Link prediction in paper citation network to construct paper correlation graph

Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the user...

Full description

Saved in:
Bibliographic Details
Published inEURASIP journal on wireless communications and networking Vol. 2019; no. 1; pp. 1 - 12
Main Authors Liu, Hanwen, Kou, Huaizhen, Yan, Chao, Qi, Lianyong
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 16.10.2019
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance.
AbstractList Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance.
Abstract Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords that a user is interested in, recommender system returns a set of papers that satisfy the user’s need of keywords. Besides, to satisfy the users’ requirements of further research on a certain domain, the recommended papers must be correlated. However, each paper of an existing paper citation network hardly has cited relationships with others, so the correlated links among papers are very sparse. In addition, while a mass of research approaches have been put forward in terms of link prediction to address the network sparsity problems, these approaches have no relationship with the effect of self-citations and the potential correlations among papers (i.e., these correlated relationships are not included in the paper citation network as their published time is close). Therefore, we propose a link prediction approach that combines time, keywords, and authors’ information and optimizes the existing paper citation network. Finally, a number of experiments are performed on the real-world Hep-Th datasets. The experimental results demonstrate the feasibility of our proposal and achieve good performance.
ArticleNumber 233
Author Kou, Huaizhen
Qi, Lianyong
Liu, Hanwen
Yan, Chao
Author_xml – sequence: 1
  givenname: Hanwen
  surname: Liu
  fullname: Liu, Hanwen
  organization: School of Information Science and Engineering, Qufu Normal University
– sequence: 2
  givenname: Huaizhen
  surname: Kou
  fullname: Kou, Huaizhen
  organization: School of Information Science and Engineering, Qufu Normal University
– sequence: 3
  givenname: Chao
  surname: Yan
  fullname: Yan, Chao
  organization: School of Information Science and Engineering, Qufu Normal University
– sequence: 4
  givenname: Lianyong
  surname: Qi
  fullname: Qi, Lianyong
  email: lianyongqi@gmail.com
  organization: School of Information Science and Engineering, Qufu Normal University
BookMark eNp9UUtv1DAQtlCRaAs_gFskzgE_4-SIKkorrdpLOVuzznjxdrHD2CvUf0-2oQ9VoqcZjb6X5jthRyknZOyj4J-F6LsvRahO9S0XQytMJ1r7hh2Lrret0MNw9Gx_x05K2XKulB7kMbtaxXTbTIRj9DXm1MTUTDAhNT5WuL8krH8y3TY1Nz6nUmnv6wMmE-FugW0Ipp_v2dsAu4If_s1T9uP8283ZRbu6_n559nXVeqN0bSX21oJeBxjWUtqAwQQ_dqNB73GUobcQJALgIIMYtLTGSy19GJUGq9ZCnbLLRXfMsHUTxV9Ady5DdPeHTBsHVKPfoetG6MzsxY3xOsixF76Xa9N74IA62Fnr06I1Uf69x1LdNu8pzfGdVLzjmmupZ5RYUJ5yKYTh0VVwd6jALRW4uQJ3qMAdlO0LzsNTK0HcvcqUC7PMLmmD9JTp_6S_Ws-enQ
CitedBy_id crossref_primary_10_1186_s13638_020_01779_1
crossref_primary_10_1186_s13638_020_1661_4
crossref_primary_10_1142_S0218126622501602
crossref_primary_10_1109_TCSS_2022_3168010
crossref_primary_10_3233_JIFS_210807
crossref_primary_10_1109_TCSS_2022_3165739
crossref_primary_10_1145_3649140
crossref_primary_10_1109_TNSE_2020_2969489
crossref_primary_10_1155_2020_1670483
crossref_primary_10_1109_ACCESS_2021_3114590
crossref_primary_10_1109_ACCESS_2020_3019577
crossref_primary_10_1186_s12859_024_05973_6
crossref_primary_10_4103_jfcm_jfcm_33_23
crossref_primary_10_1155_2020_8881640
crossref_primary_10_1002_cae_70010
crossref_primary_10_1186_s42400_024_00305_w
crossref_primary_10_1186_s13638_019_1619_6
crossref_primary_10_1186_s13638_020_01720_6
crossref_primary_10_1109_JIOT_2020_2990428
crossref_primary_10_1007_s11276_022_02940_y
crossref_primary_10_1155_2020_1496973
crossref_primary_10_1109_ACCESS_2020_2976706
crossref_primary_10_1007_s11192_021_04196_3
crossref_primary_10_1109_ACCESS_2020_2983742
crossref_primary_10_1038_s41598_024_60756_6
crossref_primary_10_1186_s13677_020_00184_9
crossref_primary_10_1038_s42256_023_00735_0
crossref_primary_10_2478_jdis_2021_0024
crossref_primary_10_1155_2020_7136160
crossref_primary_10_1155_2021_5686411
crossref_primary_10_1155_2020_1467274
crossref_primary_10_32604_cmes_2022_021394
crossref_primary_10_1038_s41598_024_73316_9
crossref_primary_10_1109_ACCESS_2019_2960887
crossref_primary_10_1186_s13638_020_01820_3
crossref_primary_10_3390_math10142535
crossref_primary_10_1155_2019_9476981
crossref_primary_10_1038_s41598_022_07956_0
crossref_primary_10_1109_TKDE_2024_3447123
crossref_primary_10_1186_s13638_020_01734_0
crossref_primary_10_1016_j_heliyon_2024_e41199
crossref_primary_10_1109_ACCESS_2020_2967843
crossref_primary_10_1109_ACCESS_2020_3009675
crossref_primary_10_1016_j_asoc_2022_109749
crossref_primary_10_1155_2020_8869096
crossref_primary_10_1016_j_physa_2024_129732
crossref_primary_10_1186_s13638_019_1600_4
crossref_primary_10_1016_j_comcom_2020_04_018
crossref_primary_10_1109_ACCESS_2020_2982961
crossref_primary_10_1186_s13677_020_00203_9
crossref_primary_10_1016_j_isci_2021_103217
crossref_primary_10_1155_2020_8572161
crossref_primary_10_1007_s00607_022_01099_w
crossref_primary_10_1155_2019_2875676
crossref_primary_10_1155_2020_3576542
crossref_primary_10_1109_ACCESS_2020_2974895
crossref_primary_10_1016_j_neucom_2020_07_149
crossref_primary_10_1016_j_asoc_2023_110137
crossref_primary_10_1155_2022_3943419
crossref_primary_10_1186_s13638_020_01855_6
crossref_primary_10_1109_ACCESS_2020_2978010
crossref_primary_10_1109_ACCESS_2020_2972032
crossref_primary_10_1109_TCSII_2024_3357102
crossref_primary_10_1155_2020_3805320
crossref_primary_10_1186_s13677_020_00171_0
crossref_primary_10_3390_app10030909
crossref_primary_10_1186_s13638_020_01765_7
crossref_primary_10_1186_s13638_019_1590_2
crossref_primary_10_1155_2020_8675128
crossref_primary_10_1007_s00521_019_04609_8
crossref_primary_10_1155_2020_8831341
crossref_primary_10_1186_s13638_020_01782_6
crossref_primary_10_1109_ACCESS_2020_2982674
crossref_primary_10_1016_j_cose_2020_101950
crossref_primary_10_1109_ACCESS_2020_2980891
crossref_primary_10_1109_ACCESS_2020_2971030
crossref_primary_10_1155_2020_2085638
crossref_primary_10_23919_ICN_2023_0012
crossref_primary_10_1007_s11227_019_03122_y
crossref_primary_10_1109_TII_2020_2995348
crossref_primary_10_1145_3417293
Cites_doi 10.1007/s11280-019-00684-y
10.1016/j.future.2017.06.022
10.1016/j.ins.2019.05.054
10.1109/TETC.2018.2860051
10.1016/j.future.2018.10.053
10.1016/j.future.2018.12.039
10.1016/j.future.2019.01.012
10.1007/978-3-319-25816-4_31
10.1109/JSAC.2017.2760458
10.1016/j.physa.2010.11.027
10.1016/j.swevo.2018.03.001
10.1109/TSC.2019.2891517
10.1109/JIOT.2018.2842470
10.1016/j.future.2018.08.007
10.1109/TKDE.2016.2597823
10.1002/asi.20591
10.1109/ACCESS.2018.2866641
10.1109/MCOM.2017.1700360
10.1016/j.future.2018.10.054
10.1209/0295-5075/89/18001
10.1016/j.ins.2018.11.030
10.1145/3330139
10.1016/j.asoc.2019.105489
10.1109/JIOT.2019.2911669
10.1137/S003614450342480
10.1109/TSUSC.2018.2881439
10.1016/j.knosys.2018.05.027
10.1016/j.future.2018.02.050
10.1109/THMS.2017.2725341
10.1016/j.knosys.2018.02.014
10.1109/TCSS.2019.2906925
10.1080/09537325.2012.748893
10.1007/s10489-017-1086-x
10.1109/MNET.2018.1800192
10.1016/j.patrec.2019.03.021
ContentType Journal Article
Copyright The Author(s). 2019
EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s). 2019
– notice: EURASIP Journal on Wireless Communications and Networking is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7SP
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1186/s13638-019-1561-7
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ - The Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-1499
EndPage 12
ExternalDocumentID oai_doaj_org_article_6da65a4b055c4f2d81c82b58ca0ae4f7
10_1186_s13638_019_1561_7
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFB1400600
– fundername: National Natural Science Foundation of China (CN)
  grantid: 61872219
GroupedDBID -A0
.4S
.DC
0R~
29G
2WC
3V.
4.4
40G
5GY
5VS
6OB
8FE
8FG
8R4
8R5
AAFWJ
AAJSJ
AAKKN
AAKPC
ABDBF
ABEEZ
ABFTD
ABUWG
ACACY
ACGFS
ACUHS
ACULB
ADBBV
ADDVE
ADINQ
ADMLS
AENEX
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBLON
EBS
EDO
EJD
EMK
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
HZ~
I-F
K6V
K7-
KQ8
M0N
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
Q2X
RHU
RNS
RSV
SEG
SOJ
TUS
U2A
XSB
AASML
AAYXX
CITATION
OVT
PHGZM
PHGZT
7SC
7SP
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c534t-2e877a4bfa9b227fef5fcd6d5ecced2f87af2eaae92f194275c242cfd34a73b13
IEDL.DBID BENPR
ISSN 1687-1499
1687-1472
IngestDate Wed Aug 27 00:38:37 EDT 2025
Fri Jul 25 04:56:46 EDT 2025
Thu Apr 24 23:07:19 EDT 2025
Tue Jul 01 00:40:54 EDT 2025
Fri Feb 21 02:35:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Link prediction
Authors’ information
Time
Keywords
Paper correlated graph
Paper citation network
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c534t-2e877a4bfa9b227fef5fcd6d5ecced2f87af2eaae92f194275c242cfd34a73b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2306040424?pq-origsite=%requestingapplication%
PQID 2306040424
PQPubID 237293
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_6da65a4b055c4f2d81c82b58ca0ae4f7
proquest_journals_2306040424
crossref_primary_10_1186_s13638_019_1561_7
crossref_citationtrail_10_1186_s13638_019_1561_7
springer_journals_10_1186_s13638_019_1561_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191016
PublicationDateYYYYMMDD 2019-10-16
PublicationDate_xml – month: 10
  year: 2019
  text: 20191016
  day: 16
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on wireless communications and networking
PublicationTitleAbbrev J Wireless Com Network
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References X. Wang et al., NQA: A nested anti-collision algorithm for RFID systems. ACM Trans. Embed. Comput. Syst. 18(4) (2019). https://doi.org/10.1145/3330139
LiRHLink prediction: The power of maximal entropy random walkProceedings of the 20th ACM International Conference on Information and Knowledge Management. CIKM’11201111471156
QiLTime-aware distributed service recommendation with privacy-preservationInf. Sci.201948035436410.1016/j.ins.2018.11.030
XuXAn edge computing-enabled computation offloading method with privacy preservation for internet of connected vehiclesFutur. Gener. Comput. Syst.2019968910010.1016/j.future.2019.01.012
QiLTime-Aware IoE Service Recommendation on Sparse DataMob. Inf. Syst.20162016439706112 Pages
X. Zhou et al., Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data. IEEE Trans. Emerg. Top. Comput. (2018). https://doi.org/10.1109/TETC.2018.2860051
ZhangYService recommendation based on quotient space granularity analysis and covering algorithm on SparkKnowl.-Based Syst.2018147253510.1016/j.knosys.2018.02.014
X. Wang et al., Improved multi-order distributed HOSVD with its incremental computing for smart city services. IEEE Trans. Sustain. Comput. (2018). https://doi.org/10.1109/TSUSC.2018.2881439
Z. Gao et al., Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet Things J. (2019)
XuYPrivacy-preserving and scalable service recommendation based on SimHash in a distributed cloud environmentComplexity2017201734378549 pages
E. Bastami et al., A gravitation-based link prediction approach in social networks. Swarm Evol. Comput. Available online (2018)
BackstromLRomantic partnerships and the dispersion of social ties: A network analysis of relationship status on FacebookProc. 17th ACM Conf. Comput. Supported Cooperative Work Social Comput2014831841
Z. Wen et al., h-index-based link prediction methods in citation network. Scientometrics (2018)
AielloLMFriendship prediction and homophily in social mediaACM Trans. Web (TWEB)2012629
DingSA long video caption generation algorithm for big video data retrievalFutur. Gener. Comput. Syst.20199358359510.1016/j.future.2018.10.054
WangXA tensor-based big data-driven routing recommendation approach for heterogeneous networksIEEE Netw. Mag.2019331646910.1109/MNET.2018.1800192
LiWOn improving the accuracy with auto-encoder on conjunctivitisAppl. Soft Comput.20198110548910.1016/j.asoc.2019.105489
S. Zhang et al., A trajectory privacy-preserving scheme based on a dual-K mechanism for continuous location-based services. Inf. Sci. (2019). https://doi.org/10.1016/j.ins.2019.05.054
ZhangSA dual privacy preserving scheme in continuous location-based servicesIEEE Internet Things J.2018554191420010.1109/JIOT.2018.2842470
ZhouXAnalysis of user network and correlation for community discovery based on topic-aware similarity and behavioral influenceIEEE Trans. Hum. Mach. Syst.2018486559571137698510.1109/THMS.2017.2725341
L. Pan et al., Academic Paper Recommendation Based on Heterogeneous Graph. Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (Springer, Guangzhou, 2015), pp. 381–392
LeskovecJGraphs over Time: Densification Laws, Shrinking Diameters and Possible ExplanationsACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)2005
L. Qi et al., Finding all you need: Web APIs recommendation in web of things through keywords search. IEEE Trans. Comput. Soc. Syst. (2019). https://doi.org/10.1109/TCSS.2019.2906925
MunizCPCombining contextual, temporal and topological information for unsupervised link prediction in social networkKnowl.-Based Syst.201815612913710.1016/j.knosys.2018.05.027
ChuanPMLink prediction in co-authorship networks based on hybrid content similarity metricAppl. Intell.20184882470224810.1007/s10489-017-1086-x
GongWPrivacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environmentWirel. Commun. Mob. Comput.2018201830758498 pages
WangZAn approach to cold-start link prediction: Establishing connections between non-topological and topological informationIEEE Trans. Knowl. Data Eng.201628112857287010.1109/TKDE.2016.2597823
NewmanMEJThe structure and function of complex networksSIAM Rev.2003452167256201037710.1137/S003614450342480
L. Qi et al., A QoS-aware virtual machine scheduling method for energy conservation in Cloud-based Cyber-Physical Systems. World Wide Web J. (2019). https://doi.org/10.1007/s11280-019-00684-y
Liben-NowellDThe link-prediction problem for social networksJ. Am. Soc. Inf. Sci. Technol.20075871019103110.1002/asi.20591
GaoZCognitive-inspired class-statistic matching with triple-constrain for camera free 3D object retrievalFutur. Gener. Comput. Syst.20199464165310.1016/j.future.2018.12.039
LeeCHow to assess patent infringement risks: A semantic patent claim analysis using dependency relationshipsTech. Anal. Strat. Manag.201325233810.1080/09537325.2012.748893
DingSImage caption generation with high-level image featuresPattern Recogn. Lett.2019123899510.1016/j.patrec.2019.03.021
LüLLink prediction in weighted networks: The role of weak tiesEurophys. Lett. Assoc.20108911800110.1209/0295-5075/89/18001
LüLLink prediction in complex networks: A surveyPhys. A201139061150117010.1016/j.physa.2010.11.027
QiLA two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environmentFutur. Gener. Comput. Syst.20188863664310.1016/j.future.2018.02.050
QiLDynamic mobile crowdsourcing selection for electricity load forecastingIEEE Access20186469264693710.1109/ACCESS.2018.2866641
QiLA distributed locality-sensitive hashing based approach for cloud service recommendation from multi-source dataIEEE J. Sel. Areas Commun.201735112616262410.1109/JSAC.2017.2760458
ZhangSA caching and spatial K-anonymity driven privacy enhancement scheme in continuous location-based servicesFutur. Gener. Comput. Syst.201994405010.1016/j.future.2018.10.053
WangXA cloud-edge computing framework for cyber-physical-social servicesIEEE Commun. Mag.20175511808510.1109/MCOM.2017.1700360
ClausetAHierarchical structure and the prediction of missing links in networksNat. Publ. Group200845398101
Y. Zhang et al., Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2891517
ZhangSEnhancing privacy through uniform grid and caching in location-based servicesFutur. Gener. Comput. Syst.20188688189210.1016/j.future.2017.06.022
WanSMulti-dimensional data indexing and range query processing via Voronoi diagram for internet of thingsFutur. Gener. Comput. Syst.20199138239110.1016/j.future.2018.08.007
W Gong (1561_CR27) 2018; 2018
L Qi (1561_CR30) 2017; 35
1561_CR19
1561_CR1
1561_CR39
1561_CR2
PM Chuan (1561_CR16) 2018; 48
S Wan (1561_CR36) 2019; 91
Z Wang (1561_CR9) 2016; 28
D Liben-Nowell (1561_CR15) 2007; 58
L Lü (1561_CR12) 2010; 89
1561_CR10
Y Zhang (1561_CR34) 2018; 147
X Zhou (1561_CR3) 2018; 48
LM Aiello (1561_CR4) 2012; 6
RH Li (1561_CR8) 2011
L Qi (1561_CR24) 2019; 480
W Li (1561_CR21) 2019; 81
J Leskovec (1561_CR18) 2005
S Zhang (1561_CR25) 2019; 94
S Zhang (1561_CR43) 2018; 5
L Qi (1561_CR17) 2016; 2016
L Backstrom (1561_CR13) 2014
Z Gao (1561_CR35) 2019; 94
L Qi (1561_CR33) 2018; 88
1561_CR28
C Lee (1561_CR5) 2013; 25
X Wang (1561_CR37) 2019; 33
S Zhang (1561_CR40) 2018; 86
L Qi (1561_CR41) 2018; 6
1561_CR26
MEJ Newman (1561_CR11) 2003; 45
X Wang (1561_CR32) 2017; 55
S Ding (1561_CR38) 2019; 93
CP Muniz (1561_CR14) 2018; 156
1561_CR23
1561_CR44
1561_CR20
1561_CR42
L Lü (1561_CR6) 2011; 390
S Ding (1561_CR22) 2019; 123
X Xu (1561_CR29) 2019; 96
A Clauset (1561_CR7) 2008; 453
Y Xu (1561_CR31) 2017; 2017
References_xml – reference: E. Bastami et al., A gravitation-based link prediction approach in social networks. Swarm Evol. Comput. Available online (2018)
– reference: MunizCPCombining contextual, temporal and topological information for unsupervised link prediction in social networkKnowl.-Based Syst.201815612913710.1016/j.knosys.2018.05.027
– reference: AielloLMFriendship prediction and homophily in social mediaACM Trans. Web (TWEB)2012629
– reference: L. Qi et al., A QoS-aware virtual machine scheduling method for energy conservation in Cloud-based Cyber-Physical Systems. World Wide Web J. (2019). https://doi.org/10.1007/s11280-019-00684-y
– reference: WangXA tensor-based big data-driven routing recommendation approach for heterogeneous networksIEEE Netw. Mag.2019331646910.1109/MNET.2018.1800192
– reference: LiWOn improving the accuracy with auto-encoder on conjunctivitisAppl. Soft Comput.20198110548910.1016/j.asoc.2019.105489
– reference: WanSMulti-dimensional data indexing and range query processing via Voronoi diagram for internet of thingsFutur. Gener. Comput. Syst.20199138239110.1016/j.future.2018.08.007
– reference: ZhangSA dual privacy preserving scheme in continuous location-based servicesIEEE Internet Things J.2018554191420010.1109/JIOT.2018.2842470
– reference: X. Wang et al., Improved multi-order distributed HOSVD with its incremental computing for smart city services. IEEE Trans. Sustain. Comput. (2018). https://doi.org/10.1109/TSUSC.2018.2881439
– reference: QiLTime-aware distributed service recommendation with privacy-preservationInf. Sci.201948035436410.1016/j.ins.2018.11.030
– reference: LeeCHow to assess patent infringement risks: A semantic patent claim analysis using dependency relationshipsTech. Anal. Strat. Manag.201325233810.1080/09537325.2012.748893
– reference: L. Qi et al., Finding all you need: Web APIs recommendation in web of things through keywords search. IEEE Trans. Comput. Soc. Syst. (2019). https://doi.org/10.1109/TCSS.2019.2906925
– reference: ClausetAHierarchical structure and the prediction of missing links in networksNat. Publ. Group200845398101
– reference: QiLTime-Aware IoE Service Recommendation on Sparse DataMob. Inf. Syst.20162016439706112 Pages
– reference: ZhangSEnhancing privacy through uniform grid and caching in location-based servicesFutur. Gener. Comput. Syst.20188688189210.1016/j.future.2017.06.022
– reference: LüLLink prediction in complex networks: A surveyPhys. A201139061150117010.1016/j.physa.2010.11.027
– reference: Y. Zhang et al., Covering-based web service quality prediction via neighborhood-aware matrix factorization. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/TSC.2019.2891517
– reference: GongWPrivacy-aware multidimensional mobile service quality prediction and recommendation in distributed fog environmentWirel. Commun. Mob. Comput.2018201830758498 pages
– reference: LüLLink prediction in weighted networks: The role of weak tiesEurophys. Lett. Assoc.20108911800110.1209/0295-5075/89/18001
– reference: ZhangSA caching and spatial K-anonymity driven privacy enhancement scheme in continuous location-based servicesFutur. Gener. Comput. Syst.201994405010.1016/j.future.2018.10.053
– reference: QiLA two-stage locality-sensitive hashing based approach for privacy-preserving mobile service recommendation in cross-platform edge environmentFutur. Gener. Comput. Syst.20188863664310.1016/j.future.2018.02.050
– reference: GaoZCognitive-inspired class-statistic matching with triple-constrain for camera free 3D object retrievalFutur. Gener. Comput. Syst.20199464165310.1016/j.future.2018.12.039
– reference: ZhouXAnalysis of user network and correlation for community discovery based on topic-aware similarity and behavioral influenceIEEE Trans. Hum. Mach. Syst.2018486559571137698510.1109/THMS.2017.2725341
– reference: L. Pan et al., Academic Paper Recommendation Based on Heterogeneous Graph. Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data (Springer, Guangzhou, 2015), pp. 381–392
– reference: WangXA cloud-edge computing framework for cyber-physical-social servicesIEEE Commun. Mag.20175511808510.1109/MCOM.2017.1700360
– reference: BackstromLRomantic partnerships and the dispersion of social ties: A network analysis of relationship status on FacebookProc. 17th ACM Conf. Comput. Supported Cooperative Work Social Comput2014831841
– reference: ChuanPMLink prediction in co-authorship networks based on hybrid content similarity metricAppl. Intell.20184882470224810.1007/s10489-017-1086-x
– reference: DingSImage caption generation with high-level image featuresPattern Recogn. Lett.2019123899510.1016/j.patrec.2019.03.021
– reference: ZhangYService recommendation based on quotient space granularity analysis and covering algorithm on SparkKnowl.-Based Syst.2018147253510.1016/j.knosys.2018.02.014
– reference: Liben-NowellDThe link-prediction problem for social networksJ. Am. Soc. Inf. Sci. Technol.20075871019103110.1002/asi.20591
– reference: LiRHLink prediction: The power of maximal entropy random walkProceedings of the 20th ACM International Conference on Information and Knowledge Management. CIKM’11201111471156
– reference: X. Wang et al., NQA: A nested anti-collision algorithm for RFID systems. ACM Trans. Embed. Comput. Syst. 18(4) (2019). https://doi.org/10.1145/3330139
– reference: LeskovecJGraphs over Time: Densification Laws, Shrinking Diameters and Possible ExplanationsACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)2005
– reference: Z. Gao et al., Adaptive fusion and category-level dictionary learning model for multi-view human action recognition. IEEE Internet Things J. (2019)
– reference: QiLDynamic mobile crowdsourcing selection for electricity load forecastingIEEE Access20186469264693710.1109/ACCESS.2018.2866641
– reference: DingSA long video caption generation algorithm for big video data retrievalFutur. Gener. Comput. Syst.20199358359510.1016/j.future.2018.10.054
– reference: WangZAn approach to cold-start link prediction: Establishing connections between non-topological and topological informationIEEE Trans. Knowl. Data Eng.201628112857287010.1109/TKDE.2016.2597823
– reference: Z. Wen et al., h-index-based link prediction methods in citation network. Scientometrics (2018)
– reference: S. Zhang et al., A trajectory privacy-preserving scheme based on a dual-K mechanism for continuous location-based services. Inf. Sci. (2019). https://doi.org/10.1016/j.ins.2019.05.054
– reference: XuXAn edge computing-enabled computation offloading method with privacy preservation for internet of connected vehiclesFutur. Gener. Comput. Syst.2019968910010.1016/j.future.2019.01.012
– reference: NewmanMEJThe structure and function of complex networksSIAM Rev.2003452167256201037710.1137/S003614450342480
– reference: QiLA distributed locality-sensitive hashing based approach for cloud service recommendation from multi-source dataIEEE J. Sel. Areas Commun.201735112616262410.1109/JSAC.2017.2760458
– reference: XuYPrivacy-preserving and scalable service recommendation based on SimHash in a distributed cloud environmentComplexity2017201734378549 pages
– reference: X. Zhou et al., Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data. IEEE Trans. Emerg. Top. Comput. (2018). https://doi.org/10.1109/TETC.2018.2860051
– ident: 1561_CR39
  doi: 10.1007/s11280-019-00684-y
– volume: 86
  start-page: 881
  year: 2018
  ident: 1561_CR40
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.06.022
– volume-title: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD)
  year: 2005
  ident: 1561_CR18
– ident: 1561_CR28
  doi: 10.1016/j.ins.2019.05.054
– ident: 1561_CR2
  doi: 10.1109/TETC.2018.2860051
– volume: 6
  start-page: 9
  issue: 2
  year: 2012
  ident: 1561_CR4
  publication-title: ACM Trans. Web (TWEB)
– volume: 94
  start-page: 40
  year: 2019
  ident: 1561_CR25
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.10.053
– volume: 94
  start-page: 641
  year: 2019
  ident: 1561_CR35
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.12.039
– volume: 453
  start-page: 98
  year: 2008
  ident: 1561_CR7
  publication-title: Nat. Publ. Group
– volume: 96
  start-page: 89
  year: 2019
  ident: 1561_CR29
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.01.012
– ident: 1561_CR1
  doi: 10.1007/978-3-319-25816-4_31
– volume: 2018
  start-page: 3075849
  year: 2018
  ident: 1561_CR27
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 35
  start-page: 2616
  issue: 11
  year: 2017
  ident: 1561_CR30
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2017.2760458
– volume: 390
  start-page: 1150
  issue: 6
  year: 2011
  ident: 1561_CR6
  publication-title: Phys. A
  doi: 10.1016/j.physa.2010.11.027
– ident: 1561_CR10
  doi: 10.1016/j.swevo.2018.03.001
– ident: 1561_CR42
  doi: 10.1109/TSC.2019.2891517
– volume: 5
  start-page: 4191
  issue: 5
  year: 2018
  ident: 1561_CR43
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2018.2842470
– volume: 91
  start-page: 382
  year: 2019
  ident: 1561_CR36
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.08.007
– volume: 28
  start-page: 2857
  issue: 11
  year: 2016
  ident: 1561_CR9
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2597823
– volume: 58
  start-page: 1019
  issue: 7
  year: 2007
  ident: 1561_CR15
  publication-title: J. Am. Soc. Inf. Sci. Technol.
  doi: 10.1002/asi.20591
– volume: 6
  start-page: 46926
  year: 2018
  ident: 1561_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2866641
– volume: 55
  start-page: 80
  issue: 11
  year: 2017
  ident: 1561_CR32
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2017.1700360
– volume: 93
  start-page: 583
  year: 2019
  ident: 1561_CR38
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.10.054
– volume: 89
  start-page: 18001
  issue: 1
  year: 2010
  ident: 1561_CR12
  publication-title: Europhys. Lett. Assoc.
  doi: 10.1209/0295-5075/89/18001
– volume: 480
  start-page: 354
  year: 2019
  ident: 1561_CR24
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.11.030
– ident: 1561_CR44
  doi: 10.1145/3330139
– ident: 1561_CR19
– volume: 81
  start-page: 105489
  year: 2019
  ident: 1561_CR21
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105489
– ident: 1561_CR23
  doi: 10.1109/JIOT.2019.2911669
– volume: 45
  start-page: 167
  issue: 2
  year: 2003
  ident: 1561_CR11
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450342480
– volume: 2017
  start-page: 3437854
  year: 2017
  ident: 1561_CR31
  publication-title: Complexity
– volume: 2016
  start-page: 4397061
  year: 2016
  ident: 1561_CR17
  publication-title: Mob. Inf. Syst.
– ident: 1561_CR26
  doi: 10.1109/TSUSC.2018.2881439
– volume: 156
  start-page: 129
  year: 2018
  ident: 1561_CR14
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.05.027
– volume: 88
  start-page: 636
  year: 2018
  ident: 1561_CR33
  publication-title: Futur. Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.02.050
– volume: 48
  start-page: 559
  issue: 6
  year: 2018
  ident: 1561_CR3
  publication-title: IEEE Trans. Hum. Mach. Syst.
  doi: 10.1109/THMS.2017.2725341
– volume: 147
  start-page: 25
  year: 2018
  ident: 1561_CR34
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.02.014
– ident: 1561_CR20
  doi: 10.1109/TCSS.2019.2906925
– volume: 25
  start-page: 23
  year: 2013
  ident: 1561_CR5
  publication-title: Tech. Anal. Strat. Manag.
  doi: 10.1080/09537325.2012.748893
– volume: 48
  start-page: 2470
  issue: 8
  year: 2018
  ident: 1561_CR16
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1086-x
– volume: 33
  start-page: 64
  issue: 1
  year: 2019
  ident: 1561_CR37
  publication-title: IEEE Netw. Mag.
  doi: 10.1109/MNET.2018.1800192
– volume: 123
  start-page: 89
  year: 2019
  ident: 1561_CR22
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2019.03.021
– start-page: 831
  volume-title: Proc. 17th ACM Conf. Comput. Supported Cooperative Work Social Comput
  year: 2014
  ident: 1561_CR13
– start-page: 1147
  volume-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. CIKM’11
  year: 2011
  ident: 1561_CR8
SSID ssj0033492
Score 2.5228016
Snippet Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of keywords...
Abstract Nowadays, recommender system has become one of the main tools to search for users’ interested papers. Since one paper often contains only a part of...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Authors’ information
Citation analysis
Communications Engineering
Correlation
Engineering
Information Systems Applications (incl.Internet)
Keywords
Link prediction
Multi-modal Sensor Data Fusion in Internet of Things
Networks
Paper citation network
Paper correlated graph
Recommender systems
Signal,Image and Speech Processing
Time
User requirements
User satisfaction
SummonAdditionalLinks – databaseName: DOAJ - The Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE6ur5OBJCbZpXj2qKCK4Jxf2FvKYgCDdovv_MUnb9QHqxWs7hek3k8wMmXyD0JkCGYy1JeHSCpJmORClfEOkdbVhKjQyz1h6nIr7GXuY8_mnUV-pJ6ynB-6BuxTeCG6YLTl3LFCvKqeo5cqZ0gAL-R55jHljMdXvwXXi3BvOMCslLt-qOvpZLJsbEuuVisgvUSiT9X_JML8diuZYc7eNtoYkEV_1yu2gNWh30eYn6sA9NE1FJO5e0zlLwhY_t7gzHbxiN7Bu47bv8MbLBXaLgSh2lEkzOfouOJwpq_fR7O726eaeDLMRiOM1WxIKSsoISzCNpVQGCDw4LzyPJgFPg5ImUDAGGhqqJtqAuxiMXfA1M7K2VX2A1ttFC4cICxPXtGNeADgGoBoGVkBixvO-CbQsUDlipcdfSPMrXnQuIJTQPbw6wqsTvFoW6Hz1SdezZvwmfJ0MsBJMhNf5QXQDPbiB_ssNCjQZzaeHVfimU3kVNylGWYEuRpN-vP5Ro6P_0OgYbdDscCWpxAStRyvDSUxglvY0--o7J0vt5w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lRw8KcE2zatHXRQR9KTgLeQxEUG6y-7-f0zSVl1RwWs7Cck8MjNM8g1CpwpkMNYWhEsrSOrlQJTyNZHWVYapUMvcY-n-Qdw-sbtn_ty94573t937kmQ-qbNZK3ExL6uoKzH1rUnMOUoiV9Eaj6l7UutxeuLQHr9Vgtvrypc_DltyQBmnfym4_FYPzW7mZgttdvEhvmwFuo1WoNlBG19QA3fRQ8of8XSWSiyJrfi1wVMzhRl2HeA2btrL3XgxwW7SYcT2NKkdR3sBDme06j30dHP9OL4lXVsE4njFFoSCktIwG0xtKZUBAg_OC8-jNMDToKQJFIyBmoayjuznLvphF3zFjKxsWe2jQTNp4ABhYaI5O-YFgGMAqmZgBSRQPO_rQIshKnpe6X4LqXXFm865gxK6Za-O7NWJvVoO0dnHkGkLmPEX8VUSwAdhwrrOHyazF92ZjhbeCB73W_C41EC9Kp2ilitnCgMsxElGvfh0Z4BznTKreD4xyobovBfp5-9fV3T4L-ojtE6zZhWkFCM0iOKE4xikLOxJVsp3wdvhBA
  priority: 102
  providerName: Springer Nature
Title Link prediction in paper citation network to construct paper correlation graph
URI https://link.springer.com/article/10.1186/s13638-019-1561-7
https://www.proquest.com/docview/2306040424
https://doaj.org/article/6da65a4b055c4f2d81c82b58ca0ae4f7
Volume 2019
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZ5XNpDaPqgm6RBh55aRGxZL59CsmQTAllC6UJuQs9SKLa7u_-fjmQ5aQrNZcC2LKR5SDMa8Q1Cn1WQ0VhbES6tIKmWA1HKt0Ra1ximYitzjaW7pbhZsdsH_lAO3DblWuW0JuaF2vcunZGfJVcZFI5Rdj78JqlqVMqulhIau2gflmAFwdf-5dXy_tu0FjcJey-FXAJMqWaSlrxmrcTZpm5A9yCUbgnEMDWRz3amDOD_zOv8J1Ga95_FG3RQHEd8MUr6EO2E7i16_Rec4Du0TIElHtYp95L4jX92eDBDWGNXkLhxN976xtseu76Ax05tUp2O8WYczjDW79FqcfV9fkNKvQTieMO2hAYlpWE2mtZSKmOIPDovPAcxBU-jkibSYExoaaxbkAt3sEG76BtmZGPr5gPa6_oufERYGLBzx7wIwbEQVMuCFSGh5XnfRlrNUDXxSk9TSDUtfukcVCihR_ZqYK9O7NVyhr48_jKMSBovNb5MAnhsmECw84t-_UMXm9LCG8FhvhWHoUbqVe0UtVw5U5nAInRyMolPF8vc6Cc9mqGvk0ifPv93REcvd3aMXtGsShWpxQnaA_mFT-CubO0p2mXVNVC1ADrqJzzNKUtUzE_zMQDQFb34A7Lc7Pk
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKOQAHxKoOFPABLiCrifccEGIbprSdUyv1ZrwiJJSEmZEQf4rfiJ-TtBSJ3npNHCt-m9_Lc74Poec6qmSdq4hQThLgciBah4Yo55nlOjWqcCwdLeXihH8-Fadb6Pf0Lwwcq5xiYgnUofPwjXwPUuVscJzyN_0PAqxR0F2dKDQGsziIv37mkm39ev9D1u8LSucfj98vyMgqQLxgfENo1EpZ7pJtHKUqxSSSDzKIvJgYaNLKJhqtjQ1NucKnSvi8jfkUGLeKuZrlea-h65yxBjxKzz9NkZ8B0h8UeDI7bs0VHbuotZZ765plS8-Fe0NyxVQTdWEfLHQBF3Lcf9qyZbeb30G3xzQVvx3s6i7aiu09dOsv8ML7aAllLO5X0OkB7eJvLe5tH1fYj7jfuB3OmONNh303QtVOY4AVZDiHhwto9gN0ciVyfIi2266NOwhLm6OK50HG6HmMuuHRyQjYfCE0iVYzVE2yMtMSgEHjuykljJZmEK_J4jUgXqNm6OXZI_2A23HZ4HeggLOBALldLnSrr2b0YCODlSKvtxL5VRMNuvaaOqG9rWzkKU-yO6nPjHFgbc6tdoZeTSo9v_3fN3p0-WTP0I3F8dGhOdxfHjxGN2kxq4rUchdtZ13GJzlR2rinxTox-nLV7vAHy9cmJw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggMpLLLTgA1xA1iaOYzsHhCjtqqWwqhCVejN-okpVEnZXQvw1fh3jPFqKRG-9Jo4Vz3syk28AXqogo7E2o6W0gqZZDlQpX1FpXWG4ipXsZix9XoiDE_7xtDzdgN_jvzCprXK0iZ2h9o1L38hnKVRGgeOMz-LQFnG8N3_X_qBpglSqtI7jNHoROQq_fmL6tnp7uIe8fsXYfP_rhwM6TBigriz4mrKgpDTcRlNZxmQMsYzOC1_iwYJnUUkTWTAmVCxits9k6dCluegLbmRh8wL3vQWbErOibAKbu_uL4y-jHygS7l9K9wSqcc4lG2qquRKzVV6g3GMaX1HMn3Iqr3jFbnjAlYj3nyJt5_vmW3BvCFrJ-17K7sNGqB_A3b-gDB_CIiW1pF2muk_iNTmrSWvasCRuQAEndd9xTtYNcc0AXDuuSTNC-q480kFoP4KTG6HkY5jUTR2eABEGbYzjXoTgeAiq4sGKkJD6vK8iy6aQjbTS4xHSPI1z3SU0SuievBrJqxN5tZzC64tH2h7F47rFu4kBFwsTAHd3oVl-14M-a-GNKPG8WYmvGplXuVPMlsqZzAQecZPtkX16sAorfSnDU3gzsvTy9n_f6On1m72A26gK-tPh4ugZ3GGdVGU0F9swQVaGHYya1vb5IJ4Evt20RvwBRA0ruQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Link+prediction+in+paper+citation+network+to+construct+paper+correlation+graph&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Liu%2C+Hanwen&rft.au=Kou%2C+Huaizhen&rft.au=Yan%2C+Chao&rft.au=Qi%2C+Lianyong&rft.date=2019-10-16&rft.issn=1687-1499&rft.eissn=1687-1499&rft.volume=2019&rft.issue=1&rft_id=info:doi/10.1186%2Fs13638-019-1561-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13638_019_1561_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon