Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods
In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presen...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 23; no. 3; p. 1507 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods. |
---|---|
AbstractList | In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods. In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods.In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods. |
Audience | Academic |
Author | Conceição, Raquel C. Pereira, Teresa M. C. Sebastião, Raquel Sencadas, Vitor |
AuthorAffiliation | 2 Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal 3 Instituto de Materiais (CICECO), Departamento de Materiais e Cerâmica, Universidade de Aveiro, 3810-193 Aveiro, Portugal 1 IEETA, DETI, LASI, Universidade de Aveiro, 3810-193 Aveiro, Portugal |
AuthorAffiliation_xml | – name: 1 IEETA, DETI, LASI, Universidade de Aveiro, 3810-193 Aveiro, Portugal – name: 2 Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal – name: 3 Instituto de Materiais (CICECO), Departamento de Materiais e Cerâmica, Universidade de Aveiro, 3810-193 Aveiro, Portugal |
Author_xml | – sequence: 1 givenname: Teresa M. C. orcidid: 0000-0003-4724-7468 surname: Pereira fullname: Pereira, Teresa M. C. – sequence: 2 givenname: Raquel C. orcidid: 0000-0002-0025-863X surname: Conceição fullname: Conceição, Raquel C. – sequence: 3 givenname: Vitor orcidid: 0000-0003-1986-1348 surname: Sencadas fullname: Sencadas, Vitor – sequence: 4 givenname: Raquel orcidid: 0000-0001-5717-1415 surname: Sebastião fullname: Sebastião, Raquel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36772546$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt9rFDEQx4NUbHv64D8gC77ow7X5tZvEB-FsqxYqgj_At5CdTa45djdtkm3pf2_urh5tkTwkzHzmOzOZOUR7YxgtQq8JPmJM4eNEGWakxuIZOiCc8rmkFO89eO-jw5RWGFPGmHyB9lkjBK15c4D-fPJhsDl6qH5YCMvRZx_GD9Wi-nmXsh1M3nhuvL2twlid9RZyDGBi58MymqE6NdlUC7iefNqEVt9svgxdeomeO9Mn--r-nqHfn89-nXydX3z_cn6yuJhDzXieM2Btg2snJdQgjQTcUNdyYzjjtSCuVeDAdaKV0EFhGXW0w4pI0nLbyobN0PlWtwtmpa-iH0y808F4vTGEuNQmliZ6q7kS3BUJxS1w1rQKE9UQpySuDeHMFa2PW62rqR1sB3bM0fSPRB97Rn-pl-FGK0VJXWYwQ-_uBWK4nmzKevAJbN-b0YYpaSpE3VDcKFHQt0_QVZjiWL5qTfFSlMSkUEdbamlKA350oeSFcjo7eChb4HyxLwRnrFGkpiXgzcMWdrX_m3gB3m8BiCGlaN0OIVivt0nvtqmwx09Y8Nmsp1yq8P1_Iv4CyKXKnw |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_126018 crossref_primary_10_7759_cureus_58267 crossref_primary_10_1016_j_patrec_2023_09_009 crossref_primary_10_3390_s25061864 crossref_primary_10_53730_ijhs_v8nS1_15261 crossref_primary_10_1016_j_slast_2024_100193 crossref_primary_10_1038_s41598_025_87515_5 crossref_primary_10_3390_computation12020021 crossref_primary_10_3934_mbe_2023457 crossref_primary_10_3390_s23239473 crossref_primary_10_1016_j_compbiomed_2023_107655 crossref_primary_10_1109_ACCESS_2023_3338191 crossref_primary_10_3390_info14030192 crossref_primary_10_3390_app142110078 |
Cites_doi | 10.1016/j.cmpb.2013.11.017 10.1109/BTAS46853.2019.9185990 10.1260/2040-2295.4.4.465 10.1109/ACCESS.2019.2902870 10.1109/ICMLC.2018.8527005 10.1142/S0219691309002957 10.1007/s11760-018-1238-4 10.1109/ICBAPS.2015.7292209 10.1093/eurheartj/eht176 10.1109/JSEN.2021.3139135 10.3390/s22062202 10.1587/transfun.E101.A.1151 10.1109/JIOT.2019.2929087 10.1007/s10439-017-1944-z 10.1109/ICCST49569.2021.9717372 10.1186/s12938-015-0072-y 10.3390/s16040570 10.52549/ijeei.v9i2.2890 10.3390/s21144645 10.1016/j.jelectrocard.2019.02.012 10.1109/MetroInd4.0IoT51437.2021.9488474 10.1109/51.932724 10.3390/s18041005 10.1109/ICB45273.2019.8987383 10.1109/HealthCom.2017.8210804 10.1109/TITS.2005.848368 10.1049/iet-bmt.2013.0014 10.4108/ICST.PERVASIVEHEALTH2010.899 10.1007/978-81-322-1038-2_8 10.1016/j.eswa.2022.117206 10.1155/2011/720971 10.3390/s22093446 10.1007/s11045-018-0593-1 10.1109/ACCESS.2020.3008953 10.3390/app10196896 10.1145/2093698.2093723 10.20944/preprints202008.0159.v1 10.1109/IDAACS.2017.8095063 10.1161/CIRCOUTCOMES.118.005289 10.1109/TIM.2015.2503863 10.1145/3410158 10.3390/s18020372 10.1016/j.patcog.2021.108376 10.1109/ISCCSP.2008.4537472 10.1109/TSMC.2014.2336842 10.1145/2166966.2166971 10.1109/JBHI.2017.2688239 10.1109/TIM.2007.909996 10.1109/ICASSP.2015.7178283 10.1054/jelc.2000.20356 10.1016/j.ins.2021.01.001 10.1109/ACCESS.2018.2849870 10.1109/ACCESS.2021.3095248 10.1109/CSE/EUC.2019.00032 10.1109/ACCESS.2020.3004464 10.1161/01.CIR.101.23.e215 10.1007/978-1-84882-046-3 10.1109/CCECE.2016.7726726 10.1109/GLOBECOM38437.2019.9014278 10.1016/j.cmpb.2012.08.015 10.1016/j.neucom.2015.04.063 10.1016/j.cmpb.2021.106005 10.1109/TIFS.2014.2360430 10.1007/978-3-030-03493-1_43 10.1109/TETCI.2021.3131374 10.1109/TSP.2016.7760964 10.1007/s11042-016-3694-6 10.1016/j.compbiomed.2020.103801 10.1016/j.procs.2016.08.143 10.1016/j.patcog.2004.05.014 10.1016/j.eswa.2016.09.030 10.1016/B978-012437552-9/50007-6 10.1145/3242969.3242985 10.3390/s18092782 10.1109/ICPEICES.2018.8897416 10.1109/MeMeA.2017.7985899 10.3390/s20061695 10.1016/j.bspc.2021.102820 10.1145/2968215 10.1016/j.patcog.2008.11.020 10.1007/978-3-319-58838-4_19 10.1109/WIFS.2013.6707790 10.1007/s11760-014-0737-1 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/s23031507 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Proquest Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_4974f3b394ec436b901961f9805a143f PMC9921530 A743369152 36772546 10_3390_s23031507 |
Genre | Systematic Review Journal Article |
GeographicLocations | Portugal Germany |
GeographicLocations_xml | – name: Germany – name: Portugal |
GrantInformation_xml | – fundername: Fundação para a Ciência e Tecnologia grantid: UIDB/00645/2020 – fundername: Fundação para a Ciência e Tecnologia grantid: UIDB/00127/2020 – fundername: Fundação para a Ciência e Tecnologia grantid: UIDB/50011/2020 – fundername: Fundação para a Ciência e Tecnologia grantid: Scientific Employment Stimulus-Individual Call-CEECIND/03986/2018 – fundername: Lisboa 2020 programs grantid: 069918 LISBOA-01-0247-FEDER-069918 POCI-01-0247-FEDER-069918 – fundername: CENTRO 2020 program grantid: CENTRO-01-0247-FEDER-113480 - “ELIPFOOTSENSE” – fundername: CICECO-Aveiro Institute of Materials grantid: UIDB/50011/2020; UIDP/50011/2020; LA/P/0006/2020 – fundername: Scientific Employment Stimulus grantid: CEECIND/03986/2018 – fundername: PhD grantid: UI/BD/153605/2022 – fundername: IEETA/UA R&D grantid: UIDB/00127/2020 |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c534t-3c3b605f88c5c8a8c062fb4aa434571fb9cfcfd7b8cdcc3b32f2d09181b4eb863 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:28:03 EDT 2025 Thu Aug 21 18:38:32 EDT 2025 Mon Jul 21 09:45:07 EDT 2025 Fri Jul 25 20:01:11 EDT 2025 Tue Jul 01 05:44:27 EDT 2025 Mon Jul 21 05:57:35 EDT 2025 Tue Jul 01 01:19:48 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | biometrics databases electrocardiogram acquisition devices acquisition methods |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-3c3b605f88c5c8a8c062fb4aa434571fb9cfcfd7b8cdcc3b32f2d09181b4eb863 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Undefined-1 ObjectType-Review-4 content type line 23 |
ORCID | 0000-0003-4724-7468 0000-0002-0025-863X 0000-0003-1986-1348 0000-0001-5717-1415 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23031507 |
PMID | 36772546 |
PQID | 2774980801 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4974f3b394ec436b901961f9805a143f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921530 proquest_miscellaneous_2775620697 proquest_journals_2774980801 gale_infotracacademiconefile_A743369152 pubmed_primary_36772546 crossref_primary_10_3390_s23031507 crossref_citationtrail_10_3390_s23031507 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-29 |
PublicationDateYYYYMMDD | 2023-01-29 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_94 Guven (ref_3) 2018; 12 ref_93 ref_92 ref_91 Uwaechia (ref_8) 2021; 9 Laguna (ref_37) 1997; 24 ref_90 Ibtehaz (ref_61) 2022; 6 ref_14 ref_13 (ref_24) 2016; 65 ref_12 Goldberger (ref_35) 2000; 101 Moddy (ref_40) 1983; 10 Ingale (ref_49) 2020; 8 ref_11 ref_99 ref_10 ref_98 Wu (ref_45) 2018; 30 ref_97 Carvalho (ref_23) 2017; Volume 10255 ref_96 ref_95 Zhang (ref_9) 2018; 46 ref_19 ref_17 ref_16 Jyotishi (ref_56) 2022; 2 Merone (ref_52) 2017; 67 Pinto (ref_5) 2018; 6 ref_25 Bousseljot (ref_36) 1995; 40 ref_21 ref_20 Sidek (ref_80) 2014; 44 ref_27 Merdjanovska (ref_6) 2022; 203 ref_26 Sidek (ref_107) 2013; 109 Lin (ref_55) 2014; 3 ref_71 ref_70 Hoekema (ref_109) 1999; 26 Djelouat (ref_64) 2018; Volume 869 ref_77 ref_75 Israel (ref_73) 2005; 38 Huang (ref_4) 2022; 123 ref_83 ref_81 Fratini (ref_114) 2015; 14 Rathore (ref_43) 2021; 53 ref_89 ref_88 ref_87 Kervio (ref_47) 2016; 10 Chiu (ref_82) 2009; 7 Sansone (ref_113) 2013; 4 ref_50 Katsigiannis (ref_41) 2018; 22 Nobunaga (ref_22) 2018; 7 ref_58 ref_57 Chan (ref_105) 2008; 57 Dong (ref_44) 2020; 8 ref_54 ref_53 ref_51 Moddy (ref_34) 2001; 20 ref_59 ref_69 Silva (ref_30) 2013; 113 ref_66 ref_65 Iyengar (ref_39) 1996; 271 ref_63 ref_62 Islam (ref_15) 2017; 76 Hong (ref_103) 2020; 122 Healey (ref_31) 2005; 6 Li (ref_18) 2021; 70 Zhou (ref_74) 2021; 202 Fang (ref_60) 2009; 42 Choi (ref_67) 2019; 7 ref_33 ref_32 Becerra (ref_78) 2018; 11314 ref_112 Srivastva (ref_2) 2021; 558 Ramli (ref_28) 2016; 96 Tison (ref_84) 2019; 12 ref_38 Aro (ref_111) 2014; 35 Zheng (ref_76) 2017; 10568 Blaco (ref_102) 2017; 49 Lourenco (ref_29) 2011; 2011 ref_104 Rath (ref_85) 2021; 68 Huang (ref_68) 2019; 6 Singh (ref_79) 2015; 167 ref_108 ref_46 Wahabi (ref_72) 2014; 9 Yurtseven (ref_86) 2019; 54 Censi (ref_106) 2022; 33 ref_100 ref_42 ref_101 ref_1 Oosterom (ref_110) 2000; 33 ref_48 ref_7 |
References_xml | – volume: 113 start-page: 503 year: 2013 ident: ref_30 article-title: Check Your Biosignals Here: A new dataset for off-the-person ECG biometrics publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.11.017 – ident: ref_63 doi: 10.1109/BTAS46853.2019.9185990 – volume: 4 start-page: 465 year: 2013 ident: ref_113 article-title: Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A review publication-title: J. Healthc. Eng. doi: 10.1260/2040-2295.4.4.465 – volume: 7 start-page: 34862 year: 2019 ident: ref_67 article-title: User Identification System Using 2D Resized Spectrogram Features of ECG publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2902870 – ident: ref_100 – ident: ref_75 doi: 10.1109/ICMLC.2018.8527005 – volume: 7 start-page: 341 year: 2009 ident: ref_82 article-title: Discrete Wavelet Transform Applied on Personal Identity Verification with ECG Signal publication-title: Int. J. Wavelets Multiresolution Inf. Process. doi: 10.1142/S0219691309002957 – volume: 12 start-page: 933 year: 2018 ident: ref_3 article-title: Biometric identification using fingertip electrocardiogram signals publication-title: Signal Image Video Process. doi: 10.1007/s11760-018-1238-4 – volume: 70 start-page: 1 year: 2021 ident: ref_18 article-title: Collaborative-Set Measurement for ECG-Based Human Identification publication-title: IEEE Trans. Instrum. Meas. – ident: ref_70 doi: 10.1109/ICBAPS.2015.7292209 – volume: 35 start-page: 123 year: 2014 ident: ref_111 article-title: Prognostic significance of prolonger PR interval in the general population publication-title: Eur. Heart J. doi: 10.1093/eurheartj/eht176 – ident: ref_16 – volume: 2 start-page: 6052 year: 2022 ident: ref_56 article-title: An ECG Biometric System Using Hierarchical LSTM With Attention Mechanism publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3139135 – ident: ref_1 doi: 10.3390/s22062202 – ident: ref_88 – volume: 7 start-page: 1151 year: 2018 ident: ref_22 article-title: Identification of Exercising Individuals Based on Features Extracted from ECG Frequency Spectrums publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. doi: 10.1587/transfun.E101.A.1151 – volume: 6 start-page: 9200 year: 2019 ident: ref_68 article-title: Practical Privacy-Preserving ECG-Based Authentication for IoT-Based Healthcare publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2929087 – volume: 46 start-page: 122 year: 2018 ident: ref_9 article-title: Deep Arm/Ear-ECG Image Learning for Highly Wearable Biometric Human Identification publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-017-1944-z – volume: 26 start-page: 499 year: 1999 ident: ref_109 article-title: Geometrical aspects of the inter-individual variability of multilead ECG recordings publication-title: Comput. Cardiol. – ident: ref_94 – volume: 33 start-page: N11.7 year: 2022 ident: ref_106 article-title: On the resolution of ECG acquisition systems for the reliable analysis of the P-Wave publication-title: Physiol Meas. – ident: ref_7 doi: 10.1109/ICCST49569.2021.9717372 – volume: 14 start-page: 78 year: 2015 ident: ref_114 article-title: Individual identification via electrocardiogram analysis publication-title: Biomed. Eng. Online doi: 10.1186/s12938-015-0072-y – ident: ref_27 doi: 10.3390/s16040570 – ident: ref_58 doi: 10.52549/ijeei.v9i2.2890 – ident: ref_11 doi: 10.3390/s21144645 – volume: 54 start-page: 28 year: 2019 ident: ref_86 article-title: The quality of ECG data acquisition, and diagnostic performance of a novel adhesive patch for ambulatory cardiac rhythm monitoring in arrhythmia detection publication-title: J. Electrocardiol. doi: 10.1016/j.jelectrocard.2019.02.012 – ident: ref_20 doi: 10.1109/MetroInd4.0IoT51437.2021.9488474 – volume: 20 start-page: 45 year: 2001 ident: ref_34 article-title: The impact of the MIT-BIH Arrhythmia Database publication-title: IEEE Eng. Med. Biol. doi: 10.1109/51.932724 – ident: ref_83 – ident: ref_69 doi: 10.3390/s18041005 – ident: ref_62 – ident: ref_108 doi: 10.1109/ICB45273.2019.8987383 – volume: 10568 start-page: 503 year: 2017 ident: ref_76 article-title: ECG based identification by deep learning publication-title: Chin. Conf. Biom. Recognit. – ident: ref_53 doi: 10.1109/HealthCom.2017.8210804 – volume: 6 start-page: 156 year: 2005 ident: ref_31 article-title: Detecting stress during real-world driving tasks using physiological sensors publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2005.848368 – volume: 3 start-page: 257 year: 2014 ident: ref_55 article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise publication-title: IET Biom. doi: 10.1049/iet-bmt.2013.0014 – ident: ref_87 doi: 10.4108/ICST.PERVASIVEHEALTH2010.899 – ident: ref_48 doi: 10.1007/978-81-322-1038-2_8 – ident: ref_92 – volume: 203 start-page: 1468 year: 2022 ident: ref_6 article-title: Comprehensive survey of computational ECG analysis: Databases, methods and applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117206 – volume: 2011 start-page: 720971 year: 2011 ident: ref_29 article-title: Unveiling the Biometric Potential of Finger-Based ECG Signals publication-title: Comput. Intell. Neurosci. doi: 10.1155/2011/720971 – ident: ref_65 doi: 10.3390/s22093446 – ident: ref_81 – ident: ref_33 – volume: 30 start-page: 989 year: 2018 ident: ref_45 article-title: Spatialtemporal features of electrocardiogram for biometric recognition publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-018-0593-1 – volume: 8 start-page: 134373 year: 2020 ident: ref_44 article-title: Identity Recognition Based on the QRS Complex Dynamics of Electrocardiogram publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008953 – ident: ref_21 doi: 10.3390/app10196896 – ident: ref_13 doi: 10.1145/2093698.2093723 – ident: ref_57 doi: 10.20944/preprints202008.0159.v1 – ident: ref_10 doi: 10.1109/IDAACS.2017.8095063 – ident: ref_89 – volume: Volume 869 start-page: 126 year: 2018 ident: ref_64 article-title: Compressive Sensing Based ECG Biometric System publication-title: Intelligent Systems and Applications – volume: 12 start-page: e005289 year: 2019 ident: ref_84 article-title: Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery publication-title: Circ Cardiovasc. Qual Outcomes doi: 10.1161/CIRCOUTCOMES.118.005289 – ident: ref_101 – volume: 65 start-page: 591 year: 2016 ident: ref_24 article-title: ECG Authentication for Mobile Devices publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2503863 – volume: 53 start-page: 1 year: 2021 ident: ref_43 article-title: A survey on Heart Biometrics publication-title: ACM Comput. Surv. doi: 10.1145/3410158 – ident: ref_95 – ident: ref_59 doi: 10.3390/s18020372 – volume: 123 start-page: 108376 year: 2022 ident: ref_4 article-title: Robust multi-feature collective non-negative matrix factorization for ECG biometrics publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108376 – ident: ref_50 doi: 10.1109/ISCCSP.2008.4537472 – volume: 44 start-page: 1498 year: 2014 ident: ref_80 article-title: ECG Biometric with Abnormal Cardiac Conditions in Remote Monitoring System publication-title: IEEE Trans. Syst. Man, Cybern. Syst. doi: 10.1109/TSMC.2014.2336842 – ident: ref_32 – ident: ref_90 – ident: ref_19 doi: 10.1145/2166966.2166971 – volume: 22 start-page: 98 year: 2018 ident: ref_41 article-title: DREAMER: A Database for Emotion Recongition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2688239 – volume: 57 start-page: 248 year: 2008 ident: ref_105 article-title: Wavelet distance measure for person identification using electrocardiograms publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2007.909996 – ident: ref_71 doi: 10.1109/ICASSP.2015.7178283 – volume: 33 start-page: 219 year: 2000 ident: ref_110 article-title: Geometrical factors affecting the interindividual variability of the ECG and the VCG publication-title: J. Electrocardiol. doi: 10.1054/jelc.2000.20356 – volume: 558 start-page: 208 year: 2021 ident: ref_2 article-title: PlexNet: A fast and robust ECG biometric system for human recognition publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.01.001 – volume: 6 start-page: 34746 year: 2018 ident: ref_5 article-title: Evolution, Current Challenges, and Future Possibilities in ECG Biometrics publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2849870 – volume: 9 start-page: 97760 year: 2021 ident: ref_8 article-title: A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3095248 – ident: ref_98 – ident: ref_77 doi: 10.1109/CSE/EUC.2019.00032 – volume: 8 start-page: 117853 year: 2020 ident: ref_49 article-title: ECG Biometric Authentication: A Comparative Analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3004464 – volume: 40 start-page: 317 year: 1995 ident: ref_36 article-title: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet publication-title: Biomed. Tech. – volume: 101 start-page: e215 year: 2000 ident: ref_35 article-title: PhysioBank, PhysioToolkit, and PhysioneNet: Components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – ident: ref_112 doi: 10.1007/978-1-84882-046-3 – ident: ref_54 doi: 10.1109/CCECE.2016.7726726 – ident: ref_66 doi: 10.1109/GLOBECOM38437.2019.9014278 – volume: 109 start-page: 13 year: 2013 ident: ref_107 article-title: Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2012.08.015 – volume: 167 start-page: 322 year: 2015 ident: ref_79 article-title: Human recognition using Fisher’s discriminant analysis of heartbeat interval features and ECG morphology publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.04.063 – ident: ref_38 – ident: ref_17 – volume: 271 start-page: 1078 year: 1996 ident: ref_39 article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics publication-title: Am. J. Physiol. – ident: ref_93 – volume: 202 start-page: 106005 year: 2021 ident: ref_74 article-title: ECG-based biometric under different psychological stress states publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2021.106005 – volume: 9 start-page: 2002 year: 2014 ident: ref_72 article-title: On evaluating ECG Biometric Systems: Session-Dependence and Body Posture publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2014.2360430 – volume: 11314 start-page: 410 year: 2018 ident: ref_78 article-title: Exploratory Study of the Effects of Cardiac Murmurs on Electrocardiographic-Signal-Based Biometric Systems publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-030-03493-1_43 – volume: 6 start-page: 928 year: 2022 ident: ref_61 article-title: EDITH: ECG Biometrics Aided by Deep Learning for Reliable Individual Authentication publication-title: IEEE Trans. Emerg. Top. Comput. Intell. doi: 10.1109/TETCI.2021.3131374 – ident: ref_14 doi: 10.1109/TSP.2016.7760964 – volume: 76 start-page: 12709 year: 2017 ident: ref_15 article-title: Biometric template extraction from a heartbeat signal captured from fingers publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-016-3694-6 – volume: 10 start-page: 227 year: 1983 ident: ref_40 article-title: A new method for detecting atrial fibrillation using R-R intervals publication-title: Comput. Cardiol. – volume: 122 start-page: 103801 year: 2020 ident: ref_103 article-title: Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103801 – ident: ref_96 – volume: 96 start-page: 305 year: 2016 ident: ref_28 article-title: Development of Heartbeat Detection Kit for Biometric Authentication System publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.08.143 – volume: 38 start-page: 133 year: 2005 ident: ref_73 article-title: ECG to identify individuals publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2004.05.014 – volume: 67 start-page: 189 year: 2017 ident: ref_52 article-title: ECG databases for biometric systems: A systematic review publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.030 – ident: ref_104 doi: 10.1016/B978-012437552-9/50007-6 – ident: ref_42 doi: 10.1145/3242969.3242985 – ident: ref_26 doi: 10.3390/s18092782 – ident: ref_46 doi: 10.1109/ICPEICES.2018.8897416 – ident: ref_12 – volume: 24 start-page: 673 year: 1997 ident: ref_37 article-title: A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG publication-title: Comput. Cardiol. – ident: ref_97 doi: 10.1109/MeMeA.2017.7985899 – ident: ref_25 doi: 10.3390/s20061695 – volume: 68 start-page: 102820 year: 2021 ident: ref_85 article-title: Heart disease detection using deep learning methods from imbalanced ECG samples publication-title: Biomed. Signal Process. Control. doi: 10.1016/j.bspc.2021.102820 – ident: ref_91 – volume: 49 start-page: 1 year: 2017 ident: ref_102 article-title: A survey of Wearable Biometric Recognition Systems publication-title: ACM Comput. Surv. doi: 10.1145/2968215 – volume: 42 start-page: 1824 year: 2009 ident: ref_60 article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.11.020 – volume: Volume 10255 start-page: 169 year: 2017 ident: ref_23 article-title: Impact of the Acquisition Time on ECG Compression-Based Biometric Identification Systems publication-title: Pattern Recognition and Image Analysis doi: 10.1007/978-3-319-58838-4_19 – ident: ref_51 doi: 10.1109/WIFS.2013.6707790 – volume: 10 start-page: 267 year: 2016 ident: ref_47 article-title: ECG biometric analysis in different physiological recording conditions publication-title: Signal Image Video Process. doi: 10.1007/s11760-014-0737-1 – ident: ref_99 |
SSID | ssj0023338 |
Score | 2.490814 |
SecondaryResourceType | review_article |
Snippet | In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1507 |
SubjectTerms | acquisition devices acquisition methods Algorithms Analysis Bibliometrics Biometric identification Biometric Identification - methods Biometrics Biometry Biometry - methods Data collection Discriminant analysis electrocardiogram Electrocardiography Electrocardiography - methods Electrodes Heart Humans Medical equipment Pattern recognition Physiology Sensors Systematic Review Wearable computers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajT9tDabsf9ZoObRS6F9PEJyvS3tKtpQy6h3aFvAnpbNFCcbYl-f93ZzkmZoW-7DUW5ny6831ffPpOiBMia5OKT7cT2KhzZQrIvdWYU7GIVNCtCsgHha9_6Ks79X1ezrdGfXFPWJIHTo47UwR4IwSwqkYFOlgWdKH7mHHpqdZHfvtSzduQqY5qATGvpCMEROrPlgS0gaHPoPq0Iv3_voq3atGwT3Kr8Fzuid0OMcpZsnRfvKibA_FqS0fwtZif8yF61tqXN5uGoEXzRc7kbS_ULNNXALlo5EUafYNtKyp3Z8lvfuXlDH-vH1ILl7xuB0sv34i7y4ufX6_ybmRCjiWoVQ4IgQhKNAZLNN7gWBcxKO8VqHI6icFixFhNg8EKaS0UsajIfQReVR2Mhrdip1k09aGQgW4SKZ0RNRCLMraubCTve0WUDMsiE583rnTY6YnzWItHR7yCve56r2fiU7_0VxLReGrROe9Hv4B1r9sfKBpcFw3uuWjIxCnvpuPsJGPQd4cM6JFY58rNCDCBthM2f7TZcNel7dIVBIYtK21OMvGxv0wJx19RfFMv1u0awoxjbcnidyk-eptBE1kplc7EdBA5g4caXmke7ltRb2sJfMH4_f_wwpF4WVAO8D9FhR2JndWfdX1M2GkVPrRp8heCURZH priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB8U2gVAYhwSXqbux4bS5o-6UKqRyASnuz7ElcKqGk7e7-f2YSb7oRFdfEiia2x_OePX4D8JHI2rTi2-0ENupcmULm3mrMKVhECuhWBeSLwmff9em5-rYoF2nDbZnSKjdrYrdQVy3yHvl-QTjFsgji9OvVdc5Vo_h0NZXQuA8PWLqMU7pmi1vCJYl_9WpCkqj9_pLgtmQANIpBnVT_vwvyVkQaZ0tuhZ-TJ_A44UYx7wf6Kdyrm2fwaEtN8DksDvgqPSvuix-btKC2-SLm4ucg1yz6swDRNuK4L4CDXUIq52iJI7_yYo7X68s-kUucdeWlly_g_OT41-Fpngon5FhKtcolykA0JRqDJRpvcKKLGJT3SqpyNo3BYsRYzYLBCqmtLGJREXAgCKvqYLR8CTtN29SvQQT6SCSnRtSSuJSxdWUjYQiviJhhWWTwedOVDpOqOBe3-OOIXXCvu6HXM_gwNL3qpTTuanTA4zE0YPXr7kF7c-GSMzlFJCiS2VbVqKQOlkV-aG6ZSekJ_8UMPvFoOvZRMgZ9umpAv8RqV25OsElqO2XzdzcD7pLzLt3tVMvg_fCa3I7PUnxTt-uuDSHHibZk8at-fgw2S02UpVQ6g9lo5ox-avymufzdSXtbSxBMTt7836y38JCr3vNOUGF3YWd1s67fETZahb3OAf4CSRQPIA priority: 102 providerName: ProQuest |
Title | Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36772546 https://www.proquest.com/docview/2774980801 https://www.proquest.com/docview/2775620697 https://pubmed.ncbi.nlm.nih.gov/PMC9921530 https://doaj.org/article/4974f3b394ec436b901961f9805a143f |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA-TuQfw2epZVBH2J12Y3ya4g0mrrIfSQ00LfwmaS1YMjuesH6H_vTL5o8J586UMzTSeZmcxvsrO_AXhNxdoo493tBDZyX-lA-tZE6FOycJTQjUqRNwrPz6Ozhfq6DJd70M7YbG7g-tbSjudJLVZX737f_PlIAf-BK04q2U_XBKMlA5t9OKT_iDk-56pbTAgklWE1qVBf_AjuyIjQZcjodycrVeT9_z6id3JUv39yJyHN7sHdBkmKcW36-7CXFw_geIdf8CEsJ7y5njn4xUXbKFQW78VYfO8InEW9OiDKQkzrkThYtahy15b4bDdWjPFme1m3dol5NXB6_QgWs-mPT2d-M0rBx1CqjS9RplS4OK0xRG01DqPApcpaJVUYj1xq0KHL4lRjhiQrAxdkBCUI1Ko81ZF8DAdFWeRPQaR0EkdhjhhJqq60yTPjCFVYRaUahoEHb9tbmWDDM87jLq4SqjfYAElnAA9edaLXNbnGbUITtkcnwHzY1Rfl6mfShFeiqCxypLZROSoZpYZpf8jb9DC0hAidB2_Ymgn7ESmDttl8QJfE_FfJmICUjMyI1T9pDZ603pgEBJINM3COPHjZHaZA5NUVW-TltpIhLDmMDGn8pPaPTufWzTyIe57Tu6j-keLyV0X2bQyBMjl89t-_fA5HAcUAvzYKzAkcbFbb_AUBqU06gP14GdOnnn0ZwOFkev7tYlC9lBhUAfQXaawiKQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1azveGAmhLW21pd0eoJX25iaTGCqhpO3uCvGn-I3M5NVdgbj1moysiT2e-SYefwPwmpK1Qc632wlsFKFOpApTazCkYOEpoFudIV8Unhya8bH-PI2na_C7uwvDZZWdT6wddV4h_yPflIRTLJMgDj6enYfcNYpPV7sWGo1Z7Be_flLKNvuwt03r-0bK3Z2jT-Ow7SoQYqz0PFSoMsLwPkkwxiRNMDLSZzpNtdLxcOAzix59PswSzJFklfQyp6hK-E4XWWIUjXsNrlPgjXhHDaeXCZ6ifK9hL1LKRpszgveKAddKzKtbA_wdAJYi4Gp15lK4270Dt1ucKkaNYd2FtaK8B7eW2Avvw3SLr-4zw7_40pUhVeV7MRJfe3po0Zw9iKoUO03DHawLYLkmTGyn81SM8Hxx2hSOiUndznr2AI6vZEofwnpZlcVjEBkN4smJIBpFuVtii9x6wiyppkQQYxnAu24qHbYs5txM44ejbIZn3fWzHsCrXvSsoe74l9AWr0cvwGzb9YPq4ptrN6_TlHR5UtvqArUymWVSIbLlJIpTwps-gLe8mo59AimDaXu1gT6J2bXciGCaMnbA6m90C-5aZzFzl6YdwMv-NW1zPrtJy6Ja1DKEVCNjSeNHjX30OitDKVKsTQDDFctZ-ajVN-Xp95pK3FqCfCp68n-1XsCN8dHkwB3sHe4_hZuSLJ3_Qkm7Aevzi0XxjHDZPHtebwYBJ1e9-_4ArTxNmQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBQwCwSXaxHa8MRJCW7arltIKAZX2ZpxJDJVQ0nZ3hfhr_Dpm8upGIG69JpY1sWc838Qz3zD2HIO1OKfqdgQbRahSIUNnNIToLDw6dKMyoELhg0O9e6Tez5P5Bvvd1cJQWmV3JtYHdV4B_SMfCcQphkgQ45Fv0yI-TmdvT05D6iBFN61dO41GRfaLXz8xfFu82ZviXr8QYrbz5d1u2HYYCCGRahlKkBnieZ-mkEDqUoi08JlyTkmVjGOfGfDg83GWQg44VgovcvSwiPVUkaVa4ryX2OWxTGKysfH8PNiTGPs1TEZSmmi0QKgvCXwN_F_dJuBvZ7DmDYeZmmuub3aDXW8xK580SnaTbRTlLXZtjcnwNptvUxk_sf3zT11KUlW-5hP-uaeK5s09BK9KvtM034E6GZbyw_jULR2fwOnquEki4wd1a-vFHXZ0IUt6l22WVVncZzzDSTweKABaYhyXmiI3HvGLUxgUQiIC9qpbSgstozk11vhhMbKhVbf9qgfsWT_0pKHx-NegbdqPfgAxb9cPqrNvtjVkqzAA8yi2UQUoqTNDBEOo12mUOMSePmAvaTctnQ8oDLi2zAE_iZi27AQhm9QmJvG3ug237cGxsOdqHrCn_Ws0ebrHcWVRreoxiFojbVDie41-9DJLjeFSonTAxgPNGXzU8E15_L2mFTcG4Z-MHvxfrCfsCtqd_bB3uP-QXRWo6PRDSpgttrk8WxWPEKIts8e1LXD29aKN7w8B9FHP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+Recognition%3A+A+Systematic+Review+on+Electrocardiogram+Data+Acquisition+Methods&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Pereira%2C+Teresa+M.+C.&rft.au=Concei%C3%A7%C3%A3o%2C+Raquel+C.&rft.au=Sencadas%2C+Vitor&rft.au=Sebasti%C3%A3o%2C+Raquel&rft.date=2023-01-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft_id=info:doi/10.3390%2Fs23031507&rft_id=info%3Apmid%2F36772546&rft.externalDocID=PMC9921530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |