Link prediction in paper citation network to construct paper correlation graph
Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the user...
Saved in:
Published in | EURASIP journal on wireless communications and networking Vol. 2019; no. 1; pp. 1 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
16.10.2019
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance. |
---|---|
AbstractList | Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance. Abstract Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance. |
ArticleNumber | 233 |
Author | Kou, Huaizhen Qi, Lianyong Liu, Hanwen Yan, Chao |
Author_xml | – sequence: 1 givenname: Hanwen surname: Liu fullname: Liu, Hanwen organization: School of Information Science and Engineering, Qufu Normal University – sequence: 2 givenname: Huaizhen surname: Kou fullname: Kou, Huaizhen organization: School of Information Science and Engineering, Qufu Normal University – sequence: 3 givenname: Chao surname: Yan fullname: Yan, Chao organization: School of Information Science and Engineering, Qufu Normal University – sequence: 4 givenname: Lianyong surname: Qi fullname: Qi, Lianyong email: lianyongqi@gmail.com organization: School of Information Science and Engineering, Qufu Normal University |
BookMark | eNp9UUtv1DAQtlCRaAs_gFskzgE_4-SIKkorrdpLOVuzznjxdrHD2CvUf0-2oQ9VoqcZjb6X5jthRyknZOyj4J-F6LsvRahO9S0XQytMJ1r7hh2Lrret0MNw9Gx_x05K2XKulB7kMbtaxXTbTIRj9DXm1MTUTDAhNT5WuL8krH8y3TY1Nz6nUmnv6wMmE-FugW0Ipp_v2dsAu4If_s1T9uP8283ZRbu6_n559nXVeqN0bSX21oJeBxjWUtqAwQQ_dqNB73GUobcQJALgIIMYtLTGSy19GJUGq9ZCnbLLRXfMsHUTxV9Ady5DdPeHTBsHVKPfoetG6MzsxY3xOsixF76Xa9N74IA62Fnr06I1Uf69x1LdNu8pzfGdVLzjmmupZ5RYUJ5yKYTh0VVwd6jALRW4uQJ3qMAdlO0LzsNTK0HcvcqUC7PMLmmD9JTp_6S_Ws-enQ |
CitedBy_id | crossref_primary_10_1186_s13638_020_01779_1 crossref_primary_10_1186_s13638_020_1661_4 crossref_primary_10_1142_S0218126622501602 crossref_primary_10_1109_TCSS_2022_3168010 crossref_primary_10_3233_JIFS_210807 crossref_primary_10_1109_TCSS_2022_3165739 crossref_primary_10_1145_3649140 crossref_primary_10_1109_TNSE_2020_2969489 crossref_primary_10_1155_2020_1670483 crossref_primary_10_1109_ACCESS_2021_3114590 crossref_primary_10_1109_ACCESS_2020_3019577 crossref_primary_10_1186_s12859_024_05973_6 crossref_primary_10_4103_jfcm_jfcm_33_23 crossref_primary_10_1155_2020_8881640 crossref_primary_10_1002_cae_70010 crossref_primary_10_1186_s42400_024_00305_w crossref_primary_10_1186_s13638_019_1619_6 crossref_primary_10_1186_s13638_020_01720_6 crossref_primary_10_1109_JIOT_2020_2990428 crossref_primary_10_1007_s11276_022_02940_y crossref_primary_10_1155_2020_1496973 crossref_primary_10_1109_ACCESS_2020_2976706 crossref_primary_10_1007_s11192_021_04196_3 crossref_primary_10_1109_ACCESS_2020_2983742 crossref_primary_10_1038_s41598_024_60756_6 crossref_primary_10_1186_s13677_020_00184_9 crossref_primary_10_1038_s42256_023_00735_0 crossref_primary_10_2478_jdis_2021_0024 crossref_primary_10_1155_2020_7136160 crossref_primary_10_1155_2021_5686411 crossref_primary_10_1155_2020_1467274 crossref_primary_10_32604_cmes_2022_021394 crossref_primary_10_1038_s41598_024_73316_9 crossref_primary_10_1109_ACCESS_2019_2960887 crossref_primary_10_1186_s13638_020_01820_3 crossref_primary_10_3390_math10142535 crossref_primary_10_1155_2019_9476981 crossref_primary_10_1038_s41598_022_07956_0 crossref_primary_10_1109_TKDE_2024_3447123 crossref_primary_10_1186_s13638_020_01734_0 crossref_primary_10_1016_j_heliyon_2024_e41199 crossref_primary_10_1109_ACCESS_2020_2967843 crossref_primary_10_1109_ACCESS_2020_3009675 crossref_primary_10_1016_j_asoc_2022_109749 crossref_primary_10_1155_2020_8869096 crossref_primary_10_1016_j_physa_2024_129732 crossref_primary_10_1186_s13638_019_1600_4 crossref_primary_10_1016_j_comcom_2020_04_018 crossref_primary_10_1109_ACCESS_2020_2982961 crossref_primary_10_1186_s13677_020_00203_9 crossref_primary_10_1016_j_isci_2021_103217 crossref_primary_10_1155_2020_8572161 crossref_primary_10_1007_s00607_022_01099_w crossref_primary_10_1155_2019_2875676 crossref_primary_10_1155_2020_3576542 crossref_primary_10_1109_ACCESS_2020_2974895 crossref_primary_10_1016_j_neucom_2020_07_149 crossref_primary_10_1016_j_asoc_2023_110137 crossref_primary_10_1155_2022_3943419 crossref_primary_10_1186_s13638_020_01855_6 crossref_primary_10_1109_ACCESS_2020_2978010 crossref_primary_10_1109_ACCESS_2020_2972032 crossref_primary_10_1109_TCSII_2024_3357102 crossref_primary_10_1155_2020_3805320 crossref_primary_10_1186_s13677_020_00171_0 crossref_primary_10_3390_app10030909 crossref_primary_10_1186_s13638_020_01765_7 crossref_primary_10_1186_s13638_019_1590_2 crossref_primary_10_1155_2020_8675128 crossref_primary_10_1007_s00521_019_04609_8 crossref_primary_10_1155_2020_8831341 crossref_primary_10_1186_s13638_020_01782_6 crossref_primary_10_1109_ACCESS_2020_2982674 crossref_primary_10_1016_j_cose_2020_101950 crossref_primary_10_1109_ACCESS_2020_2980891 crossref_primary_10_1109_ACCESS_2020_2971030 crossref_primary_10_1155_2020_2085638 crossref_primary_10_23919_ICN_2023_0012 crossref_primary_10_1007_s11227_019_03122_y crossref_primary_10_1109_TII_2020_2995348 crossref_primary_10_1145_3417293 |
Cites_doi | 10.1007/s11280-019-00684-y 10.1016/j.future.2017.06.022 10.1016/j.ins.2019.05.054 10.1109/TETC.2018.2860051 10.1016/j.future.2018.10.053 10.1016/j.future.2018.12.039 10.1016/j.future.2019.01.012 10.1007/978-3-319-25816-4_31 10.1109/JSAC.2017.2760458 10.1016/j.physa.2010.11.027 10.1016/j.swevo.2018.03.001 10.1109/TSC.2019.2891517 10.1109/JIOT.2018.2842470 10.1016/j.future.2018.08.007 10.1109/TKDE.2016.2597823 10.1002/asi.20591 10.1109/ACCESS.2018.2866641 10.1109/MCOM.2017.1700360 10.1016/j.future.2018.10.054 10.1209/0295-5075/89/18001 10.1016/j.ins.2018.11.030 10.1145/3330139 10.1016/j.asoc.2019.105489 10.1109/JIOT.2019.2911669 10.1137/S003614450342480 10.1109/TSUSC.2018.2881439 10.1016/j.knosys.2018.05.027 10.1016/j.future.2018.02.050 10.1109/THMS.2017.2725341 10.1016/j.knosys.2018.02.014 10.1109/TCSS.2019.2906925 10.1080/09537325.2012.748893 10.1007/s10489-017-1086-x 10.1109/MNET.2018.1800192 10.1016/j.patrec.2019.03.021 |
ContentType | Journal Article |
Copyright | The Author(s). 2019 EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s). 2019 – notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7SP 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1186/s13638-019-1561-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Electronics & Communications Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ - The Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-1499 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_6da65a4b055c4f2d81c82b58ca0ae4f7 10_1186_s13638_019_1561_7 |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFB1400600 – fundername: National Natural Science Foundation of China (CN) grantid: 61872219 |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT PHGZM PHGZT 7SC 7SP 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c534t-2e877a4bfa9b227fef5fcd6d5ecced2f87af2eaae92f194275c242cfd34a73b13 |
IEDL.DBID | BENPR |
ISSN | 1687-1499 1687-1472 |
IngestDate | Wed Aug 27 00:38:37 EDT 2025 Fri Jul 25 04:56:46 EDT 2025 Thu Apr 24 23:07:19 EDT 2025 Tue Jul 01 00:40:54 EDT 2025 Fri Feb 21 02:35:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Link prediction Authors’ information Time Keywords Paper correlated graph Paper citation network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c534t-2e877a4bfa9b227fef5fcd6d5ecced2f87af2eaae92f194275c242cfd34a73b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/2306040424?pq-origsite=%requestingapplication% |
PQID | 2306040424 |
PQPubID | 237293 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6da65a4b055c4f2d81c82b58ca0ae4f7 proquest_journals_2306040424 crossref_primary_10_1186_s13638_019_1561_7 crossref_citationtrail_10_1186_s13638_019_1561_7 springer_journals_10_1186_s13638_019_1561_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191016 |
PublicationDateYYYYMMDD | 2019-10-16 |
PublicationDate_xml | – month: 10 year: 2019 text: 20191016 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | EURASIP journal on wireless communications and networking |
PublicationTitleAbbrev | J Wireless Com Network |
PublicationYear | 2019 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | X. Wang et al., NQA: A nested anti-collision algorithm for RFID systems. ACM Trans. Embed. Comput. Syst. 18(4) (2019). https://doi.org/10.1145/3330139 LiRHLink prediction: The power of maximal entropy random walkProceedings of the 20th ACM International Conference on Information and Knowledge Management. CIKM’11201111471156 QiLTime-aware distributed service recommendation with privacy-preservationInf. Sci.201948035436410.1016/j.ins.2018.11.030 XuXAn edge computing-enabled computation offloading method with privacy preservation for internet of connected vehiclesFutur. Gener. Comput. Syst.2019968910010.1016/j.future.2019.01.012 QiLTime-Aware IoE Service Recommendation on Sparse DataMob. Inf. Syst.20162016439706112 Pages X. Zhou et al., Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data. IEEE Trans. Emerg. Top. Comput. (2018). https://doi.org/10.1109/TETC.2018.2860051 ZhangYService recommendation based on quotient space granularity analysis and covering algorithm on SparkKnowl.-Based Syst.2018147253510.1016/j.knosys.2018.02.014 X. Wang et al., Improved multi-order distributed HOSVD with its incremental computing for smart city services. IEEE Trans. Sustain. Comput. (2018). https://doi.org/10.1109/TSUSC.2018.2881439 Z. Gao et al., Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet Things J. (2019) XuYPrivacy-preserving and scalable service recommendation based on SimHash in a distributed cloud environmentComplexity2017201734378549 pages E. Bastami et al., A gravitation-based link prediction approach in social networks. Swarm Evol. Comput. Available online (2018) BackstromLRomantic partnerships and the dispersion of social ties: A network analysis of relationship status on FacebookProc. 17th ACM Conf. Comput. Supported Cooperative Work Social Comput2014831841 Z. Wen et al., h-index-based link prediction methods in citation network. Scientometrics (2018) AielloLMFriendship prediction and homophily in social mediaACM Trans. Web (TWEB)2012629 DingSA long video caption generation algorithm for big video data retrievalFutur. Gener. Comput. Syst.20199358359510.1016/j.future.2018.10.054 WangXA tensor-based big data-driven routing recommendation approach for heterogeneous networksIEEE Netw. Mag.2019331646910.1109/MNET.2018.1800192 LiWOn improving the accuracy with auto-encoder on conjunctivitisAppl. Soft Comput.20198110548910.1016/j.asoc.2019.105489 S. Zhang et al., A trajectory privacy-preserving scheme based on a dual-K mechanism for continuous location-based services. Inf. Sci. (2019). https://doi.org/10.1016/j.ins.2019.05.054 ZhangSA dual privacy preserving scheme in continuous location-based servicesIEEE Internet Things J.2018554191420010.1109/JIOT.2018.2842470 ZhouXAnalysis of user network and correlation for community discovery based on topic-aware similarity and behavioral influenceIEEE Trans. Hum. Mach. Syst.2018486559571137698510.1109/THMS.2017.2725341 L. Pan et al., Academic Paper Recommendation Based on Heterogeneous Graph. Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (Springer, Guangzhou, 2015), pp. 381–392 LeskovecJGraphs over Time: Densification Laws, Shrinking Diameters and Possible ExplanationsACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)2005 L. Qi et al., Finding all you need: Web APIs recommendation in web of things through keywords search. IEEE Trans. Comput. Soc. Syst. (2019). https://doi.org/10.1109/TCSS.2019.2906925 MunizCPCombining contextual, temporal and topological information for unsupervised link prediction in social networkKnowl.-Based Syst.201815612913710.1016/j.knosys.2018.05.027 ChuanPMLink prediction in co-authorship networks based on hybrid content similarity metricAppl. Intell.20184882470224810.1007/s10489-017-1086-x GongWPrivacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environmentWirel. Commun. Mob. Comput.2018201830758498 pages WangZAn approach to cold-start link prediction: Establishing connections between non-topological and topological informationIEEE Trans. Knowl. Data Eng.201628112857287010.1109/TKDE.2016.2597823 NewmanMEJThe structure and function of complex networksSIAM Rev.2003452167256201037710.1137/S003614450342480 L. Qi et al., A QoS-aware virtual machine scheduling method for energy conservation in Cloud-based Cyber-Physical Systems. World Wide Web J. (2019). https://doi.org/10.1007/s11280-019-00684-y Liben-NowellDThe link-prediction problem for social networksJ. Am. Soc. Inf. Sci. Technol.20075871019103110.1002/asi.20591 GaoZCognitive-inspired class-statistic matching with triple-constrain for camera free 3D object retrievalFutur. Gener. Comput. Syst.20199464165310.1016/j.future.2018.12.039 LeeCHow to assess patent infringement risks: A semantic patent claim analysis using dependency relationshipsTech. Anal. Strat. Manag.201325233810.1080/09537325.2012.748893 DingSImage caption generation with high-level image featuresPattern Recogn. Lett.2019123899510.1016/j.patrec.2019.03.021 LüLLink prediction in weighted networks: The role of weak tiesEurophys. Lett. Assoc.20108911800110.1209/0295-5075/89/18001 LüLLink prediction in complex networks: A surveyPhys. A201139061150117010.1016/j.physa.2010.11.027 QiLA two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environmentFutur. Gener. Comput. Syst.20188863664310.1016/j.future.2018.02.050 QiLDynamic mobile crowdsourcing selection for electricity load forecastingIEEE Access20186469264693710.1109/ACCESS.2018.2866641 QiLA distributed locality-sensitive hashing based approach for cloud service recommendation from multi-source dataIEEE J. Sel. Areas Commun.201735112616262410.1109/JSAC.2017.2760458 ZhangSA caching and spatial K-anonymity driven privacy enhancement scheme in continuous location-based servicesFutur. Gener. Comput. Syst.201994405010.1016/j.future.2018.10.053 WangXA cloud-edge computing framework for cyber-physical-social servicesIEEE Commun. Mag.20175511808510.1109/MCOM.2017.1700360 ClausetAHierarchical structure and the prediction of missing links in networksNat. Publ. Group200845398101 Y. Zhang et al., Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2891517 ZhangSEnhancing privacy through uniform grid and caching in location-based servicesFutur. Gener. Comput. Syst.20188688189210.1016/j.future.2017.06.022 WanSMulti-dimensional data indexing and range query processing via Voronoi diagram for internet of thingsFutur. Gener. Comput. Syst.20199138239110.1016/j.future.2018.08.007 W Gong (1561_CR27) 2018; 2018 L Qi (1561_CR30) 2017; 35 1561_CR19 1561_CR1 1561_CR39 1561_CR2 PM Chuan (1561_CR16) 2018; 48 S Wan (1561_CR36) 2019; 91 Z Wang (1561_CR9) 2016; 28 D Liben-Nowell (1561_CR15) 2007; 58 L Lü (1561_CR12) 2010; 89 1561_CR10 Y Zhang (1561_CR34) 2018; 147 X Zhou (1561_CR3) 2018; 48 LM Aiello (1561_CR4) 2012; 6 RH Li (1561_CR8) 2011 L Qi (1561_CR24) 2019; 480 W Li (1561_CR21) 2019; 81 J Leskovec (1561_CR18) 2005 S Zhang (1561_CR25) 2019; 94 S Zhang (1561_CR43) 2018; 5 L Qi (1561_CR17) 2016; 2016 L Backstrom (1561_CR13) 2014 Z Gao (1561_CR35) 2019; 94 L Qi (1561_CR33) 2018; 88 1561_CR28 C Lee (1561_CR5) 2013; 25 X Wang (1561_CR37) 2019; 33 S Zhang (1561_CR40) 2018; 86 L Qi (1561_CR41) 2018; 6 1561_CR26 MEJ Newman (1561_CR11) 2003; 45 X Wang (1561_CR32) 2017; 55 S Ding (1561_CR38) 2019; 93 CP Muniz (1561_CR14) 2018; 156 1561_CR23 1561_CR44 1561_CR20 1561_CR42 L Lü (1561_CR6) 2011; 390 S Ding (1561_CR22) 2019; 123 X Xu (1561_CR29) 2019; 96 A Clauset (1561_CR7) 2008; 453 Y Xu (1561_CR31) 2017; 2017 |
References_xml | – reference: E. Bastami et al., A gravitation-based link prediction approach in social networks. Swarm Evol. Comput. Available online (2018) – reference: MunizCPCombining contextual, temporal and topological information for unsupervised link prediction in social networkKnowl.-Based Syst.201815612913710.1016/j.knosys.2018.05.027 – reference: AielloLMFriendship prediction and homophily in social mediaACM Trans. Web (TWEB)2012629 – reference: L. Qi et al., A QoS-aware virtual machine scheduling method for energy conservation in Cloud-based Cyber-Physical Systems. World Wide Web J. (2019). https://doi.org/10.1007/s11280-019-00684-y – reference: WangXA tensor-based big data-driven routing recommendation approach for heterogeneous networksIEEE Netw. Mag.2019331646910.1109/MNET.2018.1800192 – reference: LiWOn improving the accuracy with auto-encoder on conjunctivitisAppl. Soft Comput.20198110548910.1016/j.asoc.2019.105489 – reference: WanSMulti-dimensional data indexing and range query processing via Voronoi diagram for internet of thingsFutur. Gener. Comput. Syst.20199138239110.1016/j.future.2018.08.007 – reference: ZhangSA dual privacy preserving scheme in continuous location-based servicesIEEE Internet Things J.2018554191420010.1109/JIOT.2018.2842470 – reference: X. Wang et al., Improved multi-order distributed HOSVD with its incremental computing for smart city services. IEEE Trans. Sustain. Comput. (2018). https://doi.org/10.1109/TSUSC.2018.2881439 – reference: QiLTime-aware distributed service recommendation with privacy-preservationInf. Sci.201948035436410.1016/j.ins.2018.11.030 – reference: LeeCHow to assess patent infringement risks: A semantic patent claim analysis using dependency relationshipsTech. Anal. Strat. Manag.201325233810.1080/09537325.2012.748893 – reference: L. Qi et al., Finding all you need: Web APIs recommendation in web of things through keywords search. IEEE Trans. Comput. Soc. Syst. (2019). https://doi.org/10.1109/TCSS.2019.2906925 – reference: ClausetAHierarchical structure and the prediction of missing links in networksNat. Publ. Group200845398101 – reference: QiLTime-Aware IoE Service Recommendation on Sparse DataMob. Inf. Syst.20162016439706112 Pages – reference: ZhangSEnhancing privacy through uniform grid and caching in location-based servicesFutur. Gener. Comput. Syst.20188688189210.1016/j.future.2017.06.022 – reference: LüLLink prediction in complex networks: A surveyPhys. A201139061150117010.1016/j.physa.2010.11.027 – reference: Y. Zhang et al., Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2891517 – reference: GongWPrivacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environmentWirel. Commun. Mob. Comput.2018201830758498 pages – reference: LüLLink prediction in weighted networks: The role of weak tiesEurophys. Lett. Assoc.20108911800110.1209/0295-5075/89/18001 – reference: ZhangSA caching and spatial K-anonymity driven privacy enhancement scheme in continuous location-based servicesFutur. Gener. Comput. Syst.201994405010.1016/j.future.2018.10.053 – reference: QiLA two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environmentFutur. Gener. Comput. Syst.20188863664310.1016/j.future.2018.02.050 – reference: GaoZCognitive-inspired class-statistic matching with triple-constrain for camera free 3D object retrievalFutur. Gener. Comput. Syst.20199464165310.1016/j.future.2018.12.039 – reference: ZhouXAnalysis of user network and correlation for community discovery based on topic-aware similarity and behavioral influenceIEEE Trans. Hum. Mach. Syst.2018486559571137698510.1109/THMS.2017.2725341 – reference: L. Pan et al., Academic Paper Recommendation Based on Heterogeneous Graph. Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (Springer, Guangzhou, 2015), pp. 381–392 – reference: WangXA cloud-edge computing framework for cyber-physical-social servicesIEEE Commun. Mag.20175511808510.1109/MCOM.2017.1700360 – reference: BackstromLRomantic partnerships and the dispersion of social ties: A network analysis of relationship status on FacebookProc. 17th ACM Conf. Comput. Supported Cooperative Work Social Comput2014831841 – reference: ChuanPMLink prediction in co-authorship networks based on hybrid content similarity metricAppl. Intell.20184882470224810.1007/s10489-017-1086-x – reference: DingSImage caption generation with high-level image featuresPattern Recogn. Lett.2019123899510.1016/j.patrec.2019.03.021 – reference: ZhangYService recommendation based on quotient space granularity analysis and covering algorithm on SparkKnowl.-Based Syst.2018147253510.1016/j.knosys.2018.02.014 – reference: Liben-NowellDThe link-prediction problem for social networksJ. Am. Soc. Inf. Sci. Technol.20075871019103110.1002/asi.20591 – reference: LiRHLink prediction: The power of maximal entropy random walkProceedings of the 20th ACM International Conference on Information and Knowledge Management. CIKM’11201111471156 – reference: X. Wang et al., NQA: A nested anti-collision algorithm for RFID systems. ACM Trans. Embed. Comput. Syst. 18(4) (2019). https://doi.org/10.1145/3330139 – reference: LeskovecJGraphs over Time: Densification Laws, Shrinking Diameters and Possible ExplanationsACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)2005 – reference: Z. Gao et al., Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet Things J. (2019) – reference: QiLDynamic mobile crowdsourcing selection for electricity load forecastingIEEE Access20186469264693710.1109/ACCESS.2018.2866641 – reference: DingSA long video caption generation algorithm for big video data retrievalFutur. Gener. Comput. Syst.20199358359510.1016/j.future.2018.10.054 – reference: WangZAn approach to cold-start link prediction: Establishing connections between non-topological and topological informationIEEE Trans. Knowl. Data Eng.201628112857287010.1109/TKDE.2016.2597823 – reference: Z. Wen et al., h-index-based link prediction methods in citation network. Scientometrics (2018) – reference: S. Zhang et al., A trajectory privacy-preserving scheme based on a dual-K mechanism for continuous location-based services. Inf. Sci. (2019). https://doi.org/10.1016/j.ins.2019.05.054 – reference: XuXAn edge computing-enabled computation offloading method with privacy preservation for internet of connected vehiclesFutur. Gener. Comput. Syst.2019968910010.1016/j.future.2019.01.012 – reference: NewmanMEJThe structure and function of complex networksSIAM Rev.2003452167256201037710.1137/S003614450342480 – reference: QiLA distributed locality-sensitive hashing based approach for cloud service recommendation from multi-source dataIEEE J. Sel. Areas Commun.201735112616262410.1109/JSAC.2017.2760458 – reference: XuYPrivacy-preserving and scalable service recommendation based on SimHash in a distributed cloud environmentComplexity2017201734378549 pages – reference: X. Zhou et al., Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data. IEEE Trans. Emerg. Top. Comput. (2018). https://doi.org/10.1109/TETC.2018.2860051 – ident: 1561_CR39 doi: 10.1007/s11280-019-00684-y – volume: 86 start-page: 881 year: 2018 ident: 1561_CR40 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2017.06.022 – volume-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) year: 2005 ident: 1561_CR18 – ident: 1561_CR28 doi: 10.1016/j.ins.2019.05.054 – ident: 1561_CR2 doi: 10.1109/TETC.2018.2860051 – volume: 6 start-page: 9 issue: 2 year: 2012 ident: 1561_CR4 publication-title: ACM Trans. Web (TWEB) – volume: 94 start-page: 40 year: 2019 ident: 1561_CR25 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.10.053 – volume: 94 start-page: 641 year: 2019 ident: 1561_CR35 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.12.039 – volume: 453 start-page: 98 year: 2008 ident: 1561_CR7 publication-title: Nat. Publ. Group – volume: 96 start-page: 89 year: 2019 ident: 1561_CR29 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2019.01.012 – ident: 1561_CR1 doi: 10.1007/978-3-319-25816-4_31 – volume: 2018 start-page: 3075849 year: 2018 ident: 1561_CR27 publication-title: Wirel. Commun. Mob. Comput. – volume: 35 start-page: 2616 issue: 11 year: 2017 ident: 1561_CR30 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2017.2760458 – volume: 390 start-page: 1150 issue: 6 year: 2011 ident: 1561_CR6 publication-title: Phys. A doi: 10.1016/j.physa.2010.11.027 – ident: 1561_CR10 doi: 10.1016/j.swevo.2018.03.001 – ident: 1561_CR42 doi: 10.1109/TSC.2019.2891517 – volume: 5 start-page: 4191 issue: 5 year: 2018 ident: 1561_CR43 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2842470 – volume: 91 start-page: 382 year: 2019 ident: 1561_CR36 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.08.007 – volume: 28 start-page: 2857 issue: 11 year: 2016 ident: 1561_CR9 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2597823 – volume: 58 start-page: 1019 issue: 7 year: 2007 ident: 1561_CR15 publication-title: J. Am. Soc. Inf. Sci. Technol. doi: 10.1002/asi.20591 – volume: 6 start-page: 46926 year: 2018 ident: 1561_CR41 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2866641 – volume: 55 start-page: 80 issue: 11 year: 2017 ident: 1561_CR32 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2017.1700360 – volume: 93 start-page: 583 year: 2019 ident: 1561_CR38 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.10.054 – volume: 89 start-page: 18001 issue: 1 year: 2010 ident: 1561_CR12 publication-title: Europhys. Lett. Assoc. doi: 10.1209/0295-5075/89/18001 – volume: 480 start-page: 354 year: 2019 ident: 1561_CR24 publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.11.030 – ident: 1561_CR44 doi: 10.1145/3330139 – ident: 1561_CR19 – volume: 81 start-page: 105489 year: 2019 ident: 1561_CR21 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105489 – ident: 1561_CR23 doi: 10.1109/JIOT.2019.2911669 – volume: 45 start-page: 167 issue: 2 year: 2003 ident: 1561_CR11 publication-title: SIAM Rev. doi: 10.1137/S003614450342480 – volume: 2017 start-page: 3437854 year: 2017 ident: 1561_CR31 publication-title: Complexity – volume: 2016 start-page: 4397061 year: 2016 ident: 1561_CR17 publication-title: Mob. Inf. Syst. – ident: 1561_CR26 doi: 10.1109/TSUSC.2018.2881439 – volume: 156 start-page: 129 year: 2018 ident: 1561_CR14 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.05.027 – volume: 88 start-page: 636 year: 2018 ident: 1561_CR33 publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2018.02.050 – volume: 48 start-page: 559 issue: 6 year: 2018 ident: 1561_CR3 publication-title: IEEE Trans. Hum. Mach. Syst. doi: 10.1109/THMS.2017.2725341 – volume: 147 start-page: 25 year: 2018 ident: 1561_CR34 publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.02.014 – ident: 1561_CR20 doi: 10.1109/TCSS.2019.2906925 – volume: 25 start-page: 23 year: 2013 ident: 1561_CR5 publication-title: Tech. Anal. Strat. Manag. doi: 10.1080/09537325.2012.748893 – volume: 48 start-page: 2470 issue: 8 year: 2018 ident: 1561_CR16 publication-title: Appl. Intell. doi: 10.1007/s10489-017-1086-x – volume: 33 start-page: 64 issue: 1 year: 2019 ident: 1561_CR37 publication-title: IEEE Netw. Mag. doi: 10.1109/MNET.2018.1800192 – volume: 123 start-page: 89 year: 2019 ident: 1561_CR22 publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2019.03.021 – start-page: 831 volume-title: Proc. 17th ACM Conf. Comput. Supported Cooperative Work Social Comput year: 2014 ident: 1561_CR13 – start-page: 1147 volume-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. CIKM’11 year: 2011 ident: 1561_CR8 |
SSID | ssj0033492 |
Score | 2.5228016 |
Snippet | Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords... Abstract Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Authors’ information Citation analysis Communications Engineering Correlation Engineering Information Systems Applications (incl.Internet) Keywords Link prediction Multi-modal Sensor Data Fusion in Internet of Things Networks Paper citation network Paper correlated graph Recommender systems Signal,Image and Speech Processing Time User requirements User satisfaction |
SummonAdditionalLinks | – databaseName: DOAJ - The Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE6ur5OBJCbZpXj2qKCK4Jxf2FvKYgCDdovv_MUnb9QHqxWs7hek3k8wMmXyD0JkCGYy1JeHSCpJmORClfEOkdbVhKjQyz1h6nIr7GXuY8_mnUV-pJ6ynB-6BuxTeCG6YLTl3LFCvKqeo5cqZ0gAL-R55jHljMdXvwXXi3BvOMCslLt-qOvpZLJsbEuuVisgvUSiT9X_JML8diuZYc7eNtoYkEV_1yu2gNWh30eYn6sA9NE1FJO5e0zlLwhY_t7gzHbxiN7Bu47bv8MbLBXaLgSh2lEkzOfouOJwpq_fR7O726eaeDLMRiOM1WxIKSsoISzCNpVQGCDw4LzyPJgFPg5ImUDAGGhqqJtqAuxiMXfA1M7K2VX2A1ttFC4cICxPXtGNeADgGoBoGVkBixvO-CbQsUDlipcdfSPMrXnQuIJTQPbw6wqsTvFoW6Hz1SdezZvwmfJ0MsBJMhNf5QXQDPbiB_ssNCjQZzaeHVfimU3kVNylGWYEuRpN-vP5Ro6P_0OgYbdDscCWpxAStRyvDSUxglvY0--o7J0vt5w priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lRw8KcE2zatHXRQR9KTgLeQxEUG6y-7-f0zSVl1RwWs7Cck8MjNM8g1CpwpkMNYWhEsrSOrlQJTyNZHWVYapUMvcY-n-Qdw-sbtn_ty94573t937kmQ-qbNZK3ExL6uoKzH1rUnMOUoiV9Eaj6l7UutxeuLQHr9Vgtvrypc_DltyQBmnfym4_FYPzW7mZgttdvEhvmwFuo1WoNlBG19QA3fRQ8of8XSWSiyJrfi1wVMzhRl2HeA2btrL3XgxwW7SYcT2NKkdR3sBDme06j30dHP9OL4lXVsE4njFFoSCktIwG0xtKZUBAg_OC8-jNMDToKQJFIyBmoayjuznLvphF3zFjKxsWe2jQTNp4ABhYaI5O-YFgGMAqmZgBSRQPO_rQIshKnpe6X4LqXXFm865gxK6Za-O7NWJvVoO0dnHkGkLmPEX8VUSwAdhwrrOHyazF92ZjhbeCB73W_C41EC9Kp2ilitnCgMsxElGvfh0Z4BznTKreD4xyobovBfp5-9fV3T4L-ojtE6zZhWkFCM0iOKE4xikLOxJVsp3wdvhBA priority: 102 providerName: Springer Nature |
Title | Link prediction in paper citation network to construct paper correlation graph |
URI | https://link.springer.com/article/10.1186/s13638-019-1561-7 https://www.proquest.com/docview/2306040424 https://doaj.org/article/6da65a4b055c4f2d81c82b58ca0ae4f7 |
Volume | 2019 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZ5XNpDaPqgm6RBh55aRGxZL59CsmQTAllC6UJuQs9SKLa7u_-fjmQ5aQrNZcC2LKR5SDMa8Q1Cn1WQ0VhbES6tIKmWA1HKt0Ra1ximYitzjaW7pbhZsdsH_lAO3DblWuW0JuaF2vcunZGfJVcZFI5Rdj78JqlqVMqulhIau2gflmAFwdf-5dXy_tu0FjcJey-FXAJMqWaSlrxmrcTZpm5A9yCUbgnEMDWRz3amDOD_zOv8J1Ga95_FG3RQHEd8MUr6EO2E7i16_Rec4Du0TIElHtYp95L4jX92eDBDWGNXkLhxN976xtseu76Ax05tUp2O8WYczjDW79FqcfV9fkNKvQTieMO2hAYlpWE2mtZSKmOIPDovPAcxBU-jkibSYExoaaxbkAt3sEG76BtmZGPr5gPa6_oufERYGLBzx7wIwbEQVMuCFSGh5XnfRlrNUDXxSk9TSDUtfukcVCihR_ZqYK9O7NVyhr48_jKMSBovNb5MAnhsmECw84t-_UMXm9LCG8FhvhWHoUbqVe0UtVw5U5nAInRyMolPF8vc6Cc9mqGvk0ifPv93REcvd3aMXtGsShWpxQnaA_mFT-CubO0p2mXVNVC1ADrqJzzNKUtUzE_zMQDQFb34A7Lc7Pk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxKoOFPABLiCrifccEGIbprSdUyv1ZrwiJJSEmZEQf4rfiJ-TtBSJ3npNHCt-m9_Lc74Poec6qmSdq4hQThLgciBah4Yo55nlOjWqcCwdLeXihH8-Fadb6Pf0Lwwcq5xiYgnUofPwjXwPUuVscJzyN_0PAqxR0F2dKDQGsziIv37mkm39ev9D1u8LSucfj98vyMgqQLxgfENo1EpZ7pJtHKUqxSSSDzKIvJgYaNLKJhqtjQ1NucKnSvi8jfkUGLeKuZrlea-h65yxBjxKzz9NkZ8B0h8UeDI7bs0VHbuotZZ765plS8-Fe0NyxVQTdWEfLHQBF3Lcf9qyZbeb30G3xzQVvx3s6i7aiu09dOsv8ML7aAllLO5X0OkB7eJvLe5tH1fYj7jfuB3OmONNh303QtVOY4AVZDiHhwto9gN0ciVyfIi2266NOwhLm6OK50HG6HmMuuHRyQjYfCE0iVYzVE2yMtMSgEHjuykljJZmEK_J4jUgXqNm6OXZI_2A23HZ4HeggLOBALldLnSrr2b0YCODlSKvtxL5VRMNuvaaOqG9rWzkKU-yO6nPjHFgbc6tdoZeTSo9v_3fN3p0-WTP0I3F8dGhOdxfHjxGN2kxq4rUchdtZ13GJzlR2rinxTox-nLV7vAHy9cmJw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMpLLLTgA1xA1iaOYzsHhCjtqqWwqhCVejN-okpVEnZXQvw1fh3jPFqKRG-9Jo4Vz3syk28AXqogo7E2o6W0gqZZDlQpX1FpXWG4ipXsZix9XoiDE_7xtDzdgN_jvzCprXK0iZ2h9o1L38hnKVRGgeOMz-LQFnG8N3_X_qBpglSqtI7jNHoROQq_fmL6tnp7uIe8fsXYfP_rhwM6TBigriz4mrKgpDTcRlNZxmQMsYzOC1_iwYJnUUkTWTAmVCxits9k6dCluegLbmRh8wL3vQWbErOibAKbu_uL4y-jHygS7l9K9wSqcc4lG2qquRKzVV6g3GMaX1HMn3Iqr3jFbnjAlYj3nyJt5_vmW3BvCFrJ-17K7sNGqB_A3b-gDB_CIiW1pF2muk_iNTmrSWvasCRuQAEndd9xTtYNcc0AXDuuSTNC-q480kFoP4KTG6HkY5jUTR2eABEGbYzjXoTgeAiq4sGKkJD6vK8iy6aQjbTS4xHSPI1z3SU0SuievBrJqxN5tZzC64tH2h7F47rFu4kBFwsTAHd3oVl-14M-a-GNKPG8WYmvGplXuVPMlsqZzAQecZPtkX16sAorfSnDU3gzsvTy9n_f6On1m72A26gK-tPh4ugZ3GGdVGU0F9swQVaGHYya1vb5IJ4Evt20RvwBRA0ruQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Link+prediction+in+paper+citation+network+to+construct+paper+correlation+graph&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Liu%2C+Hanwen&rft.au=Kou%2C+Huaizhen&rft.au=Yan%2C+Chao&rft.au=Qi%2C+Lianyong&rft.date=2019-10-16&rft.issn=1687-1499&rft.eissn=1687-1499&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-019-1561-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13638_019_1561_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |