Endothelial SOCS3 maintains homeostasis and promotes survival in endotoxemic mice

SOCS3 is the main inhibitor of the JAK/STAT3 pathway. This pathway is activated by interleukin 6 (IL-6), a major mediator of the cytokine storm during shock. To determine its role in the vascular response to shock, we challenged mice lacking SOCS3 in the adult endothelium (SOCS3iEKO) with a nonletha...

Full description

Saved in:
Bibliographic Details
Published inJCI insight Vol. 6; no. 14
Main Authors Martino, Nina, Ramos, Ramon Bossardi, Lu, Shuhan, Leyden, Kara, Tomaszek, Lindsay, Sadhu, Sudeshna, Fredman, Gabrielle, Jaitovich, Ariel, Vincent, Peter A, Adam, Alejandro P
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 22.07.2021
American Society for Clinical investigation
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:SOCS3 is the main inhibitor of the JAK/STAT3 pathway. This pathway is activated by interleukin 6 (IL-6), a major mediator of the cytokine storm during shock. To determine its role in the vascular response to shock, we challenged mice lacking SOCS3 in the adult endothelium (SOCS3iEKO) with a nonlethal dose of lipopolysaccharide (LPS). SOCS3iEKO mice died 16-24 hours postinjection after severe kidney failure. Loss of SOCS3 led to an LPS-induced type I IFN-like program and high expression of prothrombotic and proadhesive genes. Consistently, we observed intraluminal leukocyte adhesion and neutrophil extracellular trap-osis (NETosis), as well as retinal venular leukoembolization. Notably, heterozygous mice displayed an intermediate phenotype, suggesting a gene dose effect. In vitro studies were performed to study the role of SOCS3 protein levels in the regulation of the inflammatory response. In human umbilical vein endothelial cells, pulse-chase experiments showed that SOCS3 protein had a half-life less than 20 minutes. Inhibition of SOCS3 ubiquitination and proteasomal degradation led to protein accumulation and a stronger inhibition of IL-6 signaling and barrier function loss. Together, our data demonstrate that the regulation of SOCS3 protein levels is critical to inhibit IL-6-mediated endotheliopathy during shock and provide a promising therapeutic avenue to prevent multiorgan dysfunction through stabilization of endothelial SOCS3.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2379-3708
2379-3708
DOI:10.1172/jci.insight.147280