Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods

In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presen...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 3; p. 1507
Main Authors Pereira, Teresa M. C., Conceição, Raquel C., Sencadas, Vitor, Sebastião, Raquel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods.
AbstractList In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods.
In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods.In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature. However, despite the great number of approaches found in the literature, no agreement exists on the most appropriate methodology. This paper presents a systematic review of data acquisition methods, aiming to understand the impact of some variables from the data acquisition protocol of an ECG signal in the biometric identification process. We searched for papers on the subject using Scopus, defining several keywords and restrictions, and found a total of 121 papers. Data acquisition hardware and methods vary widely throughout the literature. We reviewed the intrusiveness of acquisitions, the number of leads used, and the duration of acquisitions. Moreover, by analyzing the literature, we can conclude that the preferable solutions include: (1) the use of off-the-person acquisitions as they bring ECG biometrics closer to viable, unconstrained applications; (2) the use of a one-lead setup; and (3) short-term acquisitions as they required fewer numbers of contact points, making the data acquisition of benefit to user acceptance and allow faster acquisitions, resulting in a user-friendly biometric system. Thus, this paper reviews data acquisition methods, summarizes multiple perspectives, and highlights existing challenges and problems. In contrast, most reviews on ECG-based biometrics focus on feature extraction and classification methods.
Audience Academic
Author Conceição, Raquel C.
Pereira, Teresa M. C.
Sebastião, Raquel
Sencadas, Vitor
AuthorAffiliation 2 Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
3 Instituto de Materiais (CICECO), Departamento de Materiais e Cerâmica, Universidade de Aveiro, 3810-193 Aveiro, Portugal
1 IEETA, DETI, LASI, Universidade de Aveiro, 3810-193 Aveiro, Portugal
AuthorAffiliation_xml – name: 1 IEETA, DETI, LASI, Universidade de Aveiro, 3810-193 Aveiro, Portugal
– name: 2 Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
– name: 3 Instituto de Materiais (CICECO), Departamento de Materiais e Cerâmica, Universidade de Aveiro, 3810-193 Aveiro, Portugal
Author_xml – sequence: 1
  givenname: Teresa M. C.
  orcidid: 0000-0003-4724-7468
  surname: Pereira
  fullname: Pereira, Teresa M. C.
– sequence: 2
  givenname: Raquel C.
  orcidid: 0000-0002-0025-863X
  surname: Conceição
  fullname: Conceição, Raquel C.
– sequence: 3
  givenname: Vitor
  orcidid: 0000-0003-1986-1348
  surname: Sencadas
  fullname: Sencadas, Vitor
– sequence: 4
  givenname: Raquel
  orcidid: 0000-0001-5717-1415
  surname: Sebastião
  fullname: Sebastião, Raquel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36772546$$D View this record in MEDLINE/PubMed
BookMark eNptkt9rFDEQx4NUbHv64D8gC77ow7X5tZvEB-FsqxYqgj_At5CdTa45djdtkm3pf2_urh5tkTwkzHzmOzOZOUR7YxgtQq8JPmJM4eNEGWakxuIZOiCc8rmkFO89eO-jw5RWGFPGmHyB9lkjBK15c4D-fPJhsDl6qH5YCMvRZx_GD9Wi-nmXsh1M3nhuvL2twlid9RZyDGBi58MymqE6NdlUC7iefNqEVt9svgxdeomeO9Mn--r-nqHfn89-nXydX3z_cn6yuJhDzXieM2Btg2snJdQgjQTcUNdyYzjjtSCuVeDAdaKV0EFhGXW0w4pI0nLbyobN0PlWtwtmpa-iH0y808F4vTGEuNQmliZ6q7kS3BUJxS1w1rQKE9UQpySuDeHMFa2PW62rqR1sB3bM0fSPRB97Rn-pl-FGK0VJXWYwQ-_uBWK4nmzKevAJbN-b0YYpaSpE3VDcKFHQt0_QVZjiWL5qTfFSlMSkUEdbamlKA350oeSFcjo7eChb4HyxLwRnrFGkpiXgzcMWdrX_m3gB3m8BiCGlaN0OIVivt0nvtqmwx09Y8Nmsp1yq8P1_Iv4CyKXKnw
CitedBy_id crossref_primary_10_1016_j_eswa_2024_126018
crossref_primary_10_7759_cureus_58267
crossref_primary_10_1016_j_patrec_2023_09_009
