Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis
The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabol...
Saved in:
Published in | Gut microbes Vol. 13; no. 1; p. 1 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
01.01.2021
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of A. muciniphila in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with A. muciniphila efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. A. muciniphila treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate in vitro or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of A. muciniphila correlated with lipid oxidation and improved gut-liver interactions through regulating the metabolism of L-aspartate. A. muciniphila could be a potential agent for clinical intervention in MAFLD. |
---|---|
AbstractList | The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of A. muciniphila in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with A. muciniphila efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. A. muciniphila treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate in vitro or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of A. muciniphila correlated with lipid oxidation and improved gut-liver interactions through regulating the metabolism of L-aspartate. A. muciniphila could be a potential agent for clinical intervention in MAFLD. The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of A. muciniphila in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with A. muciniphila efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. A. muciniphila treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate in vitro or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of A. muciniphila correlated with lipid oxidation and improved gut-liver interactions through regulating the metabolism of L-aspartate. A. muciniphila could be a potential agent for clinical intervention in MAFLD.The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of A. muciniphila in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with A. muciniphila efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. A. muciniphila treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate in vitro or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of A. muciniphila correlated with lipid oxidation and improved gut-liver interactions through regulating the metabolism of L-aspartate. A. muciniphila could be a potential agent for clinical intervention in MAFLD. The gut bacterium has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of correlated with lipid oxidation and improved gut-liver interactions through regulating the metabolism of L-aspartate. could be a potential agent for clinical intervention in MAFLD. The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and metabolicdysfunction-associated fatty liver disease (MAFLD). However, its underlying mechanism involved in its well-known metabolic actions needs further evaluation. The present study explored the therapeutic effect and mechanism of A. muciniphila in intervening MAFLD by using a high-fat and high-cholesterol (HFC) diet induced obese mice model. Mice treated with A. muciniphila efficiently reversed MAFLD in the liver, such as hepatic steatosis, inflammatory, and liver injury. These therapeutic effects persisted after long-term drug withdrawal and were slightly weakened in the antibiotics-treated obese mice. A. muciniphila treatment efficiently increased mitochondrial oxidation and bile acid metabolism in the gut-liver axis, ameliorated oxidative stress-induced cell apoptosis in gut, leading to the reshaping of the gut microbiota composition. These metabolic improvements occurred with increased L-aspartate levels in the liver that transported from the gut. The administration of L-aspartate in vitro or in mice displayed the similar beneficial metabolic effects mentioned above and efficiently ameliorated MAFLD. Together, these data indicate that the anti-MAFLD activity of A. muciniphila correlated with lipid oxidation and improved gut–liver interactions through regulating the metabolism of L-aspartate. A. muciniphila could be a potential agent for clinical intervention in MAFLD. |
Author | Song, Bingbing Huang, Zhishu Jiang, Zhi Lu, Yongjun Ge, Zhenhuang Xu, Yaohao Li, Chengdao Rao, Yong Ye, Jiming Hu, Yutao Kuang, Zhiqi Liu, Xiyuan Guo, Shiyao Zhao, Dandan Li, Chan Chen, Shuobin |
Author_xml | – sequence: 1 givenname: Yong orcidid: 0000-0002-2559-6248 surname: Rao fullname: Rao, Yong email: raoyong0805@126.com organization: Sun Yat-sen University – sequence: 2 givenname: Zhiqi surname: Kuang fullname: Kuang, Zhiqi organization: Biomedical Center of Sun Yat-sen University – sequence: 3 givenname: Chan surname: Li fullname: Li, Chan organization: Sun Yat-sen University – sequence: 4 givenname: Shiyao surname: Guo fullname: Guo, Shiyao organization: Sun Yat-sen University – sequence: 5 givenname: Yaohao surname: Xu fullname: Xu, Yaohao organization: Sun Yat-sen University – sequence: 6 givenname: Dandan surname: Zhao fullname: Zhao, Dandan organization: Sun Yat-sen University – sequence: 7 givenname: Yutao surname: Hu fullname: Hu, Yutao organization: Sun Yat-sen University – sequence: 8 givenname: Bingbing surname: Song fullname: Song, Bingbing organization: Sun Yat-sen University – sequence: 9 givenname: Zhi surname: Jiang fullname: Jiang, Zhi organization: Sun Yat-sen University – sequence: 10 givenname: Zhenhuang surname: Ge fullname: Ge, Zhenhuang organization: Biomedical Center of Sun Yat-sen University – sequence: 11 givenname: Xiyuan surname: Liu fullname: Liu, Xiyuan organization: Biomedical Center of Sun Yat-sen University – sequence: 12 givenname: Chengdao surname: Li fullname: Li, Chengdao organization: Biomedical Center of Sun Yat-sen University – sequence: 13 givenname: Shuobin surname: Chen fullname: Chen, Shuobin organization: Sun Yat-sen University – sequence: 14 givenname: Jiming orcidid: 0000-0003-3983-0098 surname: Ye fullname: Ye, Jiming organization: RMIT University – sequence: 15 givenname: Zhishu orcidid: 0000-0002-6211-5482 surname: Huang fullname: Huang, Zhishu email: ceshzs@mail.sysu.edu.cn organization: Sun Yat-sen University – sequence: 16 givenname: Yongjun orcidid: 0000-0002-3030-5724 surname: Lu fullname: Lu, Yongjun email: luyj@mail.sysu.edu.cn organization: Biomedical Center of Sun Yat-sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34030573$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstuEzEUhkeoiJbSRwB5ySbBt7kJCVFVUCpFYgNr64znOHHrGQfbE8iz8LI45CLKAryxdfyf77d8_ufF2ehHLIqXjM4Zbegb1sqWtnU155SzOWt5XQnxpLjY1We0beTZ6VxX58VVjPc0LylrWolnxbmQVNCyFhfFz9spkeuHBwwDjNECGSZtR7teWQcEBnTWB0gYyYAJOu-sJv02mmnUyfpxBjF6bbOgJwZS2hJnNxhIbyNCRNJtScDl5CDZcUnSCk-YOBBvyCID1hBSBpBNNl9OabYnwA8bXxRPDbiIV4f9svj68cOXm0-zxefbu5vrxUyXQqaZ7FiLDZPY0QarqjNgSmip4XUrAHjX9dhTXdWyr9umAdbxqq4oN4LRrKRGXBZ3e27v4V6tgx0gbJUHq34XfFiq_EarHSo0GvuWS9S8kVqzRnPdtZJxzbkodZVZ7_as9dQN2GscUwD3CPr4ZrQrtfQb1bCyoYJnwOsDIPhvE8akBhs1Ogcj-ikqXgrOZSmrnderP71OJsfpZsHbvUAHH2NAo7TNf50Hl62tU4yqXZzUMU5qFyd1iFPuLv_qPhr8r-_9vs-OxudYfffB9SrB1vlgAozaRiX-jfgFthjl9A |
CitedBy_id | crossref_primary_10_2106_JBJS_OA_23_00153 crossref_primary_10_1002_advs_202301928 crossref_primary_10_1016_j_cell_2024_03_034 crossref_primary_10_25122_jml_2024_0342 crossref_primary_10_1016_j_jsbmb_2024_106663 crossref_primary_10_1021_acs_jafc_4c09084 crossref_primary_10_3389_fcimb_2022_1040749 crossref_primary_10_3390_ijms23020594 crossref_primary_10_1360_SSV_2021_0363 crossref_primary_10_1016_j_foodres_2024_113989 crossref_primary_10_1016_j_freeradbiomed_2024_09_019 crossref_primary_10_3389_fphar_2025_1512815 crossref_primary_10_1016_j_ijbiomac_2024_139167 crossref_primary_10_3389_fphar_2022_1027212 crossref_primary_10_3390_nu15010118 crossref_primary_10_3390_ijms23169350 crossref_primary_10_1016_j_foodres_2025_116178 crossref_primary_10_3390_biomedicines10040860 crossref_primary_10_1016_j_bbrc_2025_151606 crossref_primary_10_2147_IDR_S388687 crossref_primary_10_3389_fonc_2023_1344328 crossref_primary_10_3389_fphar_2025_1550015 crossref_primary_10_1016_j_jff_2023_105448 crossref_primary_10_1111_dom_16053 crossref_primary_10_3389_fcimb_2023_1157368 crossref_primary_10_1016_j_jff_2024_106247 crossref_primary_10_1016_j_nbd_2025_106836 crossref_primary_10_1016_j_tim_2022_08_003 crossref_primary_10_1080_1040841X_2022_2037506 crossref_primary_10_1111_1751_7915_14293 crossref_primary_10_2147_JIR_S503648 crossref_primary_10_1002_mnfr_202101066 crossref_primary_10_1097_HEP_0000000000000386 crossref_primary_10_1002_mnfr_202100253 crossref_primary_10_1038_s41522_023_00474_5 crossref_primary_10_1177_11795514241282253 crossref_primary_10_3389_fphar_2023_1163694 crossref_primary_10_1016_j_foodhyd_2024_109980 crossref_primary_10_3389_fmicb_2022_905567 crossref_primary_10_2174_1389201025666230915103052 crossref_primary_10_3389_fimmu_2022_1047570 crossref_primary_10_1177_17562848221138676 crossref_primary_10_1007_s12265_024_10480_3 crossref_primary_10_3390_nu15020284 crossref_primary_10_3390_ijms24021636 crossref_primary_10_3390_nu17010143 crossref_primary_10_3390_nu15214512 crossref_primary_10_1016_j_foodchem_2024_142708 crossref_primary_10_12677_amb_2025_141004 crossref_primary_10_1016_j_jep_2023_116666 crossref_primary_10_1080_19490976_2023_2281382 crossref_primary_10_1186_s13020_023_00752_6 crossref_primary_10_1007_s00203_024_04007_2 crossref_primary_10_3390_nu14194050 crossref_primary_10_1016_j_ijbiomac_2024_134891 crossref_primary_10_1016_j_heliyon_2024_e29269 crossref_primary_10_1002_oby_23964 crossref_primary_10_1016_j_jnutbio_2023_109553 crossref_primary_10_1038_s41401_023_01126_2 crossref_primary_10_1111_jgh_16747 crossref_primary_10_1016_j_bbcan_2024_189086 crossref_primary_10_1038_s44355_024_00015_7 crossref_primary_10_1039_D2FO03028D crossref_primary_10_3389_fmicb_2022_832915 crossref_primary_10_3390_biomedicines10030524 crossref_primary_10_1016_j_ecoenv_2024_116891 crossref_primary_10_3389_fmicb_2023_1172400 crossref_primary_10_1016_j_jare_2023_01_008 crossref_primary_10_3350_cmh_2024_0349 crossref_primary_10_1039_D4CC03087G crossref_primary_10_1007_s13596_025_00822_0 crossref_primary_10_1016_j_intimp_2024_111762 crossref_primary_10_3390_nu15153406 crossref_primary_10_3390_biomedicines13010183 crossref_primary_10_3390_nano14161363 crossref_primary_10_1186_s40104_023_00975_5 crossref_primary_10_3389_fmed_2021_732039 crossref_primary_10_1016_j_brainres_2022_148158 crossref_primary_10_1021_acs_jafc_4c02243 crossref_primary_10_3389_fgstr_2022_1024393 crossref_primary_10_1038_s41522_023_00451_y crossref_primary_10_1186_s10020_023_00658_x crossref_primary_10_1039_D2FO01799G crossref_primary_10_1016_j_ijbiomac_2025_140775 crossref_primary_10_1093_nutrit_nuae172 crossref_primary_10_3389_fimmu_2022_971409 crossref_primary_10_3390_nu16010058 crossref_primary_10_1016_j_toxrep_2024_101790 crossref_primary_10_3390_ani13101659 crossref_primary_10_3390_microorganisms12051020 crossref_primary_10_26599_FSHW_2022_9250218 crossref_primary_10_1016_j_cyto_2024_156833 crossref_primary_10_3390_cimb45110573 crossref_primary_10_1096_fj_202200945R crossref_primary_10_1080_19490976_2021_1994270 crossref_primary_10_1080_19490976_2022_2057779 crossref_primary_10_1016_j_ejim_2023_10_002 crossref_primary_10_1016_j_fbio_2022_102201 crossref_primary_10_1016_j_ijbiomac_2021_12_036 crossref_primary_10_3389_fimmu_2024_1370658 crossref_primary_10_3390_ijms242417514 crossref_primary_10_1177_15347354241269870 crossref_primary_10_1186_s40168_022_01390_0 crossref_primary_10_3389_fnut_2025_1554996 crossref_primary_10_3390_ijms232314762 crossref_primary_10_3390_nu15010157 crossref_primary_10_3389_fcimb_2022_870785 crossref_primary_10_1002_mnfr_202400451 crossref_primary_10_1016_j_apsb_2024_10_010 crossref_primary_10_3389_fmicb_2023_1191445 crossref_primary_10_1016_j_ecoenv_2023_115182 crossref_primary_10_1128_spectrum_00047_22 crossref_primary_10_1097_HC9_0000000000000310 crossref_primary_10_1016_j_jff_2023_105773 crossref_primary_10_2147_DMSO_S370492 crossref_primary_10_1080_19490976_2025_2473504 crossref_primary_10_1016_j_ijbiomac_2024_130018 crossref_primary_10_1016_j_phrs_2024_107294 crossref_primary_10_1111_jcmm_17626 crossref_primary_10_1016_j_jep_2024_118096 crossref_primary_10_1111_jcmm_18026 crossref_primary_10_1016_j_isci_2023_105959 crossref_primary_10_1016_j_crfs_2022_100427 crossref_primary_10_1002_advs_202306217 crossref_primary_10_3390_microorganisms12081627 crossref_primary_10_1038_s44321_024_00129_8 crossref_primary_10_3389_fendo_2023_1153205 crossref_primary_10_1016_j_aninu_2024_04_003 crossref_primary_10_3390_cimb46010019 crossref_primary_10_1016_j_ijbiomac_2024_129430 crossref_primary_10_1016_j_intimp_2023_110548 crossref_primary_10_1016_j_jep_2024_118925 crossref_primary_10_3389_fmicb_2024_1342356 crossref_primary_10_3389_fmicb_2025_1499035 crossref_primary_10_1016_j_scitotenv_2024_170011 crossref_primary_10_1016_j_apsb_2025_03_008 crossref_primary_10_1016_j_biopha_2024_116223 crossref_primary_10_3389_fphys_2022_1070569 crossref_primary_10_1080_19490976_2022_2078619 crossref_primary_10_1016_j_jcmgh_2023_12_003 crossref_primary_10_1360_SSV_2024_0122 crossref_primary_10_4014_jmb_2308_08046 crossref_primary_10_3390_livers4030032 crossref_primary_10_1039_D4FO03614J crossref_primary_10_3389_fphar_2024_1365294 crossref_primary_10_1002_mnfr_202400756 crossref_primary_10_1186_s12964_023_01425_5 crossref_primary_10_2147_DMSO_S338113 crossref_primary_10_1016_j_ijbiomac_2024_138803 crossref_primary_10_1093_lifemeta_load032 crossref_primary_10_3389_fcimb_2022_962782 crossref_primary_10_3389_fimmu_2024_1488125 crossref_primary_10_3390_nu15081815 crossref_primary_10_1016_j_phrs_2022_106136 crossref_primary_10_3168_jds_2024_24658 crossref_primary_10_1111_bph_15768 crossref_primary_10_1002_mnfr_202300301 crossref_primary_10_1002_jsfa_13127 crossref_primary_10_3389_fmicb_2022_947757 crossref_primary_10_1080_19490976_2024_2446423 crossref_primary_10_1007_s11684_022_0960_z crossref_primary_10_3389_fmed_2025_1484656 crossref_primary_10_1007_s00109_023_02308_5 crossref_primary_10_3390_cells14020084 crossref_primary_10_1080_10408398_2023_2228409 crossref_primary_10_48130_fmr_0024_0013 crossref_primary_10_1039_D1FO02695J crossref_primary_10_3390_nu15234929 crossref_primary_10_1080_19490976_2023_2201159 crossref_primary_10_1080_19490976_2023_2229948 crossref_primary_10_1016_j_jhip_2025_02_001 crossref_primary_10_1039_D2FO01214F crossref_primary_10_3389_fnut_2021_726108 crossref_primary_10_1016_j_micpath_2022_105891 crossref_primary_10_1080_19490976_2024_2323236 crossref_primary_10_34172_jlms_2024_21 |
Cites_doi | 10.1080/19490976.2020.1737307 10.1038/nm.4236 10.1038/s41591-019-0495-2 10.1016/j.pharmthera.2018.04.005 10.1038/s41467-019-11944-w 10.1016/S0168-8278(18)30895-X 10.1016/j.jhep.2020.02.020 10.1111/j.1476-5381.2010.00872.x 10.1038/s41467-020-15573-6 10.1053/j.gastro.2019.11.294 10.3389/fmicb.2017.00272 10.1016/j.jhep.2014.12.012 10.1016/j.jhep.2019.10.003 10.1016/j.metabol.2020.154409 10.1016/j.micpath.2020.104353 10.1038/s41575-018-0009-6 10.1111/1751-7915.13410 10.1038/nrgastro.2017.119 10.1016/j.celrep.2019.06.010 10.1002/hep.29238 10.1038/pr.2014.157 10.2337/db14-1213 10.1016/j.celrep.2017.04.071 10.1038/nrgastro.2016.3 10.1530/JME-16-0054 10.1080/17460441.2018.1410135 10.1002/hep.26698 10.1016/j.chom.2019.02.003 10.1016/s0270-9139(03)80118-0 10.1007/s00018-018-2943-4 10.1016/j.cmet.2016.05.005 10.1038/s41564-018-0306-4 10.1136/gut.2009.191320 10.1172/JCI44474 10.1111/bph.14153 10.1111/bph.14095 10.1136/gutjnl-2016-313432 10.1016/j.tim.2017.11.002 10.1002/hep.28709 10.1016/j.cmet.2017.08.002 10.1056/NEJMra1503519 10.3748/wjg.v20.i43.16079 10.1002/mnfr.201600305 10.1111/bph.12955 10.1038/s41591-018-0104-9 10.1084/jem.20171965 10.1038/s41385-019-0205-x 10.1016/j.tem.2017.11.002 10.1016/j.jnutbio.2019.108336 10.1073/pnas.1219451110 10.1096/fj.201800370R 10.1111/bph.14713 10.1093/bioinformatics/btu170 10.3945/ajcn.2009.27462S 10.1016/j.jhep.2020.07.048 10.1007/s40265-018-1020-5 10.1016/j.clinbiochem.2015.06.023 10.1136/gutjnl-2014-307142 10.1016/j.chom.2016.10.016 10.1002/hep.30669 10.1016/j.jnutbio.2014.01.010 10.1002/2211-5463.12862 10.1016/j.bbapap.2020.140531 10.1016/j.jhep.2011.08.025 10.3389/fmicb.2019.02495 10.1016/j.jhep.2017.11.014 10.3389/fmicb.2019.02259 10.1136/gutjnl-2019-319664 |
ContentType | Journal Article |
Copyright | 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 – notice: 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 2021 The Author(s) |
DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1080/19490976.2021.1927633 |
DatabaseName | Taylor & Francis Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Y. RAO ET AL |
EISSN | 1949-0984 |
ExternalDocumentID | oai_doaj_org_article_efced924ec284cc18c2cb9412c2235c6 PMC8158032 34030573 10_1080_19490976_2021_1927633 1927633 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Guang Dong Cheung Kong Philanthropy Foundation – fundername: Guangdong key areas R & D projects grantid: 2018B020205002 – fundername: Science and Technology Development in Guangdong Province grantid: 2016A020217004 to ZSH – fundername: Fundamental Research Funds for the Central Universities – fundername: the Science and Technology Program of Guangzhou grantid: 201704020104 – fundername: Key projects of National Natural Science Foundation of China grantid: 81930098 – fundername: Guang Dong Cheung Kong Philanthropy Foundation to YJL – fundername: Science and Technology Program of Guangzhou grantid: 201704020104 to ZSH – fundername: the Natural Science Foundation of Guangdong Province grantid: 2017A030308003 – fundername: Outstanding Talents of Guangdong Special Plan grantid: 2019JC05Y456 |
GroupedDBID | --- 00X 0YH 30N 4.4 53G ABPEM ACGFS ACTIO ADBBV ADCVX AEISY AGYJP AIJEM AIYEW ALMA_UNASSIGNED_HOLDINGS AOIJS AQRUH BABNJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO EBS EMOBN F5P GROUPED_DOAJ H13 HYE KYCEM LJTGL M4Z MM. O9- OK1 RPM SNACF SV3 TDBHL TFL TFW TR2 TTHFI AAYXX ABCCY C1A CITATION EJD IPNFZ OVD RIG TEORI CGR CUY CVF ECM EIF NPM TFT 7X8 5PM |
ID | FETCH-LOGICAL-c534t-4b19e814eb08e66bfaf5a90f2793aa2bbded0c674d7988a1b267602f310af50f3 |
IEDL.DBID | DOA |
ISSN | 1949-0976 1949-0984 |
IngestDate | Wed Aug 27 01:26:15 EDT 2025 Thu Aug 21 13:26:44 EDT 2025 Thu Jul 10 22:51:35 EDT 2025 Thu Jan 02 22:33:39 EST 2025 Thu Apr 24 23:03:39 EDT 2025 Wed Aug 27 16:30:13 EDT 2025 Tue Aug 26 04:10:57 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | bile acid metabolism lipid oxidation L-aspartate Akkermansia muciniphila Metabolic-dysfunction associated fatty liver disease (MAFLD) gut-liver axis |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-4b19e814eb08e66bfaf5a90f2793aa2bbded0c674d7988a1b267602f310af50f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-2559-6248 0000-0002-3030-5724 0000-0003-3983-0098 0000-0002-6211-5482 |
OpenAccessLink | https://doaj.org/article/efced924ec284cc18c2cb9412c2235c6 |
PMID | 34030573 |
PQID | 2532245466 |
PQPubID | 23479 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_19490976_2021_1927633 crossref_citationtrail_10_1080_19490976_2021_1927633 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8158032 doaj_primary_oai_doaj_org_article_efced924ec284cc18c2cb9412c2235c6 proquest_miscellaneous_2532245466 crossref_primary_10_1080_19490976_2021_1927633 pubmed_primary_34030573 |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Gut microbes |
PublicationTitleAlternate | Gut Microbes |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_5_29_1 e_1_3_5_27_1 e_1_3_5_25_1 e_1_3_5_23_1 e_1_3_5_44_1 e_1_3_5_67_1 e_1_3_5_46_1 e_1_3_5_69_1 e_1_3_5_48_1 e_1_3_5_3_1 e_1_3_5_61_1 e_1_3_5_40_1 e_1_3_5_63_1 e_1_3_5_42_1 e_1_3_5_65_1 e_1_3_5_9_1 e_1_3_5_21_1 e_1_3_5_5_1 e_1_3_5_7_1 e_1_3_5_18_1 e_1_3_5_39_1 e_1_3_5_16_1 e_1_3_5_37_1 e_1_3_5_14_1 e_1_3_5_35_1 e_1_3_5_12_1 e_1_3_5_33_1 e_1_3_5_56_1 e_1_3_5_58_1 e_1_3_5_50_1 e_1_3_5_52_1 e_1_3_5_54_1 e_1_3_5_10_1 e_1_3_5_31_1 e_1_3_5_28_1 e_1_3_5_26_1 e_1_3_5_24_1 e_1_3_5_22_1 e_1_3_5_45_1 e_1_3_5_66_1 e_1_3_5_47_1 e_1_3_5_68_1 e_1_3_5_49_1 e_1_3_5_2_1 e_1_3_5_60_1 e_1_3_5_41_1 e_1_3_5_62_1 e_1_3_5_43_1 e_1_3_5_64_1 e_1_3_5_8_1 e_1_3_5_20_1 e_1_3_5_4_1 e_1_3_5_6_1 e_1_3_5_17_1 e_1_3_5_38_1 e_1_3_5_15_1 e_1_3_5_13_1 e_1_3_5_36_1 e_1_3_5_11_1 e_1_3_5_34_1 e_1_3_5_55_1 e_1_3_5_57_1 e_1_3_5_59_1 e_1_3_5_19_1 e_1_3_5_51_1 e_1_3_5_53_1 e_1_3_5_32_1 e_1_3_5_30_1 |
References_xml | – ident: e_1_3_5_42_1 doi: 10.1080/19490976.2020.1737307 – ident: e_1_3_5_20_1 doi: 10.1038/nm.4236 – ident: e_1_3_5_19_1 doi: 10.1038/s41591-019-0495-2 – ident: e_1_3_5_31_1 doi: 10.1016/j.pharmthera.2018.04.005 – ident: e_1_3_5_34_1 doi: 10.1038/s41467-019-11944-w – ident: e_1_3_5_30_1 doi: 10.1016/S0168-8278(18)30895-X – ident: e_1_3_5_60_1 doi: 10.1016/j.jhep.2020.02.020 – ident: e_1_3_5_64_1 doi: 10.1111/j.1476-5381.2010.00872.x – ident: e_1_3_5_38_1 doi: 10.1038/s41467-020-15573-6 – ident: e_1_3_5_40_1 doi: 10.1053/j.gastro.2019.11.294 – ident: e_1_3_5_63_1 doi: 10.3389/fmicb.2017.00272 – ident: e_1_3_5_2_1 doi: 10.1016/j.jhep.2014.12.012 – ident: e_1_3_5_51_1 doi: 10.1016/j.jhep.2019.10.003 – ident: e_1_3_5_59_1 doi: 10.1016/j.metabol.2020.154409 – ident: e_1_3_5_39_1 doi: 10.1016/j.micpath.2020.104353 – ident: e_1_3_5_6_1 doi: 10.1038/s41575-018-0009-6 – ident: e_1_3_5_16_1 doi: 10.1111/1751-7915.13410 – ident: e_1_3_5_29_1 doi: 10.1038/nrgastro.2017.119 – ident: e_1_3_5_36_1 doi: 10.1016/j.celrep.2019.06.010 – ident: e_1_3_5_9_1 doi: 10.1002/hep.29238 – ident: e_1_3_5_15_1 doi: 10.1038/pr.2014.157 – ident: e_1_3_5_46_1 doi: 10.2337/db14-1213 – ident: e_1_3_5_47_1 doi: 10.1016/j.celrep.2017.04.071 – ident: e_1_3_5_3_1 doi: 10.1038/nrgastro.2016.3 – ident: e_1_3_5_18_1 doi: 10.1530/JME-16-0054 – ident: e_1_3_5_4_1 doi: 10.1080/17460441.2018.1410135 – ident: e_1_3_5_8_1 doi: 10.1002/hep.26698 – ident: e_1_3_5_66_1 doi: 10.1016/j.chom.2019.02.003 – ident: e_1_3_5_61_1 doi: 10.1016/s0270-9139(03)80118-0 – ident: e_1_3_5_12_1 doi: 10.1007/s00018-018-2943-4 – ident: e_1_3_5_28_1 doi: 10.1016/j.cmet.2016.05.005 – ident: e_1_3_5_58_1 doi: 10.1038/s41564-018-0306-4 – ident: e_1_3_5_41_1 doi: 10.1136/gut.2009.191320 – ident: e_1_3_5_37_1 doi: 10.1172/JCI44474 – ident: e_1_3_5_69_1 doi: 10.1111/bph.14153 – ident: e_1_3_5_55_1 doi: 10.1111/bph.14095 – ident: e_1_3_5_22_1 doi: 10.1136/gutjnl-2016-313432 – ident: e_1_3_5_11_1 doi: 10.1016/j.tim.2017.11.002 – ident: e_1_3_5_33_1 doi: 10.1002/hep.28709 – ident: e_1_3_5_27_1 doi: 10.1016/j.cmet.2017.08.002 – ident: e_1_3_5_10_1 doi: 10.1056/NEJMra1503519 – ident: e_1_3_5_13_1 doi: 10.3748/wjg.v20.i43.16079 – ident: e_1_3_5_45_1 doi: 10.1002/mnfr.201600305 – ident: e_1_3_5_65_1 doi: 10.1111/bph.12955 – ident: e_1_3_5_5_1 doi: 10.1038/s41591-018-0104-9 – ident: e_1_3_5_54_1 doi: 10.1084/jem.20171965 – ident: e_1_3_5_57_1 doi: 10.1038/s41385-019-0205-x – ident: e_1_3_5_52_1 doi: 10.1016/j.tem.2017.11.002 – ident: e_1_3_5_53_1 doi: 10.1016/j.jnutbio.2019.108336 – ident: e_1_3_5_17_1 doi: 10.1073/pnas.1219451110 – ident: e_1_3_5_21_1 doi: 10.1096/fj.201800370R – ident: e_1_3_5_7_1 doi: 10.1111/bph.14713 – ident: e_1_3_5_67_1 doi: 10.1093/bioinformatics/btu170 – ident: e_1_3_5_49_1 doi: 10.3945/ajcn.2009.27462S – ident: e_1_3_5_50_1 doi: 10.1016/j.jhep.2020.07.048 – ident: e_1_3_5_35_1 doi: 10.1007/s40265-018-1020-5 – ident: e_1_3_5_14_1 doi: 10.1016/j.clinbiochem.2015.06.023 – ident: e_1_3_5_23_1 doi: 10.1136/gutjnl-2014-307142 – ident: e_1_3_5_25_1 doi: 10.1016/j.chom.2016.10.016 – ident: e_1_3_5_56_1 doi: 10.1002/hep.30669 – ident: e_1_3_5_44_1 doi: 10.1016/j.jnutbio.2014.01.010 – ident: e_1_3_5_48_1 doi: 10.1002/2211-5463.12862 – ident: e_1_3_5_43_1 doi: 10.1016/j.bbapap.2020.140531 – ident: e_1_3_5_62_1 doi: 10.1016/j.jhep.2011.08.025 – ident: e_1_3_5_68_1 doi: 10.3389/fmicb.2019.02495 – ident: e_1_3_5_32_1 doi: 10.1016/j.jhep.2017.11.014 – ident: e_1_3_5_26_1 doi: 10.3389/fmicb.2019.02259 – ident: e_1_3_5_24_1 doi: 10.1136/gutjnl-2019-319664 |
SSID | ssj0000447063 |
Score | 2.6211114 |
Snippet | The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity,... The gut bacterium has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity, diabetes, and... The gut bacterium Akkermansia muciniphila has been increasingly recognized for its therapeutic potential in treating metabolic disorders, including obesity,... |
SourceID | doaj pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Akkermansia - genetics Akkermansia - metabolism Akkermansia muciniphila Animals Aspartic Acid - metabolism Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Bacteria - metabolism bile acid metabolism Diet, High-Fat - adverse effects Fatty Liver - etiology Fatty Liver - metabolism Fatty Liver - microbiology Gastrointestinal Microbiome Gastrointestinal Tract - metabolism Gastrointestinal Tract - microbiology gut-liver axis Humans L-aspartate lipid oxidation Liver - metabolism Male Metabolic-dysfunction associated fatty liver disease (MAFLD) Mice Mice, Inbred C57BL Research Paper |
SummonAdditionalLinks | – databaseName: Taylor & Francis Open Access dbid: 0YH link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagCIkL4t0tDxmJa4rjOK9jQZQVQpyoBCfLzzZqNrvaJKj7W_izzMRJ1K1APXDMYyaOZsYzY4-_IeSd0An33prIpFxHolA2Ko3gkTYG3HeiwWMMaJ_fsuWZ-PIjnaoJ27GsEnNoH4AihrkajVvpdqqIew95d8nAjUJ2x-NjCFHARpK75B5HbQWVZj-X8zILEyIP_dSQKkKy6RzPvzjteagByP8GjOnfgtGbNZXXnNTpI_JwjC7pSVCHx-SOa56Q-6Hf5O4p-f257-jJ5SXOxk1bKbrqTdVUm4uqVlStXI3n9SH2pCvXgXLUlaF216LrQ_FFahSls9SrrtvRGos66LjHQ_WObkNne3CHFALLmU27omtPvwKDjcK9f0d_wcfP-y4KHNRV1T4jZ6efvn9cRmN3BhBrIrpI6Lh0RSycZoXLMu2VT1XJPAeLV4prbZ1lJsuFRUg0FWue5RnjHuJJeJP55Dk5aNaNOyQ0VrlnzuapZVYUQpeJAR6FwnPDeZmpBRGTRKQZocuxg0Yt4xHhdBKkREHKUZALcjyTbQJ2x20EH1Dc88sIvT3cWG_P5WjJ0nnjLGStzoBnNyYuDDe6FDE3EGmlJluQ8rqyyG5YefGhTYpMbhnA20mzJJg57t2oxq37VvIUZl6Rigz4vwiaNg8zEThr50Cd7-ng3n_sP2mqiwFKvIjTgiX86D_G_JI8wMuwLPWKHHTb3r2GQK3TbwZT_AN8njYG priority: 102 providerName: Taylor & Francis |
Title | Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis |
URI | https://www.tandfonline.com/doi/abs/10.1080/19490976.2021.1927633 https://www.ncbi.nlm.nih.gov/pubmed/34030573 https://www.proquest.com/docview/2532245466 https://pubmed.ncbi.nlm.nih.gov/PMC8158032 https://doaj.org/article/efced924ec284cc18c2cb9412c2235c6 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIXxJvlURmJa1rHdl7HgigrhHqiUjlZftKo2eyqSRD7W_izzMTZ1W6FtBcuOTj2xM6M5-HHN4R8kEbwEJxNbMZNIkvtkspKnhhrwXwLAxZjRPu8yOeX8utVdrWT6gvPhEV44PjjTn2w3kGQ4C0oUmvT0nJrKplyC4YtsyPYNti8nWBq1MFSFjGNGgTpeCaoyDfXd0p2imVYBOEhT0_Ax4FJJvYM04jffwe99F8-6N2jlDu26fwxeTQ5lfQsDuYJuefbp-RBTDO5fkb-fBl6enZzg0q47WpNF4Ot23p1XTea6oVv8Jo-uJx04XuQiaa21K07tHjItURPHPSOBt33a9rgWQ46be1Qs6a3MaE9WEEK_uSWTLegy0C_AYGVxi1_T3_Bx38OfRIp6N9195xcnn_-_mmeTEkZgJtC9ok0aeXLVHrDSp_nJuiQ6YoFDhNda26M847ZvJAOkdB0anhe5IwHcCOhJgviBTlql61_RWiqi8C8KzLHnCylqYQFGqXG68JFlesZkRuOKDshlmPijEalE7DphpEKGakmRs7IybbZKkJ2HGrwEdm9rYyI22MByKGa5FAdksMZqXaFRfXjgkuI2VGUONCB9xvJUjC7cctGt345dIpnoHBlJnOg_zJK2rabQqKyLqB1sSeDe-PYf9PW1yOCeJlmJRP89f8Y-BvyEMcSl6XekqP-dvDvwFHrzTG5z37M4SnYxfE4P_8Cvng7rA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgEYIL70d5GolriuM4r-OCWBYoPe1Ke7P87EZt06pNEOWv8GeZyaNqK9Ae9ppkJrbzeWbsjL8h5L3QEffemsDEXAciUzbIjeCBNgbcd6TBYzRsn-Pk9Fx8u4gvds7CYFolrqF9SxTR2Gqc3LgZ3afEfYCFd87Aj8LyjodDiFFgkkQ3ya04T1KsYhCx8XafhQmRtgXVUCpAsf4gz_807bmohsn_gMf0X9HoYVLljpc6uU9M3782OWU6rCs9NL8PqB-vNwAPyL0uiKXHLeoekhuufERut2UtN4_Jny91RY-nUzT65bpQdF6boiyWl8VMUTV3M6QFgBCXzl0FGJwVhtrNGj0soiRQHWKcpV5V1YbOMHeEdr-SqN7QlZs0VcfKCYX4datmPacLT0egYKkwxcDRn_DySV0FrQb1q1g_Iecnn88-nQZdEQhATySqQOgwd1konGaZSxLtlY9VzjwHw6IU19o6y0ySCovMayrUPEkTxj2ErfAk89FTclQuSvec0FClnjmbxpZZkQmdRwZ0ZAqPJ6d5ogZE9N9dmo4hHQt1zGTYEan24y5x3GU37gMy3IotW4qQqwQ-Iqi2DyPDd3NhsZrIzmBI542zsDh2BgIIY8LMcKNzEXIDAV1skgHJdyEpq2aDx7fVWGR0RQPe9fiVYE3wF5Eq3aJeSx6DgRexSED_sxbP22ZGAp1DCtLpHtL3-rF_pywuG8byLIwzFvEX12jzW3Ln9OzHSI6-jr-_JHfxVrsT9oocVavavYbYsNJvmsn_F3qdWY8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgEYgL74XyNBLXFMdxXsflsSywqjiwEjfLz27UNq2aBFH-Cn-WmTyqbQXaw16TzMR2Ps-MnfE3hLwROuLeWxOYmOtAZMoGuRE80MaA-440eIyW7XOSnJyJLz_iIZuw6tMqcQ3tO6KI1lbj5F5ZP2TEvYV1d87AjcLqjodjCFFgjkTXyY0EycPxFAebbLdZmBBpV08NpQIUG87x_E_Tjodqifz3aEz_FYzu51RecFLHd4keutflpszGTa3H5vce8-OV-n-P3OlDWHrUYe4-uebKB-RmV9Ry85D8-dTU9Gg2Q5NfVoWii8YUZbE6L-aKqoWbIykABLh04WpA4Lww1G4q9K-IkUD1eHGWelXXGzrHzBHa_0iiekPXbtrWHCunFKLXrZpqQZeenoKClcIEA0d_wsunTR10GtSvonpEzo4_fn9_EvQlIAA7kagDocPcZaFwmmUuSbRXPlY58xzMilJca-ssM0kqLPKuqVDzJE0Y9xC0wpPMR4fkoFyW7gmhoUo9czaNLbMiEzqPDOjIFB5OTvNEjYgYPrs0PT86lumYy7CnUR3GXeK4y37cR2S8FVt1BCGXCbxDTG0fRn7v9sJyPZW9uZDOG2dhaewMhA_GhJnhRuci5AbCudgkI5JfRKSs2-0d39VikdElDXg9wFeCLcEfRKp0y6aSPAbzLmKRgP7HHZy3zYwEuoYUpNMdoO_0Y_dOWZy3fOVZGGcs4k-v0OZX5Na3D8fy9PPk6zNyG-9022DPyUG9btwLCAxr_bKd-n8B9b5YMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gut+Akkermansia+muciniphila+ameliorates+metabolic+dysfunction-associated+fatty+liver+disease+by+regulating+the+metabolism+of+L-aspartate+via+gut-liver+axis&rft.jtitle=Gut+microbes&rft.au=Rao%2C+Yong&rft.au=Kuang%2C+Zhiqi&rft.au=Li%2C+Chan&rft.au=Guo%2C+Shiyao&rft.date=2021-01-01&rft.pub=Taylor+%26+Francis&rft.issn=1949-0976&rft.eissn=1949-0984&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1080%2F19490976.2021.1927633&rft_id=info%3Apmid%2F34030573&rft.externalDocID=PMC8158032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-0976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-0976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-0976&client=summon |