Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores

ABSTRACT As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually ra...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 83; no. 12; pp. 2293 - 2306
Main Authors Parente, Daniel J., Ray, J. Christian J., Swint-Kruse, Liskin
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.12.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank‐ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly‐used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6‐bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column‐specific properties such as sequence entropy and random noise were subtracted; “central” positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints—detectable by divergent algorithms—that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293–2306. © 2015 Wiley Periodicals, Inc.
AbstractList As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions.As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions.
ABSTRACT As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank‐ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly‐used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6‐bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column‐specific properties such as sequence entropy and random noise were subtracted; “central” positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints—detectable by divergent algorithms—that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293–2306. © 2015 Wiley Periodicals, Inc.
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints--detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293-2306. © 2015 Wiley Periodicals, Inc.
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms-that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293-2306.
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions.
Author Parente, Daniel J.
Ray, J. Christian J.
Swint-Kruse, Liskin
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Parente
  fullname: Parente, Daniel J.
  organization: Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, 66160, Kansas City
– sequence: 2
  givenname: J. Christian J.
  surname: Ray
  fullname: Ray, J. Christian J.
  organization: Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Kansas, 66047, Lawrence
– sequence: 3
  givenname: Liskin
  surname: Swint-Kruse
  fullname: Swint-Kruse, Liskin
  email: lswint-kruse@kumc.edu
  organization: Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, 66160, Kansas City
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26503808$$D View this record in MEDLINE/PubMed
BookMark eNqN0VFr1TAYBuAgE3c2vfEHSMAbETrTpmmSy3HUTRhO3MTLkKZfNWdtckzSzf4I_7OpZ9vFEPEqCTzvB_neA7TnvAOEnpfkqCSkerMNPh1VtazFI7QqieQFKWm9h1ZECF5QJtg-OohxQwhpJG2eoP2qYYQKIlbo1_Foncfa2A5vfbTJehdxnNoNmISTx-M0JLsdABsP136YFqDDnJ8upqCtSxEb7XALOPh2immYse3AJdtb6HA74_QdbMBgv4G7zkN9wA7SjQ9X2GQW9GDTjKPxAeJT9LjXQ4Rnt-ch-vL-3eX6tDg7P_mwPj4rDKO1KFhHDYCBXkrZVvnOOqJFw7uKEq4ll9CKuukMr1jflT2wttKG8Ur30Mi8MnqIXu3m5tX9mCAmNdpoYBi0Az9FVXJBWFVm-x-0IYLTumGZvnxAN34KLn8kK8aZlLmLrF7cqqkdoVPbYMe8UHXXSQavd8AEH2OA_p6URC2Fq6Vw9afwjMkDbGzSS0lLOcPfI-UucmMHmP8xXH36fH55lyl2GRsT_LzP6HClGk45U18_niixLi9Om4u3StDfh9_Qcg
CitedBy_id crossref_primary_10_1002_pro_4222
crossref_primary_10_1093_bioinformatics_btx148
crossref_primary_10_1093_bioinformatics_bty347
crossref_primary_10_1002_prot_26206
crossref_primary_10_1093_molbev_msaa202
crossref_primary_10_1002_prot_25953
crossref_primary_10_1016_j_jmb_2015_09_015
crossref_primary_10_1016_j_dib_2016_07_006
crossref_primary_10_1002_pro_4336
crossref_primary_10_1093_nar_gkz536
crossref_primary_10_1002_pro_4136
crossref_primary_10_1007_s00044_020_02582_9
crossref_primary_10_3390_ijms23063211
crossref_primary_10_1016_j_abb_2024_110183
crossref_primary_10_1016_j_bpj_2016_05_030
crossref_primary_10_1016_j_jbc_2024_105736
crossref_primary_10_1107_S2052252517005115
crossref_primary_10_1038_s41467_023_38519_0
crossref_primary_10_1093_database_baad030
crossref_primary_10_1371_journal_pone_0227668
Cites_doi 10.1126/science.286.5438.295
10.1038/78907
10.1371/journal.pone.0028766
10.1021/bi200896t
10.1093/nar/25.17.3389
10.1111/j.1574-6941.2006.00060.x
10.1093/nar/gkh391
10.1006/jmbi.1999.3208
10.1093/bioinformatics/bti191
10.1016/j.jmb.2003.12.078
10.1002/pro.5560071204
10.1016/j.jmb.2009.10.001
10.1186/1471-2105-5-113
10.1021/bi990242f
10.1016/j.cell.2009.07.038
10.1371/journal.pone.0084398
10.1371/journal.pone.0083502
10.1093/nar/gkn072
10.1002/prot.340180402
10.1371/journal.pone.0008591
10.1080/00223980.1954.9712925
10.1093/bib/bbr052
10.1006/jmbi.1996.0167
10.1016/j.jmb.2007.02.054
10.1093/bioinformatics/bti564
10.1016/S1359-0278(97)00060-6
10.1016/j.cell.2004.08.027
10.1021/bi00829a016
10.1110/ps.03188303
10.1093/bioinformatics/btn057
10.1080/0022250X.1972.9989806
10.1016/0022-2836(70)90057-4
10.1110/ps.35801
10.1093/molbev/msi157
10.1016/j.jmb.2015.05.011
10.1074/jbc.M402560200
10.1006/jmbi.1994.1458
10.1093/molbev/msq004
10.1371/journal.pcbi.1000633
10.1021/bi101106x
10.1002/prot.22985
10.1002/prot.10146
10.1093/bioinformatics/btp135
10.1007/978-1-61779-334-9_21
10.1136/bmj.a2338
10.1145/324133.324140
10.1093/bioinformatics/btn235
10.1002/prot.20098
10.1002/jcc.20084
10.1002/prot.10180
10.1371/journal.pgen.1001301
10.1021/bi052619p
10.1093/bib/bbm052
10.1074/jbc.272.36.22648
10.1002/prot.20321
10.1073/pnas.0711732105
10.1093/nar/gkt427
10.1002/prot.24570
10.1074/jbc.272.43.26818
10.1093/bioinformatics/btm270
10.1371/journal.pone.0027813
10.1097/OLQ.0b013e3181860711
10.1371/journal.pcbi.1004091
10.1093/nar/gkq1177
10.1101/gr.176601
10.1371/journal.pone.0010779
10.1137/S003614450342480
10.1093/bioinformatics/btm604
10.1016/j.jmb.2008.09.078
10.1002/prot.22576
10.1063/1.3453602
10.1002/prot.21972
10.1021/bi050293e
10.1093/pan/mpl002
10.1093/bioinformatics/18.3.500
10.1371/journal.pone.0038114
10.1093/nar/gkf493
10.1038/nature11510
10.1007/s12599-010-0127-3
10.1006/jmbi.1996.0479
10.1016/0022-2836(90)90126-7
10.1016/j.sbi.2008.03.007
10.1016/j.jmb.2007.08.036
10.1093/bioinformatics/bth128
10.1110/ps.04915904
10.1093/molbev/msv109
10.1093/nar/gkq399
10.1128/jb.176.6.1767-1772.1994
10.1006/jmbi.2000.4474
10.1371/journal.pone.0010232
ContentType Journal Article
Copyright 2015 Wiley Periodicals, Inc.
Copyright_xml – notice: 2015 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/prot.24948
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Virology and AIDS Abstracts
Engineering Research Database
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 2306
ExternalDocumentID 3923844791
26503808
10_1002_prot_24948
PROT24948
ark_67375_WNG_8C1SH6SD_8
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: University of Kansas Medical Center (Biomedical Research Training Program)
– fundername: National Institutes of Health
  funderid: GM079423
– fundername: K‐INBRE (Developmental Research Project award)
  funderid: P20GM103418
– fundername: NIGMS NIH HHS
  grantid: P20GM103418
– fundername: NIGMS NIH HHS
  grantid: P20 GM103418
– fundername: NIGMS NIH HHS
  grantid: R01 GM079423
– fundername: NIGMS NIH HHS
  grantid: GM079423
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5348-5d3ceecef999b23ce5d0a867d2307a979eb846dc725fd1fe5b2ac572afe691003
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Fri Jul 11 12:25:55 EDT 2025
Fri Jul 11 11:32:15 EDT 2025
Sun Jul 13 05:05:53 EDT 2025
Wed Feb 19 02:17:56 EST 2025
Tue Jul 01 00:45:09 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Wed Jan 22 17:08:53 EST 2025
Wed Oct 30 09:56:09 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords LacI/GalR
protein evolution
sequence alignment
amino acid
graph theory
coevolution
aldolase
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2015 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5348-5d3ceecef999b23ce5d0a867d2307a979eb846dc725fd1fe5b2ac572afe691003
Notes University of Kansas Medical Center (Biomedical Research Training Program)
istex:09C4EAD06DD802948E201E1FD45D11DCD691F249
ArticleID:PROT24948
K-INBRE (Developmental Research Project award) - No. P20GM103418
ark:/67375/WNG-8C1SH6SD-8
National Institutes of Health - No. GM079423
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4715571
PMID 26503808
PQID 1757599358
PQPubID 1016441
PageCount 14
ParticipantIDs proquest_miscellaneous_1780521910
proquest_miscellaneous_1760873465
proquest_journals_1757599358
pubmed_primary_26503808
crossref_primary_10_1002_prot_24948
crossref_citationtrail_10_1002_prot_24948
wiley_primary_10_1002_prot_24948_PROT24948
istex_primary_ark_67375_WNG_8C1SH6SD_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2015
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: December 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970;48:443-453.
Livesay DR, Kreth KE, Fodor AA. A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms. Methods Mol Biol 2012;796:385-398.
Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 2008;36:2295-2300.
Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell 2009;138:774-786.
Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins 1994;18:309-317.
Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM 1999;46:604-632.
La D, Sutch B, Livesay DR. Predicting protein functional sites with phylogenetic motifs. Proteins 2005;58:309-320.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402.
Meinhardt S, Manley MW, Jr., Parente DJ, Swint-Kruse L. Rheostats and toggle switches for modulating protein function. PLoS One 2013;8:e83502
Xu Y, Tillier ERM. Regional covariation and its application for predicting protein contact patches. Proteins 2010;78:548-558.
Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genet 2011;7:e1001301.
Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 2004;20:1565-1572.
Talavera D, Lovell SC, Whelan S. Covariation is a poor measure of molecular coevolution. Mol Biol Evol 2015;32:2456-2468.
Parente DJ, Swint-Kruse L. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins. PLoS ONE 2013;8:e84398.
Kalinina OV, Novichkov PS, Mironov AA, Gelfand MS, Rakhmaninova AB. SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins. Nucleic Acids Res 2004;32:W424-428.
Buck MJ, Atchley WR. Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Mol Biol Evol 2005;22:1627-1634.
Gloor GB, Tyagi G, Abrassart DM, Kingston AJ, Fernandes AD, Dunn SD, Brandl CJ. Functionally compensating coevolving positions are neither homoplasic nor conserved in clades. Mol Biol Evol 2010;27:1181-1191.
Pelé J, Moreau M, Abdi H, Rodien P, Castel H, Chabbert M. Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families. Proteins 2014;82:2141-2156.
Dellus-Gur E, Elias M, Caselli E, Prati F, Salverda ML, de Visser JA, Fraser JS, Tawfik DS. Negative epistasis and evolvability in TEM-1 beta-lactamase-The thin line between an enzyme's conformational freedom and disorder. J Mol Biol 2015;427:2396-409.
Sato T, Yamanishi Y, Kanehisa M, Toh H. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 2005;21:3482-3489.
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612.
Fodor AA, Aldrich RW. On evolutionary conservation of thermodynamic coupling in proteins. J Biol Chem 2004;279:19046-19050.
Dawid A, Kiviet DJ, Kogenaru M, de Vos M, Tans SJ. Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape. Chaos 2010;20:026105.
Kann MG, Shoemaker BA, Panchenko AR, Przytycka TM. Correlated evolution of interacting proteins: looking behind the mirrortree. J Mol Biol 2009;385:91-98.
Schumacher MA, Seidel G, Hillen W, Brennan RG. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J Mol Biol 2007;368:1042-1050.
Lee BC, Park K, Kim D. Analysis of the residue-residue coevolution network and the functionally important residues in proteins. Proteins 2008;72:863-872.
Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Marino Buslje C. MISTIC: mutual information server to infer coevolution. Nucleic Acids Res 2013;41:W8-W14.
Chakrabarti S, Bryant SH, Panchenko AR. Functional specificity lies within the properties and evolutionary changes of amino acids. J Mol Biol 2007;373:801-810.
Bell CE, Lewis M. A closer view of the conformation of the Lac repressor bound to operator. Nat Struct Biol 2000;7:209-214.
Fatakia SN, Costanzi S, Chow CC. Molecular evolution of the transmembrane domains of G protein-coupled receptors. PLoS ONE 2011;6:e27813.
Chi CN, Elfström L, Shi Y, Snäll T, Engström Å, Jemth P. Reassessing a sparse energetic network within a single protein domain. Proc Natl Acad Sci USA 2008;105:4679-4684.
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38 Suppl:W529-533.
Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 1997;2:S25-32.
Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999;286:295-299.
Zhan H, Camargo M, Matthews KS. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Biochemistry 2010;49:8636-8645.
Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. Epistasis as the primary factor in molecular evolution. Nature 2012;490:535-538 advance online publication.
Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012;7:e38114
Schumacher MA, Glasfeld A, Zalkin H, Brennan RG. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J Biol Chem 1997;272:22648-22653.
Ozarowski A, Barry JK, Matthews KS, Maki AH. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants. Biochemistry 1999;38:6715-6722.
Lebherz HG, Rutter WJ. Distribution of Fructose Diphosphate Aldolase Variants in Biological Systems. Biochemistry 1969;8:109-121.
Mihalek I, Res I, Lichtarge O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol 2004;336:1265.
Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007;23:1875-1882.
Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11:863-874.
Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 1996;257:342.
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 2004;5:113.
Tungtur S, Meinhardt S, Swint-Kruse L. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses. J Mol Biol 2010;395:785-802.
Fowler JH, Christakis NA. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. Bmj 2008;337:a2338
Newman MEJ. The Structure and Function of Complex Networks. SIAM Rev 2003;45:167-256.
Brown CA, Brown KS. Validation of coevolving residue algorithms via pipeline sensitivity analysis: ELSC and OMES and ZNMI, oh my!. PLoS One 2010;5:e10779.
Horner DS, Pirovano W, Pesole G. Correlated substitution analysis and the prediction of amino acid structural contacts. Brief Bioinform 2008;9:46-56.
Fichtenberg CM, Muth SQ, Brown B, Padian NS, Glass TA, Ellen JM. Sexual network structure among a household sample of urban african american adolescents in an endemic sexually transmitted infection setting. Sex Transm Dis 2009;36:41-48.
Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One 2010;5:e10232.
Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, Muller-Hill B. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 1996;261:509-523.
Kleina LG, Miller JH. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 1990;212:295-318.
Falcon CM, Swint-Kruse L, Matthews KS. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage. J Biol Chem 1997;272:26818-26821.
Chakrabarti S, Panchenko AR. Structural and Functional Roles of Coevolved Sites in Proteins. PLoS ONE 2010;5:e8591
Burger L, van Nimwegen E. Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments. PLoS Comput Biol 2010;6:e1000633.
Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 2011;6:e28766.
Teşileanu T, Colwell LJ, Leibler S. Protein sectors: statistical coupling analysis versus conservation. PLoS Comput Biol 2015;11:e1004091.
Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 2004;118:731-741.
Landherr A, Friedl B, Heidemann J. A critical revie
1994; 176
2004; 20
2002; 18
1997; 272
2004; 25
1999; 293
2000; 7
2015; 32
2008; 9
2008; 36
1999; 46
1996; 261
1999; 286
2004; 5
2005; 21
2008; 105
1997; 2
2015; 427
2008; 72
2013; 8
2012; 13
2001; 307
2005; 22
2003; 12
2004; 32
1969; 8
2002; 48
2009; 2009
2010; 20
2004; 336
2010; 27
2007; 373
2012; 490
2008; 24
2010; 395
2001; 11
1996; 257
2010; 2
1990; 212
2010; 5
2007; 23
2010; 6
2003; 45
2001; 10
2010; 78
2007; 368
2009; 25
2010; 38
2002; 30
2008; 18
1997; 25
2006; 14
2015; 11
2013; 41
2011; 79
2011; 39
2011; 6
2014; 82
2005; 44
2011; 7
1972; 2
2009; 138
2009; 36
2010; 49
2004; 279
2006; 45
1994; 240
1999; 38
2004; 56
2004; 13
2011; 50
2009; 385
2008; 337
1954; 38
1994; 18
2012; 796
1998; 7
2012; 7
2004; 118
1970; 48
2005; 58
e_1_2_5_27_1
e_1_2_5_25_1
e_1_2_5_48_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_65_1
e_1_2_5_88_1
e_1_2_5_67_1
e_1_2_5_69_1
e_1_2_5_29_1
e_1_2_5_80_1
e_1_2_5_82_1
e_1_2_5_61_1
e_1_2_5_84_1
e_1_2_5_63_1
e_1_2_5_86_1
e_1_2_5_42_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_59_1
e_1_2_5_9_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_57_1
e_1_2_5_7_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_55_1
e_1_2_5_5_1
e_1_2_5_76_1
e_1_2_5_3_1
e_1_2_5_78_1
e_1_2_5_19_1
e_1_2_5_91_1
e_1_2_5_70_1
e_1_2_5_93_1
e_1_2_5_72_1
e_1_2_5_74_1
e_1_2_5_30_1
e_1_2_5_53_1
e_1_2_5_28_1
e_1_2_5_49_1
e_1_2_5_26_1
e_1_2_5_47_1
Gundlapalli A (e_1_2_5_51_1) 2009; 2009
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_66_1
e_1_2_5_87_1
e_1_2_5_68_1
e_1_2_5_89_1
e_1_2_5_81_1
e_1_2_5_60_1
e_1_2_5_83_1
e_1_2_5_62_1
e_1_2_5_64_1
e_1_2_5_85_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_58_1
e_1_2_5_8_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_56_1
e_1_2_5_6_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_54_1
e_1_2_5_4_1
e_1_2_5_77_1
e_1_2_5_2_1
e_1_2_5_79_1
e_1_2_5_18_1
e_1_2_5_90_1
e_1_2_5_71_1
e_1_2_5_92_1
e_1_2_5_73_1
e_1_2_5_75_1
e_1_2_5_31_1
e_1_2_5_52_1
e_1_2_5_50_1
18485694 - Curr Opin Struct Biol. 2008 Jun;18(3):382-6
15994190 - Bioinformatics. 2005 Sep 1;21(17):3482-9
19818797 - J Mol Biol. 2010 Jan 29;395(4):785-802
20351852 - AMIA Annu Symp Proc. 2009;2009:213-7
19768681 - Proteins. 2010 Feb 15;78(3):548-58
14962924 - Bioinformatics. 2004 Jul 10;20(10):1565-72
8208723 - Proteins. 1994 Apr;18(4):309-17
17519246 - Bioinformatics. 2007 Aug 1;23(15):1875-82
21390205 - PLoS Genet. 2011 Feb;7(2):e1001301
11266612 - Protein Sci. 2001 Feb;10(2):262-76
15318951 - BMC Bioinformatics. 2004 Aug 19;5:113
12211028 - Proteins. 2002 Sep 1;48(4):611-7
5420325 - J Mol Biol. 1970 Mar;48(3):443-53
17868687 - J Mol Biol. 2007 Oct 26;373(3):801-10
18304936 - Bioinformatics. 2008 Apr 1;24(7):908-15
15023994 - J Biol Chem. 2004 Apr 30;279(18):19046-50
8609628 - J Mol Biol. 1996 Mar 29;257(2):342-58
24386217 - PLoS One. 2013;8(12):e83502
18487241 - Bioinformatics. 2008 Jul 15;24(14):1641-2
9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
10346891 - Biochemistry. 1999 May 25;38(21):6715-22
18287115 - Nucleic Acids Res. 2008 Apr;36(7):2295-300
20436911 - PLoS One. 2010;5(4):e10232
18000015 - Brief Bioinform. 2008 Jan;9(1):46-56
21930656 - Brief Bioinform. 2012 May;13(3):329-36
18057019 - Bioinformatics. 2008 Feb 1;24(3):333-40
15211506 - Proteins. 2004 Aug 1;56(2):211-21
25723535 - PLoS Comput Biol. 2015 Feb;11(2):e1004091
22685552 - PLoS One. 2012;7(6):e38114
24391951 - PLoS One. 2013;8(12):e84398
2157024 - J Mol Biol. 1990 Mar 20;212(2):295-318
15037084 - J Mol Biol. 2004 Mar 5;336(5):1265-82
10514373 - Science. 1999 Oct 8;286(5438):295-9
20531955 - PLoS One. 2010;5(6):e10779
25944916 - Mol Biol Evol. 2015 Sep;32(9):2456-68
9865945 - Protein Sci. 1998 Dec;7(12):2511-21
18339805 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4679-84
15882054 - Biochemistry. 2005 May 17;44(19):7156-65
20052271 - PLoS Comput Biol. 2010 Jan;6(1):e1000633
16669632 - Biochemistry. 2006 May 9;45(18):5896-906
15573397 - Proteins. 2005 Feb 1;58(2):309-20
18930732 - J Mol Biol. 2009 Jan 9;385(1):91-8
20590334 - Chaos. 2010 Jun;20(2):026105
23716641 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W8-14
18275083 - Proteins. 2008 Aug 15;72(3):863-72
18830136 - Sex Transm Dis. 2009 Jan;36(1):41-8
12202775 - Nucleic Acids Res. 2002 Sep 1;30(17):3894-900
10700279 - Nat Struct Biol. 2000 Mar;7(3):209-14
22052502 - Methods Mol Biol. 2012;796:385-98
15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63
5777313 - Biochemistry. 1969 Jan;8(1):109-21
8132474 - J Bacteriol. 1994 Mar;176(6):1767-72
20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33
20066038 - PLoS One. 2010;5(1):e8591
11243830 - J Mol Biol. 2001 Mar 16;307(1):447-63
11337480 - Genome Res. 2001 May;11(5):863-74
15034147 - Nucleic Acids Res. 2004;32(5):1792-7
8794873 - J Mol Biol. 1996 Aug 30;261(4):509-23
15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
11934757 - Bioinformatics. 2002 Mar;18(3):500-1
22163331 - PLoS One. 2011;6(12):e28766
10547297 - J Mol Biol. 1999 Nov 12;293(5):1221-39
19056788 - BMJ. 2008;337:a2338
19703402 - Cell. 2009 Aug 21;138(4):774-86
15215423 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W424-8
9278422 - J Biol Chem. 1997 Sep 5;272(36):22648-53
15858204 - Mol Biol Evol. 2005 Jul;22(7):1627-34
20804152 - Biochemistry. 2010 Oct 5;49(39):8636-45
23064225 - Nature. 2012 Oct 25;490(7421):535-8
9218963 - Fold Des. 1997;2(3):S25-32
21106498 - Nucleic Acids Res. 2011 Apr;39(7):2931-42
17376479 - J Mol Biol. 2007 May 11;368(4):1042-50
15369672 - Cell. 2004 Sep 17;118(6):731-41
9341111 - J Biol Chem. 1997 Oct 24;272(43):26818-21
20065119 - Mol Biol Evol. 2010 May;27(5):1181-91
22132149 - PLoS One. 2011;6(11):e27813
8046748 - J Mol Biol. 1994 Jul 29;240(5):421-33
14573864 - Protein Sci. 2003 Nov;12(11):2523-41
15537755 - Protein Sci. 2004 Dec;13(12):3077-84
21374721 - Proteins. 2011 May;79(5):1589-608
21928765 - Biochemistry. 2011 Oct 25;50(42):9002-13
24677372 - Proteins. 2014 Sep;82(9):2141-56
19276150 - Bioinformatics. 2009 May 1;25(9):1125-31
12112692 - Proteins. 2002 Aug 1;48(2):227-41
26004540 - J Mol Biol. 2015 Jul 17;427(14):2396-409
References_xml – reference: Landherr A, Friedl B, Heidemann J. A critical review of centrality measures in social networks. Bus Informat Syst Eng 2010;2:371-385.
– reference: Brown CA, Brown KS. Validation of coevolving residue algorithms via pipeline sensitivity analysis: ELSC and OMES and ZNMI, oh my!. PLoS One 2010;5:e10779.
– reference: Talavera D, Lovell SC, Whelan S. Covariation is a poor measure of molecular coevolution. Mol Biol Evol 2015;32:2456-2468.
– reference: Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002;30:3894-3900.
– reference: Swint-Kruse L, Elam CR, Lin JW, Wycuff DR, Shive Matthews K. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer. Protein Sci 2001;10:262-276.
– reference: Burger L, van Nimwegen E. Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments. PLoS Comput Biol 2010;6:e1000633.
– reference: Gundlapalli A, Ma X, Benuzillo J, Pettey W, Greenberg R, Hales J, Leecaster M, Samore M. Social network analyses of patient-healthcare worker interactions: implications for disease transmission. AMIA Annu Symp Proc 2009;2009:213-217.
– reference: Kalinina OV, Novichkov PS, Mironov AA, Gelfand MS, Rakhmaninova AB. SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins. Nucleic Acids Res 2004;32:W424-428.
– reference: Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 1997;2:S25-32.
– reference: Zhan H, Camargo M, Matthews KS. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Biochemistry 2010;49:8636-8645.
– reference: Chakrabarti S, Panchenko AR. Structural and Functional Roles of Coevolved Sites in Proteins. PLoS ONE 2010;5:e8591
– reference: Bell CE, Lewis M. A closer view of the conformation of the Lac repressor bound to operator. Nat Struct Biol 2000;7:209-214.
– reference: Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402.
– reference: Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 2008;36:2295-2300.
– reference: Zhan H, Swint-Kruse L, Matthews KS. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Biochemistry 2006;45:5896-5906.
– reference: Buslje CM, Santos J, Delfino JM, Nielsen M. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Bioinformatics 2009;25:1125-1131.
– reference: Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38 Suppl:W529-533.
– reference: Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. Epistasis as the primary factor in molecular evolution. Nature 2012;490:535-538 advance online publication.
– reference: Chakrabarti S, Bryant SH, Panchenko AR. Functional specificity lies within the properties and evolutionary changes of amino acids. J Mol Biol 2007;373:801-810.
– reference: Arakaki TL, Pezza JA, Cronin MA, Hopkins CE, Zimmer DB, Tolan DR, Allen KN. Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. Protein Sci 2004;13:3077-3084.
– reference: Horner DS, Pirovano W, Pesole G. Correlated substitution analysis and the prediction of amino acid structural contacts. Brief Bioinform 2008;9:46-56.
– reference: Sato T, Yamanishi Y, Kanehisa M, Toh H. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 2005;21:3482-3489.
– reference: Meinhardt S, Manley MW, Jr., Parente DJ, Swint-Kruse L. Rheostats and toggle switches for modulating protein function. PLoS One 2013;8:e83502
– reference: Kleina LG, Miller JH. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 1990;212:295-318.
– reference: Olmea O, Rost B, Valencia A. Effective use of sequence correlation and conservation in fold recognition. J Mol Biol 1999;293:1221-1239.
– reference: Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11:863-874.
– reference: Gu X, Vander Velden K. DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 2002;18:500-501.
– reference: Chi CN, Elfström L, Shi Y, Snäll T, Engström Å, Jemth P. Reassessing a sparse energetic network within a single protein domain. Proc Natl Acad Sci USA 2008;105:4679-4684.
– reference: Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007;23:1875-1882.
– reference: Kass I, Horovitz A. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 2002;48:611-617.
– reference: Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 2004;5:113.
– reference: Markiewicz P, Kleina LG, Cruz C, Ehret S, Miller JH. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence. J Mol Biol 1994;240:421-433.
– reference: Flynn TC, Swint-Kruse L, Kong Y, Booth C, Matthews KS, Ma J. Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer. Protein Sci 2003;12:2523-2541.
– reference: Fodor AA, Aldrich RW. Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 2004;56:211-221.
– reference: Newman MEJ. The Structure and Function of Complex Networks. SIAM Rev 2003;45:167-256.
– reference: Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612.
– reference: Pelé J, Moreau M, Abdi H, Rodien P, Castel H, Chabbert M. Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families. Proteins 2014;82:2141-2156.
– reference: Fodor AA, Aldrich RW. On evolutionary conservation of thermodynamic coupling in proteins. J Biol Chem 2004;279:19046-19050.
– reference: Dawid A, Kiviet DJ, Kogenaru M, de Vos M, Tans SJ. Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape. Chaos 2010;20:026105.
– reference: Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 2008;24:333-340.
– reference: Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970;48:443-453.
– reference: Lebherz HG, Rutter WJ. Distribution of Fructose Diphosphate Aldolase Variants in Biological Systems. Biochemistry 1969;8:109-121.
– reference: Mihalek I, Res I, Lichtarge O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol 2004;336:1265.
– reference: Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999;286:295-299.
– reference: Fowler JH. Connecting the congress: a study of cosponsorship networks. Political Anal 2006;14:456-487.
– reference: Fowler JH, Christakis NA. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. Bmj 2008;337:a2338
– reference: Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One 2010;5:e10232.
– reference: Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005;21:456-463.
– reference: Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, Muller-Hill B. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 1996;261:509-523.
– reference: Tungtur S, Parente DJ, Swint-Kruse L. Functionally important positions can comprise the majority of a protein's architecture. Proteins 2011;79:1589-1608.
– reference: Fatakia SN, Costanzi S, Chow CC. Molecular evolution of the transmembrane domains of G protein-coupled receptors. PLoS ONE 2011;6:e27813.
– reference: Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM 1999;46:604-632.
– reference: Fichtenberg CM, Muth SQ, Brown B, Padian NS, Glass TA, Ellen JM. Sexual network structure among a household sample of urban african american adolescents in an endemic sexually transmitted infection setting. Sex Transm Dis 2009;36:41-48.
– reference: Schumacher MA, Sprehe M, Bartholomae M, Hillen W, Brennan RG. Structures of carbon catabolite protein A-(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators. Nucleic Acids Res 2011;39:2931-2942.
– reference: Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 2004;20:1565-1572.
– reference: Teşileanu T, Colwell LJ, Leibler S. Protein sectors: statistical coupling analysis versus conservation. PLoS Comput Biol 2015;11:e1004091.
– reference: Lee BC, Park K, Kim D. Analysis of the residue-residue coevolution network and the functionally important residues in proteins. Proteins 2008;72:863-872.
– reference: Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 2011;6:e28766.
– reference: Gloor GB, Tyagi G, Abrassart DM, Kingston AJ, Fernandes AD, Dunn SD, Brandl CJ. Functionally compensating coevolving positions are neither homoplasic nor conserved in clades. Mol Biol Evol 2010;27:1181-1191.
– reference: Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genet 2011;7:e1001301.
– reference: La D, Sutch B, Livesay DR. Predicting protein functional sites with phylogenetic motifs. Proteins 2005;58:309-320.
– reference: Gloor GB, Martin LC, Wahl LM, Dunn SD. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 2005;44:7156-7165.
– reference: Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Marino Buslje C. MISTIC: mutual information server to infer coevolution. Nucleic Acids Res 2013;41:W8-W14.
– reference: Ozarowski A, Barry JK, Matthews KS, Maki AH. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants. Biochemistry 1999;38:6715-6722.
– reference: Jordan GE, Piel WH. PhyloWidget: web-based visualizations for the tree of life. Bioinformatics 2008;24:1641-1642.
– reference: Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell 2009;138:774-786.
– reference: Falcon CM, Swint-Kruse L, Matthews KS. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage. J Biol Chem 1997;272:26818-26821.
– reference: Livesay DR, Kreth KE, Fodor AA. A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms. Methods Mol Biol 2012;796:385-398.
– reference: Tungtur S, Meinhardt S, Swint-Kruse L. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses. J Mol Biol 2010;395:785-802.
– reference: Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 1996;257:342.
– reference: Bonacich P. Factoring and weighting approaches to status scores and clique identification. J Math Sociol 1972;2:113-120.
– reference: Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792-1797.
– reference: Pei J. Multiple protein sequence alignment. Curr Opin Struct Biol 2008;18:382-386.
– reference: Shaw ME. Group structure and the behavior of individuals in small groups. J Psychol 1954;38:139-149.
– reference: Buck MJ, Atchley WR. Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Mol Biol Evol 2005;22:1627-1634.
– reference: Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins 1994;18:309-317.
– reference: Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 2004;118:731-741.
– reference: Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012;7:e38114
– reference: Xu J, Liu S, Chen M, Ma J, Matthews KS. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Biochemistry 2011;50:9002-9013.
– reference: Choi KY, Zalkin H. Role of the purine repressor hinge sequence in repressor function. J Bacteriol 1994;176:1767-1772.
– reference: Kann MG, Shoemaker BA, Panchenko AR, Przytycka TM. Correlated evolution of interacting proteins: looking behind the mirrortree. J Mol Biol 2009;385:91-98.
– reference: Xu Y, Tillier ERM. Regional covariation and its application for predicting protein contact patches. Proteins 2010;78:548-558.
– reference: Parente DJ, Swint-Kruse L. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins. PLoS ONE 2013;8:e84398.
– reference: Benítez-Páez A, Cárdenas-Brito S, Gutiérrez AJ. A practical guide for the computational selection of residues to be experimentally characterized in protein families. Brief Bioinform 2012;13:329-336.
– reference: Armon A, Graur D, Ben-Tal N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 2001;307:447-463.
– reference: Ye K, Vriend G, Ij AP. Tracing evolutionary pressure. Bioinformatics 2008;24:908-915.
– reference: Valdar WS. Scoring residue conservation. Proteins 2002;48:227-241.
– reference: Schumacher MA, Glasfeld A, Zalkin H, Brennan RG. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J Biol Chem 1997;272:22648-22653.
– reference: Dellus-Gur E, Elias M, Caselli E, Prati F, Salverda ML, de Visser JA, Fraser JS, Tawfik DS. Negative epistasis and evolvability in TEM-1 beta-lactamase-The thin line between an enzyme's conformational freedom and disorder. J Mol Biol 2015;427:2396-409.
– reference: Hars U, Horlacher R, Boos W, Welte W, Diederichs K. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Protein Sci 1998;7:2511-2521.
– reference: Schumacher MA, Seidel G, Hillen W, Brennan RG. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J Mol Biol 2007;368:1042-1050.
– volume: 82
  start-page: 2141
  year: 2014
  end-page: 2156
  article-title: Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families
  publication-title: Proteins
– volume: 18
  start-page: 382
  year: 2008
  end-page: 386
  article-title: Multiple protein sequence alignment
  publication-title: Curr Opin Struct Biol
– volume: 336
  start-page: 1265.
  year: 2004
  article-title: A family of evolution‐entropy hybrid methods for ranking protein residues by importance
  publication-title: J Mol Biol
– volume: 490
  start-page: 535
  year: 2012
  end-page: 538
  article-title: Epistasis as the primary factor in molecular evolution
  publication-title: Nature
– volume: 11
  start-page: 863
  year: 2001
  end-page: 874
  article-title: Predicting deleterious amino acid substitutions
  publication-title: Genome Res
– volume: 24
  start-page: 333
  year: 2008
  end-page: 340
  article-title: Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction
  publication-title: Bioinformatics
– volume: 58
  start-page: 309
  year: 2005
  end-page: 320
  article-title: Predicting protein functional sites with phylogenetic motifs
  publication-title: Proteins
– volume: 138
  start-page: 774
  year: 2009
  end-page: 786
  article-title: Protein sectors: evolutionary units of three‐dimensional structure
  publication-title: Cell
– volume: 18
  start-page: 309
  year: 1994
  end-page: 317
  article-title: Correlated mutations and residue contacts in proteins
  publication-title: Proteins
– volume: 25
  start-page: 1605
  year: 2004
  end-page: 1612
  article-title: UCSF Chimera–a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 240
  start-page: 421
  year: 1994
  end-page: 433
  article-title: Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non‐essential residues, as well as “spacers” which do not require a specific sequence
  publication-title: J Mol Biol
– volume: 48
  start-page: 227
  year: 2002
  end-page: 241
  article-title: Scoring residue conservation
  publication-title: Proteins
– volume: 41
  start-page: W8
  year: 2013
  end-page: W14
  article-title: MISTIC: mutual information server to infer coevolution
  publication-title: Nucleic Acids Res
– volume: 2
  start-page: 113
  year: 1972
  end-page: 120
  article-title: Factoring and weighting approaches to status scores and clique identification
  publication-title: J Math Sociol
– volume: 18
  start-page: 500
  year: 2002
  end-page: 501
  article-title: DIVERGE: phylogeny‐based analysis for functional–structural divergence of a protein family
  publication-title: Bioinformatics
– volume: 5
  start-page: e10779.
  year: 2010
  article-title: Validation of coevolving residue algorithms via pipeline sensitivity analysis: ELSC and OMES and ZNMI, oh my!
  publication-title: PLoS One
– volume: 45
  start-page: 5896
  year: 2006
  end-page: 5906
  article-title: Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix
  publication-title: Biochemistry
– volume: 337
  start-page: a2338
  year: 2008
  article-title: Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study
  publication-title: Bmj
– volume: 105
  start-page: 4679
  year: 2008
  end-page: 4684
  article-title: Reassessing a sparse energetic network within a single protein domain
  publication-title: Proc Natl Acad Sci USA
– volume: 272
  start-page: 22648
  year: 1997
  end-page: 22653
  article-title: The X‐ray structure of the PurR‐guanine‐purF operator complex reveals the contributions of complementary electrostatic surfaces and a water‐mediated hydrogen bond to corepressor specificity and binding affinity
  publication-title: J Biol Chem
– volume: 32
  start-page: 1792
  year: 2004
  end-page: 1797
  article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput
  publication-title: Nucleic Acids Res
– volume: 2
  start-page: S25
  year: 1997
  end-page: 32
  article-title: Improving contact predictions by the combination of correlated mutations and other sources of sequence information
  publication-title: Fold Des
– volume: 78
  start-page: 548
  year: 2010
  end-page: 558
  article-title: Regional covariation and its application for predicting protein contact patches
  publication-title: Proteins
– volume: 30
  start-page: 3894
  year: 2002
  end-page: 3900
  article-title: Human non‐synonymous SNPs: server and survey
  publication-title: Nucleic Acids Res
– volume: 39
  start-page: 2931
  year: 2011
  end-page: 2942
  article-title: Structures of carbon catabolite protein A‐(HPr‐Ser46‐P) bound to diverse catabolite response element sites reveal the basis for high‐affinity binding to degenerate DNA operators
  publication-title: Nucleic Acids Res
– volume: 20
  start-page: 026105
  year: 2010
  article-title: Multiple peaks and reciprocal sign epistasis in an empirically determined genotype‐phenotype landscape
  publication-title: Chaos
– volume: 8
  start-page: 109
  year: 1969
  end-page: 121
  article-title: Distribution of Fructose Diphosphate Aldolase Variants in Biological Systems
  publication-title: Biochemistry
– volume: 72
  start-page: 863
  year: 2008
  end-page: 872
  article-title: Analysis of the residue‐residue coevolution network and the functionally important residues in proteins
  publication-title: Proteins
– volume: 12
  start-page: 2523
  year: 2003
  end-page: 2541
  article-title: Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer
  publication-title: Protein Sci
– volume: 796
  start-page: 385
  year: 2012
  end-page: 398
  article-title: A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms
  publication-title: Methods Mol Biol
– volume: 5
  start-page: e8591
  year: 2010
  article-title: Structural and Functional Roles of Coevolved Sites in Proteins
  publication-title: PLoS ONE
– volume: 32
  start-page: W424
  year: 2004
  end-page: 428
  article-title: SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins
  publication-title: Nucleic Acids Res
– volume: 49
  start-page: 8636
  year: 2010
  end-page: 8645
  article-title: Positions 94‐98 of the lactose repressor N‐subdomain monomer‐monomer interface are critical for allosteric communication
  publication-title: Biochemistry
– volume: 212
  start-page: 295
  year: 1990
  end-page: 318
  article-title: Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors
  publication-title: J Mol Biol
– volume: 6
  start-page: e1000633
  year: 2010
  article-title: Disentangling Direct from Indirect Co‐Evolution of Residues in Protein Alignments
  publication-title: PLoS Comput Biol
– volume: 56
  start-page: 211
  year: 2004
  end-page: 221
  article-title: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments
  publication-title: Proteins
– volume: 5
  start-page: e10232.
  year: 2010
  article-title: Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain
  publication-title: PLoS One
– volume: 13
  start-page: 329
  year: 2012
  end-page: 336
  article-title: A practical guide for the computational selection of residues to be experimentally characterized in protein families
  publication-title: Brief Bioinform
– volume: 24
  start-page: 908
  year: 2008
  end-page: 915
  article-title: Tracing evolutionary pressure
  publication-title: Bioinformatics
– volume: 176
  start-page: 1767
  year: 1994
  end-page: 1772
  article-title: Role of the purine repressor hinge sequence in repressor function
  publication-title: J Bacteriol
– volume: 22
  start-page: 1627
  year: 2005
  end-page: 1634
  article-title: Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins
  publication-title: Mol Biol Evol
– volume: 7
  start-page: e1001301.
  year: 2011
  article-title: Prevalence of epistasis in the evolution of influenza a surface proteins
  publication-title: PLoS Genet
– volume: 286
  start-page: 295
  year: 1999
  end-page: 299
  article-title: Evolutionarily conserved pathways of energetic connectivity in protein families
  publication-title: Science
– volume: 21
  start-page: 456
  year: 2005
  end-page: 463
  article-title: RAxML‐III: a fast program for maximum likelihood‐based inference of large phylogenetic trees
  publication-title: Bioinformatics
– volume: 7
  start-page: e38114
  year: 2012
  article-title: A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family
  publication-title: PLoS One
– volume: 36
  start-page: 2295
  year: 2008
  end-page: 2300
  article-title: PROMALS3D: a tool for multiple protein sequence and structure alignments
  publication-title: Nucleic Acids Res
– volume: 9
  start-page: 46
  year: 2008
  end-page: 56
  article-title: Correlated substitution analysis and the prediction of amino acid structural contacts
  publication-title: Brief Bioinform
– volume: 21
  start-page: 3482
  year: 2005
  end-page: 3489
  article-title: The inference of protein–protein interactions by co‐evolutionary analysis is improved by excluding the information about the phylogenetic relationships
  publication-title: Bioinformatics
– volume: 307
  start-page: 447
  year: 2001
  end-page: 463
  article-title: ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information
  publication-title: J Mol Biol
– volume: 13
  start-page: 3077
  year: 2004
  end-page: 3084
  article-title: Structure of human brain fructose 1,6‐(bis)phosphate aldolase: linking isozyme structure with function
  publication-title: Protein Sci
– volume: 8
  start-page: e84398.
  year: 2013
  article-title: Multiple co‐evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins
  publication-title: PLoS ONE
– volume: 50
  start-page: 9002
  year: 2011
  end-page: 9013
  article-title: Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor
  publication-title: Biochemistry
– volume: 25
  start-page: 1125
  year: 2009
  end-page: 1131
  article-title: Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information
  publication-title: Bioinformatics
– volume: 7
  start-page: 2511
  year: 1998
  end-page: 2521
  article-title: Crystal structure of the effector‐binding domain of the trehalose‐repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose‐6‐phosphate and noninducer trehalose
  publication-title: Protein Sci
– volume: 79
  start-page: 1589
  year: 2011
  end-page: 1608
  article-title: Functionally important positions can comprise the majority of a protein's architecture
  publication-title: Proteins
– volume: 385
  start-page: 91
  year: 2009
  end-page: 98
  article-title: Correlated evolution of interacting proteins: looking behind the mirrortree
  publication-title: J Mol Biol
– volume: 38
  start-page: 6715
  year: 1999
  end-page: 6722
  article-title: Ligand‐induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single‐tryptophan mutants
  publication-title: Biochemistry
– volume: 293
  start-page: 1221
  year: 1999
  end-page: 1239
  article-title: Effective use of sequence correlation and conservation in fold recognition
  publication-title: J Mol Biol
– volume: 44
  start-page: 7156
  year: 2005
  end-page: 7165
  article-title: Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions
  publication-title: Biochemistry
– volume: 38
  start-page: 139
  year: 1954
  end-page: 149
  article-title: Group structure and the behavior of individuals in small groups
  publication-title: J Psychol
– volume: 8
  start-page: e83502
  year: 2013
  article-title: Rheostats and toggle switches for modulating protein function
  publication-title: PLoS One
– volume: 395
  start-page: 785
  year: 2010
  end-page: 802
  article-title: Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses
  publication-title: J Mol Biol
– volume: 272
  start-page: 26818
  year: 1997
  end-page: 26821
  article-title: Designed disulfide between N‐terminal domains of lactose repressor disrupts allosteric linkage
  publication-title: J Biol Chem
– volume: 11
  start-page: e1004091
  year: 2015
  article-title: Protein sectors: statistical coupling analysis versus conservation
  publication-title: PLoS Comput Biol
– volume: 257
  start-page: 342
  year: 1996
  article-title: An evolutionary trace method defines binding surfaces common to protein families
  publication-title: J Mol Biol
– volume: 373
  start-page: 801
  year: 2007
  end-page: 810
  article-title: Functional specificity lies within the properties and evolutionary changes of amino acids
  publication-title: J Mol Biol
– volume: 7
  start-page: 209
  year: 2000
  end-page: 214
  article-title: A closer view of the conformation of the Lac repressor bound to operator
  publication-title: Nat Struct Biol
– volume: 10
  start-page: 262
  year: 2001
  end-page: 276
  article-title: Plasticity of quaternary structure: twenty‐two ways to form a LacI dimer
  publication-title: Protein Sci
– volume: 6
  start-page: e27813
  year: 2011
  article-title: Molecular evolution of the transmembrane domains of G protein‐coupled receptors
  publication-title: PLoS ONE
– volume: 32
  start-page: 2456
  year: 2015
  end-page: 2468
  article-title: Covariation is a poor measure of molecular coevolution
  publication-title: Mol Biol Evol
– volume: 427
  start-page: 2396
  year: 2015
  end-page: 409
  article-title: Negative epistasis and evolvability in TEM‐1 beta‐lactamase—The thin line between an enzyme's conformational freedom and disorder
  publication-title: J Mol Biol
– volume: 261
  start-page: 509
  year: 1996
  end-page: 523
  article-title: Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure
  publication-title: J Mol Biol
– volume: 38
  start-page: W529
  issue: Suppl
  year: 2010
  end-page: 533
  article-title: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids
  publication-title: Nucleic Acids Res
– volume: 2
  start-page: 371
  year: 2010
  end-page: 385
  article-title: A critical review of centrality measures in social networks
  publication-title: Bus Informat Syst Eng
– volume: 20
  start-page: 1565
  year: 2004
  end-page: 1572
  article-title: A perturbation‐based method for calculating explicit likelihood of evolutionary co‐variance in multiple sequence alignments
  publication-title: Bioinformatics
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res
– volume: 46
  start-page: 604
  year: 1999
  end-page: 632
  article-title: Authoritative sources in a hyperlinked environment
  publication-title: J ACM
– volume: 27
  start-page: 1181
  year: 2010
  end-page: 1191
  article-title: Functionally compensating coevolving positions are neither homoplasic nor conserved in clades
  publication-title: Mol Biol Evol
– volume: 48
  start-page: 443
  year: 1970
  end-page: 453
  article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins
  publication-title: J Mol Biol
– volume: 118
  start-page: 731
  year: 2004
  end-page: 741
  article-title: Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr‐Ser46‐P
  publication-title: Cell
– volume: 14
  start-page: 456
  year: 2006
  end-page: 487
  article-title: Connecting the congress: a study of cosponsorship networks
  publication-title: Political Anal
– volume: 48
  start-page: 611
  year: 2002
  end-page: 617
  article-title: Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations
  publication-title: Proteins
– volume: 5
  start-page: 113
  year: 2004
  article-title: MUSCLE: a multiple sequence alignment method with reduced time and space complexity
  publication-title: BMC Bioinform
– volume: 24
  start-page: 1641
  year: 2008
  end-page: 1642
  article-title: PhyloWidget: web‐based visualizations for the tree of life
  publication-title: Bioinformatics
– volume: 368
  start-page: 1042
  year: 2007
  end-page: 1050
  article-title: Structural mechanism for the fine‐tuning of CcpA function by the small molecule effectors glucose 6‐phosphate and fructose 1,6‐bisphosphate
  publication-title: J Mol Biol
– volume: 36
  start-page: 41
  year: 2009
  end-page: 48
  article-title: Sexual network structure among a household sample of urban african american adolescents in an endemic sexually transmitted infection setting
  publication-title: Sex Transm Dis
– volume: 279
  start-page: 19046
  year: 2004
  end-page: 19050
  article-title: On evolutionary conservation of thermodynamic coupling in proteins
  publication-title: J Biol Chem
– volume: 6
  start-page: e28766.
  year: 2011
  article-title: Protein 3D structure computed from evolutionary sequence variation
  publication-title: PLoS ONE
– volume: 45
  start-page: 167
  year: 2003
  end-page: 256
  article-title: The Structure and Function of Complex Networks
  publication-title: SIAM Rev
– volume: 23
  start-page: 1875
  year: 2007
  end-page: 1882
  article-title: Predicting functionally important residues from sequence conservation
  publication-title: Bioinformatics
– volume: 2009
  start-page: 213
  year: 2009
  end-page: 217
  article-title: Social network analyses of patient‐healthcare worker interactions: implications for disease transmission
  publication-title: AMIA Annu Symp Proc
– ident: e_1_2_5_20_1
  doi: 10.1126/science.286.5438.295
– ident: e_1_2_5_54_1
  doi: 10.1038/78907
– ident: e_1_2_5_25_1
  doi: 10.1371/journal.pone.0028766
– ident: e_1_2_5_77_1
  doi: 10.1021/bi200896t
– ident: e_1_2_5_34_1
  doi: 10.1093/nar/25.17.3389
– ident: e_1_2_5_36_1
  doi: 10.1111/j.1574-6941.2006.00060.x
– ident: e_1_2_5_8_1
  doi: 10.1093/nar/gkh391
– ident: e_1_2_5_21_1
  doi: 10.1006/jmbi.1999.3208
– ident: e_1_2_5_41_1
  doi: 10.1093/bioinformatics/bti191
– ident: e_1_2_5_2_1
  doi: 10.1016/j.jmb.2003.12.078
– ident: e_1_2_5_55_1
  doi: 10.1002/pro.5560071204
– ident: e_1_2_5_93_1
  doi: 10.1016/j.jmb.2009.10.001
– ident: e_1_2_5_38_1
  doi: 10.1186/1471-2105-5-113
– ident: e_1_2_5_73_1
  doi: 10.1021/bi990242f
– ident: e_1_2_5_43_1
  doi: 10.1016/j.cell.2009.07.038
– ident: e_1_2_5_29_1
  doi: 10.1371/journal.pone.0084398
– ident: e_1_2_5_78_1
  doi: 10.1371/journal.pone.0083502
– ident: e_1_2_5_35_1
  doi: 10.1093/nar/gkn072
– ident: e_1_2_5_18_1
  doi: 10.1002/prot.340180402
– ident: e_1_2_5_65_1
  doi: 10.1371/journal.pone.0008591
– ident: e_1_2_5_31_1
  doi: 10.1080/00223980.1954.9712925
– ident: e_1_2_5_39_1
  doi: 10.1093/bib/bbr052
– ident: e_1_2_5_3_1
  doi: 10.1006/jmbi.1996.0167
– ident: e_1_2_5_57_1
  doi: 10.1016/j.jmb.2007.02.054
– ident: e_1_2_5_45_1
  doi: 10.1093/bioinformatics/bti564
– ident: e_1_2_5_19_1
  doi: 10.1016/S1359-0278(97)00060-6
– ident: e_1_2_5_58_1
  doi: 10.1016/j.cell.2004.08.027
– ident: e_1_2_5_62_1
  doi: 10.1021/bi00829a016
– ident: e_1_2_5_75_1
  doi: 10.1110/ps.03188303
– ident: e_1_2_5_10_1
  doi: 10.1093/bioinformatics/btn057
– ident: e_1_2_5_32_1
  doi: 10.1080/0022250X.1972.9989806
– ident: e_1_2_5_37_1
  doi: 10.1016/0022-2836(70)90057-4
– ident: e_1_2_5_74_1
  doi: 10.1110/ps.35801
– ident: e_1_2_5_82_1
  doi: 10.1093/molbev/msi157
– ident: e_1_2_5_91_1
  doi: 10.1016/j.jmb.2015.05.011
– ident: e_1_2_5_87_1
  doi: 10.1074/jbc.M402560200
– ident: e_1_2_5_81_1
  doi: 10.1006/jmbi.1994.1458
– volume: 2009
  start-page: 213
  year: 2009
  ident: e_1_2_5_51_1
  article-title: Social network analyses of patient‐healthcare worker interactions: implications for disease transmission
  publication-title: AMIA Annu Symp Proc
– ident: e_1_2_5_86_1
  doi: 10.1093/molbev/msq004
– ident: e_1_2_5_16_1
  doi: 10.1371/journal.pcbi.1000633
– ident: e_1_2_5_76_1
  doi: 10.1021/bi101106x
– ident: e_1_2_5_33_1
  doi: 10.1002/prot.22985
– ident: e_1_2_5_14_1
  doi: 10.1002/prot.10146
– ident: e_1_2_5_27_1
  doi: 10.1093/bioinformatics/btp135
– ident: e_1_2_5_15_1
  doi: 10.1007/978-1-61779-334-9_21
– ident: e_1_2_5_48_1
  doi: 10.1136/bmj.a2338
– ident: e_1_2_5_46_1
  doi: 10.1145/324133.324140
– ident: e_1_2_5_42_1
  doi: 10.1093/bioinformatics/btn235
– ident: e_1_2_5_30_1
  doi: 10.1002/prot.20098
– ident: e_1_2_5_61_1
  doi: 10.1002/jcc.20084
– ident: e_1_2_5_22_1
  doi: 10.1002/prot.10180
– ident: e_1_2_5_92_1
  doi: 10.1371/journal.pgen.1001301
– ident: e_1_2_5_79_1
  doi: 10.1021/bi052619p
– ident: e_1_2_5_17_1
  doi: 10.1093/bib/bbm052
– ident: e_1_2_5_56_1
  doi: 10.1074/jbc.272.36.22648
– ident: e_1_2_5_9_1
  doi: 10.1002/prot.20321
– ident: e_1_2_5_88_1
  doi: 10.1073/pnas.0711732105
– ident: e_1_2_5_28_1
  doi: 10.1093/nar/gkt427
– ident: e_1_2_5_64_1
  doi: 10.1002/prot.24570
– ident: e_1_2_5_72_1
  doi: 10.1074/jbc.272.43.26818
– ident: e_1_2_5_12_1
  doi: 10.1093/bioinformatics/btm270
– ident: e_1_2_5_84_1
  doi: 10.1371/journal.pone.0027813
– ident: e_1_2_5_52_1
  doi: 10.1097/OLQ.0b013e3181860711
– ident: e_1_2_5_85_1
  doi: 10.1371/journal.pcbi.1004091
– ident: e_1_2_5_47_1
– ident: e_1_2_5_60_1
  doi: 10.1093/nar/gkq1177
– ident: e_1_2_5_5_1
  doi: 10.1101/gr.176601
– ident: e_1_2_5_24_1
  doi: 10.1371/journal.pone.0010779
– ident: e_1_2_5_53_1
  doi: 10.1137/S003614450342480
– ident: e_1_2_5_69_1
  doi: 10.1093/bioinformatics/btm604
– ident: e_1_2_5_44_1
  doi: 10.1016/j.jmb.2008.09.078
– ident: e_1_2_5_83_1
  doi: 10.1002/prot.22576
– ident: e_1_2_5_90_1
  doi: 10.1063/1.3453602
– ident: e_1_2_5_66_1
  doi: 10.1002/prot.21972
– ident: e_1_2_5_26_1
  doi: 10.1021/bi050293e
– ident: e_1_2_5_49_1
  doi: 10.1093/pan/mpl002
– ident: e_1_2_5_4_1
  doi: 10.1093/bioinformatics/18.3.500
– ident: e_1_2_5_63_1
  doi: 10.1371/journal.pone.0038114
– ident: e_1_2_5_7_1
  doi: 10.1093/nar/gkf493
– ident: e_1_2_5_89_1
  doi: 10.1038/nature11510
– ident: e_1_2_5_67_1
  doi: 10.1007/s12599-010-0127-3
– ident: e_1_2_5_71_1
  doi: 10.1006/jmbi.1996.0479
– ident: e_1_2_5_80_1
  doi: 10.1016/0022-2836(90)90126-7
– ident: e_1_2_5_40_1
  doi: 10.1016/j.sbi.2008.03.007
– ident: e_1_2_5_13_1
  doi: 10.1016/j.jmb.2007.08.036
– ident: e_1_2_5_23_1
  doi: 10.1093/bioinformatics/bth128
– ident: e_1_2_5_59_1
  doi: 10.1110/ps.04915904
– ident: e_1_2_5_68_1
  doi: 10.1093/molbev/msv109
– ident: e_1_2_5_11_1
  doi: 10.1093/nar/gkq399
– ident: e_1_2_5_70_1
  doi: 10.1128/jb.176.6.1767-1772.1994
– ident: e_1_2_5_6_1
  doi: 10.1006/jmbi.2000.4474
– ident: e_1_2_5_50_1
  doi: 10.1371/journal.pone.0010232
– reference: 15537755 - Protein Sci. 2004 Dec;13(12):3077-84
– reference: 19276150 - Bioinformatics. 2009 May 1;25(9):1125-31
– reference: 12202775 - Nucleic Acids Res. 2002 Sep 1;30(17):3894-900
– reference: 20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33
– reference: 18287115 - Nucleic Acids Res. 2008 Apr;36(7):2295-300
– reference: 15037084 - J Mol Biol. 2004 Mar 5;336(5):1265-82
– reference: 25944916 - Mol Biol Evol. 2015 Sep;32(9):2456-68
– reference: 12211028 - Proteins. 2002 Sep 1;48(4):611-7
– reference: 18057019 - Bioinformatics. 2008 Feb 1;24(3):333-40
– reference: 8794873 - J Mol Biol. 1996 Aug 30;261(4):509-23
– reference: 26004540 - J Mol Biol. 2015 Jul 17;427(14):2396-409
– reference: 11243830 - J Mol Biol. 2001 Mar 16;307(1):447-63
– reference: 22685552 - PLoS One. 2012;7(6):e38114
– reference: 20531955 - PLoS One. 2010;5(6):e10779
– reference: 5777313 - Biochemistry. 1969 Jan;8(1):109-21
– reference: 10547297 - J Mol Biol. 1999 Nov 12;293(5):1221-39
– reference: 5420325 - J Mol Biol. 1970 Mar;48(3):443-53
– reference: 18930732 - J Mol Biol. 2009 Jan 9;385(1):91-8
– reference: 15211506 - Proteins. 2004 Aug 1;56(2):211-21
– reference: 22052502 - Methods Mol Biol. 2012;796:385-98
– reference: 2157024 - J Mol Biol. 1990 Mar 20;212(2):295-318
– reference: 9865945 - Protein Sci. 1998 Dec;7(12):2511-21
– reference: 18339805 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4679-84
– reference: 19818797 - J Mol Biol. 2010 Jan 29;395(4):785-802
– reference: 9278422 - J Biol Chem. 1997 Sep 5;272(36):22648-53
– reference: 23064225 - Nature. 2012 Oct 25;490(7421):535-8
– reference: 21106498 - Nucleic Acids Res. 2011 Apr;39(7):2931-42
– reference: 17519246 - Bioinformatics. 2007 Aug 1;23(15):1875-82
– reference: 15369672 - Cell. 2004 Sep 17;118(6):731-41
– reference: 8132474 - J Bacteriol. 1994 Mar;176(6):1767-72
– reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
– reference: 22163331 - PLoS One. 2011;6(12):e28766
– reference: 20066038 - PLoS One. 2010;5(1):e8591
– reference: 15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63
– reference: 18830136 - Sex Transm Dis. 2009 Jan;36(1):41-8
– reference: 17376479 - J Mol Biol. 2007 May 11;368(4):1042-50
– reference: 20052271 - PLoS Comput Biol. 2010 Jan;6(1):e1000633
– reference: 15858204 - Mol Biol Evol. 2005 Jul;22(7):1627-34
– reference: 8208723 - Proteins. 1994 Apr;18(4):309-17
– reference: 18275083 - Proteins. 2008 Aug 15;72(3):863-72
– reference: 9218963 - Fold Des. 1997;2(3):S25-32
– reference: 18487241 - Bioinformatics. 2008 Jul 15;24(14):1641-2
– reference: 20065119 - Mol Biol Evol. 2010 May;27(5):1181-91
– reference: 15994190 - Bioinformatics. 2005 Sep 1;21(17):3482-9
– reference: 20804152 - Biochemistry. 2010 Oct 5;49(39):8636-45
– reference: 24391951 - PLoS One. 2013;8(12):e84398
– reference: 10700279 - Nat Struct Biol. 2000 Mar;7(3):209-14
– reference: 20436911 - PLoS One. 2010;5(4):e10232
– reference: 16669632 - Biochemistry. 2006 May 9;45(18):5896-906
– reference: 15023994 - J Biol Chem. 2004 Apr 30;279(18):19046-50
– reference: 15215423 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W424-8
– reference: 14962924 - Bioinformatics. 2004 Jul 10;20(10):1565-72
– reference: 22132149 - PLoS One. 2011;6(11):e27813
– reference: 10346891 - Biochemistry. 1999 May 25;38(21):6715-22
– reference: 18304936 - Bioinformatics. 2008 Apr 1;24(7):908-15
– reference: 21928765 - Biochemistry. 2011 Oct 25;50(42):9002-13
– reference: 15882054 - Biochemistry. 2005 May 17;44(19):7156-65
– reference: 19056788 - BMJ. 2008;337:a2338
– reference: 19768681 - Proteins. 2010 Feb 15;78(3):548-58
– reference: 11337480 - Genome Res. 2001 May;11(5):863-74
– reference: 12112692 - Proteins. 2002 Aug 1;48(2):227-41
– reference: 18485694 - Curr Opin Struct Biol. 2008 Jun;18(3):382-6
– reference: 14573864 - Protein Sci. 2003 Nov;12(11):2523-41
– reference: 17868687 - J Mol Biol. 2007 Oct 26;373(3):801-10
– reference: 20351852 - AMIA Annu Symp Proc. 2009;2009:213-7
– reference: 8609628 - J Mol Biol. 1996 Mar 29;257(2):342-58
– reference: 11266612 - Protein Sci. 2001 Feb;10(2):262-76
– reference: 18000015 - Brief Bioinform. 2008 Jan;9(1):46-56
– reference: 25723535 - PLoS Comput Biol. 2015 Feb;11(2):e1004091
– reference: 20590334 - Chaos. 2010 Jun;20(2):026105
– reference: 21390205 - PLoS Genet. 2011 Feb;7(2):e1001301
– reference: 9341111 - J Biol Chem. 1997 Oct 24;272(43):26818-21
– reference: 21374721 - Proteins. 2011 May;79(5):1589-608
– reference: 21930656 - Brief Bioinform. 2012 May;13(3):329-36
– reference: 15318951 - BMC Bioinformatics. 2004 Aug 19;5:113
– reference: 8046748 - J Mol Biol. 1994 Jul 29;240(5):421-33
– reference: 10514373 - Science. 1999 Oct 8;286(5438):295-9
– reference: 19703402 - Cell. 2009 Aug 21;138(4):774-86
– reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
– reference: 11934757 - Bioinformatics. 2002 Mar;18(3):500-1
– reference: 24677372 - Proteins. 2014 Sep;82(9):2141-56
– reference: 23716641 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W8-14
– reference: 24386217 - PLoS One. 2013;8(12):e83502
– reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7
– reference: 15573397 - Proteins. 2005 Feb 1;58(2):309-20
SSID ssj0006936
Score 2.2783253
Snippet ABSTRACT As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected...
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2293
SubjectTerms aldolase
Algorithms
amino acid
Amino acids
Amino Acids - chemistry
coevolution
Entropy
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Evolution, Molecular
Fructose-Bisphosphate Aldolase - chemistry
Fructose-Bisphosphate Aldolase - metabolism
graph theory
Lac Repressors - chemistry
Lac Repressors - metabolism
LacI/GalR
Protein Conformation
protein evolution
Proteins - chemistry
Proteins - metabolism
Repressor Proteins - chemistry
Repressor Proteins - metabolism
sequence alignment
Title Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores
URI https://api.istex.fr/ark:/67375/WNG-8C1SH6SD-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.24948
https://www.ncbi.nlm.nih.gov/pubmed/26503808
https://www.proquest.com/docview/1757599358
https://www.proquest.com/docview/1760873465
https://www.proquest.com/docview/1780521910
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9UwFA5jIvrFl82Xq1OOKAOF3nVpk7Tgl-vVeRGcshfcFylJk8JlWyu37fD6H_zPniRtL5Mx0G8pPaVJz8nJk-TpE0JeiUKwvJBRIFWME5REYx4UJgyo0iLSStPQqe1_3uez4_jTCTtZI2_7f2G8PsSw4GZ7hsvXtoNLVe-sREOtjsGYWnUTTMCWrGUR0cFKO4qn7nxA34sQFA_apHRn9eil0eiG_bA_r4Kal5GrG3r27pLvfaU94-R03DZqnP_6S8_xf1t1j9zpMClMfBDdJ2um3CCbkxLn4-dL2AbHEnXL7xvk5ru-dGvanxW3SX5PzudlBTKfaxhoYFC3yq7yQFNBz1uEvDIXXbRjJfHSKtjKednUgE4GZWBRqbZuzpYw157JZDSoJbgdDTBWPPTC7TRA6Rns0PFLcToBtRXlrB-Q470PR9NZ0B30EOQsipOA6QjH6twUiFYVxTLToUy40JalLlORGoUwSeeCskLvFoYpKnMmqCwMR7gTRg_JelmV5jEBXWDCjllEEyNiHWmZGs5VZIwUaZJyMyKve4dneaeCbpt5lnn9ZppZD2TOAyPycrD94bU_rrTadnEzmMjFqWXLCZZ92_-YJdPdwxk_fJ-h4VYfWFmXKOoM0Ztgqd2MHpEXw230nt23kaWpWmvDw0REMWfX2bizKfBrjMgjH7RDhSi3mj8hvuGNC71rGpN9Pfhy5EpP_sX4KbmNQJJ5ms8WWW8WrXmGYK1Rz12n_ANpFj_W
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgExovAzY-CgOMQJNAapc5cZw8lsIosBW0dWJvlh07UrUtmZpkovwH_jP3Oh_V0DQJ3hzlRol9r-1j--RcQt6IVPAkVX5f6QAWKJGBcVBYr8-0Eb7RhnlObf9gEo6Pgy8n_KTh5uC_MLU-RLfhhj3DjdfYwXFDemepGopCBgOG8ia3ySqm9HYrqsOlelQYuwyBdT8CWNypk7Kd5bNX5qNVbNqf14HNq9jVTT579-oMq4XTLETOyemgKvUg-fWXouN_1-s-WW9gKR3WcfSA3LLZBtkcZrAkP1_QbeqIom4HfoPced-W1kZturhN8nt4PstyqpKZoR0TjBaVxo0eWua0pS7SJLeXTcDDV8IlitiqWVYWFPxMtaXzXFdFebagM1OTmayhekHdoQa1qB966Q4baFaT2GlDMYUVBS1Ql7N4SI73Pk5H436T66GfcD-I-tz4MF0nNgXAqhmUufFUFAqDRHUVi9hqQEomEYynZje1XDOVcMFUakNAPJ7_iKxkeWafEGpSGLMD7rPIisD4RsU2DLVvrRJxFIe2R962HpdJI4SO1TyTtYQzk-gB6TzQI68724ta_uNaq20XOJ2Jmp8iYU5w-WPySUaj3aNxePRBguFWG1myGSsKCQBO8BjPo3vkVXcbvIdHNyqzeYU2oRcJH6L8JhuXngJao0ce11HbfRALUfbHgze8c7F3Q2Xk98NvU1d6-i_GL8naeHqwL_c_T74-I3cBV_Ka9bNFVsp5ZZ8Ddiv1C9dD_wAsl0Px
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJi4vXDYuhQFGoEkgpcuc2E4kXkpLKbcy7SL2giw7dqRqWzI1yUT5D_xnjp1LNTRNgjdHOVHsnGP7s8-Xzwi94imnSSoDT6oQFiiRhnGQG98jSvNAK018p7b_dcomh-GnI3q0gt62_8LU-hDdhpvtGW68th38TKfbS9FQq2PQJ1bd5BpaC5kf2Zge7S3Fo1jsDgisuxGg4k6clGwvn70wHa3ZL_vzMqx5Ebq6uWd8B_1oa11TTo77Van6ya-_BB3_t1l30e0GlOJBHUX30IrJ1tHGIIMF-ekCb2FHE3X77-vo-ru2dHPYHha3gX4PTmdZjmUy07jjgeGiUnabB5c5bomLOMnNeRPuUEm4tBK2cpaVBQYvY2XwPFdVUZ4s8EzXVCajsVpgl9LAxqqHnrtUA85qCjtuCKawnsCFVeUs7qPD8fuD4cRrTnrwEhqEkUd1AJN1YlKAq4pAmWpfRoxrS1OXMY-NApykE05oqndSQxWRCeVEpoYB3vGDB2g1yzPzCGGdwogd0oBEhoc60DI2jKnAGMnjKGamh163DhdJI4Num3kiagFnIqwHhPNAD73sbM9q8Y9LrbZc3HQmcn5s6XKciu_TDyIa7uxP2P5IgOFmG1iiGSkKAfCN09hmo3voRXcbvGcTNzIzeWVtILx5EDJ6lY07nAK-Rg89rIO2qxBhVvTHhze8caF3RWPE7t63A1d6_C_Gz9GN3dFYfPk4_fwE3QJQSWvKzyZaLeeVeQrArVTPXP_8A1yFQqk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino+acid+positions+subject+to+multiple+coevolutionary+constraints+can+be+robustly+identified+by+their+eigenvector+network+centrality+scores&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Parente%2C+Daniel+J&rft.au=Ray%2C+J+Christian+J&rft.au=Swint-Kruse%2C+Liskin&rft.date=2015-12-01&rft.eissn=1097-0134&rft.volume=83&rft.issue=12&rft.spage=2293&rft_id=info:doi/10.1002%2Fprot.24948&rft_id=info%3Apmid%2F26503808&rft.externalDocID=26503808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon