The microbial origins of food allergy
Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial...
Saved in:
Published in | Journal of allergy and clinical immunology Vol. 147; no. 3; pp. 808 - 813 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.03.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA. |
---|---|
AbstractList | Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T
regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA. Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA. Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA. Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA.Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life imprint the host gut mucosal immunity and may play a critical role in precipitating FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early-life changes may have long-range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T+ regulatory T cells, the epithelial barrier, and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA. Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on causative environmental factors and their interplay with the immune system in disease pathogenesis. In that regard, there is now substantial evidence that alterations in the gut microbiome early in life shape the host gut mucosal immunity and may play a critical role in the development of FA. These changes may impact key steps in the development of the infant gut microbiome, including its shaping by maternal factors and upon the introduction of solid food (the weaning reaction). These early life changes may have long range effects on host immunity that manifest later in time as disease pathology. Experimental studies have shown that resetting the host intestinal immune responses by treatment with either a healthy fecal microbiota transplantation or defined commensal bacterial taxa can prevent or treat FA. The mechanisms by which these interventions suppress FA include restoration of gut immune regulatory checkpoints, notably the retinoic orphan receptor gamma T (RORγt) + regulatory T cells, the epithelial barrier and healthy immunoglobulin A responses to the gut commensals. These findings inform human studies currently in progress that evaluate the role of microbial therapies in FA. |
Author | Stephen-Victor, Emmanuel Chatila, Talal A. Rachid, Rima |
AuthorAffiliation | 1 Division of Immunology, Boston Children’s Hospital, Boston 2 Department of Pediatrics, Harvard Medical School, Boston |
AuthorAffiliation_xml | – name: 2 Department of Pediatrics, Harvard Medical School, Boston – name: 1 Division of Immunology, Boston Children’s Hospital, Boston |
Author_xml | – sequence: 1 givenname: Rima surname: Rachid fullname: Rachid, Rima organization: Division of Immunology, Boston Children’s Hospital, Boston, Mass – sequence: 2 givenname: Emmanuel surname: Stephen-Victor fullname: Stephen-Victor, Emmanuel organization: Division of Immunology, Boston Children’s Hospital, Boston, Mass – sequence: 3 givenname: Talal A. surname: Chatila fullname: Chatila, Talal A. email: Talal.chatila@childrens.harvard.edu organization: Division of Immunology, Boston Children’s Hospital, Boston, Mass |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33347905$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rFDEUhoNU7Lb6B7yQARG8mTUfM8lEiiDFLyh4U69DJnNme8ZsUpPZwv57M2wtuhf1Kl_Pczgn7xk5CTEAIS8ZXTPK5LtpPVmHa055ueBryZsnZMWoVrXseHtCVpRqVkvV6FNylvNEy1l0-hk5FUI0StN2Rd5c30C1RZdij9ZXMeEGQ67iWI0xDpX1HtJm_5w8Ha3P8OJ-PSc_Pn-6vvxaX33_8u3y41XtWtHMtXSc9wAdY3zksuyt7nmngLlOKNFSaGkjGqGAK-pAWW21071UVrUddwOIc_LhUPd2129hcBDmZL25Tbi1aW-iRfPvS8Abs4l3pqNaStaWAm_vC6T4awd5NlvMDry3AeIuG94ozqiiakFfH6FT3KVQxiuUlpwqIXihXv3d0UMrf36wAPwAlC_MOcH4gDBqlpjMZJaYzBKTYdyUmIrUHUkOZztjXKZC_7h6cVCh5HCHkEx2CMHBgAncbIaIj-vvj3TnMaCz_ifs_yf_Bk5gvt4 |
CitedBy_id | crossref_primary_10_3390_ijms25052769 crossref_primary_10_1016_j_smim_2023_101847 crossref_primary_10_1016_j_smim_2023_101846 crossref_primary_10_1016_j_jaci_2022_02_006 crossref_primary_10_3390_nu16010092 crossref_primary_10_1007_s12602_024_10386_1 crossref_primary_10_3390_ijms24032234 crossref_primary_10_1016_j_anai_2024_03_010 crossref_primary_10_1146_annurev_immunol_090122_043501 crossref_primary_10_3345_cep_2023_00045 crossref_primary_10_1007_s12016_023_08966_0 crossref_primary_10_1111_imr_13398 crossref_primary_10_1111_imr_13392 crossref_primary_10_1016_j_ejogrb_2022_03_026 crossref_primary_10_3389_fcimb_2022_924119 crossref_primary_10_1111_pai_13854 crossref_primary_10_3390_biomedicines13010121 crossref_primary_10_1016_j_clnesp_2024_11_019 crossref_primary_10_3390_biomedicines13020329 crossref_primary_10_5415_apallergy_0000000000000005 crossref_primary_10_3389_fped_2024_1338294 crossref_primary_10_1002_clt2_12339 crossref_primary_10_3390_nu15112483 crossref_primary_10_1265_ehpm_22_00213 crossref_primary_10_1016_j_clinthera_2021_11_005 crossref_primary_10_1080_19490976_2022_2125733 crossref_primary_10_1016_j_tifs_2022_09_008 crossref_primary_10_3390_nu14112297 crossref_primary_10_1016_j_jaci_2023_08_012 crossref_primary_10_1084_jem_20221104 crossref_primary_10_2500_jfa_2023_5_230002 crossref_primary_10_1111_all_16326 crossref_primary_10_3389_fimmu_2024_1518076 crossref_primary_10_1038_s41586_024_08440_7 crossref_primary_10_1016_j_jaip_2022_06_006 crossref_primary_10_1093_ajcn_nqab346 crossref_primary_10_1016_j_jaci_2023_11_918 crossref_primary_10_1016_j_reval_2022_01_002 crossref_primary_10_3389_fimmu_2023_1294292 crossref_primary_10_3390_nu15102398 crossref_primary_10_3389_fmicb_2021_691312 crossref_primary_10_1111_jhn_13098 crossref_primary_10_1038_s41598_024_82210_3 crossref_primary_10_3390_nu14235155 crossref_primary_10_12677_acrem_2024_123015 crossref_primary_10_3389_fnut_2023_1254681 crossref_primary_10_1038_s41392_023_01344_4 crossref_primary_10_1016_j_jaci_2024_01_014 crossref_primary_10_4049_immunohorizons_2000103 crossref_primary_10_3390_ijms232315229 crossref_primary_10_3390_nu13051682 |
Cites_doi | 10.1016/j.jaci.2016.03.041 10.1016/j.celrep.2016.05.047 10.1016/j.immuni.2019.02.014 10.1126/sciadv.aaw1507 10.1038/nature06244 10.1016/j.jaci.2019.10.019 10.1016/j.immuni.2015.02.004 10.1136/bmj.299.6710.1259 10.1084/jem.20192195 10.1016/j.jaci.2018.06.044 10.1126/science.aaw6433 10.1073/pnas.1412008111 10.1126/science.aba0478 10.1038/s41586-019-1865-0 10.1016/j.tim.2018.09.008 10.1016/j.immuni.2020.07.025 10.1038/s41586-018-0617-x 10.1001/jamapediatrics.2017.0378 10.1016/j.jaci.2007.09.011 10.1016/j.jaci.2017.11.003 10.1111/j.1399-3038.2009.00907.x 10.1016/j.jaci.2017.02.007 10.1038/s41577-020-00420-y 10.1073/pnas.1002601107 10.1146/annurev-immunol-042617-053238 10.1016/j.jaci.2012.10.026 10.1038/ni.1715 10.1016/j.jaci.2011.01.033 10.1038/s41586-019-1082-x 10.1038/s41591-018-0324-z 10.1016/j.jaci.2016.06.047 10.1542/peds.2011-0204 10.1056/NEJMoa1414850 10.1001/jamapediatrics.2016.2552 10.1001/jamanetworkopen.2018.5630 10.1067/mai.2003.1610 10.1126/sciimmunol.aao1314 10.1016/j.cell.2020.04.030 10.1016/j.jaci.2013.04.023 10.1016/j.coi.2019.06.001 10.1007/s11882-017-0733-y 10.1126/science.aac5560 10.1111/cea.13161 10.1126/sciimmunol.aat6975 10.1016/j.immuni.2020.10.002 10.1038/nature10434 10.1097/MOP.0000000000000427 10.1111/j.1399-3038.2010.01106.x 10.1016/j.jaci.2019.10.014 10.1038/s41591-019-0461-z 10.1126/science.aac4263 10.1073/pnas.0809584105 |
ContentType | Journal Article |
Copyright | 2020 American Academy of Allergy, Asthma & Immunology Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. 2020. American Academy of Allergy, Asthma & Immunology |
Copyright_xml | – notice: 2020 American Academy of Allergy, Asthma & Immunology – notice: Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. – notice: 2020. American Academy of Allergy, Asthma & Immunology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SS 7T5 H94 K9. NAPCQ 7X8 5PM |
DOI | 10.1016/j.jaci.2020.12.624 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Entomology Abstracts (Full archive) Immunology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Entomology Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Immunology Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Entomology Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1097-6825 |
EndPage | 813 |
ExternalDocumentID | PMC8096615 33347905 10_1016_j_jaci_2020_12_624 S0091674920324106 |
Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Bunning Food Allergy Fund – fundername: National Institutes of Health grantid: R01 AI126915; R21 AI132843 funderid: https://doi.org/10.13039/100000002 – fundername: Jasmine and Paul Mashikian Fund – fundername: NIAID NIH HHS grantid: R01 AI126915 – fundername: NIAID NIH HHS grantid: R21 AI132843 |
GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .XZ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 354 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8F7 8FE 8FH 8P~ 9JM AAAJQ AABNK AAEDT AAEDW AAFWJ AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABLJU ABMAC ABMZM ABOCM ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO ADVLN ADXHL AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV BPHCQ BVXVI C45 CAG CJTIS COF CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDU HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B LK8 LUGTX M27 M41 MO0 N4W N9A O-L O9- O9~ OAUVE OBH ODZKP OHH OHT OK0 OK1 OVD OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SJN SPCBC SSH SSI SSZ T5K TEORI TWZ UGJ UNMZH UV1 WH7 WOW WUQ X7M XFW YOC YQI YQJ Z5R ZGI ZXP ZY1 ~02 ~G- ~KM AACTN RIG AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7SS 7T5 H94 K9. NAPCQ 7X8 5PM |
ID | FETCH-LOGICAL-c534t-6c22bee8112f2622ba9b287e1c837350e5043437e270ce7a9a9c9b67a7582cde3 |
IEDL.DBID | .~1 |
ISSN | 0091-6749 1097-6825 |
IngestDate | Thu Aug 21 18:10:39 EDT 2025 Thu Jul 10 18:23:15 EDT 2025 Wed Aug 13 11:21:36 EDT 2025 Mon Jul 21 06:00:24 EDT 2025 Thu Apr 24 23:10:41 EDT 2025 Tue Jul 01 04:21:46 EDT 2025 Sun Apr 06 06:58:49 EDT 2025 Tue Aug 26 17:44:55 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | microbiota Food allergy ILC IgA IgE RORγt+ Treg Treg FMT microbiome fecal microbiota transplantation regulatory T cells Tfh FA dysbiosis GF RORγt RORγt(+) Treg |
Language | English |
License | Copyright © 2020 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-6c22bee8112f2622ba9b287e1c837350e5043437e270ce7a9a9c9b67a7582cde3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 These authors contributed equally to this work |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8096615 |
PMID | 33347905 |
PQID | 2496207332 |
PQPubID | 105664 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8096615 proquest_miscellaneous_2472107075 proquest_journals_2496207332 pubmed_primary_33347905 crossref_primary_10_1016_j_jaci_2020_12_624 crossref_citationtrail_10_1016_j_jaci_2020_12_624 elsevier_sciencedirect_doi_10_1016_j_jaci_2020_12_624 elsevier_clinicalkey_doi_10_1016_j_jaci_2020_12_624 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Louis |
PublicationTitle | Journal of allergy and clinical immunology |
PublicationTitleAlternate | J Allergy Clin Immunol |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Stephen-Victor, Chatila (bib12) 2019; 60 Amoah, Boakye, Yazdanbakhsh, van Ree (bib46) 2017; 17 Verma, Lee, Jeun, Yi, Kim, Ghosh (bib24) 2018; 3 Stewart, Ajami, O’Brien, Hutchinson, Smith, Wong (bib19) 2018; 562 Abdel-Gadir, Stephen-Victor, Gerber, Noval Rivas, Wang, Harb (bib31) 2019; 25 Ganal-Vonarburg, Hornef, Macpherson (bib16) 2020; 368 Song, Sun, Oh, Wu, Zhang, Zheng (bib25) 2020; 577 Du Toit, Roberts, Sayre, Bahnson, Radulovic, Santos (bib29) 2015; 372 Abdel-Gadir, Schneider, Casini, Charbonnier, Little, Harrington (bib35) 2018; 48 Robertson, Manges, Finlay, Prendergast (bib15) 2019; 27 Amoah, Obeng, Larbi, Versteeg, Aryeetey, Akkerdaas (bib48) 2013; 132 Anvari, Chokshi, Kamili, Davis (bib28) 2017; 171 Turner, Stephen-Victor, Wang, Rivas, Abdel-Gadir, Harb (bib27) 2020; 53 Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention [published online ahead of print September 11, 2020]. Nat Rev Immunol. Bunyavanich, Berin (bib13) 2019; 144 Tan, McKenzie, Vuillermin, Goverse, Vinuesa, Mebius (bib52) 2016; 15 Rachid, Chatila (bib7) 2016; 28 Crestani, Harb, Charbonnier, Leirer, Motsinger-Reif, Rachid (bib53) 2020; 145 Dominguez-Bello, Costello, Contreras, Magris, Hidalgo, Fierer (bib9) 2010; 107 Pannaraj, Li, Cerini, Bender, Yang, Rollie (bib17) 2017; 171 Gupta, Warren, Smith, Jiang, Blumenstock, Davis (bib1) 2019; 2 . Eggesbo, Botten, Stigum, Nafstad, Magnus (bib10) 2003; 112 Noval Rivas, Burton, Wise, Charbonnier, Georgiev, Oettgen (bib34) 2015; 42 Sicherer, Sampson (bib2) 2018; 141 Henrick, Rodriguez, Lakshmikanth, Pou, Henckel, Olin (bib20) 2020 Hong, Eunju, Lee, Lee, Han, Ko (bib41) 2019; 5 Gupta, Springston, Warrier, Smith, Kumar, Pongracic (bib32) 2011; 128 Noval Rivas, Burton, Wise, Zhang, Hobson, Garcia Lloret (bib33) 2013; 131 Wang, Karlsson, Olsson, Adlerberth, Wold, Strachan (bib6) 2008; 121 Reinhardt, Liang, Locksley (bib39) 2009; 10 Ohnmacht, Park, Cording, Wing, Atarashi, Obata (bib26) 2015; 349 Huang, Marsland, Bunyavanich, O’Mahony, Leung, Muraro (bib4) 2017; 139 Keir, Yi, Lu, Ghilardi (bib50) 2020; 217 Kim, Hong, Han, Yi, Jung, Yang (bib38) 2016; 351 Macpherson, Yilmaz, Limenitakis, Ganal-Vonarburg (bib42) 2018; 36 Mitselou, Hallberg, Stephansson, Almqvist, Melen, Ludvigsson (bib8) 2018; 142 Dzidic, Abrahamsson, Artacho, Bjorksten, Collado, Mira (bib45) 2017; 139 Feehley, Plunkett, Bao, Choi Hong, Culleen, Belda-Ferre (bib36) 2019; 25 Al Nabhani, Dulauroy, Marques, Cousu, Al Bounny, Dejardin (bib21) 2019; 50 Zhou, Chu, Teng, Bessman, Goc, Santosa (bib51) 2019; 568 Turnbaugh, Ley, Hamady, Fraser-Liggett, Knight, Gordon (bib3) 2007; 449 Gowthaman, Chen, Zhang, Flynn, Lu, Song (bib40) 2019; 365 Knoop, Gustafsson, McDonald, Kulkarni, Coughlin, McCrate (bib22) 2017; 2 Ramanan, Sefik, Galvan-Pena, Wu, Yang, Yang (bib23) 2020; 181 Strachan (bib5) 1989; 299 Kukkonen, Kuitunen, Haahtela, Korpela, Poussa, Savilahti (bib43) 2010; 21 Arkestal, Sibanda, Thors, Troye-Blomberg, Mduluza, Valenta (bib47) 2011; 127 Lathrop, Bloom, Rao, Nutsch, Lio, Santacruz (bib37) 2011; 478 Sela, Chapman, Adeuya, Kim, Chen, Whitehead (bib18) 2008; 105 Stefka, Feehley, Tripathi, Qiu, McCoy, Mazmanian (bib49) 2014; 111 Stephen-Victor, Crestani, Chatila (bib14) 2020; 53 Bunyavanich, Shen, Grishin, Wood, Burks, Dawson (bib30) 2016; 138 Sandin, Bjorksten, Bottcher, Englund, Jenmalm, Braback (bib44) 2011; 22 Gowthaman (10.1016/j.jaci.2020.12.624_bib40) 2019; 365 Turnbaugh (10.1016/j.jaci.2020.12.624_bib3) 2007; 449 Noval Rivas (10.1016/j.jaci.2020.12.624_bib34) 2015; 42 Tan (10.1016/j.jaci.2020.12.624_bib52) 2016; 15 Stephen-Victor (10.1016/j.jaci.2020.12.624_bib12) 2019; 60 Mitselou (10.1016/j.jaci.2020.12.624_bib8) 2018; 142 Stephen-Victor (10.1016/j.jaci.2020.12.624_bib14) 2020; 53 Amoah (10.1016/j.jaci.2020.12.624_bib46) 2017; 17 Eggesbo (10.1016/j.jaci.2020.12.624_bib10) 2003; 112 Huang (10.1016/j.jaci.2020.12.624_bib4) 2017; 139 Hong (10.1016/j.jaci.2020.12.624_bib41) 2019; 5 Bunyavanich (10.1016/j.jaci.2020.12.624_bib30) 2016; 138 Kim (10.1016/j.jaci.2020.12.624_bib38) 2016; 351 Gupta (10.1016/j.jaci.2020.12.624_bib32) 2011; 128 Sandin (10.1016/j.jaci.2020.12.624_bib44) 2011; 22 Reinhardt (10.1016/j.jaci.2020.12.624_bib39) 2009; 10 Ganal-Vonarburg (10.1016/j.jaci.2020.12.624_bib16) 2020; 368 Crestani (10.1016/j.jaci.2020.12.624_bib53) 2020; 145 Stefka (10.1016/j.jaci.2020.12.624_bib49) 2014; 111 10.1016/j.jaci.2020.12.624_bib11 Verma (10.1016/j.jaci.2020.12.624_bib24) 2018; 3 Noval Rivas (10.1016/j.jaci.2020.12.624_bib33) 2013; 131 Du Toit (10.1016/j.jaci.2020.12.624_bib29) 2015; 372 Knoop (10.1016/j.jaci.2020.12.624_bib22) 2017; 2 Abdel-Gadir (10.1016/j.jaci.2020.12.624_bib35) 2018; 48 Bunyavanich (10.1016/j.jaci.2020.12.624_bib13) 2019; 144 Pannaraj (10.1016/j.jaci.2020.12.624_bib17) 2017; 171 Henrick (10.1016/j.jaci.2020.12.624_bib20) 2020 Sicherer (10.1016/j.jaci.2020.12.624_bib2) 2018; 141 Robertson (10.1016/j.jaci.2020.12.624_bib15) 2019; 27 Wang (10.1016/j.jaci.2020.12.624_bib6) 2008; 121 Macpherson (10.1016/j.jaci.2020.12.624_bib42) 2018; 36 Al Nabhani (10.1016/j.jaci.2020.12.624_bib21) 2019; 50 Ohnmacht (10.1016/j.jaci.2020.12.624_bib26) 2015; 349 Sela (10.1016/j.jaci.2020.12.624_bib18) 2008; 105 Song (10.1016/j.jaci.2020.12.624_bib25) 2020; 577 Ramanan (10.1016/j.jaci.2020.12.624_bib23) 2020; 181 Lathrop (10.1016/j.jaci.2020.12.624_bib37) 2011; 478 Gupta (10.1016/j.jaci.2020.12.624_bib1) 2019; 2 Stewart (10.1016/j.jaci.2020.12.624_bib19) 2018; 562 Feehley (10.1016/j.jaci.2020.12.624_bib36) 2019; 25 Dominguez-Bello (10.1016/j.jaci.2020.12.624_bib9) 2010; 107 Arkestal (10.1016/j.jaci.2020.12.624_bib47) 2011; 127 Anvari (10.1016/j.jaci.2020.12.624_bib28) 2017; 171 Kukkonen (10.1016/j.jaci.2020.12.624_bib43) 2010; 21 Zhou (10.1016/j.jaci.2020.12.624_bib51) 2019; 568 Keir (10.1016/j.jaci.2020.12.624_bib50) 2020; 217 Amoah (10.1016/j.jaci.2020.12.624_bib48) 2013; 132 Rachid (10.1016/j.jaci.2020.12.624_bib7) 2016; 28 Strachan (10.1016/j.jaci.2020.12.624_bib5) 1989; 299 Abdel-Gadir (10.1016/j.jaci.2020.12.624_bib31) 2019; 25 Dzidic (10.1016/j.jaci.2020.12.624_bib45) 2017; 139 Turner (10.1016/j.jaci.2020.12.624_bib27) 2020; 53 |
References_xml | – volume: 368 start-page: 604 year: 2020 end-page: 607 ident: bib16 article-title: Microbial-host molecular exchange and its functional consequences in early mammalian life publication-title: Science – volume: 60 start-page: 141 year: 2019 end-page: 147 ident: bib12 article-title: Regulation of oral immune tolerance by the microbiome in food allergy publication-title: Curr Opin Immunol – volume: 299 start-page: 1259 year: 1989 end-page: 1260 ident: bib5 article-title: Hay fever, hygiene, and household size publication-title: BMJ – volume: 128 start-page: e9 year: 2011 end-page: e17 ident: bib32 article-title: The prevalence, severity, and distribution of childhood food allergy in the United States publication-title: Pediatrics – volume: 144 start-page: 1468 year: 2019 end-page: 1477 ident: bib13 article-title: Food allergy and the microbiome: current understandings and future directions publication-title: J Allergy Clin Immunol – volume: 50 start-page: 1276 year: 2019 end-page: 1288.e5 ident: bib21 article-title: A weaning reaction to microbiota is required for resistance to immunopathologies in the adult publication-title: Immunity – volume: 577 start-page: 410 year: 2020 end-page: 415 ident: bib25 article-title: Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis publication-title: Nature – volume: 145 start-page: 897 year: 2020 end-page: 906 ident: bib53 article-title: Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma publication-title: J Allergy Clin Immunol – volume: 48 start-page: 825 year: 2018 end-page: 836 ident: bib35 article-title: Oral immunotherapy with omalizumab reverses the Th2 cell-like programme of regulatory T cells and restores their function publication-title: Clin Exp Allergy – volume: 171 start-page: 77 year: 2017 end-page: 82 ident: bib28 article-title: Evolution of guidelines on peanut allergy and peanut introduction in infants: a review publication-title: JAMA Pediatr – volume: 181 start-page: 1276 year: 2020 end-page: 1290.e13 ident: bib23 article-title: An immunologic mode of multigenerational transmission governs a gut Treg setpoint publication-title: Cell – volume: 127 start-page: 1024 year: 2011 end-page: 1028 ident: bib47 article-title: Impaired allergy diagnostics among parasite-infected patients caused by IgE antibodies to the carbohydrate epitope galactose-alpha 1,3-galactose publication-title: J Allergy Clin Immunol – volume: 25 start-page: 448 year: 2019 end-page: 453 ident: bib36 article-title: Healthy infants harbor intestinal bacteria that protect against food allergy publication-title: Nat Med – volume: 21 start-page: 67 year: 2010 end-page: 73 ident: bib43 article-title: High intestinal IgA associates with reduced risk of IgE-associated allergic diseases publication-title: Pediatr Allergy Immunol – volume: 138 start-page: 1122 year: 2016 end-page: 1130 ident: bib30 article-title: Early-life gut microbiome composition and milk allergy resolution publication-title: J Allergy Clin Immunol – volume: 42 start-page: 512 year: 2015 end-page: 523 ident: bib34 article-title: Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy publication-title: Immunity – volume: 121 start-page: 129 year: 2008 end-page: 134 ident: bib6 article-title: Reduced diversity in the early fecal microbiota of infants with atopic eczema publication-title: J Allergy Clin Immunol – volume: 17 start-page: 65 year: 2017 ident: bib46 article-title: Influence of parasitic worm infections on allergy diagnosis in Sub-Saharan Africa publication-title: Curr Allergy Asthma Rep – volume: 53 start-page: 277 year: 2020 end-page: 289 ident: bib14 article-title: Dietary and microbial determinants in food allergy publication-title: Immunity – year: 2020 ident: bib20 article-title: Bifidobacteria-mediated immune system imprinting early in life publication-title: bioRxiv – reference: Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention [published online ahead of print September 11, 2020]. Nat Rev Immunol. – volume: 349 start-page: 989 year: 2015 end-page: 993 ident: bib26 article-title: MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells publication-title: Science – volume: 141 start-page: 41 year: 2018 end-page: 58 ident: bib2 article-title: Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management publication-title: J Allergy Clin Immunol – volume: 105 start-page: 18964 year: 2008 end-page: 18969 ident: bib18 article-title: The genome sequence of publication-title: Proc Natl Acad Sci U S A – volume: 562 start-page: 583 year: 2018 end-page: 588 ident: bib19 article-title: Temporal development of the gut microbiome in early childhood from the TEDDY study publication-title: Nature – volume: 25 start-page: 1164 year: 2019 end-page: 1174 ident: bib31 article-title: Microbiota therapy acts via a regulatory T cell MyD88/RORgamma t pathway to suppress food allergy publication-title: Nat Med – volume: 15 start-page: 2809 year: 2016 end-page: 2824 ident: bib52 article-title: Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways publication-title: Cell Rep – volume: 568 start-page: 405 year: 2019 end-page: 409 ident: bib51 article-title: Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2 publication-title: Nature – volume: 107 start-page: 11971 year: 2010 end-page: 11975 ident: bib9 article-title: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns publication-title: Proc Natl Acad Sci U S A – volume: 132 start-page: 639 year: 2013 end-page: 647 ident: bib48 article-title: Peanut-specific IgE antibodies in asymptomatic Ghanaian children possibly caused by carbohydrate determinant cross-reactivity publication-title: J Allergy Clin Immunol – volume: 217 year: 2020 ident: bib50 article-title: The role of IL-22 in intestinal health and disease publication-title: J Exp Med – volume: 351 start-page: 858 year: 2016 end-page: 863 ident: bib38 article-title: Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine publication-title: Science – volume: 171 start-page: 647 year: 2017 end-page: 654 ident: bib17 article-title: Association between breast milk bacterial communities and establishment and development of the infant gut microbiome publication-title: JAMA Pediatr – volume: 478 start-page: 250 year: 2011 end-page: 254 ident: bib37 article-title: Peripheral education of the immune system by colonic commensal microbiota publication-title: Nature – volume: 112 start-page: 420 year: 2003 end-page: 426 ident: bib10 article-title: Is delivery by cesarean section a risk factor for food allergy? publication-title: J Allergy Clin Immunol – volume: 365 year: 2019 ident: bib40 article-title: Identification of a T follicular helper cell subset that drives anaphylactic IgE publication-title: Science – volume: 36 start-page: 359 year: 2018 end-page: 381 ident: bib42 article-title: IgA function in relation to the intestinal microbiota publication-title: Annu Rev Immunol – volume: 131 start-page: 201 year: 2013 end-page: 212 ident: bib33 article-title: A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis publication-title: J Allergy Clin Immunol – volume: 2 year: 2019 ident: bib1 article-title: Prevalence and severity of food allergies among US adults publication-title: JAMA Netw Open – volume: 5 year: 2019 ident: bib41 article-title: Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota publication-title: Sci Adv – volume: 2 year: 2017 ident: bib22 article-title: Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria publication-title: Sci Immunol – volume: 372 start-page: 803 year: 2015 end-page: 813 ident: bib29 article-title: Randomized trial of peanut consumption in infants at risk for peanut allergy publication-title: N Engl J Med – volume: 27 start-page: 131 year: 2019 end-page: 147 ident: bib15 article-title: The human microbiome and child growth—first 1000 days and beyond publication-title: Trends Microbiol – volume: 139 start-page: 1099 year: 2017 end-page: 1110 ident: bib4 article-title: The microbiome in allergic disease: current understanding and future opportunities—2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology publication-title: J Allergy Clin Immunol – volume: 142 start-page: 1510 year: 2018 end-page: 1514.e2 ident: bib8 article-title: Cesarean delivery, preterm birth, and risk of food allergy: Nationwide Swedish cohort study of more than 1 million children publication-title: J Allergy Clin Immunol – volume: 53 start-page: 1202 year: 2020 end-page: 1214.e6 ident: bib27 article-title: Regulatory T cell-derived TGF-beta1 controls multiple checkpoints governing allergy and autoimmunity publication-title: Immunity – volume: 449 start-page: 804 year: 2007 end-page: 810 ident: bib3 article-title: The human microbiome project publication-title: Nature – volume: 111 start-page: 13145 year: 2014 end-page: 13150 ident: bib49 article-title: Commensal bacteria protect against food allergen sensitization publication-title: Proc Natl Acad Sci U S A – reference: . – volume: 10 start-page: 385 year: 2009 end-page: 393 ident: bib39 article-title: Cytokine-secreting follicular T cells shape the antibody repertoire publication-title: Nat Immunol – volume: 139 start-page: 1017 year: 2017 end-page: 1025.e14 ident: bib45 article-title: Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development publication-title: J Allergy Clin Immunol – volume: 22 start-page: 477 year: 2011 end-page: 481 ident: bib44 article-title: High salivary secretory IgA antibody levels are associated with less late-onset wheezing in IgE-sensitized infants publication-title: Pediatr Allergy Immunol – volume: 28 start-page: 748 year: 2016 end-page: 753 ident: bib7 article-title: The role of the gut microbiota in food allergy publication-title: Curr Opin Pediatr – volume: 3 year: 2018 ident: bib24 article-title: Cell surface polysaccharides of publication-title: Sci Immunol – volume: 138 start-page: 1122 year: 2016 ident: 10.1016/j.jaci.2020.12.624_bib30 article-title: Early-life gut microbiome composition and milk allergy resolution publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2016.03.041 – volume: 15 start-page: 2809 year: 2016 ident: 10.1016/j.jaci.2020.12.624_bib52 article-title: Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways publication-title: Cell Rep doi: 10.1016/j.celrep.2016.05.047 – volume: 50 start-page: 1276 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib21 article-title: A weaning reaction to microbiota is required for resistance to immunopathologies in the adult publication-title: Immunity doi: 10.1016/j.immuni.2019.02.014 – volume: 5 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib41 article-title: Food antigens drive spontaneous IgE elevation in the absence of commensal microbiota publication-title: Sci Adv doi: 10.1126/sciadv.aaw1507 – volume: 449 start-page: 804 year: 2007 ident: 10.1016/j.jaci.2020.12.624_bib3 article-title: The human microbiome project publication-title: Nature doi: 10.1038/nature06244 – volume: 144 start-page: 1468 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib13 article-title: Food allergy and the microbiome: current understandings and future directions publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2019.10.019 – volume: 42 start-page: 512 year: 2015 ident: 10.1016/j.jaci.2020.12.624_bib34 article-title: Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy publication-title: Immunity doi: 10.1016/j.immuni.2015.02.004 – volume: 299 start-page: 1259 year: 1989 ident: 10.1016/j.jaci.2020.12.624_bib5 article-title: Hay fever, hygiene, and household size publication-title: BMJ doi: 10.1136/bmj.299.6710.1259 – volume: 217 year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib50 article-title: The role of IL-22 in intestinal health and disease publication-title: J Exp Med doi: 10.1084/jem.20192195 – volume: 142 start-page: 1510 year: 2018 ident: 10.1016/j.jaci.2020.12.624_bib8 article-title: Cesarean delivery, preterm birth, and risk of food allergy: Nationwide Swedish cohort study of more than 1 million children publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2018.06.044 – volume: 365 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib40 article-title: Identification of a T follicular helper cell subset that drives anaphylactic IgE publication-title: Science doi: 10.1126/science.aaw6433 – volume: 111 start-page: 13145 year: 2014 ident: 10.1016/j.jaci.2020.12.624_bib49 article-title: Commensal bacteria protect against food allergen sensitization publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1412008111 – volume: 368 start-page: 604 year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib16 article-title: Microbial-host molecular exchange and its functional consequences in early mammalian life publication-title: Science doi: 10.1126/science.aba0478 – volume: 577 start-page: 410 year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib25 article-title: Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis publication-title: Nature doi: 10.1038/s41586-019-1865-0 – volume: 27 start-page: 131 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib15 article-title: The human microbiome and child growth—first 1000 days and beyond publication-title: Trends Microbiol doi: 10.1016/j.tim.2018.09.008 – volume: 53 start-page: 277 year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib14 article-title: Dietary and microbial determinants in food allergy publication-title: Immunity doi: 10.1016/j.immuni.2020.07.025 – volume: 562 start-page: 583 year: 2018 ident: 10.1016/j.jaci.2020.12.624_bib19 article-title: Temporal development of the gut microbiome in early childhood from the TEDDY study publication-title: Nature doi: 10.1038/s41586-018-0617-x – volume: 171 start-page: 647 year: 2017 ident: 10.1016/j.jaci.2020.12.624_bib17 article-title: Association between breast milk bacterial communities and establishment and development of the infant gut microbiome publication-title: JAMA Pediatr doi: 10.1001/jamapediatrics.2017.0378 – volume: 121 start-page: 129 year: 2008 ident: 10.1016/j.jaci.2020.12.624_bib6 article-title: Reduced diversity in the early fecal microbiota of infants with atopic eczema publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2007.09.011 – volume: 141 start-page: 41 year: 2018 ident: 10.1016/j.jaci.2020.12.624_bib2 article-title: Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2017.11.003 – year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib20 article-title: Bifidobacteria-mediated immune system imprinting early in life publication-title: bioRxiv – volume: 21 start-page: 67 year: 2010 ident: 10.1016/j.jaci.2020.12.624_bib43 article-title: High intestinal IgA associates with reduced risk of IgE-associated allergic diseases publication-title: Pediatr Allergy Immunol doi: 10.1111/j.1399-3038.2009.00907.x – volume: 139 start-page: 1099 year: 2017 ident: 10.1016/j.jaci.2020.12.624_bib4 article-title: The microbiome in allergic disease: current understanding and future opportunities—2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2017.02.007 – ident: 10.1016/j.jaci.2020.12.624_bib11 doi: 10.1038/s41577-020-00420-y – volume: 107 start-page: 11971 year: 2010 ident: 10.1016/j.jaci.2020.12.624_bib9 article-title: Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1002601107 – volume: 36 start-page: 359 year: 2018 ident: 10.1016/j.jaci.2020.12.624_bib42 article-title: IgA function in relation to the intestinal microbiota publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-042617-053238 – volume: 131 start-page: 201 year: 2013 ident: 10.1016/j.jaci.2020.12.624_bib33 article-title: A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2012.10.026 – volume: 10 start-page: 385 year: 2009 ident: 10.1016/j.jaci.2020.12.624_bib39 article-title: Cytokine-secreting follicular T cells shape the antibody repertoire publication-title: Nat Immunol doi: 10.1038/ni.1715 – volume: 127 start-page: 1024 year: 2011 ident: 10.1016/j.jaci.2020.12.624_bib47 article-title: Impaired allergy diagnostics among parasite-infected patients caused by IgE antibodies to the carbohydrate epitope galactose-alpha 1,3-galactose publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2011.01.033 – volume: 568 start-page: 405 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib51 article-title: Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2 publication-title: Nature doi: 10.1038/s41586-019-1082-x – volume: 25 start-page: 448 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib36 article-title: Healthy infants harbor intestinal bacteria that protect against food allergy publication-title: Nat Med doi: 10.1038/s41591-018-0324-z – volume: 139 start-page: 1017 year: 2017 ident: 10.1016/j.jaci.2020.12.624_bib45 article-title: Aberrant IgA responses to the gut microbiota during infancy precede asthma and allergy development publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2016.06.047 – volume: 128 start-page: e9 year: 2011 ident: 10.1016/j.jaci.2020.12.624_bib32 article-title: The prevalence, severity, and distribution of childhood food allergy in the United States publication-title: Pediatrics doi: 10.1542/peds.2011-0204 – volume: 372 start-page: 803 year: 2015 ident: 10.1016/j.jaci.2020.12.624_bib29 article-title: Randomized trial of peanut consumption in infants at risk for peanut allergy publication-title: N Engl J Med doi: 10.1056/NEJMoa1414850 – volume: 171 start-page: 77 year: 2017 ident: 10.1016/j.jaci.2020.12.624_bib28 article-title: Evolution of guidelines on peanut allergy and peanut introduction in infants: a review publication-title: JAMA Pediatr doi: 10.1001/jamapediatrics.2016.2552 – volume: 2 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib1 article-title: Prevalence and severity of food allergies among US adults publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2018.5630 – volume: 112 start-page: 420 year: 2003 ident: 10.1016/j.jaci.2020.12.624_bib10 article-title: Is delivery by cesarean section a risk factor for food allergy? publication-title: J Allergy Clin Immunol doi: 10.1067/mai.2003.1610 – volume: 2 year: 2017 ident: 10.1016/j.jaci.2020.12.624_bib22 article-title: Microbial antigen encounter during a preweaning interval is critical for tolerance to gut bacteria publication-title: Sci Immunol doi: 10.1126/sciimmunol.aao1314 – volume: 181 start-page: 1276 year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib23 article-title: An immunologic mode of multigenerational transmission governs a gut Treg setpoint publication-title: Cell doi: 10.1016/j.cell.2020.04.030 – volume: 132 start-page: 639 year: 2013 ident: 10.1016/j.jaci.2020.12.624_bib48 article-title: Peanut-specific IgE antibodies in asymptomatic Ghanaian children possibly caused by carbohydrate determinant cross-reactivity publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2013.04.023 – volume: 60 start-page: 141 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib12 article-title: Regulation of oral immune tolerance by the microbiome in food allergy publication-title: Curr Opin Immunol doi: 10.1016/j.coi.2019.06.001 – volume: 17 start-page: 65 year: 2017 ident: 10.1016/j.jaci.2020.12.624_bib46 article-title: Influence of parasitic worm infections on allergy diagnosis in Sub-Saharan Africa publication-title: Curr Allergy Asthma Rep doi: 10.1007/s11882-017-0733-y – volume: 351 start-page: 858 year: 2016 ident: 10.1016/j.jaci.2020.12.624_bib38 article-title: Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine publication-title: Science doi: 10.1126/science.aac5560 – volume: 48 start-page: 825 year: 2018 ident: 10.1016/j.jaci.2020.12.624_bib35 article-title: Oral immunotherapy with omalizumab reverses the Th2 cell-like programme of regulatory T cells and restores their function publication-title: Clin Exp Allergy doi: 10.1111/cea.13161 – volume: 3 year: 2018 ident: 10.1016/j.jaci.2020.12.624_bib24 article-title: Cell surface polysaccharides of Bifidobacterium bifidum induce the generation of Foxp3(+) regulatory T cells publication-title: Sci Immunol doi: 10.1126/sciimmunol.aat6975 – volume: 53 start-page: 1202 year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib27 article-title: Regulatory T cell-derived TGF-beta1 controls multiple checkpoints governing allergy and autoimmunity publication-title: Immunity doi: 10.1016/j.immuni.2020.10.002 – volume: 478 start-page: 250 year: 2011 ident: 10.1016/j.jaci.2020.12.624_bib37 article-title: Peripheral education of the immune system by colonic commensal microbiota publication-title: Nature doi: 10.1038/nature10434 – volume: 28 start-page: 748 year: 2016 ident: 10.1016/j.jaci.2020.12.624_bib7 article-title: The role of the gut microbiota in food allergy publication-title: Curr Opin Pediatr doi: 10.1097/MOP.0000000000000427 – volume: 22 start-page: 477 year: 2011 ident: 10.1016/j.jaci.2020.12.624_bib44 article-title: High salivary secretory IgA antibody levels are associated with less late-onset wheezing in IgE-sensitized infants publication-title: Pediatr Allergy Immunol doi: 10.1111/j.1399-3038.2010.01106.x – volume: 145 start-page: 897 year: 2020 ident: 10.1016/j.jaci.2020.12.624_bib53 article-title: Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma publication-title: J Allergy Clin Immunol doi: 10.1016/j.jaci.2019.10.014 – volume: 25 start-page: 1164 year: 2019 ident: 10.1016/j.jaci.2020.12.624_bib31 article-title: Microbiota therapy acts via a regulatory T cell MyD88/RORgamma t pathway to suppress food allergy publication-title: Nat Med doi: 10.1038/s41591-019-0461-z – volume: 349 start-page: 989 year: 2015 ident: 10.1016/j.jaci.2020.12.624_bib26 article-title: MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells publication-title: Science doi: 10.1126/science.aac4263 – volume: 105 start-page: 18964 year: 2008 ident: 10.1016/j.jaci.2020.12.624_bib18 article-title: The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0809584105 |
SSID | ssj0009389 |
Score | 2.537175 |
SecondaryResourceType | review_article |
Snippet | Food allergy (FA) is a significant public health issue, propelled by its rapidly increasing prevalence. Its sharp rise into prominence has focused attention on... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 808 |
SubjectTerms | Age Allergens Animals Breastfeeding & lactation Commensals Digestive system Disease dysbiosis Dysbiosis - immunology Dysbiosis - microbiology Dysbiosis - therapy Environmental factors Epidermal growth factor Fecal Microbiota Transplantation Fecal microflora Food allergies Food allergy Food Hypersensitivity - immunology Food Hypersensitivity - microbiology Food Hypersensitivity - therapy Gastrointestinal Microbiome - immunology Gastrointestinal tract Health care Human subjects Humans Hypotheses IgA IgE Immune system Immunity, Mucosal Immunoglobulin A Immunoglobulin A - metabolism Immunoglobulin E - metabolism Immunoregulation Intestinal microflora Intestine Investigations Lymphocytes T Metabolites microbiome Microbiomes Microbiota Models, Immunological Mucosal immunity Nuclear Receptor Subfamily 1, Group F, Member 3 - metabolism Pathogenesis Population Public health regulatory T cells RORγt+ Treg T-Lymphocytes, Regulatory - immunology Transplantation Vagina Weaning |
Title | The microbial origins of food allergy |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0091674920324106 https://dx.doi.org/10.1016/j.jaci.2020.12.624 https://www.ncbi.nlm.nih.gov/pubmed/33347905 https://www.proquest.com/docview/2496207332 https://www.proquest.com/docview/2472107075 https://pubmed.ncbi.nlm.nih.gov/PMC8096615 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT90wDLcQk9AuE4N9PMZQkdhpKjQfbV6OCIHehuA0JG5RmvptRVuL4HHYZX_77DbteKAxabeqsaXGcRy7sX8G2KtQY-gQLk0lU02hTup9GdKQm6ysMqRl5_-QZ-fF7EJ_vswvV-BoqIXhtMpo-3ub3lnr-OYgSvPguq65xtdyCr3lHuBadLDbWhvW8v1ff9I8rJr2LrAVKVPHwpk-x-vKh5piRMkgC_uF1H87nB47nw9zKO8dSifr8CJ6k8lh_8EvYQWbDVg7i_flm_CBtCD5UXdgS0TXd8G6Tdp5Mm_bKuE-Kjdff76Ci5PjL0ezNDZGIBEqvUiLIGWJOCVfaS4Leva2pMgHRaBwU-Uk4YwLRg1KkwU03nobbFkYT8GBDBWq17DatA2-hSRkqIywIZel0ojCVwplTseWD5XwhZiAGCTiQkQN5-YV392QHnblWIqOpeiEdCTFCXwcea57zIwnqdUgaDdUg5L9cmTSn-TKR64lffkn3_awli7u1ltHIWghuXulnMDuOEz7jC9PfIPtHdNQrMzYSPkE3vRLP05OKa7HzWjELCnFSMAY3ssjTf2tw_KeUghJTuXWf07nHTyXnGTTJcVtw-ri5g7fk5e0KHe6bbADzw4_nc7OfwNPHw75 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6hRQIuCMqj20IbJDihQGznsTkiBFoeuyeQuFmOMwtBJUGwHPrvO5M4gQWVSr1FsUeKP9vjmXjmG4DdHEO0NcNlkks_JFfHNyazvo2SIMsDpGnn_5CjcTy8Ds9vops5OG5zYTis0un-RqfX2tq9OXRoHj4WBef4phxCn3IN8FAw7fY8s1NFPZg_OrsYjl-5d9WgsYJT4bOAy51pwrzujS3ITZTMs3AQy_Bv59NH-_N9GOWbc-l0BZadQekdNd-8CnNYfoGFkbsyX4M9WgjeQ1HzLVG_phDWs1dNvElV5R6XUnm6_b0O16cnV8dD39VGIBRVOPVjK2WGOCBzaSJjejZpRs4PCksep4oI5IBzRhOUSWAxMalJbZrFiSH_QNoc1Qb0yqrEr-DZAFUiUhvJTIWIwuQKZUQnl7G5MLHog2gR0dYRh3P9il-6jRC714yiZhS1kJpQ7MN-J_PY0GZ82lu1QOs2IZRUmCat_qlU1EnNLJl_ym21c6ndhn3W5IXGkgtYyj7sdM201fj-xJRYvXAfcpeZHinqw2Yz9d3glOKU3IBakplF0XVgGu_ZlrK4q-m8B-RFkl357T-H8xMWh1ejS315Nr74DkuSY27qGLkt6E2fXnCbjKZp9sNtij-SChGq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+microbial+origins+of+food+allergy&rft.jtitle=Journal+of+allergy+and+clinical+immunology&rft.au=Rachid%2C+Rima&rft.au=Stephen-Victor%2C+Emmanuel&rft.au=Chatila%2C+Talal+A&rft.date=2021-03-01&rft.issn=1097-6825&rft.eissn=1097-6825&rft.volume=147&rft.issue=3&rft.spage=808&rft_id=info:doi/10.1016%2Fj.jaci.2020.12.624&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-6749&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-6749&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-6749&client=summon |