crossref_primary_10_3390_s25061864
crossref_primary_10_53730_ijhs_v8nS1_15261
crossref_primary_10_1016_j_slast_2024_100193
crossref_primary_10_1038_s41598_025_87515_5
crossref_primary_10_3390_computation12020021
crossref_primary_10_3934_mbe_2023457
crossref_primary_10_3390_s23239473
crossref_primary_10_1016_j_compbiomed_2023_107655
crossref_primary_10_1109_ACCESS_2023_3338191
crossref_primary_10_3390_info14030192
crossref_primary_10_3390_app142110078
Cites_doi 10.1016/j.cmpb.2013.11.017
10.1109/BTAS46853.2019.9185990
10.1260/2040-2295.4.4.465
10.1109/ACCESS.2019.2902870
10.1109/ICMLC.2018.8527005
10.1142/S0219691309002957
10.1007/s11760-018-1238-4
10.1109/ICBAPS.2015.7292209
10.1093/eurheartj/eht176
10.1109/JSEN.2021.3139135
10.3390/s22062202
10.1587/transfun.E101.A.1151
10.1109/JIOT.2019.2929087
10.1007/s10439-017-1944-z
10.1109/ICCST49569.2021.9717372
10.1186/s12938-015-0072-y
10.3390/s16040570
10.52549/ijeei.v9i2.2890
10.3390/s21144645
10.1016/j.jelectrocard.2019.02.012
10.1109/MetroInd4.0IoT51437.2021.9488474
10.1109/51.932724
10.3390/s18041005
10.1109/ICB45273.2019.8987383
10.1109/HealthCom.2017.8210804
10.1109/TITS.2005.848368
10.1049/iet-bmt.2013.0014
10.4108/ICST.PERVASIVEHEALTH2010.899
10.1007/978-81-322-1038-2_8
10.1016/j.eswa.2022.117206
10.1155/2011/720971
10.3390/s22093446
10.1007/s11045-018-0593-1
10.1109/ACCESS.2020.3008953
10.3390/app10196896
10.1145/2093698.2093723
10.20944/preprints202008.0159.v1
10.1109/IDAACS.2017.8095063
10.1161/CIRCOUTCOMES.118.005289
10.1109/TIM.2015.2503863
10.1145/3410158
10.3390/s18020372
10.1016/j.patcog.2021.108376
10.1109/ISCCSP.2008.4537472
10.1109/TSMC.2014.2336842
10.1145/2166966.2166971
10.1109/JBHI.2017.2688239
10.1109/TIM.2007.909996
10.1109/ICASSP.2015.7178283
10.1054/jelc.2000.20356
10.1016/j.ins.2021.01.001
10.1109/ACCESS.2018.2849870
10.1109/ACCESS.2021.3095248
10.1109/CSE/EUC.2019.00032
10.1109/ACCESS.2020.3004464
10.1161/01.CIR.101.23.e215
10.1007/978-1-84882-046-3
10.1109/CCECE.2016.7726726
10.1109/GLOBECOM38437.2019.9014278
10.1016/j.cmpb.2012.08.015
10.1016/j.neucom.2015.04.063
10.1016/j.cmpb.2021.106005
10.1109/TIFS.2014.2360430
10.1007/978-3-030-03493-1_43
10.1109/TETCI.2021.3131374
10.1109/TSP.2016.7760964
10.1007/s11042-016-3694-6
10.1016/j.compbiomed.2020.103801
10.1016/j.procs.2016.08.143
10.1016/j.patcog.2004.05.014
10.1016/j.eswa.2016.09.030
10.1016/B978-012437552-9/50007-6
10.1145/3242969.3242985
10.3390/s18092782
10.1109/ICPEICES.2018.8897416
10.1109/MeMeA.2017.7985899
10.3390/s20061695
10.1016/j.bspc.2021.102820
10.1145/2968215
10.1016/j.patcog.2008.11.020
10.1007/978-3-319-58838-4_19
10.1109/WIFS.2013.6707790
10.1007/s11760-014-0737-1
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23031507
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Proquest Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Publicly Available Content Database

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_4974f3b394ec436b901961f9805a143f
PMC9921530
A743369152
36772546
10_3390_s23031507
Genre Systematic Review
Journal Article
GeographicLocations Portugal
Germany
GeographicLocations_xml – name: Germany
– name: Portugal
GrantInformation_xml – fundername: Fundação para a Ciência e Tecnologia
  grantid: UIDB/00645/2020
– fundername: Fundação para a Ciência e Tecnologia
  grantid: UIDB/00127/2020
– fundername: Fundação para a Ciência e Tecnologia
  grantid: UIDB/50011/2020
– fundername: Fundação para a Ciência e Tecnologia
  grantid: Scientific Employment Stimulus-Individual Call-CEECIND/03986/2018
– fundername: Lisboa 2020 programs
  grantid: 069918 LISBOA-01-0247-FEDER-069918 POCI-01-0247-FEDER-069918
– fundername: CENTRO 2020 program
  grantid: CENTRO-01-0247-FEDER-113480 - “ELIPFOOTSENSE”
– fundername: CICECO-Aveiro Institute of Materials
  grantid: UIDB/50011/2020; UIDP/50011/2020; LA/P/0006/2020
– fundername: Scientific Employment Stimulus
  grantid: CEECIND/03986/2018
– fundername: PhD
  grantid: UI/BD/153605/2022
– fundername: IEETA/UA R&D
  grantid: UIDB/00127/2020
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c534t-3c3b605f88c5c8a8c062fb4aa434571fb9cfcfd7b8cdcc3b32f2d09181b4eb863
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:28:03 EDT 2025
Thu Aug 21 18:38:32 EDT 2025
Mon Jul 21 09:45:07 EDT 2025
Fri Jul 25 20:01:11 EDT 2025
Tue Jul 01 05:44:27 EDT 2025
Mon Jul 21 05:57:35 EDT 2025
Tue Jul 01 01:19:48 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords biometrics
databases
electrocardiogram
acquisition devices
acquisition methods
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-3c3b605f88c5c8a8c062fb4aa434571fb9cfcfd7b8cdcc3b32f2d09181b4eb863
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Undefined-1
ObjectType-Review-4
content type line 23
ORCID 0000-0003-4724-7468
0000-0002-0025-863X
0000-0003-1986-1348
0000-0001-5717-1415
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23031507
PMID 36772546
PQID 2774980801
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_4974f3b394ec436b901961f9805a143f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9921530
proquest_miscellaneous_2775620697
proquest_journals_2774980801
gale_infotracacademiconefile_A743369152
pubmed_primary_36772546
crossref_primary_10_3390_s23031507
crossref_citationtrail_10_3390_s23031507
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-29
PublicationDateYYYYMMDD 2023-01-29
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_94
Guven (ref_3) 2018; 12
ref_93
ref_92
ref_91
Uwaechia (ref_8) 2021; 9
Laguna (ref_37) 1997; 24
ref_90
Ibtehaz (ref_61) 2022; 6
ref_14
ref_13
(ref_24) 2016; 65
ref_12
Goldberger (ref_35) 2000; 101
Moddy (ref_40) 1983; 10
Ingale (ref_49) 2020; 8
ref_11
ref_99
ref_10
ref_98
Wu (ref_45) 2018; 30
ref_97
Carvalho (ref_23) 2017; Volume 10255
ref_96
ref_95
Zhang (ref_9) 2018; 46
ref_19
ref_17
ref_16
Jyotishi (ref_56) 2022; 2
Merone (ref_52) 2017; 67
Pinto (ref_5) 2018; 6
ref_25
Bousseljot (ref_36) 1995; 40
ref_21
ref_20
Sidek (ref_80) 2014; 44
ref_27
Merdjanovska (ref_6) 2022; 203
ref_26
Sidek (ref_107) 2013; 109
Lin (ref_55) 2014; 3
ref_71
ref_70
Hoekema (ref_109) 1999; 26
Djelouat (ref_64) 2018; Volume 869
ref_77
ref_75
Israel (ref_73) 2005; 38
Huang (ref_4) 2022; 123
ref_83
ref_81
Fratini (ref_114) 2015; 14
Rathore (ref_43) 2021; 53
ref_89
ref_88
ref_87
Kervio (ref_47) 2016; 10
Chiu (ref_82) 2009; 7
Sansone (ref_113) 2013; 4
ref_50
Katsigiannis (ref_41) 2018; 22
Nobunaga (ref_22) 2018; 7
ref_58
ref_57
Chan (ref_105) 2008; 57
Dong (ref_44) 2020; 8
ref_54
ref_53
ref_51
Moddy (ref_34) 2001; 20
ref_59
ref_69
Silva (ref_30) 2013; 113
ref_66
ref_65
Iyengar (ref_39) 1996; 271
ref_63
ref_62
Islam (ref_15) 2017; 76
Hong (ref_103) 2020; 122
Healey (ref_31) 2005; 6
Li (ref_18) 2021; 70
Zhou (ref_74) 2021; 202
Fang (ref_60) 2009; 42
Choi (ref_67) 2019; 7
ref_33
ref_32
Becerra (ref_78) 2018; 11314
ref_112
Srivastva (ref_2) 2021; 558
Ramli (ref_28) 2016; 96
Tison (ref_84) 2019; 12
ref_38
Aro (ref_111) 2014; 35
Zheng (ref_76) 2017; 10568
Blaco (ref_102) 2017; 49
Lourenco (ref_29) 2011; 2011
ref_104
Rath (ref_85) 2021; 68
Huang (ref_68) 2019; 6
Singh (ref_79) 2015; 167
ref_108
ref_46
Wahabi (ref_72) 2014; 9
Yurtseven (ref_86) 2019; 54
Censi (ref_106) 2022; 33
ref_100
ref_42
ref_101
ref_1
Oosterom (ref_110) 2000; 33
ref_48
ref_7
References_xml – volume: 113
  start-page: 503
  year: 2013
  ident: ref_30
  article-title: Check Your Biosignals Here: A new dataset for off-the-person ECG biometrics
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.11.017
– ident: ref_63
  doi: 10.1109/BTAS46853.2019.9185990
– volume: 4
  start-page: 465
  year: 2013
  ident: ref_113
  article-title: Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A review
  publication-title: J. Healthc. Eng.
  doi: 10.1260/2040-2295.4.4.465
– volume: 7
  start-page: 34862
  year: 2019
  ident: ref_67
  article-title: User Identification System Using 2D Resized Spectrogram Features of ECG
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2902870
– ident: ref_100
– ident: ref_75
  doi: 10.1109/ICMLC.2018.8527005
– volume: 7
  start-page: 341
  year: 2009
  ident: ref_82
  article-title: Discrete Wavelet Transform Applied on Personal Identity Verification with ECG Signal
  publication-title: Int. J. Wavelets Multiresolution Inf. Process.
  doi: 10.1142/S0219691309002957
– volume: 12
  start-page: 933
  year: 2018
  ident: ref_3
  article-title: Biometric identification using fingertip electrocardiogram signals
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-018-1238-4
– volume: 70
  start-page: 1
  year: 2021
  ident: ref_18
  article-title: Collaborative-Set Measurement for ECG-Based Human Identification
  publication-title: IEEE Trans. Instrum. Meas.
– ident: ref_70
  doi: 10.1109/ICBAPS.2015.7292209
– volume: 35
  start-page: 123
  year: 2014
  ident: ref_111
  article-title: Prognostic significance of prolonger PR interval in the general population
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/eht176
– ident: ref_16
– volume: 2
  start-page: 6052
  year: 2022
  ident: ref_56
  article-title: An ECG Biometric System Using Hierarchical LSTM With Attention Mechanism
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3139135
– ident: ref_1
  doi: 10.3390/s22062202
– ident: ref_88
– volume: 7
  start-page: 1151
  year: 2018
  ident: ref_22
  article-title: Identification of Exercising Individuals Based on Features Extracted from ECG Frequency Spectrums
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
  doi: 10.1587/transfun.E101.A.1151
– volume: 6
  start-page: 9200
  year: 2019
  ident: ref_68
  article-title: Practical Privacy-Preserving ECG-Based Authentication for IoT-Based Healthcare
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2929087
– volume: 46
  start-page: 122
  year: 2018
  ident: ref_9
  article-title: Deep Arm/Ear-ECG Image Learning for Highly Wearable Biometric Human Identification
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-017-1944-z
– volume: 26
  start-page: 499
  year: 1999
  ident: ref_109
  article-title: Geometrical aspects of the inter-individual variability of multilead ECG recordings
  publication-title: Comput. Cardiol.
– ident: ref_94
– volume: 33
  start-page: N11.7
  year: 2022
  ident: ref_106
  article-title: On the resolution of ECG acquisition systems for the reliable analysis of the P-Wave
  publication-title: Physiol Meas.
– ident: ref_7
  doi: 10.1109/ICCST49569.2021.9717372
– volume: 14
  start-page: 78
  year: 2015
  ident: ref_114
  article-title: Individual identification via electrocardiogram analysis
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-015-0072-y
– ident: ref_27
  doi: 10.3390/s16040570
– ident: ref_58
  doi: 10.52549/ijeei.v9i2.2890
– ident: ref_11
  doi: 10.3390/s21144645
– volume: 54
  start-page: 28
  year: 2019
  ident: ref_86
  article-title: The quality of ECG data acquisition, and diagnostic performance of a novel adhesive patch for ambulatory cardiac rhythm monitoring in arrhythmia detection
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2019.02.012
– ident: ref_20
  doi: 10.1109/MetroInd4.0IoT51437.2021.9488474
– volume: 20
  start-page: 45
  year: 2001
  ident: ref_34
  article-title: The impact of the MIT-BIH Arrhythmia Database
  publication-title: IEEE Eng. Med. Biol.
  doi: 10.1109/51.932724
– ident: ref_83
– ident: ref_69
  doi: 10.3390/s18041005
– ident: ref_62
– ident: ref_108
  doi: 10.1109/ICB45273.2019.8987383
– volume: 10568
  start-page: 503
  year: 2017
  ident: ref_76
  article-title: ECG based identification by deep learning
  publication-title: Chin. Conf. Biom. Recognit.
– ident: ref_53
  doi: 10.1109/HealthCom.2017.8210804
– volume: 6
  start-page: 156
  year: 2005
  ident: ref_31
  article-title: Detecting stress during real-world driving tasks using physiological sensors
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2005.848368
– volume: 3
  start-page: 257
  year: 2014
  ident: ref_55
  article-title: Individual identification based on chaotic electrocardiogram signals during muscular exercise
  publication-title: IET Biom.
  doi: 10.1049/iet-bmt.2013.0014
– ident: ref_87
  doi: 10.4108/ICST.PERVASIVEHEALTH2010.899
– ident: ref_48
  doi: 10.1007/978-81-322-1038-2_8
– ident: ref_92
– volume: 203
  start-page: 1468
  year: 2022
  ident: ref_6
  article-title: Comprehensive survey of computational ECG analysis: Databases, methods and applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117206
– volume: 2011
  start-page: 720971
  year: 2011
  ident: ref_29
  article-title: Unveiling the Biometric Potential of Finger-Based ECG Signals
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2011/720971
– ident: ref_65
  doi: 10.3390/s22093446
– ident: ref_81
– ident: ref_33
– volume: 30
  start-page: 989
  year: 2018
  ident: ref_45
  article-title: Spatialtemporal features of electrocardiogram for biometric recognition
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-018-0593-1
– volume: 8
  start-page: 134373
  year: 2020
  ident: ref_44
  article-title: Identity Recognition Based on the QRS Complex Dynamics of Electrocardiogram
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008953
– ident: ref_21
  doi: 10.3390/app10196896
– ident: ref_13
  doi: 10.1145/2093698.2093723
– ident: ref_57
  doi: 10.20944/preprints202008.0159.v1
– ident: ref_10
  doi: 10.1109/IDAACS.2017.8095063
– ident: ref_89
– volume: Volume 869
  start-page: 126
  year: 2018
  ident: ref_64
  article-title: Compressive Sensing Based ECG Biometric System
  publication-title: Intelligent Systems and Applications
– volume: 12
  start-page: e005289
  year: 2019
  ident: ref_84
  article-title: Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery
  publication-title: Circ Cardiovasc. Qual Outcomes
  doi: 10.1161/CIRCOUTCOMES.118.005289
– ident: ref_101
– volume: 65
  start-page: 591
  year: 2016
  ident: ref_24
  article-title: ECG Authentication for Mobile Devices
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2503863
– volume: 53
  start-page: 1
  year: 2021
  ident: ref_43
  article-title: A survey on Heart Biometrics
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3410158
– ident: ref_95
– ident: ref_59
  doi: 10.3390/s18020372
– volume: 123
  start-page: 108376
  year: 2022
  ident: ref_4
  article-title: Robust multi-feature collective non-negative matrix factorization for ECG biometrics
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108376
– ident: ref_50
  doi: 10.1109/ISCCSP.2008.4537472
– volume: 44
  start-page: 1498
  year: 2014
  ident: ref_80
  article-title: ECG Biometric with Abnormal Cardiac Conditions in Remote Monitoring System
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2014.2336842
– ident: ref_32
– ident: ref_90
– ident: ref_19
  doi: 10.1145/2166966.2166971
– volume: 22
  start-page: 98
  year: 2018
  ident: ref_41
  article-title: DREAMER: A Database for Emotion Recongition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2688239
– volume: 57
  start-page: 248
  year: 2008
  ident: ref_105
  article-title: Wavelet distance measure for person identification using electrocardiograms
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2007.909996
– ident: ref_71
  doi: 10.1109/ICASSP.2015.7178283
– volume: 33
  start-page: 219
  year: 2000
  ident: ref_110
  article-title: Geometrical factors affecting the interindividual variability of the ECG and the VCG
  publication-title: J. Electrocardiol.
  doi: 10.1054/jelc.2000.20356
– volume: 558
  start-page: 208
  year: 2021
  ident: ref_2
  article-title: PlexNet: A fast and robust ECG biometric system for human recognition
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.01.001
– volume: 6
  start-page: 34746
  year: 2018
  ident: ref_5
  article-title: Evolution, Current Challenges, and Future Possibilities in ECG Biometrics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2849870
– volume: 9
  start-page: 97760
  year: 2021
  ident: ref_8
  article-title: A Comprehensive Survey on ECG Signals as New Biometric Modality for Human Authentication: Recent Advances and Future Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3095248
– ident: ref_98
– ident: ref_77
  doi: 10.1109/CSE/EUC.2019.00032
– volume: 8
  start-page: 117853
  year: 2020
  ident: ref_49
  article-title: ECG Biometric Authentication: A Comparative Analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004464
– volume: 40
  start-page: 317
  year: 1995
  ident: ref_36
  article-title: Nutzung der EKG-Signaldatenbank CARDIODAT der PTB über das Internet
  publication-title: Biomed. Tech.
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_35
  article-title: PhysioBank, PhysioToolkit, and PhysioneNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref_112
  doi: 10.1007/978-1-84882-046-3
– ident: ref_54
  doi: 10.1109/CCECE.2016.7726726
– ident: ref_66
  doi: 10.1109/GLOBECOM38437.2019.9014278
– volume: 109
  start-page: 13
  year: 2013
  ident: ref_107
  article-title: Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2012.08.015
– volume: 167
  start-page: 322
  year: 2015
  ident: ref_79
  article-title: Human recognition using Fisher’s discriminant analysis of heartbeat interval features and ECG morphology
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.04.063
– ident: ref_38
– ident: ref_17
– volume: 271
  start-page: 1078
  year: 1996
  ident: ref_39
  article-title: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics
  publication-title: Am. J. Physiol.
– ident: ref_93
– volume: 202
  start-page: 106005
  year: 2021
  ident: ref_74
  article-title: ECG-based biometric under different psychological stress states
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2021.106005
– volume: 9
  start-page: 2002
  year: 2014
  ident: ref_72
  article-title: On evaluating ECG Biometric Systems: Session-Dependence and Body Posture
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2014.2360430
– volume: 11314
  start-page: 410
  year: 2018
  ident: ref_78
  article-title: Exploratory Study of the Effects of Cardiac Murmurs on Electrocardiographic-Signal-Based Biometric Systems
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-030-03493-1_43
– volume: 6
  start-page: 928
  year: 2022
  ident: ref_61
  article-title: EDITH: ECG Biometrics Aided by Deep Learning for Reliable Individual Authentication
  publication-title: IEEE Trans. Emerg. Top. Comput. Intell.
  doi: 10.1109/TETCI.2021.3131374
– ident: ref_14
  doi: 10.1109/TSP.2016.7760964
– volume: 76
  start-page: 12709
  year: 2017
  ident: ref_15
  article-title: Biometric template extraction from a heartbeat signal captured from fingers
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-016-3694-6
– volume: 10
  start-page: 227
  year: 1983
  ident: ref_40
  article-title: A new method for detecting atrial fibrillation using R-R intervals
  publication-title: Comput. Cardiol.
– volume: 122
  start-page: 103801
  year: 2020
  ident: ref_103
  article-title: Opportunities and challenges of deep learning methods for electrocardiogram data: A systematic review
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103801
– ident: ref_96
– volume: 96
  start-page: 305
  year: 2016
  ident: ref_28
  article-title: Development of Heartbeat Detection Kit for Biometric Authentication System
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.08.143
– volume: 38
  start-page: 133
  year: 2005
  ident: ref_73
  article-title: ECG to identify individuals
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2004.05.014
– volume: 67
  start-page: 189
  year: 2017
  ident: ref_52
  article-title: ECG databases for biometric systems: A systematic review
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.030
– ident: ref_104
  doi: 10.1016/B978-012437552-9/50007-6
– ident: ref_42
  doi: 10.1145/3242969.3242985
– ident: ref_26
  doi: 10.3390/s18092782
– ident: ref_46
  doi: 10.1109/ICPEICES.2018.8897416
– ident: ref_12
– volume: 24
  start-page: 673
  year: 1997
  ident: ref_37
  article-title: A Database for Evaluation of Algorithms for Measurement of QT and Other Waveform Intervals in the ECG
  publication-title: Comput. Cardiol.
– ident: ref_97
  doi: 10.1109/MeMeA.2017.7985899
– ident: ref_25
  doi: 10.3390/s20061695
– volume: 68
  start-page: 102820
  year: 2021
  ident: ref_85
  article-title: Heart disease detection using deep learning methods from imbalanced ECG samples
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.102820
– ident: ref_91
– volume: 49
  start-page: 1
  year: 2017
  ident: ref_102
  article-title: A survey of Wearable Biometric Recognition Systems
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2968215
– volume: 42
  start-page: 1824
  year: 2009
  ident: ref_60
  article-title: Human identification by quantifying similarity and dissimilarity in electrocardiogram phase space
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.11.020
– volume: Volume 10255
  start-page: 169
  year: 2017
  ident: ref_23
  article-title: Impact of the Acquisition Time on ECG Compression-Based Biometric Identification Systems
  publication-title: Pattern Recognition and Image Analysis
  doi: 10.1007/978-3-319-58838-4_19
– ident: ref_51
  doi: 10.1109/WIFS.2013.6707790
– volume: 10
  start-page: 267
  year: 2016
  ident: ref_47
  article-title: ECG biometric analysis in different physiological recording conditions
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-014-0737-1
– ident: ref_99
SSID ssj0023338
Score 2.490814
SecondaryResourceType review_article
Snippet In the last decades, researchers have shown the potential of using Electrocardiogram (ECG) as a biometric trait due to its uniqueness and hidden nature....
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1507
SubjectTerms acquisition devices
acquisition methods
Algorithms
Analysis
Bibliometrics
Biometric identification
Biometric Identification - methods
Biometrics
Biometry
Biometry - methods
Data collection
Discriminant analysis
electrocardiogram
Electrocardiography
Electrocardiography - methods
Electrodes
Heart
Humans
Medical equipment
Pattern recognition
Physiology
Sensors
Systematic Review
Wearable computers
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBajT9tDabsf9ZoObRS6F9PEJyvS3tKtpQy6h3aFvAnpbNFCcbYl-f93ZzkmZoW-7DUW5ny6831ffPpOiBMia5OKT7cT2KhzZQrIvdWYU7GIVNCtCsgHha9_6Ks79X1ezrdGfXFPWJIHTo47UwR4IwSwqkYFOlgWdKH7mHHpqdZHfvtSzduQqY5qATGvpCMEROrPlgS0gaHPoPq0Iv3_voq3atGwT3Kr8Fzuid0OMcpZsnRfvKibA_FqS0fwtZif8yF61tqXN5uGoEXzRc7kbS_ULNNXALlo5EUafYNtKyp3Z8lvfuXlDH-vH1ILl7xuB0sv34i7y4ufX6_ybmRCjiWoVQ4IgQhKNAZLNN7gWBcxKO8VqHI6icFixFhNg8EKaS0UsajIfQReVR2Mhrdip1k09aGQgW4SKZ0RNRCLMraubCTve0WUDMsiE583rnTY6YnzWItHR7yCve56r2fiU7_0VxLReGrROe9Hv4B1r9sfKBpcFw3uuWjIxCnvpuPsJGPQd4cM6JFY58rNCDCBthM2f7TZcNel7dIVBIYtK21OMvGxv0wJx19RfFMv1u0awoxjbcnidyk-eptBE1kplc7EdBA5g4caXmke7ltRb2sJfMH4_f_wwpF4WVAO8D9FhR2JndWfdX1M2GkVPrRp8heCURZH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB1BucAB8U2gVAYhwSXqbux4bS5o-6UKqRyASnuz7ElcKqGk7e7-f2YSb7oRFdfEiia2x_OePX4D8JHI2rTi2-0ENupcmULm3mrMKVhECuhWBeSLwmff9em5-rYoF2nDbZnSKjdrYrdQVy3yHvl-QTjFsgji9OvVdc5Vo_h0NZXQuA8PWLqMU7pmi1vCJYl_9WpCkqj9_pLgtmQANIpBnVT_vwvyVkQaZ0tuhZ-TJ_A44UYx7wf6Kdyrm2fwaEtN8DksDvgqPSvuix-btKC2-SLm4ucg1yz6swDRNuK4L4CDXUIq52iJI7_yYo7X68s-kUucdeWlly_g_OT41-Fpngon5FhKtcolykA0JRqDJRpvcKKLGJT3SqpyNo3BYsRYzYLBCqmtLGJREXAgCKvqYLR8CTtN29SvQQT6SCSnRtSSuJSxdWUjYQiviJhhWWTwedOVDpOqOBe3-OOIXXCvu6HXM_gwNL3qpTTuanTA4zE0YPXr7kF7c-GSMzlFJCiS2VbVqKQOlkV-aG6ZSekJ_8UMPvFoOvZRMgZ9umpAv8RqV25OsElqO2XzdzcD7pLzLt3tVMvg_fCa3I7PUnxTt-uuDSHHibZk8at-fgw2S02UpVQ6g9lo5ox-avymufzdSXtbSxBMTt7836y38JCr3vNOUGF3YWd1s67fETZahb3OAf4CSRQPIA
  priority: 102
  providerName: ProQuest
Title Biometric Recognition: A Systematic Review on Electrocardiogram Data Acquisition Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/36772546
https://www.proquest.com/docview/2774980801
https://www.proquest.com/docview/2775620697
https://pubmed.ncbi.nlm.nih.gov/PMC9921530
https://doaj.org/article/4974f3b394ec436b901961f9805a143f
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEB_uA-TuQfw2epZVBH2J12Y3ya4g0mrrIfSQ00LfwmaS1YMjuesH6H_vTL5o8J586UMzTSeZmcxvsrO_AXhNxdoo493tBDZyX-lA-tZE6FOycJTQjUqRNwrPz6Ozhfq6DJd70M7YbG7g-tbSjudJLVZX737f_PlIAf-BK04q2U_XBKMlA5t9OKT_iDk-56pbTAgklWE1qVBf_AjuyIjQZcjodycrVeT9_z6id3JUv39yJyHN7sHdBkmKcW36-7CXFw_geIdf8CEsJ7y5njn4xUXbKFQW78VYfO8InEW9OiDKQkzrkThYtahy15b4bDdWjPFme1m3dol5NXB6_QgWs-mPT2d-M0rBx1CqjS9RplS4OK0xRG01DqPApcpaJVUYj1xq0KHL4lRjhiQrAxdkBCUI1Ko81ZF8DAdFWeRPQaR0EkdhjhhJqq60yTPjCFVYRaUahoEHb9tbmWDDM87jLq4SqjfYAElnAA9edaLXNbnGbUITtkcnwHzY1Rfl6mfShFeiqCxypLZROSoZpYZpf8jb9DC0hAidB2_Ymgn7ESmDttl8QJfE_FfJmICUjMyI1T9pDZ603pgEBJINM3COPHjZHaZA5NUVW-TltpIhLDmMDGn8pPaPTufWzTyIe57Tu6j-keLyV0X2bQyBMjl89t-_fA5HAcUAvzYKzAkcbFbb_AUBqU06gP14GdOnnn0ZwOFkev7tYlC9lBhUAfQXaawiKQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgaB4BI1azveGAmhLW21pd0eoJX25iaTGCqhpO3uCvGn-I3M5NVdgbj1moysiT2e-SYefwPwmpK1Qc632wlsFKFOpApTazCkYOEpoFudIV8Unhya8bH-PI2na_C7uwvDZZWdT6wddV4h_yPflIRTLJMgDj6enYfcNYpPV7sWGo1Z7Be_flLKNvuwt03r-0bK3Z2jT-Ow7SoQYqz0PFSoMsLwPkkwxiRNMDLSZzpNtdLxcOAzix59PswSzJFklfQyp6hK-E4XWWIUjXsNrlPgjXhHDaeXCZ6ifK9hL1LKRpszgveKAddKzKtbA_wdAJYi4Gp15lK4270Dt1ucKkaNYd2FtaK8B7eW2Avvw3SLr-4zw7_40pUhVeV7MRJfe3po0Zw9iKoUO03DHawLYLkmTGyn81SM8Hxx2hSOiUndznr2AI6vZEofwnpZlcVjEBkN4smJIBpFuVtii9x6wiyppkQQYxnAu24qHbYs5txM44ejbIZn3fWzHsCrXvSsoe74l9AWr0cvwGzb9YPq4ptrN6_TlHR5UtvqArUymWVSIbLlJIpTwps-gLe8mo59AimDaXu1gT6J2bXciGCaMnbA6m90C-5aZzFzl6YdwMv-NW1zPrtJy6Ja1DKEVCNjSeNHjX30OitDKVKsTQDDFctZ-ajVN-Xp95pK3FqCfCp68n-1XsCN8dHkwB3sHe4_hZuSLJ3_Qkm7Aevzi0XxjHDZPHtebwYBJ1e9-_4ArTxNmQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRAcEG8CBQwCwSXaxHa8MRJCW7arltIKAZX2ZpxJDJVQ0nZ3hfhr_Dpm8upGIG69JpY1sWc838Qz3zD2HIO1OKfqdgQbRahSIUNnNIToLDw6dKMyoELhg0O9e6Tez5P5Bvvd1cJQWmV3JtYHdV4B_SMfCcQphkgQ45Fv0yI-TmdvT05D6iBFN61dO41GRfaLXz8xfFu82ZviXr8QYrbz5d1u2HYYCCGRahlKkBnieZ-mkEDqUoi08JlyTkmVjGOfGfDg83GWQg44VgovcvSwiPVUkaVa4ryX2OWxTGKysfH8PNiTGPs1TEZSmmi0QKgvCXwN_F_dJuBvZ7DmDYeZmmuub3aDXW8xK580SnaTbRTlLXZtjcnwNptvUxk_sf3zT11KUlW-5hP-uaeK5s09BK9KvtM034E6GZbyw_jULR2fwOnquEki4wd1a-vFHXZ0IUt6l22WVVncZzzDSTweKABaYhyXmiI3HvGLUxgUQiIC9qpbSgstozk11vhhMbKhVbf9qgfsWT_0pKHx-NegbdqPfgAxb9cPqrNvtjVkqzAA8yi2UQUoqTNDBEOo12mUOMSePmAvaTctnQ8oDLi2zAE_iZi27AQhm9QmJvG3ug237cGxsOdqHrCn_Ws0ebrHcWVRreoxiFojbVDie41-9DJLjeFSonTAxgPNGXzU8E15_L2mFTcG4Z-MHvxfrCfsCtqd_bB3uP-QXRWo6PRDSpgttrk8WxWPEKIts8e1LXD29aKN7w8B9FHP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biometric+Recognition%3A+A+Systematic+Review+on+Electrocardiogram+Data+Acquisition+Methods&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Pereira%2C+Teresa+M.+C.&rft.au=Concei%C3%A7%C3%A3o%2C+Raquel+C.&rft.au=Sencadas%2C+Vitor&rft.au=Sebasti%C3%A3o%2C+Raquel&rft.date=2023-01-29&rft.pub=MDPI&rft.eissn=1424-8220&rft.volume=23&rft.issue=3&rft_id=info:doi/10.3390%2Fs23031507&rft_id=info%3Apmid%2F36772546&rft.externalDocID=PMC9921530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon