CA-based urban growth model considering the temporal dynamic adjustment of local spatial driving factors: An application in Wuhan City

Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. Howeve...

Full description

Saved in:
Bibliographic Details
Published inHeliyon Vol. 10; no. 9; p. e30678
Main Authors Sun, Jianwei, He, Qingsong, Wang, Haofeng
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.05.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R2, indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781–0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale.
AbstractList Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R2, indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781–0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale.
Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R , indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781-0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale.
Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R 2 , indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781–0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale.
ArticleNumber e30678
Author Wang, Haofeng
Sun, Jianwei
He, Qingsong
Author_xml – sequence: 1
  givenname: Jianwei
  surname: Sun
  fullname: Sun, Jianwei
  organization: School of Geographical and Environmental Sciences, Guizhou Normal University, Guizhou, Guiyang, 550025, PR China
– sequence: 2
  givenname: Qingsong
  surname: He
  fullname: He, Qingsong
  organization: College of Public Administration, Huazhong University of Science & Technology, 1037Luoyu Road, Wuhan, 430074, Hubei Province, PR China
– sequence: 3
  givenname: Haofeng
  surname: Wang
  fullname: Wang, Haofeng
  email: hhfwang2009@whu.edu.cn
  organization: Information Center of Natural Resources and Planning of Wuhan City, 13Sanyang Road, Wuhan, 430074, Hubei Province, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38765127$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAUjFARLaU_AeQjlyx2nNgJF7Ra8VGpEhcQR8uxnzdeJXawna32D_C78bJLaU-cbHnem_GbNy-LC-cdFMVrglcEE_ZutxpgtAfvVhWu6hVQzHj7rLiqatyUbV3ji0f3y-Imxh3GmDQt6zh9UVzSlrOGVPyq-LVZl72MoNESeunQNvj7NKDJaxiR8i5aDcG6LUoDoATT7IMckT44OVmFpN4tMU3gEvIGjV5lLM4y2WNNsPtjo5Eq-RDfo7VDcp5HqzLuHbIO_ViGLLmx6fCqeG7kGOHmfF4X3z99_Lb5Ut59_Xy7Wd-VqqF1KnnDatoDrTvMtGoUNy2rJZGa9dQopQFjg9uWQaWhqmumG6o5N12vKkZVnv26uD3xai93Yg52kuEgvLTiz4MPWyFDsmoEgSnTHBtFOPAsmjlw1RnGqKZZooPM9eHENS_9BFplF7I3T0ifIs4OYuv3gpC8xBZ3meHtmSH4nwvEJCYbFYyjdOCXKChuOM6bok0ubU6lKvgYA5gHHYLFMRNiJ86ZEMdMiFMmct-bx5986PqbgH9TQLZ9byGIqCw4BdoGUCn7Yv8j8RsPDM-C
CitedBy_id crossref_primary_10_1007_s12665_024_11705_z
Cites_doi 10.1080/13658816.2017.1338707
10.3390/land10060633
10.1016/j.landurbplan.2010.03.001
10.1016/S0198-9715(99)00015-0
10.1038/s41597-020-00792-9
10.1111/tgis.12707
10.1080/10106049.2021.1959657
10.1016/j.compenvurbsys.2020.101459
10.14246/irspsd.4.2_60
10.1080/15481603.2018.1533680
10.1016/j.landurbplan.2010.11.016
10.1007/s40808-015-0026-1
10.1016/j.scs.2017.08.033
10.1016/j.cities.2022.104146
10.1007/s11135-006-9018-6
10.1080/15481603.2020.1829376
10.1080/13658810410001705325
10.1016/j.scs.2019.101502
10.1080/15481603.2018.1426262
10.1016/j.apgeog.2015.11.012
10.1080/13658816.2015.1084510
10.1016/j.scitotenv.2020.142591
10.5194/essd-13-3907-2021
10.1007/s10661-023-11164-2
10.1155/2021/7557346
ContentType Journal Article
Copyright 2024 The Authors
2024 The Authors. Published by Elsevier Ltd.
2024 The Authors. Published by Elsevier Ltd. 2024
Copyright_xml – notice: 2024 The Authors
– notice: 2024 The Authors. Published by Elsevier Ltd.
– notice: 2024 The Authors. Published by Elsevier Ltd. 2024
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.heliyon.2024.e30678
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2405-8440
EndPage e30678
ExternalDocumentID oai_doaj_org_article_036d70fc17e743b9bc029f663d30889e
10_1016_j_heliyon_2024_e30678
38765127
S2405844024067094
Genre Journal Article
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDW
AAFTH
AAFWJ
AALRI
ABMAC
ACGFS
ACLIJ
ADBBV
ADEZE
ADVLN
AEXQZ
AFJKZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
FDB
GROUPED_DOAJ
HYE
KQ8
M~E
NCXOZ
O9-
OK1
ROL
RPM
SSZ
NPM
AAYXX
CITATION
EJD
IPNFZ
RIG
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c534t-75643be34906dc5c7f864a1ad6b3fccde00f0886e2de2446d53d77f9bc263c973
IEDL.DBID RPM
ISSN 2405-8440
IngestDate Tue Oct 22 15:16:36 EDT 2024
Tue Sep 17 21:28:30 EDT 2024
Sat Oct 26 05:24:22 EDT 2024
Wed Oct 16 15:30:10 EDT 2024
Sat Nov 02 12:21:14 EDT 2024
Sat Oct 12 15:52:38 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Dynamic driving factors
Cellular automata
Micro-scale
Wuhan
Language English
License This is an open access article under the CC BY-NC license.
2024 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-75643be34906dc5c7f864a1ad6b3fccde00f0886e2de2446d53d77f9bc263c973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101809/
PMID 38765127
PQID 3057076535
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_036d70fc17e743b9bc029f663d30889e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11101809
proquest_miscellaneous_3057076535
crossref_primary_10_1016_j_heliyon_2024_e30678
pubmed_primary_38765127
elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e30678
PublicationCentury 2000
PublicationDate 2024-05-15
PublicationDateYYYYMMDD 2024-05-15
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Heliyon
PublicationTitleAlternate Heliyon
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Liu, He, Tan, Liu, Yin (bib3) 2016; 66
Ma, Tian, Zhou, Miao (bib18) 2021; 2021
Mondal, Das, Dolui (bib23) 2015; 1
Aburas, Ho, Ramli, Ash’aari (bib10) 2016; 52
Wang, Jiao, Dong, Xu, Xu (bib7) 2019
Tobler (bib19) 1979
Gao, Feng, Tong, Lei, Zhai (bib21) 2020; 81
Lu, Laffan, Pettit (bib15) 2021
Yang, Huang (bib29) 2021; 13
Diksha, Kumar, Tripathy (bib22) 2023; 195
Li (bib2) 2011; 100
He, Li, Zhou, Liu, Gong, Hu, Wu (bib6) 2023; 133
Wang, Feng, Wei, Tong, Zhai, Zhou, Wu (bib13) 2021; 25
Torrens (bib5) 2006
Yang, Guo, Li, Zhang, Li (bib26) 2019; 56
Li, Gar-On Yeh (bib8) 2004; 18
Feng, Wang, Tong, Zhai (bib16) 2022; 37
Wu, Lin, Xing, Song, Li (bib32) 2021; 103
He, Song, Liu, Yin (bib28) 2017; 35
Santé, García, Miranda, Crecente (bib4) 2010; 96
O’Brien (bib30) 2007; 41
Batty, Xie, Sun (bib1) 1999; 23
Dadashpoor, Azizi, Moghadasi (bib11) 2019; 47
Zhao, Xie, Zhang, Ma (bib24) 2021; 10
Ke, Qi, Zeng (bib25) 2016; 30
Chen, Feng, Ye, Tong, Jin (bib14) 2020; 57
Wahyudi, Liu (bib9) 2016; 4
He, Liu, Zeng, Chaohui, Tan (bib12) 2017; 31
Dong, Yuan, Li, Ratti, Liu (bib31) 2021; 8
Feng, Tong (bib20) 2018; 55
Wu, Li, Wang (bib17) 2021; 766
Wang, Guo, Zhang, Zeng (bib27) 2021; 214
He (10.1016/j.heliyon.2024.e30678_bib6) 2023; 133
Wu (10.1016/j.heliyon.2024.e30678_bib32) 2021; 103
Liu (10.1016/j.heliyon.2024.e30678_bib3) 2016; 66
Wahyudi (10.1016/j.heliyon.2024.e30678_bib9) 2016; 4
Ma (10.1016/j.heliyon.2024.e30678_bib18) 2021; 2021
Lu (10.1016/j.heliyon.2024.e30678_bib15) 2021
O’Brien (10.1016/j.heliyon.2024.e30678_bib30) 2007; 41
Feng (10.1016/j.heliyon.2024.e30678_bib16) 2022; 37
