Autophagy inhibition prevents glucocorticoid-increased adiposity via suppressing BAT whitening
The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms o...
Saved in:
Published in | Autophagy Vol. 16; no. 3; pp. 451 - 465 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
03.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms of GC-induced BAT whitening. Here, we showed that one-week dexamethasone (Dex) treatment induced BAT whitening, characterized by lipid droplet accumulation, in vitro and in vivo. Furthermore, autophagy and ATG7 (autophagy related 7) expression was induced in BAT by Dex, and treatment with the autophagy inhibitor chloroquine or adenovirus-mediated ATG7 knockdown prevented Dex-induced BAT whitening and fat mass gain. Moreover, Dex-increased ATG7 expression and autophagy was mediated by enhanced expression of BTG1 (B cell translocation gene 1, anti-proliferative) that stimulated activity of CREB1 (cAMP response element binding protein 1). The importance of BTG1 in this regulation was further demonstrated by the observed BAT whitening in adipocyte-specific BTG1-overexpressing mice and the attenuated Dex-induced BAT whitening and fat mass gain in mice with BTG1 knockdown in BAT. Taken together, we showed that Dex induces a significant whitening of BAT via BTG1- and ATG7-dependent autophagy, which might contribute to Dex-increased adiposity. These results provide new insights into the mechanisms underlying GC-increased adiposity and possible strategy for preventing GC-induced side effects via the combined use of an autophagy inhibitor.
ACADL: acyl-Coenzyme A dehydrogenase, long-chain; ACADM: acyl-Coenzyme A dehydrogenase, medium-chain; ACADS: acyl-Coenzyme A dehydrogenase, short-chain; ADIPOQ: adiponectin; AGT: angiotensinogen; Atg: autophagy-related; BAT: brown adipose tissue; BTG1: B cell translocation gene 1, anti-proliferative; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CIDEA: cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; CPT1B: carnitine palmitoyltransferase 1b, muscle; CPT2: carnitine palmitoyltransferase 2; CQ: chloroquine; Dex: dexamethasone; eWAT: epididymal white adipose tissue; FABP4: fatty acid binding protein 4, adipocyte; FFAs: free fatty acids; GCs: glucocorticoids; NRIP1: nuclear receptor interacting protein 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PPARA: peroxisome proliferator activated receptor alpha; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PRDM16: PR domain containing 16; PSAT1: phosphoserine aminotransferase 1; RB1: RB transcriptional corepressor 1; RBL1/p107: RB transcriptional corepressor like 1; SQSTM1: sequestosome 1; sWAT: subcutaneous white adipose tissue; TG: triglycerides; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type |
---|---|
AbstractList | The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms of GC-induced BAT whitening. Here, we showed that one-week dexamethasone (Dex) treatment induced BAT whitening, characterized by lipid droplet accumulation, in vitro and in vivo. Furthermore, autophagy and ATG7 (autophagy related 7) expression was induced in BAT by Dex, and treatment with the autophagy inhibitor chloroquine or adenovirus-mediated ATG7 knockdown prevented Dex-induced BAT whitening and fat mass gain. Moreover, Dex-increased ATG7 expression and autophagy was mediated by enhanced expression of BTG1 (B cell translocation gene 1, anti-proliferative) that stimulated activity of CREB1 (cAMP response element binding protein 1). The importance of BTG1 in this regulation was further demonstrated by the observed BAT whitening in adipocyte-specific BTG1-overexpressing mice and the attenuated Dex-induced BAT whitening and fat mass gain in mice with BTG1 knockdown in BAT. Taken together, we showed that Dex induces a significant whitening of BAT via BTG1- and ATG7-dependent autophagy, which might contribute to Dex-increased adiposity. These results provide new insights into the mechanisms underlying GC-increased adiposity and possible strategy for preventing GC-induced side effects via the combined use of an autophagy inhibitor.
ACADL: acyl-Coenzyme A dehydrogenase, long-chain; ACADM: acyl-Coenzyme A dehydrogenase, medium-chain; ACADS: acyl-Coenzyme A dehydrogenase, short-chain; ADIPOQ: adiponectin; AGT: angiotensinogen; Atg: autophagy-related; BAT: brown adipose tissue; BTG1: B cell translocation gene 1, anti-proliferative; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CIDEA: cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; CPT1B: carnitine palmitoyltransferase 1b, muscle; CPT2: carnitine palmitoyltransferase 2; CQ: chloroquine; Dex: dexamethasone; eWAT: epididymal white adipose tissue; FABP4: fatty acid binding protein 4, adipocyte; FFAs: free fatty acids; GCs: glucocorticoids; NRIP1: nuclear receptor interacting protein 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PPARA: peroxisome proliferator activated receptor alpha; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PRDM16: PR domain containing 16; PSAT1: phosphoserine aminotransferase 1; RB1: RB transcriptional corepressor 1; RBL1/p107: RB transcriptional corepressor like 1; SQSTM1: sequestosome 1; sWAT: subcutaneous white adipose tissue; TG: triglycerides; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type. The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms of GC-induced BAT whitening. Here, we showed that one-week dexamethasone (Dex) treatment induced BAT whitening, characterized by lipid droplet accumulation, in vitro and in vivo. Furthermore, autophagy and ATG7 (autophagy related 7) expression was induced in BAT by Dex, and treatment with the autophagy inhibitor chloroquine or adenovirus-mediated ATG7 knockdown prevented Dex-induced BAT whitening and fat mass gain. Moreover, Dex-increased ATG7 expression and autophagy was mediated by enhanced expression of BTG1 (B cell translocation gene 1, anti-proliferative) that stimulated activity of CREB1 (cAMP response element binding protein 1). The importance of BTG1 in this regulation was further demonstrated by the observed BAT whitening in adipocyte-specific BTG1-overexpressing mice and the attenuated Dex-induced BAT whitening and fat mass gain in mice with BTG1 knockdown in BAT. Taken together, we showed that Dex induces a significant whitening of BAT via BTG1- and ATG7-dependent autophagy, which might contribute to Dex-increased adiposity. These results provide new insights into the mechanisms underlying GC-increased adiposity and possible strategy for preventing GC-induced side effects via the combined use of an autophagy inhibitor. Abbreviations: ACADL: acyl-Coenzyme A dehydrogenase, long-chain; ACADM: acyl-Coenzyme A dehydrogenase, medium-chain; ACADS: acyl-Coenzyme A dehydrogenase, short-chain; ADIPOQ: adiponectin; AGT: angiotensinogen; Atg: autophagy-related; BAT: brown adipose tissue; BTG1: B cell translocation gene 1, anti-proliferative; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CIDEA: cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; CPT1B: carnitine palmitoyltransferase 1b, muscle; CPT2: carnitine palmitoyltransferase 2; CQ: chloroquine; Dex: dexamethasone; eWAT: epididymal white adipose tissue; FABP4: fatty acid binding protein 4, adipocyte; FFAs: free fatty acids; GCs: glucocorticoids; NRIP1: nuclear receptor interacting protein 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PPARA: peroxisome proliferator activated receptor alpha; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PRDM16: PR domain containing 16; PSAT1: phosphoserine aminotransferase 1; RB1: RB transcriptional corepressor 1; RBL1/p107: RB transcriptional corepressor like 1; SQSTM1: sequestosome 1; sWAT: subcutaneous white adipose tissue; TG: triglycerides; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms of GC-induced BAT whitening. Here, we showed that one-week dexamethasone (Dex) treatment induced BAT whitening, characterized by lipid droplet accumulation, in vitro and in vivo. Furthermore, autophagy and ATG7 (autophagy related 7) expression was induced in BAT by Dex, and treatment with the autophagy inhibitor chloroquine or adenovirus-mediated ATG7 knockdown prevented Dex-induced BAT whitening and fat mass gain. Moreover, Dex-increased ATG7 expression and autophagy was mediated by enhanced expression of BTG1 (B cell translocation gene 1, anti-proliferative) that stimulated activity of CREB1 (cAMP response element binding protein 1). The importance of BTG1 in this regulation was further demonstrated by the observed BAT whitening in adipocyte-specific BTG1-overexpressing mice and the attenuated Dex-induced BAT whitening and fat mass gain in mice with BTG1 knockdown in BAT. Taken together, we showed that Dex induces a significant whitening of BAT via BTG1- and ATG7-dependent autophagy, which might contribute to Dex-increased adiposity. These results provide new insights into the mechanisms underlying GC-increased adiposity and possible strategy for preventing GC-induced side effects via the combined use of an autophagy inhibitor.Abbreviations: ACADL: acyl-Coenzyme A dehydrogenase, long-chain; ACADM: acyl-Coenzyme A dehydrogenase, medium-chain; ACADS: acyl-Coenzyme A dehydrogenase, short-chain; ADIPOQ: adiponectin; AGT: angiotensinogen; Atg: autophagy-related; BAT: brown adipose tissue; BTG1: B cell translocation gene 1, anti-proliferative; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CIDEA: cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; CPT1B: carnitine palmitoyltransferase 1b, muscle; CPT2: carnitine palmitoyltransferase 2; CQ: chloroquine; Dex: dexamethasone; eWAT: epididymal white adipose tissue; FABP4: fatty acid binding protein 4, adipocyte; FFAs: free fatty acids; GCs: glucocorticoids; NRIP1: nuclear receptor interacting protein 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PPARA: peroxisome proliferator activated receptor alpha; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PRDM16: PR domain containing 16; PSAT1: phosphoserine aminotransferase 1; RB1: RB transcriptional corepressor 1; RBL1/p107: RB transcriptional corepressor like 1; SQSTM1: sequestosome 1; sWAT: subcutaneous white adipose tissue; TG: triglycerides; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type.The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms of GC-induced BAT whitening. Here, we showed that one-week dexamethasone (Dex) treatment induced BAT whitening, characterized by lipid droplet accumulation, in vitro and in vivo. Furthermore, autophagy and ATG7 (autophagy related 7) expression was induced in BAT by Dex, and treatment with the autophagy inhibitor chloroquine or adenovirus-mediated ATG7 knockdown prevented Dex-induced BAT whitening and fat mass gain. Moreover, Dex-increased ATG7 expression and autophagy was mediated by enhanced expression of BTG1 (B cell translocation gene 1, anti-proliferative) that stimulated activity of CREB1 (cAMP response element binding protein 1). The importance of BTG1 in this regulation was further demonstrated by the observed BAT whitening in adipocyte-specific BTG1-overexpressing mice and the attenuated Dex-induced BAT whitening and fat mass gain in mice with BTG1 knockdown in BAT. Taken together, we showed that Dex induces a significant whitening of BAT via BTG1- and ATG7-dependent autophagy, which might contribute to Dex-increased adiposity. These results provide new insights into the mechanisms underlying GC-increased adiposity and possible strategy for preventing GC-induced side effects via the combined use of an autophagy inhibitor.Abbreviations: ACADL: acyl-Coenzyme A dehydrogenase, long-chain; ACADM: acyl-Coenzyme A dehydrogenase, medium-chain; ACADS: acyl-Coenzyme A dehydrogenase, short-chain; ADIPOQ: adiponectin; AGT: angiotensinogen; Atg: autophagy-related; BAT: brown adipose tissue; BTG1: B cell translocation gene 1, anti-proliferative; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CIDEA: cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; CPT1B: carnitine palmitoyltransferase 1b, muscle; CPT2: carnitine palmitoyltransferase 2; CQ: chloroquine; Dex: dexamethasone; eWAT: epididymal white adipose tissue; FABP4: fatty acid binding protein 4, adipocyte; FFAs: free fatty acids; GCs: glucocorticoids; NRIP1: nuclear receptor interacting protein 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PPARA: peroxisome proliferator activated receptor alpha; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PRDM16: PR domain containing 16; PSAT1: phosphoserine aminotransferase 1; RB1: RB transcriptional corepressor 1; RBL1/p107: RB transcriptional corepressor like 1; SQSTM1: sequestosome 1; sWAT: subcutaneous white adipose tissue; TG: triglycerides; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type. The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell features defined as BAT whitening under certain circumstances. The aim of our current study was to investigate the possibility and mechanisms of GC-induced BAT whitening. Here, we showed that one-week dexamethasone (Dex) treatment induced BAT whitening, characterized by lipid droplet accumulation, in vitro and in vivo. Furthermore, autophagy and ATG7 (autophagy related 7) expression was induced in BAT by Dex, and treatment with the autophagy inhibitor chloroquine or adenovirus-mediated ATG7 knockdown prevented Dex-induced BAT whitening and fat mass gain. Moreover, Dex-increased ATG7 expression and autophagy was mediated by enhanced expression of BTG1 (B cell translocation gene 1, anti-proliferative) that stimulated activity of CREB1 (cAMP response element binding protein 1). The importance of BTG1 in this regulation was further demonstrated by the observed BAT whitening in adipocyte-specific BTG1-overexpressing mice and the attenuated Dex-induced BAT whitening and fat mass gain in mice with BTG1 knockdown in BAT. Taken together, we showed that Dex induces a significant whitening of BAT via BTG1- and ATG7-dependent autophagy, which might contribute to Dex-increased adiposity. These results provide new insights into the mechanisms underlying GC-increased adiposity and possible strategy for preventing GC-induced side effects via the combined use of an autophagy inhibitor. ACADL: acyl-Coenzyme A dehydrogenase, long-chain; ACADM: acyl-Coenzyme A dehydrogenase, medium-chain; ACADS: acyl-Coenzyme A dehydrogenase, short-chain; ADIPOQ: adiponectin; AGT: angiotensinogen; Atg: autophagy-related; BAT: brown adipose tissue; BTG1: B cell translocation gene 1, anti-proliferative; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; CIDEA: cell death-inducing DNA fragmentation factor, alpha subunit-like effector A; CPT1B: carnitine palmitoyltransferase 1b, muscle; CPT2: carnitine palmitoyltransferase 2; CQ: chloroquine; Dex: dexamethasone; eWAT: epididymal white adipose tissue; FABP4: fatty acid binding protein 4, adipocyte; FFAs: free fatty acids; GCs: glucocorticoids; NRIP1: nuclear receptor interacting protein 1; OCR: oxygen consumption rate; PBS: phosphate-buffered saline; PPARA: peroxisome proliferator activated receptor alpha; PPARG: peroxisome proliferator activated receptor gamma; PPARGC1A: peroxisome proliferator activated receptor, gamma, coactivator 1 alpha; PRDM16: PR domain containing 16; PSAT1: phosphoserine aminotransferase 1; RB1: RB transcriptional corepressor 1; RBL1/p107: RB transcriptional corepressor like 1; SQSTM1: sequestosome 1; sWAT: subcutaneous white adipose tissue; TG: triglycerides; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type |
Author | Guo, Yajie Yuan, Feixiang Zhai, Qiwei Jiao, Fuxin Guo, Feifan Yin, Hanrui Ying, Hao Chen, Yan Chen, Shanghai Xiao, Fei Wang, Fenfen Ji, Hongbin Deng, Jiali Jiang, Xiaoxue Hu, Guohong |
Author_xml | – sequence: 1 givenname: Jiali surname: Deng fullname: Deng, Jiali organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 2 givenname: Yajie surname: Guo fullname: Guo, Yajie organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 3 givenname: Feixiang surname: Yuan fullname: Yuan, Feixiang organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 4 givenname: Shanghai surname: Chen fullname: Chen, Shanghai organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 5 givenname: Hanrui surname: Yin fullname: Yin, Hanrui organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 6 givenname: Xiaoxue surname: Jiang fullname: Jiang, Xiaoxue organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 7 givenname: Fuxin surname: Jiao fullname: Jiao, Fuxin organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 8 givenname: Fenfen surname: Wang fullname: Wang, Fenfen organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 9 givenname: Hongbin orcidid: 0000-0003-0891-6390 surname: Ji fullname: Ji, Hongbin organization: Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 10 givenname: Guohong orcidid: 0000-0002-2980-5166 surname: Hu fullname: Hu, Guohong organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine – sequence: 11 givenname: Hao surname: Ying fullname: Ying, Hao organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 12 givenname: Yan orcidid: 0000-0002-6630-0693 surname: Chen fullname: Chen, Yan organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 13 givenname: Qiwei surname: Zhai fullname: Zhai, Qiwei organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 14 givenname: Fei surname: Xiao fullname: Xiao, Fei email: xiaofei@sibs.ac.cn organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences – sequence: 15 givenname: Feifan surname: Guo fullname: Guo, Feifan email: ffguo@sibs.ac.cn organization: Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31184563$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUUuP0zAQttAi9gE_AZQjl3T9iB1HSIjuCliklbgsVyzHsdtBqR1sp6v-e1y1XQEHOI3H8z1G812iMx-8Reg1wQuCJb4mnDdS0HZBMekWRFDJWfsMXez_aykYP3t60_YcXab0A2MmZEdfoHNGiGy4YBfo-3LOYVrr1a4Cv4YeMgRfTdFurc-pWo2zCSbEDCbAUIM30epkh0oPMIUEeVdtQVdpngolJfCr6mb5UD2uIVtfupfoudNjsq-O9Qp9-_Tx4fauvv_6-cvt8r42nDW5bsWA-05zTUWriey1kcbigTnc8p63hlqsG8fL3BGGpSOaYdbg1sneEEcku0LvD7rT3G_sYMryUY9qirDRcaeCBvXnxMNarcJWia7rBOmKwNujQAw_Z5uy2kAydhy1t2FOitKGNZJSJgr0ze9eTyanoxbAuwPAxJBStE4ZyHp_2GINoyJY7SNUpwjVPkJ1jLCw-V_sk8H_eB8OPPAuxI1-DHEcVNa7MUQXtTeQyor_lPgF6HS1iA |
CitedBy_id | crossref_primary_10_1002_jcp_31397 crossref_primary_10_1016_j_isci_2024_108857 crossref_primary_10_1038_s41467_024_52059_1 crossref_primary_10_3390_biomedicines9111651 crossref_primary_10_1002_advs_202308968 crossref_primary_10_1177_09645284211056345 crossref_primary_10_1038_s41467_023_38141_0 crossref_primary_10_3389_fendo_2024_1404697 crossref_primary_10_3389_fendo_2023_1114767 crossref_primary_10_3390_antiox11081505 crossref_primary_10_1016_j_celrep_2023_113504 crossref_primary_10_3389_fendo_2020_592818 crossref_primary_10_1186_s12906_022_03622_0 crossref_primary_10_3389_fgene_2019_01320 crossref_primary_10_1016_j_ebiom_2021_103713 crossref_primary_10_1096_fj_202001550R crossref_primary_10_3390_ani14060899 crossref_primary_10_3390_pharmaceutics14061192 crossref_primary_10_1080_26895293_2022_2156623 crossref_primary_10_1111_apha_13793 crossref_primary_10_1016_j_cmet_2023_03_019 crossref_primary_10_1016_j_jnutbio_2024_109688 crossref_primary_10_1016_j_ecoenv_2022_113173 crossref_primary_10_1016_j_bbalip_2022_159111 crossref_primary_10_3389_fendo_2023_1191278 crossref_primary_10_3390_ijms22168503 crossref_primary_10_1016_j_yexcr_2025_114478 crossref_primary_10_3390_ijms25094588 crossref_primary_10_1007_s12020_024_04008_7 crossref_primary_10_1097_TP_0000000000004862 crossref_primary_10_1080_21623945_2022_2111053 crossref_primary_10_1016_j_hrthm_2022_07_030 crossref_primary_10_1155_2024_6822664 crossref_primary_10_1096_fj_202200870R crossref_primary_10_1016_j_jnutbio_2022_109160 crossref_primary_10_1111_jne_13248 crossref_primary_10_3390_metabo12010084 crossref_primary_10_1111_obr_13724 crossref_primary_10_1038_s41556_023_01155_3 crossref_primary_10_1016_j_jff_2025_106758 crossref_primary_10_1007_s40618_023_02295_x crossref_primary_10_1038_s41419_021_04187_5 crossref_primary_10_12677_ACM_2024_142366 crossref_primary_10_1016_j_molmet_2022_101446 crossref_primary_10_3390_ijms232415761 crossref_primary_10_1002_lipd_12358 crossref_primary_10_1186_s40104_024_00994_w crossref_primary_10_1002_advs_202205854 crossref_primary_10_1016_j_heliyon_2024_e27314 crossref_primary_10_3389_fendo_2020_565483 crossref_primary_10_1016_j_molmet_2024_101884 crossref_primary_10_3389_fimmu_2023_1157731 crossref_primary_10_1111_obr_13691 |
Cites_doi | 10.1074/jbc.275.1.147 10.1016/j.cmet.2016.06.011 10.1128/MCB.00193-13 10.1002/jcp.21919 10.1056/NEJMra050541 10.1172/JCI71643 10.4161/adip.29674 10.1016/j.cmet.2016.08.002 10.2337/db15-1024 10.1016/j.tem.2011.02.003 10.1038/nature13949 10.1016/S0006-291X(02)00361-3 10.1073/pnas.1320454110 10.1093/rheumatology/kew348 10.4161/auto.5.8.9991 10.1038/nm.3361 10.1126/science.1175667 10.1152/ajpendo.00640.2012 10.1038/nrm4024 10.1002/j.1460-2075.1992.tb05213.x 10.1038/s41586-018-0353-2 10.2337/db14-0427 10.1016/j.celrep.2014.12.023 10.1126/scisignal.aap8526 10.1016/j.celrep.2016.09.053 10.1210/en.2006-0267 10.1074/jbc.M115.686980 10.1182/blood-2003-03-0923 10.1074/jbc.271.25.15034 10.1038/embor.2013.111 10.1038/ncb2286 10.1016/j.cmet.2016.04.023 10.1038/ijo.2016.115 10.2337/db13-0311 10.4161/cc.29272 10.1126/scisignal.aad8581 10.1002/jbmr.160 10.1073/pnas.1601281113 10.1016/S0014-5793(01)02436-X 10.1073/pnas.0906048106 10.1038/ijo.2010.180 10.1016/j.cmet.2010.04.005 10.1016/j.molcel.2016.09.037 10.1016/0092-8674(94)90400-6 10.1146/annurev-cellbio-092910-154005 10.1016/j.freeradbiomed.2005.07.017 10.1038/sj.onc.1208373 |
ContentType | Journal Article |
Copyright | 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 – notice: 2019 Informa UK Limited, trading as Taylor & Francis Group 2019 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1080/15548627.2019.1628537 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | J. DENG ET AL |
EISSN | 1554-8635 |
EndPage | 465 |
ExternalDocumentID | PMC6999619 31184563 10_1080_15548627_2019_1628537 1628537 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: ; grantid: 16JC1404900 – fundername: ; grantid: 17XD1404200 |
GroupedDBID | --- 0BK 0R~ 23N 30N 4.4 53G 5GY AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACTIO ADBBV ADCVX ADGTB AEISY AENEX AEYOC AGDLA AHDZW AIJEM AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AOIJS AQRUH AVBZW AWYRJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO E3Z EBS EMOBN F5P GTTXZ H13 HYE IPNFZ KYCEM LJTGL M4Z O9- OK1 P2P RIG RNANH ROSJB RPM RTWRZ SNACF TBQAZ TDBHL TEI TFL TFT TFW TQWBC TR2 TTHFI TUROJ ZGOLN AAGDL AAHIA AAYXX ADHGD ADYSH AFRVT AIYEW AMPGV CITATION AAGME ABFMO ACDHJ ACZPZ ADOPC AURDB BFWEY C1A CGR CUY CVF CWRZV ECM EIF EJD NPM PCLFJ TASJS 7X8 5PM |
ID | FETCH-LOGICAL-c534t-76d0b9a5a267a18bac8ce0d3f075b57c2e0a4f55a2f1308f1a303407f8bc1f183 |
ISSN | 1554-8627 1554-8635 |
IngestDate | Thu Aug 21 14:11:41 EDT 2025 Fri Jul 11 02:14:15 EDT 2025 Mon Jul 21 05:28:14 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Tue Jul 01 02:48:58 EDT 2025 Wed Dec 25 09:09:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | glucocorticoid BAT whitening BTG1 autophagy ATG7 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c534t-76d0b9a5a267a18bac8ce0d3f075b57c2e0a4f55a2f1308f1a303407f8bc1f183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead C ontact |
ORCID | 0000-0003-0891-6390 0000-0002-6630-0693 0000-0002-2980-5166 |
OpenAccessLink | https://www.tandfonline.com/doi/pdf/10.1080/15548627.2019.1628537?needAccess=true |
PMID | 31184563 |
PQID | 2243482236 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6999619 crossref_citationtrail_10_1080_15548627_2019_1628537 crossref_primary_10_1080_15548627_2019_1628537 pubmed_primary_31184563 informaworld_taylorfrancis_310_1080_15548627_2019_1628537 proquest_miscellaneous_2243482236 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-03 |
PublicationDateYYYYMMDD | 2020-03-03 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Autophagy |
PublicationTitleAlternate | Autophagy |
PublicationYear | 2020 |
Publisher | Taylor & Francis |
Publisher_xml | – name: Taylor & Francis |
References | cit0033 cit0034 cit0031 cit0032 cit0030 cit0039 cit0037 cit0038 cit0035 cit0036 cit0022 cit0020 cit0021 cit0028 cit0029 cit0026 cit0027 cit0024 cit0025 cit0011 cit0012 cit0010 cit0051 cit0050 Strack AM (cit0006) 1995; 268 cit0019 cit0017 cit0015 Moriscot A (cit0005) 1993; 265 cit0016 cit0013 cit0014 cit0044 cit0001 cit0045 cit0042 cit0043 cit0040 cit0041 Singh R (cit0018) 2009; 119 Duriez C (cit0023) 2004; 91 cit0008 cit0009 cit0007 cit0004 cit0048 cit0049 cit0002 cit0046 cit0003 cit0047 |
References_xml | – ident: cit0042 doi: 10.1074/jbc.275.1.147 – ident: cit0008 doi: 10.1016/j.cmet.2016.06.011 – ident: cit0048 doi: 10.1128/MCB.00193-13 – ident: cit0021 doi: 10.1002/jcp.21919 – ident: cit0001 doi: 10.1056/NEJMra050541 – ident: cit0009 doi: 10.1172/JCI71643 – ident: cit0044 doi: 10.4161/adip.29674 – ident: cit0036 doi: 10.1016/j.cmet.2016.08.002 – volume: 268 start-page: R183 issue: 1 year: 1995 ident: cit0006 publication-title: A J Physiol – ident: cit0033 doi: 10.2337/db15-1024 – ident: cit0013 doi: 10.1016/j.tem.2011.02.003 – ident: cit0035 doi: 10.1038/nature13949 – ident: cit0025 doi: 10.1016/S0006-291X(02)00361-3 – ident: cit0004 doi: 10.1073/pnas.1320454110 – ident: cit0002 doi: 10.1093/rheumatology/kew348 – volume: 265 start-page: E81 issue: 1 year: 1993 ident: cit0005 publication-title: A J Physiol – ident: cit0014 doi: 10.4161/auto.5.8.9991 – ident: cit0007 doi: 10.1038/nm.3361 – volume: 91 start-page: E242 issue: 7 year: 2004 ident: cit0023 publication-title: Bull Cancer – ident: cit0038 doi: 10.1126/science.1175667 – ident: cit0046 doi: 10.1152/ajpendo.00640.2012 – volume: 119 start-page: 3329 issue: 11 year: 2009 ident: cit0018 publication-title: J Clin Invest – ident: cit0012 doi: 10.1038/nrm4024 – ident: cit0022 doi: 10.1002/j.1460-2075.1992.tb05213.x – ident: cit0050 doi: 10.1038/s41586-018-0353-2 – ident: cit0010 doi: 10.2337/db14-0427 – ident: cit0031 doi: 10.1016/j.celrep.2014.12.023 – ident: cit0037 doi: 10.1126/scisignal.aap8526 – ident: cit0011 doi: 10.1016/j.celrep.2016.09.053 – ident: cit0003 doi: 10.1210/en.2006-0267 – ident: cit0030 doi: 10.1074/jbc.M115.686980 – ident: cit0026 doi: 10.1182/blood-2003-03-0923 – ident: cit0041 doi: 10.1074/jbc.271.25.15034 – ident: cit0017 doi: 10.1038/embor.2013.111 – ident: cit0029 doi: 10.1038/ncb2286 – ident: cit0051 doi: 10.1016/j.cmet.2016.04.023 – ident: cit0016 doi: 10.1038/ijo.2016.115 – ident: cit0047 doi: 10.2337/db13-0311 – ident: cit0020 doi: 10.4161/cc.29272 – ident: cit0027 doi: 10.1126/scisignal.aad8581 – ident: cit0019 doi: 10.1002/jbmr.160 – ident: cit0028 doi: 10.1073/pnas.1601281113 – ident: cit0024 doi: 10.1016/S0014-5793(01)02436-X – ident: cit0015 doi: 10.1073/pnas.0906048106 – ident: cit0045 doi: 10.1038/ijo.2010.180 – ident: cit0032 doi: 10.1016/j.cmet.2010.04.005 – ident: cit0049 doi: 10.1016/j.molcel.2016.09.037 – ident: cit0043 doi: 10.1016/0092-8674(94)90400-6 – ident: cit0034 doi: 10.1146/annurev-cellbio-092910-154005 – ident: cit0040 doi: 10.1016/j.freeradbiomed.2005.07.017 – ident: cit0039 doi: 10.1038/sj.onc.1208373 |
SSID | ssj0036892 |
Score | 2.5064077 |
Snippet | The mechanisms underlying glucocorticoid (GC)-increased adiposity are poorly understood. Brown adipose tissue (BAT) acquires white adipose tissue (WAT) cell... |
SourceID | pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 451 |
SubjectTerms | Adipogenesis - drug effects Adipose Tissue, Brown - drug effects Adipose Tissue, Brown - metabolism Adipose Tissue, White - drug effects Adipose Tissue, White - metabolism Adiposity - drug effects Animals Animals, Newborn ATG7 Autophagy Autophagy-Related Protein 7 - genetics Autophagy-Related Protein 7 - metabolism BAT whitening BTG1 Cell Line Cyclic AMP Response Element-Binding Protein - metabolism Dexamethasone - pharmacology Gene Expression Regulation - drug effects Gene Knockdown Techniques glucocorticoid Glucocorticoids - pharmacology Humans Lipids - chemistry Male Mice, Inbred C57BL Mice, Transgenic Neoplasm Proteins - genetics Neoplasm Proteins - metabolism Research Paper |
Title | Autophagy inhibition prevents glucocorticoid-increased adiposity via suppressing BAT whitening |
URI | https://www.tandfonline.com/doi/abs/10.1080/15548627.2019.1628537 https://www.ncbi.nlm.nih.gov/pubmed/31184563 https://www.proquest.com/docview/2243482236 https://pubmed.ncbi.nlm.nih.gov/PMC6999619 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahY6MvZfelu-DB3oIzx5J8eSxlpQxaBkuhfZmRZLlR2Zyw2N26n7FfvCPJVpQ2o1tfTLAjy_b5fPQd-TtHCL3jnFSplDjMEpGHRFARMqDFISWcsSRiuTSS_6Pj5PCEfDylp4PBb0-11DZ8LH5tzCu5i1VhH9hVZ8n-h2XdSWEH_Ab7whYsDNt_svFeq8sCMJO7N1PcqK901v-lSVszanQILqHZXJWhqjVBXALBZKUyWq2r0aVio2W7sGLY-hyi9unoh_6wUPcj2sW1nhzxlZ2UF-5SORFPayZez9iFcng5a-0U64FUPwGK5ys9gXV4n_WM9Ywpf_oBYk2tv8IOMNMbK4H4zpQSwIDN_R9Lf58tUeI8cOIhDXvulHTFaO3ITOyqEjecvlVJ6jPrzrRcLx9PdGqoLSfjAWHxzSABQ1QFxBGvxkCnTPx0tJ_oGFBXkr0XQ-ihfSeOjvvRHSeZWWjb3VufFZZF7zdewTZ60He3Rn3WCuNuCm-uq3Q92jN9iHa6eCXYs-B7hAayfozu2xVMr56gLw4YwQqCQQ_B4G8QDBwEA4Bg4EEwAAgGDoJP0cnBh-n-Ydgt2REKikkTpkkZ8ZxRFicpm2SciUzIqMQVMFNOUxHLiJGKwvEKyFNWTRhQKBKlVcbFpILh5Rnaque1fIGCmAoIxeG0KTCoKBKMJoQLVqVlVsWE0iEi_dMsRFfPXi-r8rWYdGVve3sU2h5FZ48hGrtmC1vQ5bYGuW-qojGIryzYC3xL27e9XQtw2_pbHKvlvF0WwJx1WakYJ0P03NrZXU6PlyFK1xDg_qBLwq8fqdXMlIbvsLt755Yv0fbqLX-FtprvrXwNtLvhb8x78AcKZ9WL |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgQX3tDlaSQ4ZpvEsZMcOCyPakvbPW2lngi2Y7cRVXbFJlTLz-Kv8IeYyWPVrUA9oB44J44m8cz4G-fzNwCvtY5cbC33EmlSLzLCeAphsScirZT0VWobyv_BRI4Po09H4mgDfvZnYYhWSTW0a4UimlxNwU2b0T0lbpvWQETiMTGz0mFApwB53BEr9-zyDMu2xdvdDzjHb8Jw5-P0_djrOgt4RvCo8mKZ-zpVQoUyVkGilUmM9XPucAHVIjah9VXkBF53mOMTFyjM9Fj6uESbwGEU4HOvwXWRyphii_uTPvtzmTSNmMlEj2zsTw39zey19XBNLfVPmPcidfPcWrhzB371X7GlwHwd1pUemh8XBCb_r898F2530JyN2li6Bxu2vA832madywfweVSTCIM6XrKiPCl0w3Vj81YCa8Ea7j-W8jh4VuReURIcX9icqbxomHFL9r1QbFHPW-pxeczejabsjH7j0N7UQzi8kpd7BJvlrLRbwEJhsOrEx8YIFnzfKCEjbZSL88SFkRADiHofyUwn3U4dRE6zoFN47acqo6nKuqkawHA1bN5ql1w2ID3vgFnVbBq5tsNLxi8Z-6r31gwzFP12UqWd1YsMQSIpKIVcDuBx670rczjWtwjh-QDiNb9e3UDq5-tXyuKkUUGXVKoH6ZN_sPkl3BxPD_az_d3J3lO4FdJWCtEL-TPYrL7V9jnizUq_aAKcwZerdvXfUoqDSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIhAX3o_laSQ4ZpvEsZMcOCyUVUthxaGVeiLYjt1GoOyKJFTLv-Kv8IuYyWPVrUA9oB44J44m8Xj8jfPNNwAvtI5cbC33EmlSLzLCeAphsScirZT0VWpbyv-Hmdw5iN4disMN-DnUwhCtknJo1wlFtLGaFvcidwMjbou2QATiMRGz0nFARYA87nmVe3Z5gllb9Wp3G6f4ZRhO3-6_2fH6xgKeETyqvVjmvk6VUKGMVZBoZRJj_Zw73D-1iE1ofRU5gdcdhvjEBQoDPWY-LtEmcLgI8LmX4LKkwk6qGvFnQ_DnMmn7MJOJHtk4FA39zey17XBNLPVPkPcsc_PUVji9Ab-Gj9gxYL6Mm1qPzY8z-pL_1Ve-Cdd7YM4m3Uq6BRu2vA1XuladyzvwadKQBIM6WrKiPC50y3Rji04Aq2It8x8TeRw8L3KvKAmMVzZnKi9aXtySfS8Uq5pFRzwuj9jryT47oZ84dDJ1Fw4u5OXuwWY5L-0DYKEwmHPiY2OECr5vlJCRNsrFeeLCSIgRRIOLZKYXbqf-IV-zoNd3HaYqo6nK-qkawXg1bNEpl5w3ID3tf1ndHhm5rr9Lxs8Z-3xw1gzjE_10UqWdN1WGEJH0k0IuR3C_c96VORyzWwTwfATxmluvbiDt8_UrZXHcaqBLStSD9OE_2PwMrn7cnmbvd2d7j-BaSOcoxC3kj2Gz_tbYJwg2a_20Xd4MPl-0p_8G-hOB7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+inhibition+prevents+glucocorticoid-increased+adiposity+via+suppressing+BAT+whitening&rft.jtitle=Autophagy&rft.au=Deng%2C+Jiali&rft.au=Guo%2C+Yajie&rft.au=Yuan%2C+Feixiang&rft.au=Chen%2C+Shanghai&rft.date=2020-03-03&rft.pub=Taylor+%26+Francis&rft.issn=1554-8627&rft.eissn=1554-8635&rft.volume=16&rft.issue=3&rft.spage=451&rft.epage=465&rft_id=info:doi/10.1080%2F15548627.2019.1628537&rft_id=info%3Apmid%2F31184563&rft.externalDocID=PMC6999619 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8627&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8627&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8627&client=summon |