Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota

Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is...

Full description

Saved in:
Bibliographic Details
Published inGut microbes Vol. 15; no. 1; p. 2157698
Main Authors Yu, Zhigang, Henderson, Ian R., Guo, Jianhua
Format Journal Article
LanguageEnglish
Published United States Taylor & Francis 31.12.2023
Taylor & Francis Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacI q -pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.
AbstractList Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacI q -pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae . Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.
Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacIq-pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacIq-pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.
Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an conjugation model by using that carries chromosome-inserted Tn7 and plasmid-encoded gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen . Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.
Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacI q -pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.
ABSTRACTNon-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the intestinal tract without significant metabolization and frequently encounter the gut microbiome, which is composed of diverse bacterial species and is a pool of antibiotic resistance genes (ARGs). However, little is known about whether these sweeteners could accelerate the spread of ARGs in the gut microbiome. Here, we established an in vitro conjugation model by using Escherichia coli that carries chromosome-inserted Tn7 lacIq-pLpp-mCherry and plasmid-encoded gfpmut3b gene as the donor and murine fecal bacteria as the recipient. We found that four commonly used artificial sweeteners (saccharin, sucralose, aspartame, and acesulfame potassium) can increase reactive oxygen species (ROS) production and promote plasmid-mediated conjugative transfer to the gut microbiome. Cell sorting and 16S rRNA gene amplicon sequencing analysis of fecal samples reveal that the tested sweeteners can promote the broad-host-range plasmid permissiveness to both Gram-negative and Gram-positive gut bacteria. The increased plasmid permissiveness was also validated with a human pathogen Klebsiella pneumoniae. Collectively, our study demonstrates that non-caloric artificial sweeteners can induce oxidative stress and boost the plasmid-mediated conjugative transfer of ARGs among the gut microbiota and a human pathogen. Considering the soaring consumption of these sweeteners and the abundance of mobile ARGs in the human gut, our results highlight the necessity of performing a thorough risk assessment of antibiotic resistance associated with the usage of artificial sweeteners as food additives.
Author Henderson, Ian R.
Guo, Jianhua
Yu, Zhigang
Author_xml – sequence: 1
  givenname: Zhigang
  orcidid: 0000-0001-5352-2126
  surname: Yu
  fullname: Yu, Zhigang
  organization: The University of Queensland
– sequence: 2
  givenname: Ian R.
  surname: Henderson
  fullname: Henderson, Ian R.
  organization: The University of Queensland
– sequence: 3
  givenname: Jianhua
  surname: Guo
  fullname: Guo, Jianhua
  email: jianhua.guo@uq.edu.au
  organization: The University of Queensland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36524841$$D View this record in MEDLINE/PubMed
BookMark eNqFUstu1DAUjVARLaWfAPKSTQYnseNYSAhU8ahUwQbW1o1zPfXIsYvtTNW_x8NMR5QFeGPr-pxzX-d5deKDx6p62dBVQwf6ppFMUin6VUvbdtU2XPRyeFKd7eI1lQM7Ob5Ff1pdpLSh5TAmaN89q067nrdsYM1Ztf0afK3BhWg1gZitsdqCI-kOMaPHmMgcpsVBRqKD3yxryHaLJEfwyWAkwZB5cdnWU1zWJGKyKYPXSG4dpNlOxHqSb5Csl0xmq2MYbcjwonpqwCW8ONzn1Y9PH79ffqmvv32-uvxwXWvesVwzBh1njWxBAkxMT6XooWlES_WInHed1LqVSEeJyMZOjGwaJTOToA0d245159XVXncKsFG30c4Q71UAq34HQlyrXdPaoTIN13JqwQgty5wEgMChl8jMOCIYWrTe7bVul3HGSaMvQ3CPRB__eHuj1mGryg5awdsi8PogEMPPBVNWs00anQOPYUmqgDgXcuC7XK_-zHVM8rC4AuB7QJloShHNEdJQtfOIevCI2nlEHTxSeG__4mmby0rDrmTr_st-v2dbb0Kc4S5EN6kM98U_pjhC26S6f0v8ArN-2Cw
CitedBy_id crossref_primary_10_1016_j_ecoenv_2023_115124
crossref_primary_10_1016_j_cej_2024_151469
crossref_primary_10_3390_nu15184038
crossref_primary_10_1080_1040841X_2023_2233603
crossref_primary_10_1016_j_jhazmat_2024_135436
crossref_primary_10_1080_10408398_2024_2411410
crossref_primary_10_1002_smtd_202301385
crossref_primary_10_1128_aem_00533_23
crossref_primary_10_1016_j_jhazmat_2023_132368
crossref_primary_10_1016_j_bbrc_2024_150798
crossref_primary_10_1186_s12967_024_06047_0
crossref_primary_10_3389_fnut_2024_1366409
crossref_primary_10_1016_j_cbpc_2023_109733
crossref_primary_10_1021_acs_est_2c08673
crossref_primary_10_3389_fnut_2024_1387646
crossref_primary_10_1016_j_fbio_2025_105903
crossref_primary_10_1016_j_cej_2023_148505
crossref_primary_10_1007_s12223_023_01076_6
crossref_primary_10_54112_bbasr_v2023i1_44
crossref_primary_10_2903_j_efsa_2024_9044
crossref_primary_10_20517_mrr_2024_51
crossref_primary_10_1021_acs_est_4c02283
crossref_primary_10_1186_s12951_023_02149_x
crossref_primary_10_1016_j_envres_2024_120002
crossref_primary_10_3390_ijms24065919
crossref_primary_10_1016_j_jhazmat_2024_133922
crossref_primary_10_1038_s41598_023_41213_2
Cites_doi 10.1021/acs.estlett.8b00105
10.1038/s42003-020-01253-0
10.1093/bioinformatics/btl529
10.1128/jb.151.2.591-599.1982
10.5005/jp-journals-10024-1222
10.1016/j.plasmid.2006.11.007
10.1038/s41587-019-0209-9
10.1038/s41396-021-00909-x
10.3389/fmicb.2013.00047
10.1093/nar/gks1219
10.1038/nrmicro1152
10.1126/science.aad3503
10.1128/mSphere.00329-20
10.1371/journal.pone.0006669
10.1038/ismej.2015.148
10.1038/ismej.2016.98
10.1016/0140-6736(90)91447-I
10.1016/j.mib.2020.02.002
10.1128/AAC.01612-09
10.2147/IDR.S173867
10.1038/ismej.2012.5
10.1038/nature18846
10.1093/molbev/msy096
10.1126/science.aav6390
10.1038/nature13793
10.1126/science.1176950
10.1016/S0278-6915(00)00026-0
10.1038/ismej.2014.191
10.1038/s41564-018-0313-5
10.1016/S0924-8579(01)00317-X
10.2147/IDR.S48820
10.1016/j.watres.2018.11.019
10.1021/acs.est.6b03132
10.1016/j.watres.2021.117141
10.1128/AEM.01686-09
10.1016/j.cell.2012.01.035
10.1038/ncomms3151
10.1038/nrmicro2974
10.1007/s00394-019-02161-8
10.1128/AAC.02658-20
10.1038/415389a
10.1073/pnas.1107254109
10.1093/bioinformatics/btw725
10.1038/nmicrobiol.2016.44
10.3389/fmicb.2019.02119
10.1038/s41564-021-00912-0
10.1038/nature11319
10.1073/pnas.1113246109
10.1016/j.jhazmat.2022.128840
10.3389/fmicb.2015.01543
10.1038/nrg3962
10.1136/bmj.310.6973.170
10.1038/s41396-021-01095-6
10.1038/s41467-017-01532-1
10.1038/nrmicro1232
10.1038/s41564-019-0627-y
10.1038/nrmicro1441
10.1046/j.1365-2958.2001.02302.x
10.1111/j.1462-2920.2009.01972.x
ContentType Journal Article
Copyright 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022
2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022
– notice: 2022 The Author(s). Published with license by Taylor & Francis Group, LLC. 2022 The Author(s)
DBID 0YH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1080/19490976.2022.2157698
DatabaseName Taylor & Francis Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 0YH
  name: Taylor & Francis Open Access
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Z. YU ET AL
EISSN 1949-0984
ExternalDocumentID oai_doaj_org_article_f15c9d2af7c94707aa7e869e4fbbeaf0
PMC9762752
36524841
10_1080_19490976_2022_2157698
2157698
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: FT170100196 and DP22010
GroupedDBID ---
00X
0YH
30N
4.4
53G
ABPEM
ACGFS
ACTIO
ADBBV
ADCVX
AEISY
AGYJP
AIJEM
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQRUH
BABNJ
BAWUL
BLEHA
CCCUG
DGEBU
DIK
DKSSO
EBS
EMOBN
F5P
GROUPED_DOAJ
H13
KYCEM
LJTGL
M4Z
MM.
O9-
OK1
RPM
SNACF
SV3
TDBHL
TFL
TFT
TFW
TR2
TTHFI
AAYXX
AIYEW
CITATION
HYE
ABCCY
C1A
CGR
CUY
CVF
ECM
EIF
EJD
IPNFZ
NPM
OVD
RIG
TEORI
7X8
5PM
ID FETCH-LOGICAL-c534t-44a354192a9aad4cd484811720cbe55339cc29e0b9ee4b37b4db94fd7010b2343
IEDL.DBID 0YH
ISSN 1949-0976
1949-0984
IngestDate Wed Aug 27 01:30:45 EDT 2025
Thu Aug 21 18:38:59 EDT 2025
Fri Jul 11 04:38:21 EDT 2025
Thu Apr 03 07:00:22 EDT 2025
Thu Apr 24 22:59:23 EDT 2025
Tue Jul 01 03:30:41 EDT 2025
Wed Dec 25 09:06:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 16S rRNA
Antibiotic resistance
reactive oxygen species
plasmid
non-caloric artificial sweeteners
conjugation
gut microbiota
Language English
License open-access: http://creativecommons.org/licenses/by/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-44a354192a9aad4cd484811720cbe55339cc29e0b9ee4b37b4db94fd7010b2343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5352-2126
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/19490976.2022.2157698
PMID 36524841
PQID 2755579850
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2755579850
crossref_primary_10_1080_19490976_2022_2157698
pubmed_primary_36524841
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9762752
informaworld_taylorfrancis_310_1080_19490976_2022_2157698
doaj_primary_oai_doaj_org_article_f15c9d2af7c94707aa7e869e4fbbeaf0
crossref_citationtrail_10_1080_19490976_2022_2157698
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Gut microbes
PublicationTitleAlternate Gut Microbes
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Group
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Group
References e_1_3_6_30_1
e_1_3_6_53_1
e_1_3_6_32_1
e_1_3_6_55_1
e_1_3_6_11_1
e_1_3_6_51_1
Ray C (e_1_3_6_29_1) 2004
e_1_3_6_15_1
e_1_3_6_38_1
e_1_3_6_13_1
e_1_3_6_19_1
e_1_3_6_34_1
e_1_3_6_57_1
e_1_3_6_17_1
e_1_3_6_36_1
e_1_3_6_59_1
e_1_3_6_42_1
e_1_3_6_21_1
e_1_3_6_44_1
e_1_3_6_63_1
e_1_3_6_61_1
e_1_3_6_40_1
e_1_3_6_6_1
e_1_3_6_4_1
e_1_3_6_8_1
e_1_3_6_27_1
e_1_3_6_23_1
e_1_3_6_46_1
e_1_3_6_25_1
e_1_3_6_48_1
e_1_3_6_31_1
e_1_3_6_52_1
e_1_3_6_33_1
e_1_3_6_54_1
e_1_3_6_10_1
e_1_3_6_50_1
e_1_3_6_14_1
e_1_3_6_39_1
e_1_3_6_12_1
e_1_3_6_18_1
e_1_3_6_35_1
e_1_3_6_56_1
e_1_3_6_16_1
e_1_3_6_37_1
e_1_3_6_58_1
e_1_3_6_20_1
e_1_3_6_41_1
e_1_3_6_22_1
e_1_3_6_43_1
e_1_3_6_62_1
e_1_3_6_60_1
e_1_3_6_5_1
e_1_3_6_3_1
e_1_3_6_9_1
e_1_3_6_7_1
e_1_3_6_49_1
e_1_3_6_24_1
e_1_3_6_45_1
e_1_3_6_26_1
e_1_3_6_47_1
References_xml – ident: e_1_3_6_33_1
  doi: 10.1021/acs.estlett.8b00105
– ident: e_1_3_6_44_1
  doi: 10.1038/s42003-020-01253-0
– ident: e_1_3_6_60_1
  doi: 10.1093/bioinformatics/btl529
– ident: e_1_3_6_55_1
  doi: 10.1128/jb.151.2.591-599.1982
– ident: e_1_3_6_19_1
  doi: 10.5005/jp-journals-10024-1222
– ident: e_1_3_6_52_1
  doi: 10.1016/j.plasmid.2006.11.007
– ident: e_1_3_6_57_1
  doi: 10.1038/s41587-019-0209-9
– ident: e_1_3_6_27_1
  doi: 10.1038/s41396-021-00909-x
– ident: e_1_3_6_37_1
  doi: 10.3389/fmicb.2013.00047
– ident: e_1_3_6_58_1
  doi: 10.1093/nar/gks1219
– ident: e_1_3_6_9_1
  doi: 10.1038/nrmicro1152
– ident: e_1_3_6_41_1
  doi: 10.1126/science.aad3503
– ident: e_1_3_6_51_1
  doi: 10.1128/mSphere.00329-20
– ident: e_1_3_6_11_1
  doi: 10.1371/journal.pone.0006669
– ident: e_1_3_6_15_1
  doi: 10.1038/ismej.2015.148
– ident: e_1_3_6_62_1
  doi: 10.1038/ismej.2016.98
– ident: e_1_3_6_6_1
  doi: 10.1016/0140-6736(90)91447-I
– ident: e_1_3_6_23_1
  doi: 10.1016/j.mib.2020.02.002
– ident: e_1_3_6_32_1
  doi: 10.1128/AAC.01612-09
– ident: e_1_3_6_3_1
  doi: 10.2147/IDR.S173867
– ident: e_1_3_6_45_1
  doi: 10.1038/ismej.2012.5
– ident: e_1_3_6_17_1
  doi: 10.1038/nature18846
– ident: e_1_3_6_61_1
  doi: 10.1093/molbev/msy096
– ident: e_1_3_6_7_1
  doi: 10.1126/science.aav6390
– ident: e_1_3_6_20_1
  doi: 10.1038/nature13793
– ident: e_1_3_6_22_1
  doi: 10.1126/science.1176950
– ident: e_1_3_6_21_1
  doi: 10.1016/S0278-6915(00)00026-0
– ident: e_1_3_6_53_1
  doi: 10.1038/ismej.2014.191
– ident: e_1_3_6_39_1
  doi: 10.1038/s41564-018-0313-5
– ident: e_1_3_6_14_1
  doi: 10.1016/S0924-8579(01)00317-X
– ident: e_1_3_6_24_1
  doi: 10.2147/IDR.S48820
– ident: e_1_3_6_31_1
  doi: 10.1016/j.watres.2018.11.019
– ident: e_1_3_6_30_1
  doi: 10.1021/acs.est.6b03132
– ident: e_1_3_6_56_1
  doi: 10.1016/j.watres.2021.117141
– ident: e_1_3_6_54_1
  doi: 10.1128/AEM.01686-09
– ident: e_1_3_6_12_1
  doi: 10.1016/j.cell.2012.01.035
– ident: e_1_3_6_47_1
  doi: 10.1038/ncomms3151
– ident: e_1_3_6_10_1
  doi: 10.1038/nrmicro2974
– start-page: 531
  volume-title: Enteroviruses. Sherris medical microbiology
  year: 2004
  ident: e_1_3_6_29_1
– ident: e_1_3_6_34_1
  doi: 10.1007/s00394-019-02161-8
– ident: e_1_3_6_42_1
  doi: 10.1128/AAC.02658-20
– ident: e_1_3_6_49_1
  doi: 10.1038/415389a
– ident: e_1_3_6_43_1
  doi: 10.1073/pnas.1107254109
– ident: e_1_3_6_59_1
  doi: 10.1093/bioinformatics/btw725
– ident: e_1_3_6_36_1
  doi: 10.1038/nmicrobiol.2016.44
– ident: e_1_3_6_48_1
  doi: 10.3389/fmicb.2019.02119
– ident: e_1_3_6_18_1
  doi: 10.1038/s41564-021-00912-0
– ident: e_1_3_6_16_1
  doi: 10.1038/nature11319
– ident: e_1_3_6_25_1
  doi: 10.1073/pnas.1113246109
– ident: e_1_3_6_35_1
  doi: 10.1016/j.jhazmat.2022.128840
– ident: e_1_3_6_13_1
  doi: 10.3389/fmicb.2015.01543
– ident: e_1_3_6_5_1
  doi: 10.1038/nrg3962
– ident: e_1_3_6_63_1
  doi: 10.1136/bmj.310.6973.170
– ident: e_1_3_6_26_1
  doi: 10.1038/s41396-021-01095-6
– ident: e_1_3_6_8_1
  doi: 10.1038/s41467-017-01532-1
– ident: e_1_3_6_4_1
  doi: 10.1038/nrmicro1232
– ident: e_1_3_6_46_1
  doi: 10.1038/s41564-019-0627-y
– ident: e_1_3_6_50_1
  doi: 10.1038/nrmicro1441
– ident: e_1_3_6_40_1
  doi: 10.1046/j.1365-2958.2001.02302.x
– ident: e_1_3_6_38_1
  doi: 10.1111/j.1462-2920.2009.01972.x
SSID ssj0000447063
Score 2.4787521
Snippet Non-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the...
ABSTRACTNon-caloric artificial sweeteners have been widely permitted as table sugar substitutes with high intensities of sweetness. They can pass through the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
informaworld
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2157698
SubjectTerms 16S rRNA
Animals
Anti-Bacterial Agents - pharmacology
Antibiotic resistance
Bacteria - genetics
conjugation
Drug Resistance, Multiple
Escherichia coli - genetics
Gastrointestinal Microbiome - genetics
gut microbiota
Humans
Mice
non-caloric artificial sweeteners
plasmid
Plasmids - genetics
reactive oxygen species
Research Paper
RNA, Ribosomal, 16S - genetics
Sweetening Agents - pharmacology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOiltOlrkyao0KuTXWlkWce2NIRCc2ogN6HndkvXDhu7Jf--I8m77IbAXnqVLaHRjDTfWONvCPnIbXS1wg3IFNgK8DSoLLq9KnF_NbUTBnLRvu9X9eU1fLsRN1ulvlJOWKEHLgt3HmfCKc9MlE6BnEpjZGhqFSBaG0zM0Tr6vK1gKp_BgO_mMmoYpKecIFmvf99ppuepLTVheMjYGTo9WatmxzFl_v4H7KWPYdCHqZRbvuniBXk-gkr6qQjzkjwJ7SF5WspM3r8if666tkJdJDoQmiQurBH07m9IkBkBIF12PtXxChTD41_DPLOB0z6D2rCiXaQ58bDyq2FOMUBPoBOthd4i9l4uPF20FIEknQ89XS4KtVNvXpPri68_vlxWY72FygkOfQVguEi3wkYZ48F5SFz7iHCmzgaBuFA5x1SYWhUCWC4teKsgeokxnWUc-Bty0HZteEdoMKBs0yjwHiELnoq1w1gpzII3sebeTwisF1u7kYw81cT4rWcjZ-laRzrpSI86mpCzTbfbwsaxr8PnpMnNy4lMOzegienRxPQ-E5sQtW0Hus_fUmIpfKL5ngl8WBuNxo2bbmNMG7rhTjMphJCqETj-22JEm2nyWjBc_NmEyB3z2pFj90m7-JnJwXECODI7-h-CH5NnKAsvvJbvyUG_GsIJYrDenubt9g8PAyyb
  priority: 102
  providerName: Directory of Open Access Journals
Title Non-caloric artificial sweeteners modulate conjugative transfer of multi-drug resistance plasmid in the gut microbiota
URI https://www.tandfonline.com/doi/abs/10.1080/19490976.2022.2157698
https://www.ncbi.nlm.nih.gov/pubmed/36524841
https://www.proquest.com/docview/2755579850
https://pubmed.ncbi.nlm.nih.gov/PMC9762752
https://doaj.org/article/f15c9d2af7c94707aa7e869e4fbbeaf0
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZgERIXxJvyWBmJa5Y0HsfxERCrComeWAlOlp-liCarNgHtv9-xnVTbFWgPXCLlYcvJzHi-sSffEPKWmWBriQZYSTAF4GxQGHR7ReT-amrLNaSifV-W9eIMPn_jUzbhbkyrjDF0yEQRaa6Oxq3NbsqIe4dxtyzRjWJ0V1Un6LNELZvb5A564jIWMSi_L_bLLCWAyPXUYqsiNpv-4_lXTwceKhH5X6Mx_RsYvZ5TecVJnT4g90d0Sd9ndXhIbvn2Ebmb601ePCa_l11boFAiLwiNOpPpI-juj4_YGZEg3XQuFvTyFOPkn8Mq0YLTPqFbv6VdoCkDsXDbYUUxUo_oE9WGniMI36wdXbcUESVdDT3drDPHU6-fkLPTT18_Loqx8EJhOYO-ANCMx-1hLbV2YB1E0n2EOqU1niNAlNZW0pdGeg-GCQPOSAhOYHBnKgbsKTlqu9Y_J9RrkKZpJDiH2AWnx9pi0OTn3ulQM-dmBKaPrezISh6LY_xS85G8dJKRijJSo4xm5GTf7DzTctzU4EOU5P7hyKqdLnTblRqNVIU5t9JVOggrUW2E1sI3tfQQjPE6lDMir-qB6tOiSsgVUBS7YQBvJqVRaMFxW0a3vht2qhKccyEbjv0_y0q0HyareYUffz4j4kC9Dt7j8E67_pFYwnEA2HP14j_G_JLcw1OWeS1fkaN-O_jXiMF6c5ysDI-sXB6ndYxLXLEprw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Jb9QwFLZKEaIXdsqwGgmOGTJekvjAga2a0nZOrdSb8ZZhgEmqTEJVfhZ_hT_Ec5yMOiNQD6gHrnFsPS_fW5yX7yH0gurcJAIASATTEQNtEGkwe5Hn_soSwxVri_YdTJLxEft4zI830M_-XxifVulj6DwQRbS62oPbX0b3KXGvIPAWMdhRCO8IGYLRShORdYmVe-7sFMK2xevd97DHLwnZ-XD4bhx1lQUiwymrI8YU5f77pxJKWWYs86zyYMtjox0HD0gYQ4SLtXCOaZpqZrVguU0hetGEMgrjXkFXOUzSY4vGk-W9TsxYGgq4eSkjL2b_49DfJF8xiW3lgDXe1D95v-tJnOes4s5N9Ktfz5AM83XY1HpofqxRTf5fC34L3eicdPwmoOo22nDFHXQtlO08u4u-T8oigrPt6VWwh15g4cCLU-dDEHCo8by0vi6aw6YsvjTTll0d122Q4Cpc5rhN5Ixs1Uxx5RbeiQf04ROIZeYzi2cFBsccT5saz2eBKqtW99DRpUz6PtosysI9QNgpJnSWCWYtuIBgZRIDsacbOavyhFo7QKw_QtJ05O6-xsg3Oeo4YPstlH4LZbeFAzRcdjsJ7CYXdXjrz-fyZU9O3j4oq6nsdJ3MR9wIS1SeGgFgSJVKXZYIx3KtncrjARLnT7es27upPBSSkfQCAZ73UJCgCP3XLVW4sllIknLOU5FxGH87QGMpJk04gcUfDVC6ApqVeay2FLPPLdk6CAAjk4f_IPMzdH18eLAv93cne4_QFjTRQBX6GG3WVeOegFtb66etHsHo02Xj6DdEqqSU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwELaWRSAuvB_laSQ4pps6dhIfOABLtctCxYGV9mb8LAWaVGnCavlX_BV-EeM4qbYVaA9oD1ybxprY_mbmS8bfIPQsUU6nHABIOFURBW8QKQh7kdf-ylPNJG2b9r2fpHuH9O0RO9pCP_uzML6s0nNoF4QiWl_twb0wrq-I2wHezWMIo8DuCBlCzMpSnnd1lQf25BhY2_LF_i4s8XNCxm8-vt6LusYCkWYJrSNKZcL850_JpTRUG-pF5SGUx1pZBgkQ15pwGytuLVVJpqhRnDqTAXlRJKEJjHsBXUz9wU5_aiSerF7rxJRmoX-btzLyZvbnhv5m-VpEbBsHbMim_in53azhPBUUx9fQr346Qy3M12FTq6H-saE0-V_N93V0tUvR8cuAqRtoyxY30aXQtPPkFvo-KYsIdrYXV8EeeEGDAy-PrScgkE7jeWl8VzSLdVl8aaattjquW4pgK1w63JZxRqZqpriyS5_CA_bwApjMfGbwrMCQluNpU-P5LAhl1fI2OjyXh76DtouysPcQtpJyleecGgMJIMSYVAPztCNrpEsTYwaI9jtI6E7a3XcY-SZGnQJsv4TCL6HolnCAhqvbFkHb5KwbXvntufqzlyZvfyirqeg8nXAjprkh0mWaAxYyKTObp9xSp5SVLh4gfnpzi7p9M-VCGxmRnGHA0x4JAtyg_7YlC1s2S0EyxljGcwbj3w3IWJmZpIzA5I8GKFvDzNpzrF8pZp9bqXUwAEYm9__B5ifo8ofdsXi3Pzl4gK7AlSTohD5E23XV2EeQ09bqcetFMPp03jD6DWg7ozg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-caloric+artificial+sweeteners+modulate+conjugative+transfer+of+multi-drug+resistance+plasmid+in+the+gut+microbiota&rft.jtitle=Gut+microbes&rft.au=Yu%2C+Zhigang&rft.au=Henderson%2C+Ian+R&rft.au=Guo%2C+Jianhua&rft.date=2023-12-31&rft.issn=1949-0984&rft.eissn=1949-0984&rft.volume=15&rft.issue=1&rft.spage=2157698&rft_id=info:doi/10.1080%2F19490976.2022.2157698&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-0976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-0976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-0976&client=summon