CA-based urban growth model considering the temporal dynamic adjustment of local spatial driving factors: An application in Wuhan City
Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. Howeve...
Saved in:
Published in | Heliyon Vol. 10; no. 9; p. e30678 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.05.2024
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R2, indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781–0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale. |
---|---|
AbstractList | Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R2, indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781–0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale. Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R , indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781-0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale. Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of the CA model is the definition of transformation rules. During a simulation process, the rules determine the change of the cell state. However, existing processing methods calculate the driving factors based on single-point time (start time or end time), making it difficult to reflect the fact that numerous driving factors affecting the cell conversion dynamically change with time. Based on the time dynamics perspective and the data set of multiple time series, this paper designs a method of dynamic adjustment of driving factors of urban expansion on the local cell-scale. It uses linear, exponential, logarithmic, and polynomial fitting to develop a CA model of dynamic adjustment that conforms to the characteristics of local spatial evolution. The main conclusions of the paper are as follows: (1) The polynomial fitting has the highest average R 2 , indicating that the driving factors experiences large fluctuations over time; (2) Secondly, the simulation result kappa obtained by the four fitting methods is between 0.781–0.810, which is higher than the simulation accuracy obtained by using only a single time point. In other words, the factor does not dynamically fit with time and (3) The fitting accuracy of road density is a key indicator of correct and incorrect simulation parts of construction land. Our results demonstrate that the precision of the CA model may be significantly improved by capturing the time development law of environmental variables affecting urban development at the micro-scale. |
ArticleNumber | e30678 |
Author | Wang, Haofeng Sun, Jianwei He, Qingsong |
Author_xml | – sequence: 1 givenname: Jianwei surname: Sun fullname: Sun, Jianwei organization: School of Geographical and Environmental Sciences, Guizhou Normal University, Guizhou, Guiyang, 550025, PR China – sequence: 2 givenname: Qingsong surname: He fullname: He, Qingsong organization: College of Public Administration, Huazhong University of Science & Technology, 1037Luoyu Road, Wuhan, 430074, Hubei Province, PR China – sequence: 3 givenname: Haofeng surname: Wang fullname: Wang, Haofeng email: hhfwang2009@whu.edu.cn organization: Information Center of Natural Resources and Planning of Wuhan City, 13Sanyang Road, Wuhan, 430074, Hubei Province, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38765127$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1v1DAUjFARLaU_AeQjlyx2nNgJF7Ra8VGpEhcQR8uxnzdeJXawna32D_C78bJLaU-cbHnem_GbNy-LC-cdFMVrglcEE_ZutxpgtAfvVhWu6hVQzHj7rLiqatyUbV3ji0f3y-Imxh3GmDQt6zh9UVzSlrOGVPyq-LVZl72MoNESeunQNvj7NKDJaxiR8i5aDcG6LUoDoATT7IMckT44OVmFpN4tMU3gEvIGjV5lLM4y2WNNsPtjo5Eq-RDfo7VDcp5HqzLuHbIO_ViGLLmx6fCqeG7kGOHmfF4X3z99_Lb5Ut59_Xy7Wd-VqqF1KnnDatoDrTvMtGoUNy2rJZGa9dQopQFjg9uWQaWhqmumG6o5N12vKkZVnv26uD3xai93Yg52kuEgvLTiz4MPWyFDsmoEgSnTHBtFOPAsmjlw1RnGqKZZooPM9eHENS_9BFplF7I3T0ifIs4OYuv3gpC8xBZ3meHtmSH4nwvEJCYbFYyjdOCXKChuOM6bok0ubU6lKvgYA5gHHYLFMRNiJ86ZEMdMiFMmct-bx5986PqbgH9TQLZ9byGIqCw4BdoGUCn7Yv8j8RsPDM-C |
CitedBy_id | crossref_primary_10_1007_s12665_024_11705_z |
Cites_doi | 10.1080/13658816.2017.1338707 10.3390/land10060633 10.1016/j.landurbplan.2010.03.001 10.1016/S0198-9715(99)00015-0 10.1038/s41597-020-00792-9 10.1111/tgis.12707 10.1080/10106049.2021.1959657 10.1016/j.compenvurbsys.2020.101459 10.14246/irspsd.4.2_60 10.1080/15481603.2018.1533680 10.1016/j.landurbplan.2010.11.016 10.1007/s40808-015-0026-1 10.1016/j.scs.2017.08.033 10.1016/j.cities.2022.104146 10.1007/s11135-006-9018-6 10.1080/15481603.2020.1829376 10.1080/13658810410001705325 10.1016/j.scs.2019.101502 10.1080/15481603.2018.1426262 10.1016/j.apgeog.2015.11.012 10.1080/13658816.2015.1084510 10.1016/j.scitotenv.2020.142591 10.5194/essd-13-3907-2021 10.1007/s10661-023-11164-2 10.1155/2021/7557346 |
ContentType | Journal Article |
Copyright | 2024 The Authors 2024 The Authors. Published by Elsevier Ltd. 2024 The Authors. Published by Elsevier Ltd. 2024 |
Copyright_xml | – notice: 2024 The Authors – notice: 2024 The Authors. Published by Elsevier Ltd. – notice: 2024 The Authors. Published by Elsevier Ltd. 2024 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.heliyon.2024.e30678 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2405-8440 |
EndPage | e30678 |
ExternalDocumentID | oai_doaj_org_article_036d70fc17e743b9bc029f663d30889e 10_1016_j_heliyon_2024_e30678 38765127 S2405844024067094 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 457 53G 5VS 6I. AACTN AAEDW AAFTH AAFWJ AALRI ABMAC ACGFS ACLIJ ADBBV ADEZE ADVLN AEXQZ AFJKZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BCNDV DIK EBS FDB GROUPED_DOAJ HYE KQ8 M~E NCXOZ O9- OK1 ROL RPM SSZ NPM AAYXX CITATION EJD IPNFZ RIG 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c534t-75643be34906dc5c7f864a1ad6b3fccde00f0886e2de2446d53d77f9bc263c973 |
IEDL.DBID | RPM |
ISSN | 2405-8440 |
IngestDate | Tue Oct 22 15:16:36 EDT 2024 Tue Sep 17 21:28:30 EDT 2024 Sat Oct 26 05:24:22 EDT 2024 Wed Oct 16 15:30:10 EDT 2024 Sat Nov 02 12:21:14 EDT 2024 Sat Oct 12 15:52:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Dynamic driving factors Cellular automata Micro-scale Wuhan |
Language | English |
License | This is an open access article under the CC BY-NC license. 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-75643be34906dc5c7f864a1ad6b3fccde00f0886e2de2446d53d77f9bc263c973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11101809/ |
PMID | 38765127 |
PQID | 3057076535 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_036d70fc17e743b9bc029f663d30889e pubmedcentral_primary_oai_pubmedcentral_nih_gov_11101809 proquest_miscellaneous_3057076535 crossref_primary_10_1016_j_heliyon_2024_e30678 pubmed_primary_38765127 elsevier_sciencedirect_doi_10_1016_j_heliyon_2024_e30678 |
PublicationCentury | 2000 |
PublicationDate | 2024-05-15 |
PublicationDateYYYYMMDD | 2024-05-15 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Heliyon |
PublicationTitleAlternate | Heliyon |
PublicationYear | 2024 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Liu, He, Tan, Liu, Yin (bib3) 2016; 66 Ma, Tian, Zhou, Miao (bib18) 2021; 2021 Mondal, Das, Dolui (bib23) 2015; 1 Aburas, Ho, Ramli, Ash’aari (bib10) 2016; 52 Wang, Jiao, Dong, Xu, Xu (bib7) 2019 Tobler (bib19) 1979 Gao, Feng, Tong, Lei, Zhai (bib21) 2020; 81 Lu, Laffan, Pettit (bib15) 2021 Yang, Huang (bib29) 2021; 13 Diksha, Kumar, Tripathy (bib22) 2023; 195 Li (bib2) 2011; 100 He, Li, Zhou, Liu, Gong, Hu, Wu (bib6) 2023; 133 Wang, Feng, Wei, Tong, Zhai, Zhou, Wu (bib13) 2021; 25 Torrens (bib5) 2006 Yang, Guo, Li, Zhang, Li (bib26) 2019; 56 Li, Gar-On Yeh (bib8) 2004; 18 Feng, Wang, Tong, Zhai (bib16) 2022; 37 Wu, Lin, Xing, Song, Li (bib32) 2021; 103 He, Song, Liu, Yin (bib28) 2017; 35 Santé, García, Miranda, Crecente (bib4) 2010; 96 O’Brien (bib30) 2007; 41 Batty, Xie, Sun (bib1) 1999; 23 Dadashpoor, Azizi, Moghadasi (bib11) 2019; 47 Zhao, Xie, Zhang, Ma (bib24) 2021; 10 Ke, Qi, Zeng (bib25) 2016; 30 Chen, Feng, Ye, Tong, Jin (bib14) 2020; 57 Wahyudi, Liu (bib9) 2016; 4 He, Liu, Zeng, Chaohui, Tan (bib12) 2017; 31 Dong, Yuan, Li, Ratti, Liu (bib31) 2021; 8 Feng, Tong (bib20) 2018; 55 Wu, Li, Wang (bib17) 2021; 766 Wang, Guo, Zhang, Zeng (bib27) 2021; 214 He (10.1016/j.heliyon.2024.e30678_bib6) 2023; 133 Wu (10.1016/j.heliyon.2024.e30678_bib32) 2021; 103 Liu (10.1016/j.heliyon.2024.e30678_bib3) 2016; 66 Wahyudi (10.1016/j.heliyon.2024.e30678_bib9) 2016; 4 Ma (10.1016/j.heliyon.2024.e30678_bib18) 2021; 2021 Lu (10.1016/j.heliyon.2024.e30678_bib15) 2021 O’Brien (10.1016/j.heliyon.2024.e30678_bib30) 2007; 41 Feng (10.1016/j.heliyon.2024.e30678_bib16) 2022; 37 Yang (10.1016/j.heliyon.2024.e30678_bib26) 2019; 56 Mondal (10.1016/j.heliyon.2024.e30678_bib23) 2015; 1 Aburas (10.1016/j.heliyon.2024.e30678_bib10) 2016; 52 Yang (10.1016/j.heliyon.2024.e30678_bib29) 2021; 13 Tobler (10.1016/j.heliyon.2024.e30678_bib19) 1979 Diksha (10.1016/j.heliyon.2024.e30678_bib22) 2023; 195 Santé (10.1016/j.heliyon.2024.e30678_bib4) 2010; 96 Li (10.1016/j.heliyon.2024.e30678_bib8) 2004; 18 He (10.1016/j.heliyon.2024.e30678_bib12) 2017; 31 Feng (10.1016/j.heliyon.2024.e30678_bib20) 2018; 55 Dadashpoor (10.1016/j.heliyon.2024.e30678_bib11) 2019; 47 He (10.1016/j.heliyon.2024.e30678_bib28) 2017; 35 Batty (10.1016/j.heliyon.2024.e30678_bib1) 1999; 23 Ke (10.1016/j.heliyon.2024.e30678_bib25) 2016; 30 Wang (10.1016/j.heliyon.2024.e30678_bib7) 2019 Gao (10.1016/j.heliyon.2024.e30678_bib21) 2020; 81 Li (10.1016/j.heliyon.2024.e30678_bib2) 2011; 100 Zhao (10.1016/j.heliyon.2024.e30678_bib24) 2021; 10 Wu (10.1016/j.heliyon.2024.e30678_bib17) 2021; 766 Chen (10.1016/j.heliyon.2024.e30678_bib14) 2020; 57 Wang (10.1016/j.heliyon.2024.e30678_bib13) 2021; 25 Torrens (10.1016/j.heliyon.2024.e30678_bib5) 2006 Dong (10.1016/j.heliyon.2024.e30678_bib31) 2021; 8 Wang (10.1016/j.heliyon.2024.e30678_bib27) 2021; 214 |
References_xml | – start-page: 119 year: 2006 end-page: 136 ident: bib5 article-title: Geosimulation and its application to urban growth modeling publication-title: Complex Artificial Environments contributor: fullname: Torrens – volume: 8 start-page: 1 year: 2021 end-page: 9 ident: bib31 article-title: A gridded establishment dataset as a proxy for economic activity in China publication-title: Sci. Data contributor: fullname: Liu – volume: 25 start-page: 923 year: 2021 end-page: 947 ident: bib13 article-title: A comparison of proximity and accessibility drivers in simulating dynamic urban growth publication-title: Trans. GIS contributor: fullname: Wu – volume: 56 start-page: 388 year: 2019 end-page: 405 ident: bib26 article-title: Simulation of landscape spatial layout evolution in rural-urban fringe areas: a case study of Ganjingzi District publication-title: GIScience Remote Sens. contributor: fullname: Li – volume: 2021 year: 2021 ident: bib18 article-title: Analysis on the temporal and spatial heterogeneity of factors affecting urbanization development based on the GTWR model: evidence from the Yangtze River economic belt publication-title: Complexity contributor: fullname: Miao – volume: 4 start-page: 60 year: 2016 end-page: 75 ident: bib9 article-title: Cellular automata for urban growth modelling: a review on factors defining transition rules publication-title: International Review for Spatial Planning and Sustainable Development contributor: fullname: Liu – volume: 1 start-page: 1 year: 2015 end-page: 13 ident: bib23 article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach publication-title: Modeling Earth Systems and Environment contributor: fullname: Dolui – volume: 103 year: 2021 ident: bib32 article-title: Identifying core driving factors of urban land use change from global land cover products and poi data using the random forest method publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Li – volume: 57 start-page: 924 year: 2020 end-page: 942 ident: bib14 article-title: A cellular automata approach of urban sprawl simulation with Bayesian spatially-varying transformation rules publication-title: GIScience Remote Sens. contributor: fullname: Jin – start-page: 379 year: 1979 end-page: 386 ident: bib19 article-title: Cellular geography publication-title: Philosophy in Geography contributor: fullname: Tobler – volume: 35 start-page: 729 year: 2017 end-page: 739 ident: bib28 article-title: Diffusion or coalescence? Urban growth pattern and change in 363 Chinese cities from 1995 to 2015 publication-title: Sustain. Cities Soc. contributor: fullname: Yin – volume: 18 start-page: 723 year: 2004 end-page: 744 ident: bib8 article-title: Data mining of cellular automata's transition rules publication-title: Int. J. Geogr. Inf. Sci. contributor: fullname: Gar-On Yeh – volume: 41 start-page: 673 year: 2007 end-page: 690 ident: bib30 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quantity contributor: fullname: O’Brien – volume: 55 start-page: 678 year: 2018 end-page: 698 ident: bib20 article-title: Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules publication-title: GIScience Remote Sens. contributor: fullname: Tong – volume: 37 start-page: 6975 year: 2022 end-page: 6998 ident: bib16 article-title: Comparison of change and static state as the dependent variable for modeling urban growth publication-title: Geocarto Int. contributor: fullname: Zhai – volume: 100 start-page: 393 year: 2011 end-page: 395 ident: bib2 article-title: Emergence of bottom-up models as a tool for landscape simulation and planning publication-title: Landsc. Urban Plann. contributor: fullname: Li – volume: 52 start-page: 380 year: 2016 end-page: 389 ident: bib10 article-title: The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Ash’aari – volume: 66 start-page: 109 year: 2016 end-page: 118 ident: bib3 article-title: Modeling different urban growth patterns based on the evolution of urban form: a case study from Huangpi, Central China publication-title: Appl. Geogr. contributor: fullname: Yin – volume: 13 start-page: 3907 year: 2021 end-page: 3925 ident: bib29 article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 publication-title: Earth Syst. Sci. Data contributor: fullname: Huang – volume: 766 year: 2021 ident: bib17 article-title: The varying driving forces of urban land expansion in China: insights from a spatial-temporal analysis publication-title: Sci. Total Environ. contributor: fullname: Wang – volume: 96 start-page: 108 year: 2010 end-page: 122 ident: bib4 article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis publication-title: Landsc. Urban Plann. contributor: fullname: Crecente – volume: 30 start-page: 637 year: 2016 end-page: 659 ident: bib25 article-title: A partitioned and asynchronous cellular automata model for urban growth simulation publication-title: Int. J. Geogr. Inf. Sci. contributor: fullname: Zeng – volume: 133 year: 2023 ident: bib6 article-title: Modeling gridded urban fractional change using the temporal context information in the urban cellular automata model publication-title: Cities contributor: fullname: Wu – volume: 31 start-page: 1907 year: 2017 end-page: 1928 ident: bib12 article-title: Simultaneously simulate vertical and horizontal expansions of a future urban landscape: a case study in Wuhan, Central China publication-title: Int. J. Geogr. Inf. Sci. contributor: fullname: Tan – volume: 195 start-page: 627 year: 2023 ident: bib22 article-title: Geographically weighted regression to measure the role of intra-urban drivers for urban growth modelling in Kathmandu, Central Himalayas publication-title: Environ. Monit. Assess. contributor: fullname: Tripathy – volume: 10 start-page: 633 year: 2021 ident: bib24 article-title: Integrating spatial Markov chains and geographically weighted regression-based cellular automata to simulate urban agglomeration growth: a case study of the guangdong–Hong Kong–Macao greater bay area publication-title: Land contributor: fullname: Ma – volume: 81 year: 2020 ident: bib21 article-title: Modeling urban growth using spatially heterogeneous cellular automata models: comparison of spatial lag, spatial error and GWR publication-title: Comput. Environ. Urban Syst. contributor: fullname: Zhai – volume: 214 year: 2021 ident: bib27 article-title: Simulating urban land growth by incorporating historical information into a cellular automata model publication-title: Landsc. Urban Plann. contributor: fullname: Zeng – start-page: 1 year: 2019 end-page: 25 ident: bib7 article-title: Simulating urban dynamics by coupling top-down and bottom-up strategies publication-title: Int. J. Geogr. Inf. Sci. contributor: fullname: Xu – volume: 47 year: 2019 ident: bib11 article-title: Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran publication-title: Sustain. Cities Soc. contributor: fullname: Moghadasi – volume: 23 start-page: 205 year: 1999 end-page: 233 ident: bib1 article-title: Modeling urban dynamics through gis-based cellular automata publication-title: Comput. Environ. Urban Syst. contributor: fullname: Sun – year: 2021 ident: bib15 article-title: A geographically partitioned cellular automata model for the expansion of residential areas publication-title: Trans. GIS contributor: fullname: Pettit – volume: 31 start-page: 1907 issue: 10 year: 2017 ident: 10.1016/j.heliyon.2024.e30678_bib12 article-title: Simultaneously simulate vertical and horizontal expansions of a future urban landscape: a case study in Wuhan, Central China publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2017.1338707 contributor: fullname: He – volume: 10 start-page: 633 issue: 6 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib24 article-title: Integrating spatial Markov chains and geographically weighted regression-based cellular automata to simulate urban agglomeration growth: a case study of the guangdong–Hong Kong–Macao greater bay area publication-title: Land doi: 10.3390/land10060633 contributor: fullname: Zhao – year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib15 article-title: A geographically partitioned cellular automata model for the expansion of residential areas publication-title: Trans. GIS contributor: fullname: Lu – volume: 96 start-page: 108 issue: 2 year: 2010 ident: 10.1016/j.heliyon.2024.e30678_bib4 article-title: Cellular automata models for the simulation of real-world urban processes: a review and analysis publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2010.03.001 contributor: fullname: Santé – start-page: 119 year: 2006 ident: 10.1016/j.heliyon.2024.e30678_bib5 article-title: Geosimulation and its application to urban growth modeling contributor: fullname: Torrens – volume: 23 start-page: 205 issue: 3 year: 1999 ident: 10.1016/j.heliyon.2024.e30678_bib1 article-title: Modeling urban dynamics through gis-based cellular automata publication-title: Comput. Environ. Urban Syst. doi: 10.1016/S0198-9715(99)00015-0 contributor: fullname: Batty – volume: 8 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib31 article-title: A gridded establishment dataset as a proxy for economic activity in China publication-title: Sci. Data doi: 10.1038/s41597-020-00792-9 contributor: fullname: Dong – volume: 25 start-page: 923 issue: 2 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib13 article-title: A comparison of proximity and accessibility drivers in simulating dynamic urban growth publication-title: Trans. GIS doi: 10.1111/tgis.12707 contributor: fullname: Wang – volume: 37 start-page: 6975 issue: 23 year: 2022 ident: 10.1016/j.heliyon.2024.e30678_bib16 article-title: Comparison of change and static state as the dependent variable for modeling urban growth publication-title: Geocarto Int. doi: 10.1080/10106049.2021.1959657 contributor: fullname: Feng – volume: 81 year: 2020 ident: 10.1016/j.heliyon.2024.e30678_bib21 article-title: Modeling urban growth using spatially heterogeneous cellular automata models: comparison of spatial lag, spatial error and GWR publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2020.101459 contributor: fullname: Gao – volume: 4 start-page: 60 issue: 2 year: 2016 ident: 10.1016/j.heliyon.2024.e30678_bib9 article-title: Cellular automata for urban growth modelling: a review on factors defining transition rules publication-title: International Review for Spatial Planning and Sustainable Development doi: 10.14246/irspsd.4.2_60 contributor: fullname: Wahyudi – volume: 56 start-page: 388 issue: 3 year: 2019 ident: 10.1016/j.heliyon.2024.e30678_bib26 article-title: Simulation of landscape spatial layout evolution in rural-urban fringe areas: a case study of Ganjingzi District publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2018.1533680 contributor: fullname: Yang – start-page: 1 year: 2019 ident: 10.1016/j.heliyon.2024.e30678_bib7 article-title: Simulating urban dynamics by coupling top-down and bottom-up strategies publication-title: Int. J. Geogr. Inf. Sci. contributor: fullname: Wang – volume: 100 start-page: 393 year: 2011 ident: 10.1016/j.heliyon.2024.e30678_bib2 article-title: Emergence of bottom-up models as a tool for landscape simulation and planning publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2010.11.016 contributor: fullname: Li – volume: 1 start-page: 1 year: 2015 ident: 10.1016/j.heliyon.2024.e30678_bib23 article-title: Modeling spatial variation of explanatory factors of urban expansion of Kolkata: a geographically weighted regression approach publication-title: Modeling Earth Systems and Environment doi: 10.1007/s40808-015-0026-1 contributor: fullname: Mondal – volume: 35 start-page: 729 year: 2017 ident: 10.1016/j.heliyon.2024.e30678_bib28 article-title: Diffusion or coalescence? Urban growth pattern and change in 363 Chinese cities from 1995 to 2015 publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2017.08.033 contributor: fullname: He – volume: 133 year: 2023 ident: 10.1016/j.heliyon.2024.e30678_bib6 article-title: Modeling gridded urban fractional change using the temporal context information in the urban cellular automata model publication-title: Cities doi: 10.1016/j.cities.2022.104146 contributor: fullname: He – volume: 41 start-page: 673 issue: 5 year: 2007 ident: 10.1016/j.heliyon.2024.e30678_bib30 article-title: A caution regarding rules of thumb for variance inflation factors publication-title: Qual. Quantity doi: 10.1007/s11135-006-9018-6 contributor: fullname: O’Brien – volume: 57 start-page: 924 issue: 7 year: 2020 ident: 10.1016/j.heliyon.2024.e30678_bib14 article-title: A cellular automata approach of urban sprawl simulation with Bayesian spatially-varying transformation rules publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2020.1829376 contributor: fullname: Chen – volume: 18 start-page: 723 issue: 8 year: 2004 ident: 10.1016/j.heliyon.2024.e30678_bib8 article-title: Data mining of cellular automata's transition rules publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810410001705325 contributor: fullname: Li – start-page: 379 year: 1979 ident: 10.1016/j.heliyon.2024.e30678_bib19 article-title: Cellular geography contributor: fullname: Tobler – volume: 214 issue: 10 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib27 article-title: Simulating urban land growth by incorporating historical information into a cellular automata model publication-title: Landsc. Urban Plann. contributor: fullname: Wang – volume: 47 year: 2019 ident: 10.1016/j.heliyon.2024.e30678_bib11 article-title: Analyzing spatial patterns, driving forces and predicting future growth scenarios for supporting sustainable urban growth: Evidence from Tabriz metropolitan area, Iran publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101502 contributor: fullname: Dadashpoor – volume: 55 start-page: 678 issue: 5 year: 2018 ident: 10.1016/j.heliyon.2024.e30678_bib20 article-title: Dynamic land use change simulation using cellular automata with spatially nonstationary transition rules publication-title: GIScience Remote Sens. doi: 10.1080/15481603.2018.1426262 contributor: fullname: Feng – volume: 66 start-page: 109 year: 2016 ident: 10.1016/j.heliyon.2024.e30678_bib3 article-title: Modeling different urban growth patterns based on the evolution of urban form: a case study from Huangpi, Central China publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2015.11.012 contributor: fullname: Liu – volume: 103 issue: 4 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib32 article-title: Identifying core driving factors of urban land use change from global land cover products and poi data using the random forest method publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Wu – volume: 30 start-page: 637 issue: 4 year: 2016 ident: 10.1016/j.heliyon.2024.e30678_bib25 article-title: A partitioned and asynchronous cellular automata model for urban growth simulation publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2015.1084510 contributor: fullname: Ke – volume: 766 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib17 article-title: The varying driving forces of urban land expansion in China: insights from a spatial-temporal analysis publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.142591 contributor: fullname: Wu – volume: 13 start-page: 3907 issue: 8 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib29 article-title: The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-3907-2021 contributor: fullname: Yang – volume: 195 start-page: 627 issue: 5 year: 2023 ident: 10.1016/j.heliyon.2024.e30678_bib22 article-title: Geographically weighted regression to measure the role of intra-urban drivers for urban growth modelling in Kathmandu, Central Himalayas publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-023-11164-2 contributor: fullname: Diksha – volume: 52 start-page: 380 year: 2016 ident: 10.1016/j.heliyon.2024.e30678_bib10 article-title: The simulation and prediction of spatio-temporal urban growth trends using cellular automata models: a review publication-title: Int. J. Appl. Earth Obs. Geoinf. contributor: fullname: Aburas – volume: 2021 year: 2021 ident: 10.1016/j.heliyon.2024.e30678_bib18 article-title: Analysis on the temporal and spatial heterogeneity of factors affecting urbanization development based on the GTWR model: evidence from the Yangtze River economic belt publication-title: Complexity doi: 10.1155/2021/7557346 contributor: fullname: Ma |
SSID | ssj0001586973 |
Score | 2.3229997 |
Snippet | Cellular Automaton (CA) is widely used because of its ability to simulate complex spatiotemporal dynamic processes through applying simple rules. The basis of... |
SourceID | doaj pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e30678 |
SubjectTerms | Cellular automata Dynamic driving factors Micro-scale Wuhan |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLbQHBAXxE7Z9JC4ppPEW8KtVIxGSMOJEXOzHC801Sgdtc2BP8Dv5nnp0MBhLlwTK17es7_P8fP3CPngm8rwjlVFrWtfMG5doVmji6ZynfSV1T7qbF98FeeX7MsVvzpK9RViwpI8cBq4U1xhrSy9qaRDsOvazpR16xEnLQ0ROi6uvmV7tJlK94Mb0Ur658rO6Xq-ctf9z03QPK3Z3AWq3EzAKGr2TzDpX875d-jkERadPSIPM4mERWr8Y3LPDU_I_Yt8TP6U_FouigBPFsZtpwf4gXvt_Qpi1hswOUUnYhYg-4MsTnUNNiWnB23X4y4Gn8PGQwQ72IXA61Bm24c_EJDT9HyExQBHZ-DQD_B9XGGVS2T3z8jl2edvy_MiJ1woDKdsX0iO_KRzlLWlsIYb6RvBdKWt6Kg3xrqy9DjowtXWIS0QllMrpUeb1IIaHO_n5GTYDO4lASzATRtKyJJJ3bbWMml0jYSGe-b4jMwPI69ukq6GOgScrVU2lQqmUslUM_Ip2Oe2cJDFjg_QWVR2FnWXs8xIc7CuygwjMQf8VH9X_e8P3qBwBoZjFT24zbhTuGLKUgpOsVMvknfctpIi2CClkljxxG8m3Zi-GfpVVPlGEIriaq_-R8dfkwehLyHsoeJvyMl-O7q3yKb23bs4cX4Dofkg4A priority: 102 providerName: Directory of Open Access Journals |
Title | CA-based urban growth model considering the temporal dynamic adjustment of local spatial driving factors: An application in Wuhan City |
URI | https://dx.doi.org/10.1016/j.heliyon.2024.e30678 https://www.ncbi.nlm.nih.gov/pubmed/38765127 https://www.proquest.com/docview/3057076535 https://pubmed.ncbi.nlm.nih.gov/PMC11101809 https://doaj.org/article/036d70fc17e743b9bc029f663d30889e |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECWSFCh6KZpucReDBXqVrIUUpdxcoUFQwGkPDWr0QnCNZThSYFuH_EC-O0NKSu30UKBXiRJJzSPnUXycQeizzWNFJYmDRCQ2IFSbQJBcBHlsJLOxFtbH2Z5dZOeX5Nuczg9QNpyF8aJ9JauwXl2HdbXw2sqbazUZdGKTH7MSxqePOzU5RIeA0J01enc2OM8Klv45rjNZhguzqm4bF-80IaFxNNkl6kthKqA-ocyOT_Kh-_dc09_U87GCcsclnb1Az3suiaddm4_Rgalfoqezfrf8Fborp4HzUhq3aylqfAVL7u0C--Q3WPWZOsF1YSCBuI9RtcK6y1GPhV62G69Bx43F3ufhjdNfuzLryv2IwH22nlM8rfHOVjiuavyrXUCVJZD81-jy7OvP8jzo8y4EiqZkGzAKNEWalBRRphVVzOYZEbHQmUytUtpEkYXJKTOJNsAOMk1TzZgtpEqyVMGnf4OO6qY2JwhDAaoKV4JFhImi0JowJRLgNdQSQ0coHL48v-nCa_BBd7bkvdW4sxrvrDZCX5x9Hgq76Nj-QrO-4j1GOHhlzSKrYmaAIEloWJQUFriVTp2qy4xQPliX90SjIxDwqupf9X8a0MBhILrdFVGbpt1wmDhZBHhKoVNvO3Q8tHIAGlS8h5u9buzfAez7YN8D1t_9_6Pv0TPXA6d5iOkHdLRdt-YjUKmtHPtfEGP05KKcf_899uPoHtQyJOA |
link.rule.ids | 230,315,730,783,787,867,888,2109,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LctMwFNWUMgNseBfCU8ywteOHZNnsQoZOgKbDop12p5H1aBwSuZPEi_IBfDdXsl2SsmBgGyuR7-hI9yg6Oheh9yaPJS1JHCQiMQGhSgeC5CLIY10yEythvM_29DibnJIv5_R8D2X9XRgv2pdlFdrFMrTVzGsrL5dy2OvEht-mY5if3ndqeAvdhgkbZVu79PZ2cJ4VLP19YWc4D2d6UV3VzvE0IaF2RNmV6kthMaC-pMxWVvLm_TvJ6U_yeVNDuZWUDh-gsz6cVovyPWw2ZSh_3HB6_Pd4H6L7HU_Fo_b5I7Sn7WN0Z9qdxD9BP8ejwGVAhZtVKSy-gO38ZoZ9YR0suyqgkBYxEEzc-V8tsLqyYllJLNS8WXt9O64N9vkUr52227VZVe5PDtxVAvqARxZvHbPjyuKzZgZdjmED8RSdHn46GU-CrqZDIGlKNgGjQIFKnZIiypSkkpk8IyIWKitTI6XSUWRg4ct0ojQwj0zRVDFmilImWSphUA_Qvq2tfo4wNKCycC1YRJgoCqUIkyIBzkQN0XSAwn5M-WVr3cF7Tducd3jgDg-8xcMAfXQjf93YOW_7D-rVBe_Gg0PGVywyMmYayFcJLxYlhQHeplKnGNMDlPe44R2JackJ_FT1t_7f9TjjMMndyY2wum7WHBZlFgFSUwjqWYu767fsIQwd7yByJ4zdJ4AzbyTe4-rF_3_1Lbo7OZke8aPPx19fonsuGqetiOkrtL9ZNfo1ULZN-cbPz18DY0RU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXaFAh66b64Kwv0KlkbRak3162RLg5yaNAAPRAUl1iuTRu2dEg_oN_dIUWldnookKs0EjXgI-dRfJxB6K0uYkGqLA4SnuggI1IFPCt4UMSqojqWXLs829Pj_Og0-3xGzryqcutllUZUdWgWy9DUM6etXC_FsNeJDU-mYxifLu_UcC318Ca6BYM2KnZW6t0J4SIvafr30M5wHs7Uor5Y2aynSRYqS5Ztub4UJgTiysrsRCaXwH8vQP1LQK_qKHcC0-Qu-tG71OlRfoZtU4Xi15Vsj9fz-R664_kqHnU299ENZR6gw6nfkX-Ifo9HgY2EErebiht8Dsv6ZoZdgR0sfDVQCI8YiCb2ebAWWF4YvqwF5nLebp3OHa80dnEVb63G29psavuzA_uKQO_wyOCd7XZcG_y9nUGTY1hIPEKnk4_fxkeBr-0QCJJmTUAJUKFKpVkZ5VIQQXWRZzzmMq9SLYRUUaRhAsxVIhUwkFySVFKqy0okeSqgYx-jA7My6inCYEBEaS1olFFellJmVPAEuBPRmSIDFPb9ytZdCg_Wa9vmzGOCWUywDhMD9N72_qWxzcDtLqw258z3CYPIL2mkRUwVkLAKPixKSg38TaZWOaYGqOixwzyZ6UgKvKr-X_tveqwxGOx2B4cbtWq3DCZnGgFaU3DqSYe9y6_sYQwN76Fyz439O4A1l1C8x9az6z_6Gh2efJiwr5-OvzxHt60zVmIRkxfooNm06iUwt6Z65YboH_xcRtQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CA-based+urban+growth+model+considering+the+temporal+dynamic+adjustment+of+local+spatial+driving+factors%3A+An+application+in+Wuhan+City&rft.jtitle=Heliyon&rft.au=Sun%2C+Jianwei&rft.au=He%2C+Qingsong&rft.au=Wang%2C+Haofeng&rft.date=2024-05-15&rft.issn=2405-8440&rft.eissn=2405-8440&rft.volume=10&rft.issue=9&rft.spage=e30678&rft_id=info:doi/10.1016%2Fj.heliyon.2024.e30678&rft_id=info%3Apmid%2F38765127&rft.externalDocID=38765127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8440&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8440&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8440&client=summon |