Yang (10.1016/j.heliyon.2024.e30678_bib26) 2019; 56
Mondal (10.1016/j.heliyon.2024.e30678_bib23) 2015; 1
Aburas (10.1016/j.heliyon.2024.e30678_bib10) 2016; 52
Yang (10.1016/j.heliyon.2024.e30678_bib29) 2021; 13
Tobler (10.1016/j.heliyon.2024.e30678_bib19) 1979
Diksha (10.1016/j.heliyon.2024.e30678_bib22) 2023; 195
Santé (10.1016/j.heliyon.2024.e30678_bib4) 2010; 96
Li (10.1016/j.heliyon.2024.e30678_bib8) 2004; 18
He (10.1016/j.heliyon.2024.e30678_bib12) 2017; 31
Feng (10.1016/j.heliyon.2024.e30678_bib20) 2018; 55
Dadashpoor (10.1016/j.heliyon.2024.e30678_bib11) 2019; 47
He (10.1016/j.heliyon.2024.e30678_bib28) 2017; 35
Batty (10.1016/j.heliyon.2024.e30678_bib1) 1999; 23
Ke (10.1016/j.heliyon.2024.e30678_bib25) 2016; 30
Wang (10.1016/j.heliyon.2024.e30678_bib7) 2019
Gao (10.1016/j.heliyon.2024.e30678_bib21) 2020; 81
Li (10.1016/j.heliyon.2024.e30678_bib2) 2011; 100
Zhao (10.1016/j.heliyon.2024.e30678_bib24) 2021; 10
Wu (10.1016/j.heliyon.2024.e30678_bib17) 2021; 766
Chen (10.1016/j.heliyon.2024.e30678_bib14) 2020; 57
Wang (10.1016/j.heliyon.2024.e30678_bib13) 2021; 25
Torrens (10.1016/j.heliyon.2024.e30678_bib5) 2006
Dong (10.1016/j.heliyon.2024.e30678_bib31) 2021; 8
Wang (10.1016/j.heliyon.2024.e30678_bib27) 2021; 214
References_xml – start-page: 119
  year: 2006
  end-page: 136
  ident: bib5
  article-title: Geosimulation and its application to urban growth modeling
  publication-title: Complex Artificial Environments
  contributor:
    fullname: Torrens
– volume: 8
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib31
  article-title: A gridded establishment dataset as a proxy for economic activity in China
  publication-title: Sci. Data
  contributor:
    fullname: Liu
– volume: 25
  start-page: 923
  year: 2021
  end-page: 947
  ident: bib13
  article-title: A comparison of proximity and accessibility drivers in simulating dynamic urban growth
  publication-title: Trans. GIS
  contributor:
    fullname: Wu
– volume: 56
  start-page: 388
  year: 2019
  end-page: 405
  ident: bib26
  article-title: Simulation of landscape spatial layout evolution in rural-urban fringe areas: a case study of Ganjingzi District
  publication-title: GIScience Remote Sens.
  contributor:
    fullname: Li
– volume: 2021
  year: 2021
  ident: bib18
  article-title: Analysis on the temporal and spatial heterogeneity of factors affecting urbanization development based on the GTWR model: evidence from the Yangtze River economic belt
  publication-title: Complexity
  contributor:
    fullname: Miao
– volume: 4
  start-page: 60
  year: 2016
  end-page: 75
  ident: bib9
  article-title: Cellular automata for urban growth modelling: a review on factors defining transition rules
  publication-title: International Review for Spatial Planning and Sustainable Development
  contributor:
    fullname: Liu
– volume: 1
  start-page: 1
  year: 2015
  end-page: 13
  ident: bib23
  article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach
  publication-title: Modeling Earth Systems and Environment
  contributor:
    fullname: Dolui
– volume: 103
  year: 2021
  ident: bib32
  article-title: Identifying core driving factors of urban land use change from global land cover products and poi data using the random forest method
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Li
– volume: 57
  start-page: 924
  year: 2020
  end-page: 942
  ident: bib14
  article-title: A cellular automata approach of urban sprawl simulation with Bayesian spatially-varying transformation rules
  publication-title: GIScience Remote Sens.
  contributor:
    fullname: Jin
– start-page: 379
  year: 1979
  end-page: 386
  ident: bib19
  article-title: Cellular geography
  publication-title: Philosophy in Geography
  contributor:
    fullname: Tobler
– volume: 35
  start-page: 729
  year: 2017
  end-page: 739
  ident: bib28
  article-title: Diffusion or coalescence? Urban growth pattern and change in 363 Chinese cities from 1995 to 2015
  publication-title: Sustain. Cities Soc.
  contributor:
    fullname: Yin
– volume: 18
  start-page: 723
  year: 2004
  end-page: 744
  ident: bib8
  article-title: Data mining of cellular automata's transition rules
  publication-title: Int. J. Geogr. Inf. Sci.
  contributor:
    fullname: Gar-On Yeh
– volume: 41
  start-page: 673
  year: 2007
  end-page: 690
  ident: bib30
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quantity
  contributor:
    fullname: O’Brien
– volume: 55
  start-page: 678
  year: 2018
  end-page: 698
  ident: bib20
  article-title: Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules
  publication-title: GIScience Remote Sens.
  contributor:
    fullname: Tong
– volume: 37
  start-page: 6975
  year: 2022
  end-page: 6998
  ident: bib16
  article-title: Comparison of change and static state as the dependent variable for modeling urban growth
  publication-title: Geocarto Int.
  contributor:
    fullname: Zhai
– volume: 100
  start-page: 393
  year: 2011
  end-page: 395
  ident: bib2
  article-title: Emergence of bottom-up models as a tool for landscape simulation and planning
  publication-title: Landsc. Urban Plann.
  contributor:
    fullname: Li
– volume: 52
  start-page: 380
  year: 2016
  end-page: 389
  ident: bib10
  article-title: The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Ash’aari
– volume: 66
  start-page: 109
  year: 2016
  end-page: 118
  ident: bib3
  article-title: Modeling different urban growth patterns based on the evolution of urban form: a case study from Huangpi, Central China
  publication-title: Appl. Geogr.
  contributor:
    fullname: Yin
– volume: 13
  start-page: 3907
  year: 2021
  end-page: 3925
  ident: bib29
  article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
  publication-title: Earth Syst. Sci. Data
  contributor:
    fullname: Huang
– volume: 766
  year: 2021
  ident: bib17
  article-title: The varying driving forces of urban land expansion in China: insights from a spatial-temporal analysis
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Wang
– volume: 96
  start-page: 108
  year: 2010
  end-page: 122
  ident: bib4
  article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis
  publication-title: Landsc. Urban Plann.
  contributor:
    fullname: Crecente
– volume: 30
  start-page: 637
  year: 2016
  end-page: 659
  ident: bib25
  article-title: A partitioned and asynchronous cellular automata model for urban growth simulation
  publication-title: Int. J. Geogr. Inf. Sci.
  contributor:
    fullname: Zeng
– volume: 133
  year: 2023
  ident: bib6
  article-title: Modeling gridded urban fractional change using the temporal context information in the urban cellular automata model
  publication-title: Cities
  contributor:
    fullname: Wu
– volume: 31
  start-page: 1907
  year: 2017
  end-page: 1928
  ident: bib12
  article-title: Simultaneously simulate vertical and horizontal expansions of a future urban landscape: a case study in Wuhan, Central China
  publication-title: Int. J. Geogr. Inf. Sci.
  contributor:
    fullname: Tan
– volume: 195
  start-page: 627
  year: 2023
  ident: bib22
  article-title: Geographically weighted regression to measure the role of intra-urban drivers for urban growth modelling in Kathmandu, Central Himalayas
  publication-title: Environ. Monit. Assess.
  contributor:
    fullname: Tripathy
– volume: 10
  start-page: 633
  year: 2021
  ident: bib24
  article-title: Integrating spatial Markov chains and geographically weighted regression-based cellular automata to simulate urban agglomeration growth: a case study of the guangdong–Hong Kong–Macao greater bay area
  publication-title: Land
  contributor:
    fullname: Ma
– volume: 81
  year: 2020
  ident: bib21
  article-title: Modeling urban growth using spatially heterogeneous cellular automata models: comparison of spatial lag, spatial error and GWR
  publication-title: Comput. Environ. Urban Syst.
  contributor:
    fullname: Zhai
– volume: 214
  year: 2021
  ident: bib27
  article-title: Simulating urban land growth by incorporating historical information into a cellular automata model
  publication-title: Landsc. Urban Plann.
  contributor:
    fullname: Zeng
– start-page: 1
  year: 2019
  end-page: 25
  ident: bib7
  article-title: Simulating urban dynamics by coupling top-down and bottom-up strategies
  publication-title: Int. J. Geogr. Inf. Sci.
  contributor:
    fullname: Xu
– volume: 47
  year: 2019
  ident: bib11
  article-title: Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran
  publication-title: Sustain. Cities Soc.
  contributor:
    fullname: Moghadasi
– volume: 23
  start-page: 205
  year: 1999
  end-page: 233
  ident: bib1
  article-title: Modeling urban dynamics through gis-based cellular automata
  publication-title: Comput. Environ. Urban Syst.
  contributor:
    fullname: Sun
– year: 2021
  ident: bib15
  article-title: A geographically partitioned cellular automata model for the expansion of residential areas
  publication-title: Trans. GIS
  contributor:
    fullname: Pettit
– volume: 31
  start-page: 1907
  issue: 10
  year: 2017
  ident: 10.1016/j.heliyon.2024.e30678_bib12
  article-title: Simultaneously simulate vertical and horizontal expansions of a future urban landscape: a case study in Wuhan, Central China
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2017.1338707
  contributor:
    fullname: He
– volume: 10
  start-page: 633
  issue: 6
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib24
  article-title: Integrating spatial Markov chains and geographically weighted regression-based cellular automata to simulate urban agglomeration growth: a case study of the guangdong–Hong Kong–Macao greater bay area
  publication-title: Land
  doi: 10.3390/land10060633
  contributor:
    fullname: Zhao
– year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib15
  article-title: A geographically partitioned cellular automata model for the expansion of residential areas
  publication-title: Trans. GIS
  contributor:
    fullname: Lu
– volume: 96
  start-page: 108
  issue: 2
  year: 2010
  ident: 10.1016/j.heliyon.2024.e30678_bib4
  article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2010.03.001
  contributor:
    fullname: Santé
– start-page: 119
  year: 2006
  ident: 10.1016/j.heliyon.2024.e30678_bib5
  article-title: Geosimulation and its application to urban growth modeling
  contributor:
    fullname: Torrens
– volume: 23
  start-page: 205
  issue: 3
  year: 1999
  ident: 10.1016/j.heliyon.2024.e30678_bib1
  article-title: Modeling urban dynamics through gis-based cellular automata
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/S0198-9715(99)00015-0
  contributor:
    fullname: Batty
– volume: 8
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib31
  article-title: A gridded establishment dataset as a proxy for economic activity in China
  publication-title: Sci. Data
  doi: 10.1038/s41597-020-00792-9
  contributor:
    fullname: Dong
– volume: 25
  start-page: 923
  issue: 2
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib13
  article-title: A comparison of proximity and accessibility drivers in simulating dynamic urban growth
  publication-title: Trans. GIS
  doi: 10.1111/tgis.12707
  contributor:
    fullname: Wang
– volume: 37
  start-page: 6975
  issue: 23
  year: 2022
  ident: 10.1016/j.heliyon.2024.e30678_bib16
  article-title: Comparison of change and static state as the dependent variable for modeling urban growth
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2021.1959657
  contributor:
    fullname: Feng
– volume: 81
  year: 2020
  ident: 10.1016/j.heliyon.2024.e30678_bib21
  article-title: Modeling urban growth using spatially heterogeneous cellular automata models: comparison of spatial lag, spatial error and GWR
  publication-title: Comput. Environ. Urban Syst.
  doi: 10.1016/j.compenvurbsys.2020.101459
  contributor:
    fullname: Gao
– volume: 4
  start-page: 60
  issue: 2
  year: 2016
  ident: 10.1016/j.heliyon.2024.e30678_bib9
  article-title: Cellular automata for urban growth modelling: a review on factors defining transition rules
  publication-title: International Review for Spatial Planning and Sustainable Development
  doi: 10.14246/irspsd.4.2_60
  contributor:
    fullname: Wahyudi
– volume: 56
  start-page: 388
  issue: 3
  year: 2019
  ident: 10.1016/j.heliyon.2024.e30678_bib26
  article-title: Simulation of landscape spatial layout evolution in rural-urban fringe areas: a case study of Ganjingzi District
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2018.1533680
  contributor:
    fullname: Yang
– start-page: 1
  year: 2019
  ident: 10.1016/j.heliyon.2024.e30678_bib7
  article-title: Simulating urban dynamics by coupling top-down and bottom-up strategies
  publication-title: Int. J. Geogr. Inf. Sci.
  contributor:
    fullname: Wang
– volume: 100
  start-page: 393
  year: 2011
  ident: 10.1016/j.heliyon.2024.e30678_bib2
  article-title: Emergence of bottom-up models as a tool for landscape simulation and planning
  publication-title: Landsc. Urban Plann.
  doi: 10.1016/j.landurbplan.2010.11.016
  contributor:
    fullname: Li
– volume: 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.heliyon.2024.e30678_bib23
  article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach
  publication-title: Modeling Earth Systems and Environment
  doi: 10.1007/s40808-015-0026-1
  contributor:
    fullname: Mondal
– volume: 35
  start-page: 729
  year: 2017
  ident: 10.1016/j.heliyon.2024.e30678_bib28
  article-title: Diffusion or coalescence? Urban growth pattern and change in 363 Chinese cities from 1995 to 2015
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2017.08.033
  contributor:
    fullname: He
– volume: 133
  year: 2023
  ident: 10.1016/j.heliyon.2024.e30678_bib6
  article-title: Modeling gridded urban fractional change using the temporal context information in the urban cellular automata model
  publication-title: Cities
  doi: 10.1016/j.cities.2022.104146
  contributor:
    fullname: He
– volume: 41
  start-page: 673
  issue: 5
  year: 2007
  ident: 10.1016/j.heliyon.2024.e30678_bib30
  article-title: A caution regarding rules of thumb for variance inflation factors
  publication-title: Qual. Quantity
  doi: 10.1007/s11135-006-9018-6
  contributor:
    fullname: O’Brien
– volume: 57
  start-page: 924
  issue: 7
  year: 2020
  ident: 10.1016/j.heliyon.2024.e30678_bib14
  article-title: A cellular automata approach of urban sprawl simulation with Bayesian spatially-varying transformation rules
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2020.1829376
  contributor:
    fullname: Chen
– volume: 18
  start-page: 723
  issue: 8
  year: 2004
  ident: 10.1016/j.heliyon.2024.e30678_bib8
  article-title: Data mining of cellular automata's transition rules
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810410001705325
  contributor:
    fullname: Li
– start-page: 379
  year: 1979
  ident: 10.1016/j.heliyon.2024.e30678_bib19
  article-title: Cellular geography
  contributor:
    fullname: Tobler
– volume: 214
  issue: 10
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib27
  article-title: Simulating urban land growth by incorporating historical information into a cellular automata model
  publication-title: Landsc. Urban Plann.
  contributor:
    fullname: Wang
– volume: 47
  year: 2019
  ident: 10.1016/j.heliyon.2024.e30678_bib11
  article-title: Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101502
  contributor:
    fullname: Dadashpoor
– volume: 55
  start-page: 678
  issue: 5
  year: 2018
  ident: 10.1016/j.heliyon.2024.e30678_bib20
  article-title: Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules
  publication-title: GIScience Remote Sens.
  doi: 10.1080/15481603.2018.1426262
  contributor:
    fullname: Feng
– volume: 66
  start-page: 109
  year: 2016
  ident: 10.1016/j.heliyon.2024.e30678_bib3
  article-title: Modeling different urban growth patterns based on the evolution of urban form: a case study from Huangpi, Central China
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2015.11.012
  contributor:
    fullname: Liu
– volume: 103
  issue: 4
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib32
  article-title: Identifying core driving factors of urban land use change from global land cover products and poi data using the random forest method
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Wu
– volume: 30
  start-page: 637
  issue: 4
  year: 2016
  ident: 10.1016/j.heliyon.2024.e30678_bib25
  article-title: A partitioned and asynchronous cellular automata model for urban growth simulation
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2015.1084510
  contributor:
    fullname: Ke
– volume: 766
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib17
  article-title: The varying driving forces of urban land expansion in China: insights from a spatial-temporal analysis
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.142591
  contributor:
    fullname: Wu
– volume: 13
  start-page: 3907
  issue: 8
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib29
  article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-3907-2021
  contributor:
    fullname: Yang
– volume: 195
  start-page: 627
  issue: 5
  year: 2023
  ident: 10.1016/j.heliyon.2024.e30678_bib22
  article-title: Geographically weighted regression to measure the role of intra-urban drivers for urban growth modelling in Kathmandu, Central Himalayas
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-023-11164-2
  contributor:
    fullname: Diksha
– volume: 52
  start-page: 380
  year: 2016
  ident: 10.1016/j.heliyon.2024.e30678_bib10
  article-title: The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  contributor:
    fullname: Aburas
– volume: 2021
  year: 2021
  ident: 10.1016/j.heliyon.2024.e30678_bib18
  article-title: Analysis on the temporal and spatial heterogeneity of factors affecting urbanization development based on the GTWR model: evidence from the Yangtze River economic belt
  publication-title: Complexity
  doi: 10.1155/2021/7557346
  contributor:
    fullname: Ma
SSID ssj0001586973
Score 2.3229997
Snippet Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e30678
SubjectTerms Cellular automata
Dynamic driving factors
Micro-scale
Wuhan
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLbQHBAXxE7Z9JC4ppPEW8KtVIxGSMOJEXOzHC801Sgdtc2BP8Dv5nnp0MBhLlwTK17es7_P8fP3CPngm8rwjlVFrWtfMG5doVmji6ZynfSV1T7qbF98FeeX7MsVvzpK9RViwpI8cBq4U1xhrSy9qaRDsOvazpR16xEnLQ0ROi6uvmV7tJlK94Mb0Ur658rO6Xq-ctf9z03QPK3Z3AWq3EzAKGr2TzDpX875d-jkERadPSIPM4mERWr8Y3LPDU_I_Yt8TP6U_FouigBPFsZtpwf4gXvt_Qpi1hswOUUnYhYg-4MsTnUNNiWnB23X4y4Gn8PGQwQ72IXA61Bm24c_EJDT9HyExQBHZ-DQD_B9XGGVS2T3z8jl2edvy_MiJ1woDKdsX0iO_KRzlLWlsIYb6RvBdKWt6Kg3xrqy9DjowtXWIS0QllMrpUeb1IIaHO_n5GTYDO4lASzATRtKyJJJ3bbWMml0jYSGe-b4jMwPI69ukq6GOgScrVU2lQqmUslUM_Ip2Oe2cJDFjg_QWVR2FnWXs8xIc7CuygwjMQf8VH9X_e8P3qBwBoZjFT24zbhTuGLKUgpOsVMvknfctpIi2CClkljxxG8m3Zi-GfpVVPlGEIriaq_-R8dfkwehLyHsoeJvyMl-O7q3yKb23bs4cX4Dofkg4A
  priority: 102
  providerName: Directory of Open Access Journals
Title CA-based urban growth model considering the temporal dynamic adjustment of local spatial driving factors: An application in Wuhan City
URI https://dx.doi.org/10.1016/j.heliyon.2024.e30678
https://www.ncbi.nlm.nih.gov/pubmed/38765127
https://www.proquest.com/docview/3057076535
https://pubmed.ncbi.nlm.nih.gov/PMC11101809
https://doaj.org/article/036d70fc17e743b9bc029f663d30889e
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWSFCh6KZpucReDBXqVrIUUpdxcoUFQwGkPDWr0QnCNZThSYFuH_EC-O0NKSu30UKBXiRJJzSPnUXycQeizzWNFJYmDRCQ2IFSbQJBcBHlsJLOxFtbH2Z5dZOeX5Nuczg9QNpyF8aJ9JauwXl2HdbXw2sqbazUZdGKTH7MSxqePOzU5RIeA0J01enc2OM8Klv45rjNZhguzqm4bF-80IaFxNNkl6kthKqA-ocyOT_Kh-_dc09_U87GCcsclnb1Az3suiaddm4_Rgalfoqezfrf8Fborp4HzUhq3aylqfAVL7u0C--Q3WPWZOsF1YSCBuI9RtcK6y1GPhV62G69Bx43F3ufhjdNfuzLryv2IwH22nlM8rfHOVjiuavyrXUCVJZD81-jy7OvP8jzo8y4EiqZkGzAKNEWalBRRphVVzOYZEbHQmUytUtpEkYXJKTOJNsAOMk1TzZgtpEqyVMGnf4OO6qY2JwhDAaoKV4JFhImi0JowJRLgNdQSQ0coHL48v-nCa_BBd7bkvdW4sxrvrDZCX5x9Hgq76Nj-QrO-4j1GOHhlzSKrYmaAIEloWJQUFriVTp2qy4xQPliX90SjIxDwqupf9X8a0MBhILrdFVGbpt1wmDhZBHhKoVNvO3Q8tHIAGlS8h5u9buzfAez7YN8D1t_9_6Pv0TPXA6d5iOkHdLRdt-YjUKmtHPtfEGP05KKcf_899uPoHtQyJOA
link.rule.ids 230,315,730,783,787,867,888,2109,27938,27939,53806,53808
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LctMwFNWUMgNseBfCU8ywteOHZNnsQoZOgKbDop12p5H1aBwSuZPEi_IBfDdXsl2SsmBgGyuR7-hI9yg6Oheh9yaPJS1JHCQiMQGhSgeC5CLIY10yEythvM_29DibnJIv5_R8D2X9XRgv2pdlFdrFMrTVzGsrL5dy2OvEht-mY5if3ndqeAvdhgkbZVu79PZ2cJ4VLP19YWc4D2d6UV3VzvE0IaF2RNmV6kthMaC-pMxWVvLm_TvJ6U_yeVNDuZWUDh-gsz6cVovyPWw2ZSh_3HB6_Pd4H6L7HU_Fo_b5I7Sn7WN0Z9qdxD9BP8ejwGVAhZtVKSy-gO38ZoZ9YR0suyqgkBYxEEzc-V8tsLqyYllJLNS8WXt9O64N9vkUr52227VZVe5PDtxVAvqARxZvHbPjyuKzZgZdjmED8RSdHn46GU-CrqZDIGlKNgGjQIFKnZIiypSkkpk8IyIWKitTI6XSUWRg4ct0ojQwj0zRVDFmilImWSphUA_Qvq2tfo4wNKCycC1YRJgoCqUIkyIBzkQN0XSAwn5M-WVr3cF7Tducd3jgDg-8xcMAfXQjf93YOW_7D-rVBe_Gg0PGVywyMmYayFcJLxYlhQHeplKnGNMDlPe44R2JackJ_FT1t_7f9TjjMMndyY2wum7WHBZlFgFSUwjqWYu767fsIQwd7yByJ4zdJ4AzbyTe4-rF_3_1Lbo7OZke8aPPx19fonsuGqetiOkrtL9ZNfo1ULZN-cbPz18DY0RU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXaFAh66b64Kwv0KlkbRak3162RLg5yaNAAPRAUl1iuTRu2dEg_oN_dIUWldnookKs0EjXgI-dRfJxB6K0uYkGqLA4SnuggI1IFPCt4UMSqojqWXLs829Pj_Og0-3xGzryqcutllUZUdWgWy9DUM6etXC_FsNeJDU-mYxifLu_UcC318Ca6BYM2KnZW6t0J4SIvafr30M5wHs7Uor5Y2aynSRYqS5Ztub4UJgTiysrsRCaXwH8vQP1LQK_qKHcC0-Qu-tG71OlRfoZtU4Xi15Vsj9fz-R664_kqHnU299ENZR6gw6nfkX-Ifo9HgY2EErebiht8Dsv6ZoZdgR0sfDVQCI8YiCb2ebAWWF4YvqwF5nLebp3OHa80dnEVb63G29psavuzA_uKQO_wyOCd7XZcG_y9nUGTY1hIPEKnk4_fxkeBr-0QCJJmTUAJUKFKpVkZ5VIQQXWRZzzmMq9SLYRUUaRhAsxVIhUwkFySVFKqy0okeSqgYx-jA7My6inCYEBEaS1olFFellJmVPAEuBPRmSIDFPb9ytZdCg_Wa9vmzGOCWUywDhMD9N72_qWxzcDtLqw258z3CYPIL2mkRUwVkLAKPixKSg38TaZWOaYGqOixwzyZ6UgKvKr-X_tveqwxGOx2B4cbtWq3DCZnGgFaU3DqSYe9y6_sYQwN76Fyz439O4A1l1C8x9az6z_6Gh2efJiwr5-OvzxHt60zVmIRkxfooNm06iUwt6Z65YboH_xcRtQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CA-based+urban+growth+model+considering+the+temporal+dynamic+adjustment+of+local+spatial+driving+factors%3A+An+application+in+Wuhan+City&rft.jtitle=Heliyon&rft.au=Sun%2C+Jianwei&rft.au=He%2C+Qingsong&rft.au=Wang%2C+Haofeng&rft.date=2024-05-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=9&rft.spage=e30678&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e30678&rft_id=info%3Apmid%2F38765127&rft.externalDocID=38765127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon