Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota
Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is...
Saved in:
Published in | Gut microbes Vol. 15; no. 1; p. 2157698 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Taylor & Francis
31.12.2023
Taylor & Francis Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacI
q
-pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives. |
---|---|
AbstractList | Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an
in vitro
conjugation model by using
Escherichia coli
that carries chromosome-inserted Tn7
lacI
q
-pLpp-mCherry
and plasmid-encoded
gfpmut3b
gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen
Klebsiella pneumoniae
. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives. Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacIq-pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacIq-pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives. Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an conjugation model by using that carries chromosome-inserted Tn7 and plasmid-encoded gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen . Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives. Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacI q -pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives. ABSTRACTNon-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacIq-pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives. |
Author | Henderson, Ian R. Guo, Jianhua Yu, Zhigang |
Author_xml | – sequence: 1 givenname: Zhigang orcidid: 0000-0001-5352-2126 surname: Yu fullname: Yu, Zhigang organization: The University of Queensland – sequence: 2 givenname: Ian R. surname: Henderson fullname: Henderson, Ian R. organization: The University of Queensland – sequence: 3 givenname: Jianhua surname: Guo fullname: Guo, Jianhua email: jianhua.guo@uq.edu.au organization: The University of Queensland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36524841$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUstu1DAUjVARLaWfAPKSTQYnseNYSAhU8ahUwQbW1o1zPfXIsYvtTNW_x8NMR5QFeGPr-pxzX-d5deKDx6p62dBVQwf6ppFMUin6VUvbdtU2XPRyeFKd7eI1lQM7Ob5Ff1pdpLSh5TAmaN89q067nrdsYM1Ztf0afK3BhWg1gZitsdqCI-kOMaPHmMgcpsVBRqKD3yxryHaLJEfwyWAkwZB5cdnWU1zWJGKyKYPXSG4dpNlOxHqSb5Csl0xmq2MYbcjwonpqwCW8ONzn1Y9PH79ffqmvv32-uvxwXWvesVwzBh1njWxBAkxMT6XooWlES_WInHed1LqVSEeJyMZOjGwaJTOToA0d245159XVXncKsFG30c4Q71UAq34HQlyrXdPaoTIN13JqwQgty5wEgMChl8jMOCIYWrTe7bVul3HGSaMvQ3CPRB__eHuj1mGryg5awdsi8PogEMPPBVNWs00anQOPYUmqgDgXcuC7XK_-zHVM8rC4AuB7QJloShHNEdJQtfOIevCI2nlEHTxSeG__4mmby0rDrmTr_st-v2dbb0Kc4S5EN6kM98U_pjhC26S6f0v8ArN-2Cw |
CitedBy_id | crossref_primary_10_1016_j_ecoenv_2023_115124 crossref_primary_10_1016_j_cej_2024_151469 crossref_primary_10_3390_nu15184038 crossref_primary_10_1080_1040841X_2023_2233603 crossref_primary_10_1016_j_jhazmat_2024_135436 crossref_primary_10_1080_10408398_2024_2411410 crossref_primary_10_1002_smtd_202301385 crossref_primary_10_1128_aem_00533_23 crossref_primary_10_1016_j_jhazmat_2023_132368 crossref_primary_10_1016_j_bbrc_2024_150798 crossref_primary_10_1186_s12967_024_06047_0 crossref_primary_10_3389_fnut_2024_1366409 crossref_primary_10_1016_j_cbpc_2023_109733 crossref_primary_10_1021_acs_est_2c08673 crossref_primary_10_3389_fnut_2024_1387646 crossref_primary_10_1016_j_fbio_2025_105903 crossref_primary_10_1016_j_cej_2023_148505 crossref_primary_10_1007_s12223_023_01076_6 crossref_primary_10_54112_bbasr_v2023i1_44 crossref_primary_10_2903_j_efsa_2024_9044 crossref_primary_10_20517_mrr_2024_51 crossref_primary_10_1021_acs_est_4c02283 crossref_primary_10_1186_s12951_023_02149_x crossref_primary_10_1016_j_envres_2024_120002 crossref_primary_10_3390_ijms24065919 crossref_primary_10_1016_j_jhazmat_2024_133922 crossref_primary_10_1038_s41598_023_41213_2 |
Cites_doi | 10.1021/acs.estlett.8b00105 10.1038/s42003-020-01253-0 10.1093/bioinformatics/btl529 10.1128/jb.151.2.591-599.1982 10.5005/jp-journals-10024-1222 10.1016/j.plasmid.2006.11.007 10.1038/s41587-019-0209-9 10.1038/s41396-021-00909-x 10.3389/fmicb.2013.00047 10.1093/nar/gks1219 10.1038/nrmicro1152 10.1126/science.aad3503 10.1128/mSphere.00329-20 10.1371/journal.pone.0006669 10.1038/ismej.2015.148 10.1038/ismej.2016.98 10.1016/0140-6736(90)91447-I 10.1016/j.mib.2020.02.002 10.1128/AAC.01612-09 10.2147/IDR.S173867 10.1038/ismej.2012.5 10.1038/nature18846 10.1093/molbev/msy096 10.1126/science.aav6390 10.1038/nature13793 10.1126/science.1176950 10.1016/S0278-6915(00)00026-0 10.1038/ismej.2014.191 10.1038/s41564-018-0313-5 10.1016/S0924-8579(01)00317-X 10.2147/IDR.S48820 10.1016/j.watres.2018.11.019 10.1021/acs.est.6b03132 10.1016/j.watres.2021.117141 10.1128/AEM.01686-09 10.1016/j.cell.2012.01.035 10.1038/ncomms3151 10.1038/nrmicro2974 10.1007/s00394-019-02161-8 10.1128/AAC.02658-20 10.1038/415389a 10.1073/pnas.1107254109 10.1093/bioinformatics/btw725 10.1038/nmicrobiol.2016.44 10.3389/fmicb.2019.02119 10.1038/s41564-021-00912-0 10.1038/nature11319 10.1073/pnas.1113246109 10.1016/j.jhazmat.2022.128840 10.3389/fmicb.2015.01543 10.1038/nrg3962 10.1136/bmj.310.6973.170 10.1038/s41396-021-01095-6 10.1038/s41467-017-01532-1 10.1038/nrmicro1232 10.1038/s41564-019-0627-y 10.1038/nrmicro1441 10.1046/j.1365-2958.2001.02302.x 10.1111/j.1462-2920.2009.01972.x |
ContentType | Journal Article |
Copyright | 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 The Author(s) |
Copyright_xml | – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 The Author(s) |
DBID | 0YH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1080/19490976.2022.2157698 |
DatabaseName | Taylor & Francis Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 0YH name: Taylor & Francis Open Access url: https://www.tandfonline.com sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Z. YU ET AL |
EISSN | 1949-0984 |
ExternalDocumentID | oai_doaj_org_article_f15c9d2af7c94707aa7e869e4fbbeaf0 PMC9762752 36524841 10_1080_19490976_2022_2157698 2157698 |
Genre | Research Article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Australian Research Council grantid: FT170100196 and DP22010 |
GroupedDBID | --- 00X 0YH 30N 4.4 53G ABPEM ACGFS ACTIO ADBBV ADCVX AEISY AGYJP AIJEM ALMA_UNASSIGNED_HOLDINGS AOIJS AQRUH BABNJ BAWUL BLEHA CCCUG DGEBU DIK DKSSO EBS EMOBN F5P GROUPED_DOAJ H13 KYCEM LJTGL M4Z MM. O9- OK1 RPM SNACF SV3 TDBHL TFL TFT TFW TR2 TTHFI AAYXX AIYEW CITATION HYE ABCCY C1A CGR CUY CVF ECM EIF EJD IPNFZ NPM OVD RIG TEORI 7X8 5PM |
ID | FETCH-LOGICAL-c534t-44a354192a9aad4cd484811720cbe55339cc29e0b9ee4b37b4db94fd7010b2343 |
IEDL.DBID | 0YH |
ISSN | 1949-0976 1949-0984 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Thu Aug 21 18:38:59 EDT 2025 Fri Jul 11 04:38:21 EDT 2025 Thu Apr 03 07:00:22 EDT 2025 Thu Apr 24 22:59:23 EDT 2025 Tue Jul 01 03:30:41 EDT 2025 Wed Dec 25 09:06:38 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 16S rRNA Antibiotic resistance reactive oxygen species plasmid non-caloric artificial sweeteners conjugation gut microbiota |
Language | English |
License | open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-44a354192a9aad4cd484811720cbe55339cc29e0b9ee4b37b4db94fd7010b2343 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5352-2126 |
OpenAccessLink | https://www.tandfonline.com/doi/abs/10.1080/19490976.2022.2157698 |
PMID | 36524841 |
PQID | 2755579850 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2755579850 crossref_primary_10_1080_19490976_2022_2157698 pubmed_primary_36524841 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9762752 informaworld_taylorfrancis_310_1080_19490976_2022_2157698 doaj_primary_oai_doaj_org_article_f15c9d2af7c94707aa7e869e4fbbeaf0 crossref_citationtrail_10_1080_19490976_2022_2157698 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Gut microbes |
PublicationTitleAlternate | Gut Microbes |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Group |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Group |
References | e_1_3_6_30_1 e_1_3_6_53_1 e_1_3_6_32_1 e_1_3_6_55_1 e_1_3_6_11_1 e_1_3_6_51_1 Ray C (e_1_3_6_29_1) 2004 e_1_3_6_15_1 e_1_3_6_38_1 e_1_3_6_13_1 e_1_3_6_19_1 e_1_3_6_34_1 e_1_3_6_57_1 e_1_3_6_17_1 e_1_3_6_36_1 e_1_3_6_59_1 e_1_3_6_42_1 e_1_3_6_21_1 e_1_3_6_44_1 e_1_3_6_63_1 e_1_3_6_61_1 e_1_3_6_40_1 e_1_3_6_6_1 e_1_3_6_4_1 e_1_3_6_8_1 e_1_3_6_27_1 e_1_3_6_23_1 e_1_3_6_46_1 e_1_3_6_25_1 e_1_3_6_48_1 e_1_3_6_31_1 e_1_3_6_52_1 e_1_3_6_33_1 e_1_3_6_54_1 e_1_3_6_10_1 e_1_3_6_50_1 e_1_3_6_14_1 e_1_3_6_39_1 e_1_3_6_12_1 e_1_3_6_18_1 e_1_3_6_35_1 e_1_3_6_56_1 e_1_3_6_16_1 e_1_3_6_37_1 e_1_3_6_58_1 e_1_3_6_20_1 e_1_3_6_41_1 e_1_3_6_22_1 e_1_3_6_43_1 e_1_3_6_62_1 e_1_3_6_60_1 e_1_3_6_5_1 e_1_3_6_3_1 e_1_3_6_9_1 e_1_3_6_7_1 e_1_3_6_49_1 e_1_3_6_24_1 e_1_3_6_45_1 e_1_3_6_26_1 e_1_3_6_47_1 |
References_xml | – ident: e_1_3_6_33_1 doi: 10.1021/acs.estlett.8b00105 – ident: e_1_3_6_44_1 doi: 10.1038/s42003-020-01253-0 – ident: e_1_3_6_60_1 doi: 10.1093/bioinformatics/btl529 – ident: e_1_3_6_55_1 doi: 10.1128/jb.151.2.591-599.1982 – ident: e_1_3_6_19_1 doi: 10.5005/jp-journals-10024-1222 – ident: e_1_3_6_52_1 doi: 10.1016/j.plasmid.2006.11.007 – ident: e_1_3_6_57_1 doi: 10.1038/s41587-019-0209-9 – ident: e_1_3_6_27_1 doi: 10.1038/s41396-021-00909-x – ident: e_1_3_6_37_1 doi: 10.3389/fmicb.2013.00047 – ident: e_1_3_6_58_1 doi: 10.1093/nar/gks1219 – ident: e_1_3_6_9_1 doi: 10.1038/nrmicro1152 – ident: e_1_3_6_41_1 doi: 10.1126/science.aad3503 – ident: e_1_3_6_51_1 doi: 10.1128/mSphere.00329-20 – ident: e_1_3_6_11_1 doi: 10.1371/journal.pone.0006669 – ident: e_1_3_6_15_1 doi: 10.1038/ismej.2015.148 – ident: e_1_3_6_62_1 doi: 10.1038/ismej.2016.98 – ident: e_1_3_6_6_1 doi: 10.1016/0140-6736(90)91447-I – ident: e_1_3_6_23_1 doi: 10.1016/j.mib.2020.02.002 – ident: e_1_3_6_32_1 doi: 10.1128/AAC.01612-09 – ident: e_1_3_6_3_1 doi: 10.2147/IDR.S173867 – ident: e_1_3_6_45_1 doi: 10.1038/ismej.2012.5 – ident: e_1_3_6_17_1 doi: 10.1038/nature18846 – ident: e_1_3_6_61_1 doi: 10.1093/molbev/msy096 – ident: e_1_3_6_7_1 doi: 10.1126/science.aav6390 – ident: e_1_3_6_20_1 doi: 10.1038/nature13793 – ident: e_1_3_6_22_1 doi: 10.1126/science.1176950 – ident: e_1_3_6_21_1 doi: 10.1016/S0278-6915(00)00026-0 – ident: e_1_3_6_53_1 doi: 10.1038/ismej.2014.191 – ident: e_1_3_6_39_1 doi: 10.1038/s41564-018-0313-5 – ident: e_1_3_6_14_1 doi: 10.1016/S0924-8579(01)00317-X – ident: e_1_3_6_24_1 doi: 10.2147/IDR.S48820 – ident: e_1_3_6_31_1 doi: 10.1016/j.watres.2018.11.019 – ident: e_1_3_6_30_1 doi: 10.1021/acs.est.6b03132 – ident: e_1_3_6_56_1 doi: 10.1016/j.watres.2021.117141 – ident: e_1_3_6_54_1 doi: 10.1128/AEM.01686-09 – ident: e_1_3_6_12_1 doi: 10.1016/j.cell.2012.01.035 – ident: e_1_3_6_47_1 doi: 10.1038/ncomms3151 – ident: e_1_3_6_10_1 doi: 10.1038/nrmicro2974 – start-page: 531 volume-title: Enteroviruses. Sherris medical microbiology year: 2004 ident: e_1_3_6_29_1 – ident: e_1_3_6_34_1 doi: 10.1007/s00394-019-02161-8 – ident: e_1_3_6_42_1 doi: 10.1128/AAC.02658-20 – ident: e_1_3_6_49_1 doi: 10.1038/415389a – ident: e_1_3_6_43_1 doi: 10.1073/pnas.1107254109 – ident: e_1_3_6_59_1 doi: 10.1093/bioinformatics/btw725 – ident: e_1_3_6_36_1 doi: 10.1038/nmicrobiol.2016.44 – ident: e_1_3_6_48_1 doi: 10.3389/fmicb.2019.02119 – ident: e_1_3_6_18_1 doi: 10.1038/s41564-021-00912-0 – ident: e_1_3_6_16_1 doi: 10.1038/nature11319 – ident: e_1_3_6_25_1 doi: 10.1073/pnas.1113246109 – ident: e_1_3_6_35_1 doi: 10.1016/j.jhazmat.2022.128840 – ident: e_1_3_6_13_1 doi: 10.3389/fmicb.2015.01543 – ident: e_1_3_6_5_1 doi: 10.1038/nrg3962 – ident: e_1_3_6_63_1 doi: 10.1136/bmj.310.6973.170 – ident: e_1_3_6_26_1 doi: 10.1038/s41396-021-01095-6 – ident: e_1_3_6_8_1 doi: 10.1038/s41467-017-01532-1 – ident: e_1_3_6_4_1 doi: 10.1038/nrmicro1232 – ident: e_1_3_6_46_1 doi: 10.1038/s41564-019-0627-y – ident: e_1_3_6_50_1 doi: 10.1038/nrmicro1441 – ident: e_1_3_6_40_1 doi: 10.1046/j.1365-2958.2001.02302.x – ident: e_1_3_6_38_1 doi: 10.1111/j.1462-2920.2009.01972.x |
SSID | ssj0000447063 |
Score | 2.4787521 |
Snippet | Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the... ABSTRACTNon-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the... |
SourceID | doaj pubmedcentral proquest pubmed crossref informaworld |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2157698 |
SubjectTerms | 16S rRNA Animals Anti-Bacterial Agents - pharmacology Antibiotic resistance Bacteria - genetics conjugation Drug Resistance, Multiple Escherichia coli - genetics Gastrointestinal Microbiome - genetics gut microbiota Humans Mice non-caloric artificial sweeteners plasmid Plasmids - genetics reactive oxygen species Research Paper RNA, Ribosomal, 16S - genetics Sweetening Agents - pharmacology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOiltOlrkyao0KuTXWlkWce2NIRCc2ogN6HndkvXDhu7Jf--I8m77IbAXnqVLaHRjDTfWONvCPnIbXS1wg3IFNgK8DSoLLq9KnF_NbUTBnLRvu9X9eU1fLsRN1ulvlJOWKEHLgt3HmfCKc9MlE6BnEpjZGhqFSBaG0zM0Tr6vK1gKp_BgO_mMmoYpKecIFmvf99ppuepLTVheMjYGTo9WatmxzFl_v4H7KWPYdCHqZRbvuniBXk-gkr6qQjzkjwJ7SF5WspM3r8if666tkJdJDoQmiQurBH07m9IkBkBIF12PtXxChTD41_DPLOB0z6D2rCiXaQ58bDyq2FOMUBPoBOthd4i9l4uPF20FIEknQ89XS4KtVNvXpPri68_vlxWY72FygkOfQVguEi3wkYZ48F5SFz7iHCmzgaBuFA5x1SYWhUCWC4teKsgeokxnWUc-Bty0HZteEdoMKBs0yjwHiELnoq1w1gpzII3sebeTwisF1u7kYw81cT4rWcjZ-laRzrpSI86mpCzTbfbwsaxr8PnpMnNy4lMOzegienRxPQ-E5sQtW0Hus_fUmIpfKL5ngl8WBuNxo2bbmNMG7rhTjMphJCqETj-22JEm2nyWjBc_NmEyB3z2pFj90m7-JnJwXECODI7-h-CH5NnKAsvvJbvyUG_GsIJYrDenubt9g8PAyyb priority: 102 providerName: Directory of Open Access Journals |
Title | Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota |
URI | https://www.tandfonline.com/doi/abs/10.1080/19490976.2022.2157698 https://www.ncbi.nlm.nih.gov/pubmed/36524841 https://www.proquest.com/docview/2755579850 https://pubmed.ncbi.nlm.nih.gov/PMC9762752 https://doaj.org/article/f15c9d2af7c94707aa7e869e4fbbeaf0 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgERIXxJvyWBmJa5Y0HsfxERCrComeWAlOlp-liCarNgHtv9-xnVTbFWgPXCLlYcvJzHi-sSffEPKWmWBriQZYSTAF4GxQGHR7ReT-amrLNaSifV-W9eIMPn_jUzbhbkyrjDF0yEQRaa6Oxq3NbsqIe4dxtyzRjWJ0V1Un6LNELZvb5A564jIWMSi_L_bLLCWAyPXUYqsiNpv-4_lXTwceKhH5X6Mx_RsYvZ5TecVJnT4g90d0Sd9ndXhIbvn2Ebmb601ePCa_l11boFAiLwiNOpPpI-juj4_YGZEg3XQuFvTyFOPkn8Mq0YLTPqFbv6VdoCkDsXDbYUUxUo_oE9WGniMI36wdXbcUESVdDT3drDPHU6-fkLPTT18_Loqx8EJhOYO-ANCMx-1hLbV2YB1E0n2EOqU1niNAlNZW0pdGeg-GCQPOSAhOYHBnKgbsKTlqu9Y_J9RrkKZpJDiH2AWnx9pi0OTn3ulQM-dmBKaPrezISh6LY_xS85G8dJKRijJSo4xm5GTf7DzTctzU4EOU5P7hyKqdLnTblRqNVIU5t9JVOggrUW2E1sI3tfQQjPE6lDMir-qB6tOiSsgVUBS7YQBvJqVRaMFxW0a3vht2qhKccyEbjv0_y0q0HyareYUffz4j4kC9Dt7j8E67_pFYwnEA2HP14j_G_JLcw1OWeS1fkaN-O_jXiMF6c5ysDI-sXB6ndYxLXLEprw |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKEaIXdsqwGgmOGTJekvjAga2a0nZOrdSb8ZZhgEmqTEJVfhZ_hT_Ec5yMOiNQD6gHrnFsPS_fW5yX7yH0gurcJAIASATTEQNtEGkwe5Hn_soSwxVri_YdTJLxEft4zI830M_-XxifVulj6DwQRbS62oPbX0b3KXGvIPAWMdhRCO8IGYLRShORdYmVe-7sFMK2xevd97DHLwnZ-XD4bhx1lQUiwymrI8YU5f77pxJKWWYs86zyYMtjox0HD0gYQ4SLtXCOaZpqZrVguU0hetGEMgrjXkFXOUzSY4vGk-W9TsxYGgq4eSkjL2b_49DfJF8xiW3lgDXe1D95v-tJnOes4s5N9Ktfz5AM83XY1HpofqxRTf5fC34L3eicdPwmoOo22nDFHXQtlO08u4u-T8oigrPt6VWwh15g4cCLU-dDEHCo8by0vi6aw6YsvjTTll0d122Q4Cpc5rhN5Ixs1Uxx5RbeiQf04ROIZeYzi2cFBsccT5saz2eBKqtW99DRpUz6PtosysI9QNgpJnSWCWYtuIBgZRIDsacbOavyhFo7QKw_QtJ05O6-xsg3Oeo4YPstlH4LZbeFAzRcdjsJ7CYXdXjrz-fyZU9O3j4oq6nsdJ3MR9wIS1SeGgFgSJVKXZYIx3KtncrjARLnT7es27upPBSSkfQCAZ73UJCgCP3XLVW4sllIknLOU5FxGH87QGMpJk04gcUfDVC6ApqVeay2FLPPLdk6CAAjk4f_IPMzdH18eLAv93cne4_QFjTRQBX6GG3WVeOegFtb66etHsHo02Xj6DdEqqSU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWRSAuvB_laSQ4pps6dhIfOABLtctCxYGV9mb8LAWaVGnCavlX_BV-EeM4qbYVaA9oD1ybxprY_mbmS8bfIPQsUU6nHABIOFURBW8QKQh7kdf-ylPNJG2b9r2fpHuH9O0RO9pCP_uzML6s0nNoF4QiWl_twb0wrq-I2wHezWMIo8DuCBlCzMpSnnd1lQf25BhY2_LF_i4s8XNCxm8-vt6LusYCkWYJrSNKZcL850_JpTRUG-pF5SGUx1pZBgkQ15pwGytuLVVJpqhRnDqTAXlRJKEJjHsBXUz9wU5_aiSerF7rxJRmoX-btzLyZvbnhv5m-VpEbBsHbMim_in53azhPBUUx9fQr346Qy3M12FTq6H-saE0-V_N93V0tUvR8cuAqRtoyxY30aXQtPPkFvo-KYsIdrYXV8EeeEGDAy-PrScgkE7jeWl8VzSLdVl8aaattjquW4pgK1w63JZxRqZqpriyS5_CA_bwApjMfGbwrMCQluNpU-P5LAhl1fI2OjyXh76DtouysPcQtpJyleecGgMJIMSYVAPztCNrpEsTYwaI9jtI6E7a3XcY-SZGnQJsv4TCL6HolnCAhqvbFkHb5KwbXvntufqzlyZvfyirqeg8nXAjprkh0mWaAxYyKTObp9xSp5SVLh4gfnpzi7p9M-VCGxmRnGHA0x4JAtyg_7YlC1s2S0EyxljGcwbj3w3IWJmZpIzA5I8GKFvDzNpzrF8pZp9bqXUwAEYm9__B5ifo8ofdsXi3Pzl4gK7AlSTohD5E23XV2EeQ09bqcetFMPp03jD6DWg7ozg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-caloric+artificial+sweeteners+modulate+conjugative+transfer+of+multi-drug+resistance+plasmid+in+the+gut+microbiota&rft.jtitle=Gut+microbes&rft.au=Yu%2C+Zhigang&rft.au=Henderson%2C+Ian+R&rft.au=Guo%2C+Jianhua&rft.date=2023-12-31&rft.issn=1949-0984&rft.eissn=1949-0984&rft.volume=15&rft.issue=1&rft.spage=2157698&rft_id=info:doi/10.1080%2F19490976.2022.2157698&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-0976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-0976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-0976&client=summon |