdOEVK8hJ_PNvv5_f8ewDHsvRaFtZSWIVMuEY11qVPEar4jjPa55mm08j9gehd8V_XxfXKWRgKqyQM7SNRRJiraXDTZvRpgJipxCuiElxrKDJLkNsR7WKchl8WUpQ0OPN0sPQk4GRcREaCNCGZeIrn759ZW5_W2EufskE3QylX1qazbbCLWsWQlNv2tDFt-7BB-Pi8au_Am7npyrpR197CC1e_g91ujbD9bsZOWAgmDbv0u_C17-hI8XByx_B_bBwz3qMOsJFn3wdd5sLdSQgEq9mwZm56q8ezEVq-e3B19uPyWy-Z52lIbJHzJiFPIqImi6bGjfCZSwvDU-14JYzj3DtfOQRN3nIrsQbCGMGlFUTcp0Vmcp2_h616VLt9YFnmKf9JVlYm57bKtXUdX0lRSa0LXM5bwBe9o-ycxJxyafxRCGaokdSikRQ1kpo3UgvaS7H7yOLxPwG52vWqCdsnPuY6Ibl_yh4t9EThWCUHjK7daDpRnRLxDHHE8RZ8iHqzLE5WphKxo2hBuaZRyxeIB3z9ST38HfjAEeOWghcHzyjzF3jVu-xfqIufg_NDeE2PQlRn_hG2mvHUfULLqzGfw9B6BGkeHm8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH5CTEK7bPzYRgdsnjTtli5NHCfWThWsgm1UOwxpN8s2tqiAFLXpAf563rOTiqL9OHCqlOSlsfNsvy_v8_cAPsrSa1lYS7QKmXCNbqxLnyJU8QNntM8zTbuRT8fi-Ix_-110bMJ5S6skDO2jUESYq2lw35z7zwFhphJ_EZTgUkPELEFZRwyLcRZ-JijJR7s40vEykYBzcREFCdKEbOImnr_fZmV5WhEv_VMI-phJ-WBpGr0E0zUqMlIu-4vG9O3dI73HJ7V6E160gSsbRk_bgjVXb8POsEbQfn3LPrFAJQ3f6Hfgy6mjDcWT-TXDv2OzWO8ePYBNPTsaD5kLR-eBBlazSc3c4lLPbqcY976Cs9HXX4fHSVulIbFFzpuE8oiImSwGGufCZy4tDE-145UwjnPvfOUQMnnLrcQWCGMEl1aQbJ8Wmcl1_hrW62ntdoFlmafqJ1lZmZzbKtfWDXwlRSW1LnAx7wHvXo6yrYQ5VdK4UghlqJNU10mKOkm1ndSD_tLsJmp4_M9APnzzqgkfT3ysdEJ2_7T90LmJwpFK6Rddu-lirgYlohlSiOM9eBPdZvk4WZlKRI6iB-WKQy0vIBXw1TP15CKogSPCLQUv3j7hmd_Dxs-jkfpxMv6-B8_pTKB05vuw3swW7gDDrsa8CwPrHr74HRM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+and+regulation+of+DNA+end+resection+in+eukaryotes&rft.jtitle=Critical+reviews+in+biochemistry+and+molecular+biology&rft.au=Symington%2C+Lorraine+S.&rft.date=2016-05-03&rft.pub=Taylor+%26+Francis&rft.issn=1040-9238&rft.eissn=1549-7798&rft.volume=51&rft.issue=3&rft.spage=195&rft.epage=212&rft_id=info:doi/10.3109%2F10409238.2016.1172552&rft.externalDocID=1172552 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1040-9238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1040-9238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1040-9238&client=summon |