Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress

The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 13; p. 1063984
Main Authors Wang, Jingbo, Su, Chang, Cui, Zhibo, Huang, Lixiang, Gu, Shuang, Jiang, Sixu, Feng, Jing, Xu, Hai, Zhang, Wenzhong, Jiang, Linlin, Zhao, Minghui
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 10.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.
AbstractList The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.
The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.
The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes and may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.
The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.
Author Cui, Zhibo
Huang, Lixiang
Wang, Jingbo
Feng, Jing
Su, Chang
Xu, Hai
Zhao, Minghui
Jiang, Sixu
Zhang, Wenzhong
Jiang, Linlin
Gu, Shuang
AuthorAffiliation Rice Research Institute , Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China , Shenyang Agricultural University , Shenyang , China
AuthorAffiliation_xml – name: Rice Research Institute , Collaborative Innovation Center for Genetic Improvement and High Quality and Efficiency Production of Northeast Japonica Rice in China , Shenyang Agricultural University , Shenyang , China
Author_xml – sequence: 1
  givenname: Jingbo
  surname: Wang
  fullname: Wang, Jingbo
– sequence: 2
  givenname: Chang
  surname: Su
  fullname: Su, Chang
– sequence: 3
  givenname: Zhibo
  surname: Cui
  fullname: Cui, Zhibo
– sequence: 4
  givenname: Lixiang
  surname: Huang
  fullname: Huang, Lixiang
– sequence: 5
  givenname: Shuang
  surname: Gu
  fullname: Gu, Shuang
– sequence: 6
  givenname: Sixu
  surname: Jiang
  fullname: Jiang, Sixu
– sequence: 7
  givenname: Jing
  surname: Feng
  fullname: Feng, Jing
– sequence: 8
  givenname: Hai
  surname: Xu
  fullname: Xu, Hai
– sequence: 9
  givenname: Wenzhong
  surname: Zhang
  fullname: Zhang, Wenzhong
– sequence: 10
  givenname: Linlin
  surname: Jiang
  fullname: Jiang, Linlin
– sequence: 11
  givenname: Minghui
  surname: Zhao
  fullname: Zhao, Minghui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36704350$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1rHCEYxqWkNB_NP9BDmGMvu_VrRudSCCFtFgK9bC65iOO8bgyObtRN6X8f9yMl6aEiKI_P-3tFn1N0FGIAhL4QPGdM9t_sCgLMKaZ0TnDHesk_oBPSdXwmMSVHb_bH6DznR1wH7xlj_BM6Zp3AnLX4BN0vkw7ZJLcucXImNzqMzQRFD9HvhQTPoH1ToodqNdAE-F0d5kEHl6cm2ia5qqYYS66u5tI3uSTI-TP6aLXPcH5Yz9Ddj-vl1c3s9tfPxdXl7cy0jJdZ27I6LRgsqeUdlmTsWzsYaYm2tN5UsJ5xK8bBknZoR23JyLFghlhaVczO0GLPHaN-VOvkJp3-qKid2gkxrZROxRkPStLOEmLqoxnBewOD0GzAnEijuRAcKuv7nrXeDBOMBkJJ2r-Dvj8J7kGt4rPqpSD1nhXw9QBI8WkDuajJZQPe6wBxkxUVAhOKCeuq9eJtr79NXj-nGuTeYFLMOYFVxhVdXNy2dl4RrLZRULsoqG0U1CEKtZT-U_pK_0_RCxnRuPc
CitedBy_id crossref_primary_10_3390_agriculture14081307
crossref_primary_10_3390_ijms251910440
crossref_primary_10_1271_kagakutoseibutsu_61_554
crossref_primary_10_1007_s11104_024_07151_2
crossref_primary_10_1016_j_plaphy_2024_109164
crossref_primary_10_1186_s40538_023_00508_2
crossref_primary_10_1016_j_plantsci_2024_112294
crossref_primary_10_3390_plants13131760
crossref_primary_10_1007_s11104_024_06745_0
crossref_primary_10_1186_s12870_024_05298_9
Cites_doi 10.1016/j.plantsci.2011.12.008
10.1007/s001220000472
10.1016/j.foodchem.2020.126170
10.1016/j.jplph.2004.09.011
10.1016/S0074-7696(07)64005-4
10.1074/jbc.M109.092569
10.1104/pp.107.102335
10.3390/plants9111503
10.1105/tpc.108.064543
10.1016/S0065-2113(07)96004-6
10.1007/bf00009558
10.1093/pcp/pcf081
10.1371/journal.pone.0159622
10.1007/bf00197346
10.1007/bf00010728
10.1146/annurev.pp.46.060195.001321
10.1111/j.1365-313X.2011.04757.x
10.1093/pcp/pcw026
10.1186/s12870-020-02443-y
10.1016/j.foodres.2021.110488
10.1016/j.envint.2019.105154
10.1146/annurev-arplant-043014-114822
10.1016/s1360-1385(01)01961-6
10.1016/j.jplph.2017.11.015
10.1111/j.1744-7909.2008.00687.x
10.1146/annurev.arplant.55.031903.141655
10.1104/pp.110.156794
10.1093/pcp/pcu067
10.1146/annurev.cellbio.22.022206.160206
10.1111/sum.12270
10.3389/fpls.2016.01415
10.1104/pp.107.097162
10.1371/journal.pone.0094803
10.1111/j.1399-3054.1993.tb01784.x
10.1146/annurev-arplant-042809-112315
10.1111/j.1365-313x.2003.01991.x
10.1105/tpc.109.070771
10.1111/nph.17812
10.1080/07388551.2021.1874282
10.1104/pp.111.175802
10.1199/tab.0152
10.1093/pcp/41.4.383
10.1007/s11104-014-2073-1
10.1007/s00299-020-02517-z
10.1111/jipb.13054
10.1016/j.gene.2018.06.105
10.1104/pp.110.154872
10.3389/fpls.2021.667458
10.1046/j.1365-313x.1997.11030429.x
10.1016/j.envexpbot.2017.01.005
10.1111/j.1399-3054.1989.tb05609.x
10.1038/nature06608
10.1016/j.plaphy.2020.08.031
10.1016/j.tplants.2012.08.003
10.1002/pld3.120
10.1016/j.scitotenv.2021.149627
10.3389/fpls.2018.01838
10.1093/oxfordjournals.pcp.a029568
10.1080/00380768.2000.10409141
10.1111/j.1744-7909.2010.00892.x
10.3389/fpls.2021.646221
10.1007/s00299-019-02447-5
10.1111/ppl.13353
10.1023/a:1022867416513
ContentType Journal Article
Copyright Copyright © 2023 Wang, Su, Cui, Huang, Gu, Jiang, Feng, Xu, Zhang, Jiang and Zhao.
Copyright © 2023 Wang, Su, Cui, Huang, Gu, Jiang, Feng, Xu, Zhang, Jiang and Zhao. 2023 Wang, Su, Cui, Huang, Gu, Jiang, Feng, Xu, Zhang, Jiang and Zhao
Copyright_xml – notice: Copyright © 2023 Wang, Su, Cui, Huang, Gu, Jiang, Feng, Xu, Zhang, Jiang and Zhao.
– notice: Copyright © 2023 Wang, Su, Cui, Huang, Gu, Jiang, Feng, Xu, Zhang, Jiang and Zhao. 2023 Wang, Su, Cui, Huang, Gu, Jiang, Feng, Xu, Zhang, Jiang and Zhao
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fgene.2022.1063984
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Wang et al
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_826f11c022c749ceb7a3b0418ca4774e
PMC9871393
36704350
10_3389_fgene_2022_1063984
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c534t-553553fec082f46081d95fbc8f1af236773934f7dbf15b5daf1d4073c1f2f7d03
IEDL.DBID M48
ISSN 1664-8021
IngestDate Wed Aug 27 01:16:59 EDT 2025
Thu Aug 21 18:38:44 EDT 2025
Fri Jul 11 09:28:59 EDT 2025
Thu Jan 02 22:53:52 EST 2025
Tue Jul 01 02:19:29 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords aluminum tolerance
transcriptomics
internal tolerance
rice
metabolomics
Language English
License Copyright © 2023 Wang, Su, Cui, Huang, Gu, Jiang, Feng, Xu, Zhang, Jiang and Zhao.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-553553fec082f46081d95fbc8f1af236773934f7dbf15b5daf1d4073c1f2f7d03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Muhammad Aamir Manzoor, Anhui Agricultural University, China
Peng Zhang, China National Rice Research Institute (CAAS), China
Edited by: Dezhi Wu, Hunan Agricultural University, China
Chongyun Fu, Guangdong Academy of Agricultural Sciences (GDAAS), China
This article was submitted to Plant Genomics, a section of the journal Frontiers in Genetics
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2022.1063984
PMID 36704350
PQID 2770120136
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_826f11c022c749ceb7a3b0418ca4774e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9871393
proquest_miscellaneous_2770120136
pubmed_primary_36704350
crossref_citationtrail_10_3389_fgene_2022_1063984
crossref_primary_10_3389_fgene_2022_1063984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-10
PublicationDateYYYYMMDD 2023-01-10
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-10
  day: 10
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2023
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Kochian (B26) 1995; 46
Hiradate (B19) 2007; 96
Ma (B36) 2014; 381
Kobayashi (B25) 2007; 145
Ma (B39) 2002; 43
Yokosho (B68) 2011; 68
Huang (B20) 2009; 21
Sharma (B52) 2005; 162
Kochian (B28) 2015; 66
Clemens (B8) 2013; 18
Nguyen (B44) 2001; 102
Pellet (B46) 1995; 196
Moura (B43) 2010; 52
Sasaki (B50) 2004; 37
Zhang J (B69) 2016; 11
Konno (B29) 1993; 89
Ma (B37) 2000; 41
Fraser (B14) 2011; 9
Koyama (B30) 1999; 40
Ishikawa (B21) 2000; 46
Goulding (B17) 2016; 32
Yang (B66) 2008; 50
Kiani (B24) 2021; 12
Dong (B9) 2021; 63
Ma (B38) 2001; 6
Zhao (B71) 2018; 9
Durrett (B11) 2007; 144
Dopico (B10) 1989; 75
Rose (B48) 2010; 153
von Uexkull (B60) 1995; 171
Zhang, P (B70) 2016; 7
Preisner (B47) 2018; 221
Bartsch (B2) 2010; 13
Ninamango-Cárdenas (B45) 2003; 130
Wu (B63) 2014; 55
Lacombe (B31) 1997; 11
Yokosho (B67) 2016; 57
Wohl (B62) 2020; 39
Chen (B7) 2020; 155
Gong (B16) 2020; 20
Somerville (B55) 2006; 22
Ghosh Dasgupta (B15) 2014; 9
Fang (B13) 2021; 12
Yang (B65) 2020; 314
Bennet (B3) 1991; 134
Chen (B6) 2019; 133
Zhu (B73) 2022; 233
Chauhan (B4) 2021; 41
Gray (B18) 2012; 184
Yamaji (B64) 2009; 21
Scheller (B51) 2010; 61
Tsutsui (B57) 2011; 156
Ke (B22) 2018; 675
Li (B33) 2021; 172
Kochian (B27) 2004; 55
Matsunami (B42) 2020; 9
Shweta (B53) 2017; 137
Vives-Peris (B59) 2020; 39
Famoso (B12) 2010; 153
Solhaug (B54) 2019; 3
Wang (B61) 2021; 800
Ma (B40) 2007; 264
Vahisalu (B58) 2008; 452
Ruiz de la Bastida (B49) 2021; 147
References_xml – volume: 184
  start-page: 112
  year: 2012
  ident: B18
  article-title: Grass phenylpropanoids: Regulate before using
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2011.12.008
– volume: 102
  start-page: 1002
  year: 2001
  ident: B44
  article-title: Molecular mapping of genes conferring aluminum tolerance in rice (Oryza sativa L.)
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220000472
– volume: 314
  start-page: 126170
  year: 2020
  ident: B65
  article-title: Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.126170
– volume: 162
  start-page: 854
  year: 2005
  ident: B52
  article-title: Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress: Role of osmolytes as enzyme protectant
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2004.09.011
– volume: 264
  start-page: 225
  year: 2007
  ident: B40
  article-title: Syndrome of aluminum toxicity and diversity of aluminum resistance in higher plants
  publication-title: Int. Rev. Cytol.
  doi: 10.1016/S0074-7696(07)64005-4
– volume: 13
  start-page: 25654
  year: 2010
  ident: B2
  article-title: Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-beta-D-xyloside in arabidopsis resistance to pathogens and ageing of leaves
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.092569
– volume: 145
  start-page: 843
  year: 2007
  ident: B25
  article-title: Characterization of AtALMT1 expression in aluminum-inducible malate release and its role for rhizotoxic stress tolerance in arabidopsis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.102335
– volume: 9
  start-page: 1503
  year: 2020
  ident: B42
  article-title: Osmotic stress leads to significant changes in rice root metabolic profiles between tolerant and sensitive genotypes
  publication-title: Plants (Basel)
  doi: 10.3390/plants9111503
– volume: 21
  start-page: 655
  year: 2009
  ident: B20
  article-title: A bacterial-type ABC transporter is involved in aluminum tolerance in rice
  publication-title: Plant Cell.
  doi: 10.1105/tpc.108.064543
– volume: 96
  start-page: 65
  year: 2007
  ident: B19
  article-title: Strategies of plants to adapt to mineral stresses in problem soils
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(07)96004-6
– volume: 171
  start-page: 1
  year: 1995
  ident: B60
  article-title: Global extent, development and economic-impact of acid soils
  publication-title: Plant Soil
  doi: 10.1007/bf00009558
– volume: 43
  start-page: 652
  year: 2002
  ident: B39
  article-title: Response of rice to Al stress and identification of quantitative trait loci for Al tolerance
  publication-title: Plant Cell. Physiol.
  doi: 10.1093/pcp/pcf081
– volume: 11
  start-page: e0159622
  year: 2016
  ident: B69
  article-title: Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0159622
– volume: 196
  start-page: 788
  year: 1995
  ident: B46
  article-title: Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.)
  publication-title: Planta
  doi: 10.1007/bf00197346
– volume: 134
  start-page: 153
  year: 1991
  ident: B3
  article-title: The aluminium signal: New dimensions to mechanisms of aluminium tolerance
  publication-title: Plant Soil
  doi: 10.1007/bf00010728
– volume: 46
  start-page: 237
  year: 1995
  ident: B26
  article-title: Cellular mechanisms of aluminum toxicity and resistance in plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.pp.46.060195.001321
– volume: 68
  start-page: 1061
  year: 2011
  ident: B68
  article-title: An Al-inducible MATE gene is involved in external detoxification of Al in rice
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2011.04757.x
– volume: 57
  start-page: 976
  year: 2016
  ident: B67
  article-title: Functional analysis of a MATE gene OsFRDL2 revealed its involvement in Al-induced secretion of citrate, but less contribution to Al tolerance in rice
  publication-title: Plant Cell. Physiol.
  doi: 10.1093/pcp/pcw026
– volume: 20
  start-page: 294
  year: 2020
  ident: B16
  article-title: Integrated transcriptomics and metabolomics analysis of catechins, caffeine and theanine biosynthesis in tea plant (Camellia sinensis) over the course of seasons
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-02443-y
– volume: 147
  start-page: 110488
  year: 2021
  ident: B49
  article-title: Metabolism of flavonoids and lignans by lactobacilli and bifidobacteria strains improves the nutritional properties of flaxseed-enriched beverages
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2021.110488
– volume: 133
  start-page: 105154
  year: 2019
  ident: B6
  article-title: Metabolomics and transcriptomics reveal defense mechanism of rice (Oryza sativa) grains under stress of 2, 2’, 4, 4’-tetrabromodiphenyl ether
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105154
– volume: 66
  start-page: 571
  year: 2015
  ident: B28
  article-title: Plant adaptation to acid soils: The molecular basis for crop aluminum resistance
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-043014-114822
– volume: 6
  start-page: 273
  year: 2001
  ident: B38
  article-title: Aluminium tolerance in plants and the complexing role of organic acids
  publication-title: Trends Plant Sci.
  doi: 10.1016/s1360-1385(01)01961-6
– volume: 221
  start-page: 132
  year: 2018
  ident: B47
  article-title: The cinnamyl alcohol dehydrogenase family in flax: Differentiation during plant growth and under stress conditions
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2017.11.015
– volume: 50
  start-page: 1103
  year: 2008
  ident: B66
  article-title: Aluminum-activated oxalate secretion does not associate with internal content among some oxalate accumulators
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2008.00687.x
– volume: 55
  start-page: 459
  year: 2004
  ident: B27
  article-title: How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.55.031903.141655
– volume: 153
  start-page: 1678
  year: 2010
  ident: B12
  article-title: Development of a novel aluminum tolerance phenotyping platform used for comparisons of cereal aluminum tolerance and investigations into rice aluminum tolerance mechanisms
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.156794
– volume: 55
  start-page: 1426
  year: 2014
  ident: B63
  article-title: Brassica oleracea MATE encodes a citrate transporter and enhances aluminum tolerance in Arabidopsis thaliana
  publication-title: Plant Cell. Physiol.
  doi: 10.1093/pcp/pcu067
– volume: 22
  start-page: 53
  year: 2006
  ident: B55
  article-title: Cellulose synthesis in higher plants
  publication-title: Annu. Rev. Cell. Dev. Biol.
  doi: 10.1146/annurev.cellbio.22.022206.160206
– volume: 32
  start-page: 390
  year: 2016
  ident: B17
  article-title: Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12270
– volume: 7
  start-page: 1415
  year: 2016
  ident: B70
  article-title: Association mapping for aluminum tolerance in a core collection of rice landraces
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01415
– volume: 144
  start-page: 197
  year: 2007
  ident: B11
  article-title: The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.107.097162
– volume: 9
  start-page: e94803
  year: 2014
  ident: B15
  article-title: Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0094803
– volume: 89
  start-page: 40
  year: 1993
  ident: B29
  article-title: Purification of a β-galactosidase from rice shoots and its involvement in hydrolysis of the natural substrate in cell walls
  publication-title: Physiol. Plant
  doi: 10.1111/j.1399-3054.1993.tb01784.x
– volume: 61
  start-page: 263
  year: 2010
  ident: B51
  article-title: Hemicelluloses
  publication-title: Annu.rev.plant Biol.
  doi: 10.1146/annurev-arplant-042809-112315
– volume: 37
  start-page: 645
  year: 2004
  ident: B50
  article-title: A wheat gene encoding an aluminum-activated malate transporter
  publication-title: Plant J
  doi: 10.1111/j.1365-313x.2003.01991.x
– volume: 21
  start-page: 3339
  year: 2009
  ident: B64
  article-title: A zinc finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice
  publication-title: Plant Cell.
  doi: 10.1105/tpc.109.070771
– volume: 233
  start-page: 2471
  year: 2022
  ident: B73
  article-title: Calmodulin-like protein CML24 interacts with CAMTA2 and WRKY46 to regulate ALMT1-dependent Al resistance in Arabidopsis thaliana
  publication-title: New Phytol.
  doi: 10.1111/nph.17812
– volume: 41
  start-page: 715
  year: 2021
  ident: B4
  article-title: Aluminum toxicity and aluminum stress-induced physiological tolerance responses in higher plants
  publication-title: Crit. Rev. Biotechnol.
  doi: 10.1080/07388551.2021.1874282
– volume: 156
  start-page: 925
  year: 2011
  ident: B57
  article-title: Identification of a cis-acting element of ART1, a C2H2-type zinc-finger transcription factor for aluminum tolerance in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.175802
– volume: 9
  start-page: e0152
  year: 2011
  ident: B14
  article-title: The phenylpropanoid pathway in Arabidopsis
  publication-title: Arab. Book
  doi: 10.1199/tab.0152
– volume: 41
  start-page: 383
  year: 2000
  ident: B37
  article-title: Role of organic acids in detoxification of aluminum in higher plants
  publication-title: Plant Cell. Physiol.
  doi: 10.1093/pcp/41.4.383
– volume: 381
  start-page: 1
  year: 2014
  ident: B36
  article-title: Molecular mechanisms of Al tolerance in gramineous plants
  publication-title: Plant Soil
  doi: 10.1007/s11104-014-2073-1
– volume: 39
  start-page: 597
  year: 2020
  ident: B62
  article-title: Functional expression and characterization of cinnamic acid 4-hydroxylase from the hornwort Anthoceros agrestis in Physcomitrella patens
  publication-title: Plant Cell. Rep.
  doi: 10.1007/s00299-020-02517-z
– volume: 63
  start-page: 180
  year: 2021
  ident: B9
  article-title: Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13054
– volume: 675
  start-page: 285
  year: 2018
  ident: B22
  article-title: Genome-wide transcriptome profiling provides insights into panicle development of rice (Oryza sativa L.)
  publication-title: Gene-Basel.
  doi: 10.1016/j.gene.2018.06.105
– volume: 153
  start-page: 433
  year: 2010
  ident: B48
  article-title: Straying off the highway: Trafficking of secreted plant proteins and complexity in the plant cell wall proteome
  publication-title: Plant Physiol.
  doi: 10.1104/pp.110.154872
– volume: 12
  start-page: 667458
  year: 2021
  ident: B13
  article-title: Response mechanisms of plants under saline-alkali stress
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.667458
– volume: 11
  start-page: 429
  year: 1997
  ident: B31
  article-title: Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: Cloning, expression and phylogenetic relationships
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.1997.11030429.x
– volume: 137
  start-page: 177
  year: 2017
  ident: B53
  article-title: Toxicity of aluminium on various levels of plant cells and organism: A review
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2017.01.005
– volume: 75
  start-page: 458
  year: 1989
  ident: B10
  article-title: Partial purification of cell wall beta-galactosidases from Cicer arietinum epicotyls. Relationship with cell wall autolytic processes
  publication-title: Plant Physiol.
  doi: 10.1111/j.1399-3054.1989.tb05609.x
– volume: 452
  start-page: 487
  year: 2008
  ident: B58
  article-title: SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling
  publication-title: Nature
  doi: 10.1038/nature06608
– volume: 155
  start-page: 697
  year: 2020
  ident: B7
  article-title: Fraxinus mandshurica 4-coumarate-CoA ligase 2 enhances drought and osmotic stress tolerance of tobacco by increasing coniferyl alcohol content
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.08.031
– volume: 18
  start-page: 92
  year: 2013
  ident: B8
  article-title: Plant science: The key to preventing slow cadmium poisoning
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2012.08.003
– volume: 3
  start-page: e00120
  year: 2019
  ident: B54
  article-title: An integrated transcriptomics and metabolomics analysis of the Cucurbita pepo nectary implicates key modules of primary metabolism involved in nectar synthesis and secretion
  publication-title: Plant Direct
  doi: 10.1002/pld3.120
– volume: 800
  start-page: 149627
  year: 2021
  ident: B61
  article-title: Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2021.149627
– volume: 9
  start-page: 1838
  year: 2018
  ident: B71
  article-title: Mining beneficial genes for aluminum tolerance within a core collection of rice landraces through genome-wide association mapping with high density SNPs from specific-locus amplified fragment sequencing
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01838
– volume: 40
  start-page: 482
  year: 1999
  ident: B30
  article-title: Over expression of mitochondrial citrate synthase gene improves the growth of carrot cells in Al-phosphate medium
  publication-title: Plant. Cell. physiology
  doi: 10.1093/oxfordjournals.pcp.a029568
– volume: 46
  start-page: 751
  year: 2000
  ident: B21
  article-title: Comparison of the amount of citric and malic acids in Al media of seven plant species and two cultivars each in five plant species
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2000.10409141
– volume: 52
  start-page: 360
  year: 2010
  ident: B43
  article-title: Abiotic and biotic stresses and changes in the lignin content and composition in plants
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2010.00892.x
– volume: 12
  start-page: 646221
  year: 2021
  ident: B24
  article-title: Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, aegilops cylindrica and their amphidiploids
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.646221
– volume: 39
  start-page: 3
  year: 2020
  ident: B59
  article-title: Root exudates: From plant to rhizosphere and beyond
  publication-title: Plant Cell. Rep.
  doi: 10.1007/s00299-019-02447-5
– volume: 172
  start-page: 1619
  year: 2021
  ident: B33
  article-title: Myo-inositol transport and metabolism participate in salt tolerance of halophyte ice plant seedlings
  publication-title: Physiol. Plant
  doi: 10.1111/ppl.13353
– volume: 130
  start-page: 223
  year: 2003
  ident: B45
  article-title: Mapping QTLs for aluminum tolerance in maize
  publication-title: Euphytica
  doi: 10.1023/a:1022867416513
SSID ssj0000493334
Score 2.3682992
Snippet The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1063984
SubjectTerms aluminum tolerance
Genetics
internal tolerance
metabolomics
rice
transcriptomics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReKqAFUqBypd6qaOPYzsdxQSBUCU5dadWLZTseAVqyqJs98O-ZibOrXYTKpVdnklgz48wbx_OGsR8FVEJDXqcebJYqBPipwwWZCl3aqlJKyYb2IW9ui-uJ-jXV041WX3QmLNIDR8WNEP6CEB5DjS9V7YMrrXSZEpW3CqFLoK8vxryNZOoh4l4ppYpVMpiF1SNAexAtZp5jwophuVJbkagn7H8LZb4-LLkRfa722KcBNvJxnO4--xDaA7YbG0k-f2Z_-pDTfwCoynjBbdvwx9ChhWdxgJia8AHdfBaolUbgCKdRgup-7xePfA6c2IU44uhugVJ8POOxjOQLm1xd_r64ToeuCanXUnWp1gghJASPwR1UgSG_qTU4X4GwQHxtxIGnoGwcCO10Y0E0mNVJLyDH0Uwesp123oZjxqWjnLUuXFGC8jpYBFNaFb7OMC2ErEmYWGnQ-IFSnDpbzAymFqR102vdkNbNoPWE_Vzf8xQJNf4pfU6GWUsSGXY_gC5iBhcx77lIwr6vzGpw8dAfEduG-XJh8rKk4mEhi4QdRTOvX0XMdogls4SVWw6wNZftK-39XU_QXWMWikr--j8mf8I-Uod72vUR2Snb6f4uwxnioM59613-BXOiBTA
  priority: 102
  providerName: Directory of Open Access Journals
Title Transcriptomics and metabolomics reveal tolerance new mechanism of rice roots to Al stress
URI https://www.ncbi.nlm.nih.gov/pubmed/36704350
https://www.proquest.com/docview/2770120136
https://pubmed.ncbi.nlm.nih.gov/PMC9871393
https://doaj.org/article/826f11c022c749ceb7a3b0418ca4774e
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2VIlAviG_CR2UkbigQx3acHBAqiFIhlRMrrbhEtmNDUZrQTSq1_56ZOLtiUcslB8dxIs84856TeQPwqgglVyGvUhdMlkoE-KnFBZlypU1ZSilFQ_uQx1-Lo4X8slTLHViXO5oncLiS2lE9qcWqfXNxdvkeF_w7YpwYb98GnGpSvMxz5KIYcUt5A25iZNJU0eB4hvu_IhoWIn5oLgqJL-ecxzyaa4bZg9ukb4aIItsKW5O6_1WQ9N8_K_8KVYd34c6MMdlBdIp7sOO7-3ArVp28fADfp_g0vS0oJXlgpmvYqR_RHdrYQLJOOMDYt57qbniG2Bt7UJLwyXDK-sBIiogh6B4H7MUOWhZzTh7C4vDTt49H6VxiIXVKyDFVCvGGCN4hEgiyQHzQVCpYVwZuAom7kWCeDLqxgSurGhN4gxRQOB5ybM3EI9jt-s4_ASYsEdyqsIUO0ilvEHkpWbgqQw4ZsiYBvp7B2s3641QGo62Rh5AB6skANRmgng2QwOvNNb-j-sZ_e38gw2x6knL21NCvftTzQqyRTgXOHV7mtKyct9oIm0leOiMRCvsEXq7NWuNKo88npvP9-VDnWlOmMRdFAo-jmTe3WrtJAnrLAbaeZftMd_JzUvOukLLiJD-9dsxnsEc17mnfh2fPYXdcnfsXiIRGuz_tIODx85LvT67-BwJDBJQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptomics+and+metabolomics+reveal+tolerance+new+mechanism+of+rice+roots+to+Al+stress&rft.jtitle=Frontiers+in+genetics&rft.au=Wang%2C+Jingbo&rft.au=Su%2C+Chang&rft.au=Cui%2C+Zhibo&rft.au=Huang%2C+Lixiang&rft.date=2023-01-10&rft.issn=1664-8021&rft.eissn=1664-8021&rft.volume=13&rft.spage=1063984&rft_id=info:doi/10.3389%2Ffgene.2022.1063984&rft_id=info%3Apmid%2F36704350&rft.externalDocID=36704350
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon