Habitual control of goal selection in humans

Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral contro...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 45; pp. 13817 - 13822
Main Authors Cushman, Fiery, Morris, Adam
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 10.11.2015
National Acad Sciences
SeriesFrom the Cover
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1506367112

Cover

Loading…
Abstract Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.
AbstractList Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yet many complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yet many complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.
Human cognition makes widespread use of goal-directed planning. However, exhaustive forward planning for tasks of real-world complexity is prohibitively computationally demanding. Much research aims to find efficient mechanisms for approximate planning. We describe an approach to this problem that exploits the computational efficiency of habit learning to select goal states that are subsequently used in planning. We also provide experimental evidence that humans implement this approach. Our findings illuminate the basis of learning and choice in humans, demonstrate an integration between mechanisms of habitual and planned control, and contribute to the development of computationally tractable planning algorithms. Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yet many complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.
Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yetmany complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.
Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yet many complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task.
Author Morris, Adam
Cushman, Fiery
Author_xml – sequence: 1
  givenname: Fiery
  surname: Cushman
  fullname: Cushman, Fiery
– sequence: 2
  givenname: Adam
  surname: Morris
  fullname: Morris, Adam
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26460050$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PGzEQhq0KVJK0Z06glbhwYGH8vXuphBAQJCQucLa8jh0cbeyw3q3Uf1-vEtLCgYs_NM-8887MFB2EGCxCxxguMUh6tQk6XWIOggqJMfmGJhhqXApWwwGaABBZVoywIzRNaQUANa_gOzoiggkADhN0MdeN7wfdFiaGvottEV2xjPmfbGtN72MofCheh7UO6Qc6dLpN9ufunqGXu9vnm3n5-HT_cHP9WBpOWV8K0QieX3VjCUjnGm2MqyiTxkkhgC84NsRWTFuttRPEOFw3vK5FZSyRDaEz9GuruxmatV0Ym53pVm06v9bdHxW1Vx8jwb-qZfytmOCUEJwFzncCXXwbbOrV2idj21YHG4eksKREAM7zyejZJ3QVhy7k9kaKSVqPxwyd_u9ob-V9kBm42gKmiyl11u0RDGpclRpXpf6tKmfwTxnG93oceG7Jt1_kFTsrY2BfBRPFuMK0wqPbky2ySn3sPpgVlFT0L5nEq1Y
CitedBy_id crossref_primary_10_1073_pnas_1609094113
crossref_primary_10_5465_amr_2022_0518
crossref_primary_10_1038_s41386_021_01123_1
crossref_primary_10_1038_s41467_017_02750_3
crossref_primary_10_1177_1745691620931460
crossref_primary_10_1093_cercor_bhx210
crossref_primary_10_1016_j_tics_2024_10_006
crossref_primary_10_1016_j_nicl_2022_103083
crossref_primary_10_1038_s41593_018_0232_z
crossref_primary_10_1016_j_copsyc_2018_11_014
crossref_primary_10_1038_s41583_020_0355_6
crossref_primary_10_1038_s41386_020_00899_y
crossref_primary_10_1080_2331186X_2018_1429134
crossref_primary_10_1016_j_tics_2022_02_002
crossref_primary_10_3389_fpsyg_2019_01193
crossref_primary_10_1016_j_cub_2021_03_091
crossref_primary_10_1177_1059712316667203
crossref_primary_10_1111_spc3_12704
crossref_primary_10_1038_s42003_023_04500_2
crossref_primary_10_1162_jocn_a_01170
crossref_primary_10_3389_fncom_2016_00128
crossref_primary_10_1016_j_cognition_2016_02_002
crossref_primary_10_1016_j_addbeh_2021_106899
crossref_primary_10_1002_wcs_1629
crossref_primary_10_1111_nous_12501
crossref_primary_10_3758_s13423_022_02191_0
crossref_primary_10_1016_j_tics_2022_08_003
crossref_primary_10_1177_1088868317720362
crossref_primary_10_1017_S0265052518000134
crossref_primary_10_1038_nrn_2016_78
crossref_primary_10_3389_fpsyg_2019_02892
crossref_primary_10_1002_jeab_889
crossref_primary_10_1371_journal_pone_0162246
crossref_primary_10_1371_journal_pcbi_1007944
crossref_primary_10_1038_s41598_020_79929_0
crossref_primary_10_1038_nn_4238
crossref_primary_10_1016_j_physbeh_2017_04_001
crossref_primary_10_1146_annurev_psych_021323_040420
crossref_primary_10_1073_pnas_2016884118
crossref_primary_10_1016_j_neunet_2019_04_022
crossref_primary_10_1016_j_tics_2023_08_011
crossref_primary_10_1371_journal_pcbi_1011087
crossref_primary_10_1007_s13164_020_00515_4
crossref_primary_10_1111_ejn_14730
crossref_primary_10_7554_eLife_11305
crossref_primary_10_1016_j_neuroimage_2021_118780
crossref_primary_10_1080_10963758_2022_2034118
crossref_primary_10_1177_09567976211005702
crossref_primary_10_1007_s13164_021_00566_1
crossref_primary_10_1017_S0140525X19003261
crossref_primary_10_3389_fpsyg_2016_01821
crossref_primary_10_1177_09567976231200547
crossref_primary_10_1007_s11245_020_09715_0
crossref_primary_10_1038_s41562_021_01180_y
crossref_primary_10_2147_NDT_S334403
crossref_primary_10_1038_s41467_019_08662_8
crossref_primary_10_1016_j_jrp_2019_03_001
crossref_primary_10_1146_annurev_psych_010416_044216
crossref_primary_10_1016_j_pnpbp_2022_110523
crossref_primary_10_1016_j_tics_2024_01_004
crossref_primary_10_1002_jnr_24545
crossref_primary_10_1177_09567976231180587
crossref_primary_10_1016_j_cobeha_2017_12_009
crossref_primary_10_1371_journal_pcbi_1010047
crossref_primary_10_1177_17456916231179146
crossref_primary_10_1177_0963721419868211
crossref_primary_10_1177_1745691621995752
crossref_primary_10_3389_fncom_2017_00080
crossref_primary_10_1016_j_robot_2020_103630
crossref_primary_10_1111_mila_12502
crossref_primary_10_7554_eLife_74402
crossref_primary_10_1016_j_cobeha_2017_12_001
crossref_primary_10_1016_j_cobeha_2018_01_015
crossref_primary_10_1146_annurev_psych_122414_033625
crossref_primary_10_1016_j_bpsc_2016_06_005
crossref_primary_10_1017_S0033291716002786
crossref_primary_10_52547_shefa_9_4_51
crossref_primary_10_1016_j_cognition_2022_105215
crossref_primary_10_1162_jocn_a_02150
crossref_primary_10_3389_fpsyg_2019_02735
crossref_primary_10_1108_JMD_07_2023_0220
crossref_primary_10_1038_s41467_021_25123_3
crossref_primary_10_7554_eLife_82390
crossref_primary_10_1016_j_neuron_2020_06_014
crossref_primary_10_1371_journal_pone_0195328
crossref_primary_10_1016_j_biopsych_2017_05_017
crossref_primary_10_1016_j_ijhcs_2021_102661
crossref_primary_10_1038_s41562_020_0905_y
crossref_primary_10_1007_s11229_023_04168_5
crossref_primary_10_1016_j_cobeha_2019_04_009
crossref_primary_10_1016_j_pnpbp_2017_06_029
crossref_primary_10_1186_s41235_023_00497_8
crossref_primary_10_1073_pnas_1518488112
crossref_primary_10_1371_journal_pcbi_1008552
crossref_primary_10_3758_s13428_022_01789_5
crossref_primary_10_1002_evan_21948
crossref_primary_10_1111_spc3_12567
crossref_primary_10_1162_jocn_a_00945
crossref_primary_10_3389_fpsyg_2020_00380
Cites_doi 10.1098/rstb.2013.0480
10.1162/089976606775093909
10.1016/j.cognition.2008.08.011
10.1037/a0030844
10.1146/annurev.neuro.29.051605.112851
10.1016/j.neuron.2013.09.007
10.1017/S0140525X13000290
10.1145/1390156.1390211
10.1073/pnas.1414219112
10.1016/j.neuron.2013.08.009
10.3758/BF03199935
10.1037/h0092987
10.1093/brain/106.2.237
10.1016/S0896-6273(03)00154-5
10.1038/nn.3981
10.1371/journal.pbio.1001089
10.1371/journal.pcbi.1003364
10.1073/pnas.1417219112
10.1080/026432900380427
10.1177/0956797612463080
10.1016/S0004-3702(99)00052-1
10.1016/j.neuron.2005.05.020
10.1073/pnas.1312011110
10.3389/fpsyg.2013.00092
10.1016/S0896-6273(03)00169-7
10.1016/j.brainres.2009.07.007
10.3389/fnbeh.2013.00135
10.1016/j.neuroimage.2009.03.025
10.1016/j.neuron.2011.02.027
10.1038/nn1968
10.1016/j.neuron.2010.04.016
10.1016/j.tics.2008.02.009
10.1038/nn1560
10.1038/35036228
10.1016/j.conb.2012.05.011
10.1073/pnas.1100290108
10.1007/BF00302715
10.3102/0013189X018001016
10.1371/journal.pcbi.1002410
10.1037/0003-066X.51.4.355
10.1098/rstb.2013.0482
10.1037/a0030852
10.1162/jocn_a_00709
10.1521/soco.2008.26.5.593
10.1145/1390156.1390278
10.1109/TNN.1998.712192
10.1016/S0028-3908(98)00033-1
10.1007/978-1-4757-0629-1_1
10.1523/JNEUROSCI.4647-10.2011
10.1098/rstb.2013.0478
10.1073/pnas.0914630107
10.1037/h0062487
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Nov 10, 2015
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Nov 10, 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1506367112
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Habitual control of goal selection
EISSN 1091-6490
EndPage 13822
ExternalDocumentID PMC4653221
3871771741
26460050
10_1073_pnas_1506367112
112_45_13817
26466328
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Feature
GrantInformation_xml – fundername: DOD | Office of Naval Research (ONR)
  grantid: N00014-14-1-0800
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 14:35:02 EDT 2025
Thu Jul 10 23:27:23 EDT 2025
Mon Jun 30 07:41:44 EDT 2025
Thu Apr 03 07:05:24 EDT 2025
Tue Jul 01 01:53:34 EDT 2025
Thu Apr 24 23:03:51 EDT 2025
Wed Nov 11 00:29:30 EST 2020
Fri May 30 12:01:41 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 45
Keywords planning
goal selection
habit
hierarchical control
reinforcement learning
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c534t-66b655349be207ffbaccf8347cf76605d51c2e84aeaaaf62cf19b59968ce27b23
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: F.C. and A.M. designed research; F.C. and A.M. performed research; A.M. analyzed data; and F.C. and A.M. wrote the paper.
Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved September 10, 2015 (received for review March 31, 2015)
ORCID 0000-0002-6929-9982
OpenAccessLink https://www.pnas.org/content/pnas/112/45/13817.full.pdf
PMID 26460050
PQID 1734739347
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1506367112
pnas_primary_112_45_13817
proquest_miscellaneous_1732601002
crossref_citationtrail_10_1073_pnas_1506367112
jstor_primary_26466328
proquest_journals_1734739347
pubmed_primary_26460050
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4653221
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-10
PublicationDateYYYYMMDD 2015-11-10
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-10
  day: 10
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle From the Cover
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
Zhang NL (e_1_3_3_40_2) 1997
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
Lashley KS (e_1_3_3_15_2) 1951
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
Boyan JA (e_1_3_3_39_2) 1996
Burnham KP (e_1_3_3_57_2) 2002
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
McFadden D (e_1_3_3_59_2) 1974
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
R Development Core Team (e_1_3_3_55_2) 2009
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
18420448 - Trends Cogn Sci. 2008 May;12(5):201-8
22412360 - PLoS Comput Biol. 2012;8(3):e1002410
16378516 - Neural Comput. 2006 Feb;18(2):283-328
21713027 - PLoS Biol. 2011 Jun;9(6):e1001089
25267824 - Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655). pii: 20130482. doi: 10.1098/rstb.2013.0482
6850269 - Brain. 1983 Jun;106 (Pt 2):237-55
22704797 - Curr Opin Neurobiol. 2012 Dec;22(6):1068-74
20510862 - Neuron. 2010 May 27;66(4):585-95
25799041 - Nat Neurosci. 2015 May;18(5):767-72
21435563 - Neuron. 2011 Mar 24;69(6):1204-15
24775120 - Behav Brain Sci. 2014 Apr;37(2):121-35
24324166 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20941-6
18926527 - Cognition. 2009 Dec;113(3):262-80
16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11
25267822 - Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655). pii: 20130480. doi: 10.1098/rstb.2013.0480
18558860 - Annu Rev Neurosci. 2008;31:359-87
23356780 - Psychol Rev. 2013 Jan;120(1):190-229
13000071 - J Exp Psychol. 1952 Oct;44(4):288-91
24339762 - PLoS Comput Biol. 2013;9(12):e1003364
25170791 - J Cogn Neurosci. 2015 Feb;27(2):319-33
25267820 - Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655). pii: 20130478. doi: 10.1098/rstb.2013.0478
24206669 - Neuron. 2013 Nov 20;80(4):914-9
24139036 - Neuron. 2013 Oct 16;80(2):312-25
23459512 - Front Psychol. 2013 Mar 04;4:92
21690340 - Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10918-25
26489651 - Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13749-50
11252769 - Nat Rev Neurosci. 2000 Oct;1(1):59-65
25605941 - Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1595-600
21471389 - J Neurosci. 2011 Apr 6;31(14):5526-39
9704982 - Neuropharmacology. 1998 Apr-May;37(4-5):407-19
20945185 - Cogn Neuropsychol. 2000 Jun 1;17(4):297-338
25675480 - Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3098-103
20445094 - Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8993-9
23558545 - Psychol Sci. 2013 May;24(5):751-61
17726475 - Nat Neurosci. 2007 Sep;10(9):1095-102
12718865 - Neuron. 2003 Apr 24;38(2):329-37
15996553 - Neuron. 2005 Jul 7;47(1):129-41
19306932 - Neuroimage. 2009 Jul 15;46(4):1004-17
23230992 - J Exp Psychol Gen. 2014 Feb;143(1):182-94
19595993 - Brain Res. 2009 Nov 24;1299:74-94
12718866 - Neuron. 2003 Apr 24;38(2):339-46
24167476 - Front Behav Neurosci. 2013 Oct 23;7:135
References_xml – ident: e_1_3_3_13_2
  doi: 10.1098/rstb.2013.0480
– ident: e_1_3_3_20_2
  doi: 10.1162/089976606775093909
– ident: e_1_3_3_16_2
  doi: 10.1016/j.cognition.2008.08.011
– start-page: 112
  volume-title: Cerebral Mechanisms in Behavior
  year: 1951
  ident: e_1_3_3_15_2
– ident: e_1_3_3_8_2
  doi: 10.1037/a0030844
– ident: e_1_3_3_19_2
  doi: 10.1146/annurev.neuro.29.051605.112851
– ident: e_1_3_3_1_2
  doi: 10.1016/j.neuron.2013.09.007
– start-page: 63
  volume-title: ICML-96
  year: 1996
  ident: e_1_3_3_39_2
– volume-title: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach
  year: 2002
  ident: e_1_3_3_57_2
– ident: e_1_3_3_41_2
  doi: 10.1017/S0140525X13000290
– ident: e_1_3_3_17_2
  doi: 10.1145/1390156.1390211
– ident: e_1_3_3_49_2
  doi: 10.1073/pnas.1414219112
– ident: e_1_3_3_35_2
  doi: 10.1016/j.neuron.2013.08.009
– ident: e_1_3_3_25_2
  doi: 10.3758/BF03199935
– ident: e_1_3_3_2_2
  doi: 10.1037/h0092987
– ident: e_1_3_3_42_2
  doi: 10.1093/brain/106.2.237
– ident: e_1_3_3_27_2
  doi: 10.1016/S0896-6273(03)00154-5
– ident: e_1_3_3_38_2
  doi: 10.1038/nn.3981
– ident: e_1_3_3_51_2
  doi: 10.1371/journal.pbio.1001089
– ident: e_1_3_3_10_2
  doi: 10.1371/journal.pcbi.1003364
– ident: e_1_3_3_31_2
  doi: 10.1073/pnas.1417219112
– ident: e_1_3_3_34_2
  doi: 10.1080/026432900380427
– ident: e_1_3_3_5_2
  doi: 10.1177/0956797612463080
– ident: e_1_3_3_12_2
  doi: 10.1016/S0004-3702(99)00052-1
– ident: e_1_3_3_26_2
  doi: 10.1016/j.neuron.2005.05.020
– ident: e_1_3_3_36_2
  doi: 10.1073/pnas.1312011110
– ident: e_1_3_3_46_2
  doi: 10.3389/fpsyg.2013.00092
– ident: e_1_3_3_28_2
  doi: 10.1016/S0896-6273(03)00169-7
– ident: e_1_3_3_52_2
  doi: 10.1016/j.brainres.2009.07.007
– ident: e_1_3_3_11_2
  doi: 10.3389/fnbeh.2013.00135
– start-page: 489
  volume-title: Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
  year: 1997
  ident: e_1_3_3_40_2
– ident: e_1_3_3_58_2
  doi: 10.1016/j.neuroimage.2009.03.025
– ident: e_1_3_3_24_2
  doi: 10.1016/j.neuron.2011.02.027
– ident: e_1_3_3_50_2
  doi: 10.1038/nn1968
– ident: e_1_3_3_30_2
  doi: 10.1016/j.neuron.2010.04.016
– ident: e_1_3_3_14_2
  doi: 10.1016/j.tics.2008.02.009
– ident: e_1_3_3_7_2
  doi: 10.1038/nn1560
– ident: e_1_3_3_22_2
  doi: 10.1038/35036228
– ident: e_1_3_3_18_2
  doi: 10.1016/j.conb.2012.05.011
– ident: e_1_3_3_53_2
  doi: 10.1073/pnas.1100290108
– ident: e_1_3_3_44_2
  doi: 10.1007/BF00302715
– ident: e_1_3_3_45_2
  doi: 10.3102/0013189X018001016
– ident: e_1_3_3_56_2
– ident: e_1_3_3_32_2
  doi: 10.1371/journal.pcbi.1002410
– ident: e_1_3_3_33_2
  doi: 10.1037/0003-066X.51.4.355
– ident: e_1_3_3_9_2
  doi: 10.1098/rstb.2013.0482
– ident: e_1_3_3_21_2
  doi: 10.1037/a0030852
– ident: e_1_3_3_37_2
  doi: 10.1162/jocn_a_00709
– ident: e_1_3_3_6_2
  doi: 10.1521/soco.2008.26.5.593
– ident: e_1_3_3_47_2
  doi: 10.1145/1390156.1390278
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2009
  ident: e_1_3_3_55_2
– ident: e_1_3_3_23_2
  doi: 10.1109/TNN.1998.712192
– ident: e_1_3_3_4_2
  doi: 10.1016/S0028-3908(98)00033-1
– ident: e_1_3_3_3_2
  doi: 10.1007/978-1-4757-0629-1_1
– ident: e_1_3_3_29_2
  doi: 10.1523/JNEUROSCI.4647-10.2011
– ident: e_1_3_3_48_2
  doi: 10.1098/rstb.2013.0478
– ident: e_1_3_3_54_2
  doi: 10.1073/pnas.0914630107
– start-page: 105
  volume-title: Frontiers in Econometrics
  year: 1974
  ident: e_1_3_3_59_2
– ident: e_1_3_3_43_2
  doi: 10.1037/h0062487
– reference: 23459512 - Front Psychol. 2013 Mar 04;4:92
– reference: 23558545 - Psychol Sci. 2013 May;24(5):751-61
– reference: 18558860 - Annu Rev Neurosci. 2008;31:359-87
– reference: 17726475 - Nat Neurosci. 2007 Sep;10(9):1095-102
– reference: 21690340 - Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2:10918-25
– reference: 25799041 - Nat Neurosci. 2015 May;18(5):767-72
– reference: 19595993 - Brain Res. 2009 Nov 24;1299:74-94
– reference: 18420448 - Trends Cogn Sci. 2008 May;12(5):201-8
– reference: 12718866 - Neuron. 2003 Apr 24;38(2):339-46
– reference: 24206669 - Neuron. 2013 Nov 20;80(4):914-9
– reference: 13000071 - J Exp Psychol. 1952 Oct;44(4):288-91
– reference: 16286932 - Nat Neurosci. 2005 Dec;8(12):1704-11
– reference: 20510862 - Neuron. 2010 May 27;66(4):585-95
– reference: 22412360 - PLoS Comput Biol. 2012;8(3):e1002410
– reference: 21435563 - Neuron. 2011 Mar 24;69(6):1204-15
– reference: 16378516 - Neural Comput. 2006 Feb;18(2):283-328
– reference: 24167476 - Front Behav Neurosci. 2013 Oct 23;7:135
– reference: 23356780 - Psychol Rev. 2013 Jan;120(1):190-229
– reference: 25267822 - Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655). pii: 20130480. doi: 10.1098/rstb.2013.0480
– reference: 21471389 - J Neurosci. 2011 Apr 6;31(14):5526-39
– reference: 9704982 - Neuropharmacology. 1998 Apr-May;37(4-5):407-19
– reference: 25605941 - Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1595-600
– reference: 25267824 - Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655). pii: 20130482. doi: 10.1098/rstb.2013.0482
– reference: 21713027 - PLoS Biol. 2011 Jun;9(6):e1001089
– reference: 15996553 - Neuron. 2005 Jul 7;47(1):129-41
– reference: 19306932 - Neuroimage. 2009 Jul 15;46(4):1004-17
– reference: 26489651 - Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13749-50
– reference: 20945185 - Cogn Neuropsychol. 2000 Jun 1;17(4):297-338
– reference: 25675480 - Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3098-103
– reference: 24324166 - Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20941-6
– reference: 24775120 - Behav Brain Sci. 2014 Apr;37(2):121-35
– reference: 12718865 - Neuron. 2003 Apr 24;38(2):329-37
– reference: 11252769 - Nat Rev Neurosci. 2000 Oct;1(1):59-65
– reference: 25170791 - J Cogn Neurosci. 2015 Feb;27(2):319-33
– reference: 22704797 - Curr Opin Neurobiol. 2012 Dec;22(6):1068-74
– reference: 24339762 - PLoS Comput Biol. 2013;9(12):e1003364
– reference: 24139036 - Neuron. 2013 Oct 16;80(2):312-25
– reference: 25267820 - Philos Trans R Soc Lond B Biol Sci. 2014 Nov 5;369(1655). pii: 20130478. doi: 10.1098/rstb.2013.0478
– reference: 20445094 - Proc Natl Acad Sci U S A. 2010 May 11;107 Suppl 2:8993-9
– reference: 23230992 - J Exp Psychol Gen. 2014 Feb;143(1):182-94
– reference: 6850269 - Brain. 1983 Jun;106 (Pt 2):237-55
– reference: 18926527 - Cognition. 2009 Dec;113(3):262-80
SSID ssj0009580
Score 2.5252657
Snippet Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning...
Human cognition makes widespread use of goal-directed planning. However, exhaustive forward planning for tasks of real-world complexity is prohibitively...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13817
SubjectTerms Algorithms
Choice Behavior - physiology
Decision making
Goals
Habits
Human subjects
Humans
Learning
Learning - physiology
Logistic Models
Models, Psychological
Objectives
Planning
Planning Techniques
Social Sciences
Title Habitual control of goal selection in humans
URI https://www.jstor.org/stable/26466328
http://www.pnas.org/content/112/45/13817.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26460050
https://www.proquest.com/docview/1734739347
https://www.proquest.com/docview/1732601002
https://pubmed.ncbi.nlm.nih.gov/PMC4653221
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfQeOEFscEgbENB4mFopNSOEyeP07RSoVH20Ep9i2zHYZVGMjXty_76nT_yNZUJkCorii9247tc7py73yH0KWH5OM_DcUCITAMaMdCDBMtApkpyqQoe5zpR-Mcsni7o92W07OJ0TXbJRozk_c68kv_hKpwDvuos2X_gbDsonIBj4C-0wGFo_4rHUy5WJv-jCTgHy-9XpTNATHUbF8ZoyvDVfSv0un1r1U2MwKzZFDzvUkzcc1-fBWfXs65g8cW2vnH7ppOV6oURV-u1K26c89_97QQcBSakrYu2eGK2vh4lwFNqs59HyqpOsDyCmNrin61uxaQnRDTqqUqssQF3KnHQOrrycMnrkcY_DGPWDDOAy579zCaLq6tsfrmcD3vt6xlcQQY_jWrwnIATodX2tyXuQTInNkHJ3UsD_MTCr4_mHtgsNmxVY-EC0S6_5HF4bc9emb9CL52j4Z9bqdlHz1R5gPabRfZPHd7459foSyNGvhMjvyp8LUZ-K0b-qvStGL1Bi8nl_GIauCIagYxCugniWMQRHKVCkTErCsGlLJKQajiqGHzZPMKSqIRyxTkvYiILnAqN2ZNIRZgg4SHaK6tSvUM-mDFRWvCxyHFKcQGeOkmlyDnjlIFVyz00apYpkw5hXhc6uc1MpAMLM71kWbeuHjptL7iz4Cp_Jj00697SgSEPxjJJPOQZ0vZ6TDIaZUa6PHTccCdzjy2MyeDmwxQaD31su0Gp6i9lvFTV1tBoqD0QDQ-9tcwcTKxRkzzEBmxuCTRg-7CnXN0Y4HaNZUgIfv_03zpCL7oH8xjtbdZbdQKW70Z8MAL8AFycq58
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Habitual+control+of+goal+selection+in+humans&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Cushman%2C+Fiery&rft.au=Morris%2C+Adam&rft.date=2015-11-10&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=45&rft.spage=13817&rft_id=info:doi/10.1073%2Fpnas.1506367112&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3871771741
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F45.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F45.cover.gif