Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores
ABSTRACT As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually ra...
Saved in:
Published in | Proteins, structure, function, and bioinformatics Vol. 83; no. 12; pp. 2293 - 2306 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.12.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank‐ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly‐used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6‐bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column‐specific properties such as sequence entropy and random noise were subtracted; “central” positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints—detectable by divergent algorithms—that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293–2306. © 2015 Wiley Periodicals, Inc. |
---|---|
AbstractList | As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions.As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. ABSTRACT As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank‐ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly‐used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6‐bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column‐specific properties such as sequence entropy and random noise were subtracted; “central” positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints—detectable by divergent algorithms—that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293–2306. © 2015 Wiley Periodicals, Inc. As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints--detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293-2306. © 2015 Wiley Periodicals, Inc. As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms-that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. Proteins 2015; 83:2293-2306. As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by analyzing sequence families for amino acid conservation or for coevolution between pairs of positions. Coevolutionary scores are usually rank-ordered and thresholded to reveal the top pairwise scores, but they also can be treated as weighted networks. Here, we used network analyses to bypass a major complication of coevolution studies: For a given sequence alignment, alternative algorithms usually identify different, top pairwise scores. We reconciled results from five commonly-used, mathematically divergent algorithms (ELSC, McBASC, OMES, SCA, and ZNMI), using the LacI/GalR and 1,6-bisphosphate aldolase protein families as models. Calculations used unthresholded coevolution scores from which column-specific properties such as sequence entropy and random noise were subtracted; "central" positions were identified by calculating various network centrality scores. When compared among algorithms, network centrality methods, particularly eigenvector centrality, showed markedly better agreement than comparisons of the top pairwise scores. Positions with large centrality scores occurred at key structural locations and/or were functionally sensitive to mutations. Further, the top central positions often differed from those with top pairwise coevolution scores: instead of a few strong scores, central positions often had multiple, moderate scores. We conclude that eigenvector centrality calculations reveal a robust evolutionary pattern of constraints-detectable by divergent algorithms--that occur at key protein locations. Finally, we discuss the fact that multiple patterns coexist in evolutionary data that, together, give rise to emergent protein functions. |
Author | Parente, Daniel J. Ray, J. Christian J. Swint-Kruse, Liskin |
Author_xml | – sequence: 1 givenname: Daniel J. surname: Parente fullname: Parente, Daniel J. organization: Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, 66160, Kansas City – sequence: 2 givenname: J. Christian J. surname: Ray fullname: Ray, J. Christian J. organization: Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Kansas, 66047, Lawrence – sequence: 3 givenname: Liskin surname: Swint-Kruse fullname: Swint-Kruse, Liskin email: lswint-kruse@kumc.edu organization: Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas, 66160, Kansas City |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26503808$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0VFr1TAYBuAgE3c2vfEHSMAbETrTpmmSy3HUTRhO3MTLkKZfNWdtckzSzf4I_7OpZ9vFEPEqCTzvB_neA7TnvAOEnpfkqCSkerMNPh1VtazFI7QqieQFKWm9h1ZECF5QJtg-OohxQwhpJG2eoP2qYYQKIlbo1_Foncfa2A5vfbTJehdxnNoNmISTx-M0JLsdABsP136YFqDDnJ8upqCtSxEb7XALOPh2immYse3AJdtb6HA74_QdbMBgv4G7zkN9wA7SjQ9X2GQW9GDTjKPxAeJT9LjXQ4Rnt-ch-vL-3eX6tDg7P_mwPj4rDKO1KFhHDYCBXkrZVvnOOqJFw7uKEq4ll9CKuukMr1jflT2wttKG8Ur30Mi8MnqIXu3m5tX9mCAmNdpoYBi0Az9FVXJBWFVm-x-0IYLTumGZvnxAN34KLn8kK8aZlLmLrF7cqqkdoVPbYMe8UHXXSQavd8AEH2OA_p6URC2Fq6Vw9afwjMkDbGzSS0lLOcPfI-UucmMHmP8xXH36fH55lyl2GRsT_LzP6HClGk45U18_niixLi9Om4u3StDfh9_Qcg |
CitedBy_id | crossref_primary_10_1002_pro_4222 crossref_primary_10_1093_bioinformatics_btx148 crossref_primary_10_1093_bioinformatics_bty347 crossref_primary_10_1002_prot_26206 crossref_primary_10_1093_molbev_msaa202 crossref_primary_10_1002_prot_25953 crossref_primary_10_1016_j_jmb_2015_09_015 crossref_primary_10_1016_j_dib_2016_07_006 crossref_primary_10_1002_pro_4336 crossref_primary_10_1093_nar_gkz536 crossref_primary_10_1002_pro_4136 crossref_primary_10_1007_s00044_020_02582_9 crossref_primary_10_3390_ijms23063211 crossref_primary_10_1016_j_abb_2024_110183 crossref_primary_10_1016_j_bpj_2016_05_030 crossref_primary_10_1016_j_jbc_2024_105736 crossref_primary_10_1107_S2052252517005115 crossref_primary_10_1038_s41467_023_38519_0 crossref_primary_10_1093_database_baad030 crossref_primary_10_1371_journal_pone_0227668 |
Cites_doi | 10.1126/science.286.5438.295 10.1038/78907 10.1371/journal.pone.0028766 10.1021/bi200896t 10.1093/nar/25.17.3389 10.1111/j.1574-6941.2006.00060.x 10.1093/nar/gkh391 10.1006/jmbi.1999.3208 10.1093/bioinformatics/bti191 10.1016/j.jmb.2003.12.078 10.1002/pro.5560071204 10.1016/j.jmb.2009.10.001 10.1186/1471-2105-5-113 10.1021/bi990242f 10.1016/j.cell.2009.07.038 10.1371/journal.pone.0084398 10.1371/journal.pone.0083502 10.1093/nar/gkn072 10.1002/prot.340180402 10.1371/journal.pone.0008591 10.1080/00223980.1954.9712925 10.1093/bib/bbr052 10.1006/jmbi.1996.0167 10.1016/j.jmb.2007.02.054 10.1093/bioinformatics/bti564 10.1016/S1359-0278(97)00060-6 10.1016/j.cell.2004.08.027 10.1021/bi00829a016 10.1110/ps.03188303 10.1093/bioinformatics/btn057 10.1080/0022250X.1972.9989806 10.1016/0022-2836(70)90057-4 10.1110/ps.35801 10.1093/molbev/msi157 10.1016/j.jmb.2015.05.011 10.1074/jbc.M402560200 10.1006/jmbi.1994.1458 10.1093/molbev/msq004 10.1371/journal.pcbi.1000633 10.1021/bi101106x 10.1002/prot.22985 10.1002/prot.10146 10.1093/bioinformatics/btp135 10.1007/978-1-61779-334-9_21 10.1136/bmj.a2338 10.1145/324133.324140 10.1093/bioinformatics/btn235 10.1002/prot.20098 10.1002/jcc.20084 10.1002/prot.10180 10.1371/journal.pgen.1001301 10.1021/bi052619p 10.1093/bib/bbm052 10.1074/jbc.272.36.22648 10.1002/prot.20321 10.1073/pnas.0711732105 10.1093/nar/gkt427 10.1002/prot.24570 10.1074/jbc.272.43.26818 10.1093/bioinformatics/btm270 10.1371/journal.pone.0027813 10.1097/OLQ.0b013e3181860711 10.1371/journal.pcbi.1004091 10.1093/nar/gkq1177 10.1101/gr.176601 10.1371/journal.pone.0010779 10.1137/S003614450342480 10.1093/bioinformatics/btm604 10.1016/j.jmb.2008.09.078 10.1002/prot.22576 10.1063/1.3453602 10.1002/prot.21972 10.1021/bi050293e 10.1093/pan/mpl002 10.1093/bioinformatics/18.3.500 10.1371/journal.pone.0038114 10.1093/nar/gkf493 10.1038/nature11510 10.1007/s12599-010-0127-3 10.1006/jmbi.1996.0479 10.1016/0022-2836(90)90126-7 10.1016/j.sbi.2008.03.007 10.1016/j.jmb.2007.08.036 10.1093/bioinformatics/bth128 10.1110/ps.04915904 10.1093/molbev/msv109 10.1093/nar/gkq399 10.1128/jb.176.6.1767-1772.1994 10.1006/jmbi.2000.4474 10.1371/journal.pone.0010232 |
ContentType | Journal Article |
Copyright | 2015 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2015 Wiley Periodicals, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
DOI | 10.1002/prot.24948 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts Engineering Research Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Biology |
EISSN | 1097-0134 |
EndPage | 2306 |
ExternalDocumentID | 3923844791 26503808 10_1002_prot_24948 PROT24948 ark_67375_WNG_8C1SH6SD_8 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: University of Kansas Medical Center (Biomedical Research Training Program) – fundername: National Institutes of Health funderid: GM079423 – fundername: K‐INBRE (Developmental Research Project award) funderid: P20GM103418 – fundername: NIGMS NIH HHS grantid: P20GM103418 – fundername: NIGMS NIH HHS grantid: P20 GM103418 – fundername: NIGMS NIH HHS grantid: R01 GM079423 – fundername: NIGMS NIH HHS grantid: GM079423 |
GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR RNS ROL RWI RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QL 7QO 7QP 7QR 7TK 7TM 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5348-5d3ceecef999b23ce5d0a867d2307a979eb846dc725fd1fe5b2ac572afe691003 |
IEDL.DBID | DR2 |
ISSN | 0887-3585 1097-0134 |
IngestDate | Fri Jul 11 12:25:55 EDT 2025 Fri Jul 11 11:32:15 EDT 2025 Sun Jul 13 05:05:53 EDT 2025 Wed Feb 19 02:17:56 EST 2025 Tue Jul 01 00:45:09 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Wed Jan 22 17:08:53 EST 2025 Wed Oct 30 09:56:09 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | LacI/GalR protein evolution sequence alignment amino acid graph theory coevolution aldolase |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2015 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5348-5d3ceecef999b23ce5d0a867d2307a979eb846dc725fd1fe5b2ac572afe691003 |
Notes | University of Kansas Medical Center (Biomedical Research Training Program) istex:09C4EAD06DD802948E201E1FD45D11DCD691F249 ArticleID:PROT24948 K-INBRE (Developmental Research Project award) - No. P20GM103418 ark:/67375/WNG-8C1SH6SD-8 National Institutes of Health - No. GM079423 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4715571 |
PMID | 26503808 |
PQID | 1757599358 |
PQPubID | 1016441 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1780521910 proquest_miscellaneous_1760873465 proquest_journals_1757599358 pubmed_primary_26503808 crossref_primary_10_1002_prot_24948 crossref_citationtrail_10_1002_prot_24948 wiley_primary_10_1002_prot_24948_PROT24948 istex_primary_ark_67375_WNG_8C1SH6SD_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2015 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: December 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hokoben |
PublicationTitle | Proteins, structure, function, and bioinformatics |
PublicationTitleAlternate | Proteins |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970;48:443-453. Livesay DR, Kreth KE, Fodor AA. A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms. Methods Mol Biol 2012;796:385-398. Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 2008;36:2295-2300. Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell 2009;138:774-786. Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins 1994;18:309-317. Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM 1999;46:604-632. La D, Sutch B, Livesay DR. Predicting protein functional sites with phylogenetic motifs. Proteins 2005;58:309-320. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402. Meinhardt S, Manley MW, Jr., Parente DJ, Swint-Kruse L. Rheostats and toggle switches for modulating protein function. PLoS One 2013;8:e83502 Xu Y, Tillier ERM. Regional covariation and its application for predicting protein contact patches. Proteins 2010;78:548-558. Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genet 2011;7:e1001301. Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 2004;20:1565-1572. Talavera D, Lovell SC, Whelan S. Covariation is a poor measure of molecular coevolution. Mol Biol Evol 2015;32:2456-2468. Parente DJ, Swint-Kruse L. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins. PLoS ONE 2013;8:e84398. Kalinina OV, Novichkov PS, Mironov AA, Gelfand MS, Rakhmaninova AB. SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins. Nucleic Acids Res 2004;32:W424-428. Buck MJ, Atchley WR. Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Mol Biol Evol 2005;22:1627-1634. Gloor GB, Tyagi G, Abrassart DM, Kingston AJ, Fernandes AD, Dunn SD, Brandl CJ. Functionally compensating coevolving positions are neither homoplasic nor conserved in clades. Mol Biol Evol 2010;27:1181-1191. Pelé J, Moreau M, Abdi H, Rodien P, Castel H, Chabbert M. Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families. Proteins 2014;82:2141-2156. Dellus-Gur E, Elias M, Caselli E, Prati F, Salverda ML, de Visser JA, Fraser JS, Tawfik DS. Negative epistasis and evolvability in TEM-1 beta-lactamase-The thin line between an enzyme's conformational freedom and disorder. J Mol Biol 2015;427:2396-409. Sato T, Yamanishi Y, Kanehisa M, Toh H. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 2005;21:3482-3489. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612. Fodor AA, Aldrich RW. On evolutionary conservation of thermodynamic coupling in proteins. J Biol Chem 2004;279:19046-19050. Dawid A, Kiviet DJ, Kogenaru M, de Vos M, Tans SJ. Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape. Chaos 2010;20:026105. Kann MG, Shoemaker BA, Panchenko AR, Przytycka TM. Correlated evolution of interacting proteins: looking behind the mirrortree. J Mol Biol 2009;385:91-98. Schumacher MA, Seidel G, Hillen W, Brennan RG. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J Mol Biol 2007;368:1042-1050. Lee BC, Park K, Kim D. Analysis of the residue-residue coevolution network and the functionally important residues in proteins. Proteins 2008;72:863-872. Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Marino Buslje C. MISTIC: mutual information server to infer coevolution. Nucleic Acids Res 2013;41:W8-W14. Chakrabarti S, Bryant SH, Panchenko AR. Functional specificity lies within the properties and evolutionary changes of amino acids. J Mol Biol 2007;373:801-810. Bell CE, Lewis M. A closer view of the conformation of the Lac repressor bound to operator. Nat Struct Biol 2000;7:209-214. Fatakia SN, Costanzi S, Chow CC. Molecular evolution of the transmembrane domains of G protein-coupled receptors. PLoS ONE 2011;6:e27813. Chi CN, Elfström L, Shi Y, Snäll T, Engström Å, Jemth P. Reassessing a sparse energetic network within a single protein domain. Proc Natl Acad Sci USA 2008;105:4679-4684. Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38 Suppl:W529-533. Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 1997;2:S25-32. Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999;286:295-299. Zhan H, Camargo M, Matthews KS. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Biochemistry 2010;49:8636-8645. Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. Epistasis as the primary factor in molecular evolution. Nature 2012;490:535-538 advance online publication. Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012;7:e38114 Schumacher MA, Glasfeld A, Zalkin H, Brennan RG. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J Biol Chem 1997;272:22648-22653. Ozarowski A, Barry JK, Matthews KS, Maki AH. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants. Biochemistry 1999;38:6715-6722. Lebherz HG, Rutter WJ. Distribution of Fructose Diphosphate Aldolase Variants in Biological Systems. Biochemistry 1969;8:109-121. Mihalek I, Res I, Lichtarge O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol 2004;336:1265. Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007;23:1875-1882. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11:863-874. Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 1996;257:342. Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 2004;5:113. Tungtur S, Meinhardt S, Swint-Kruse L. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses. J Mol Biol 2010;395:785-802. Fowler JH, Christakis NA. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. Bmj 2008;337:a2338 Newman MEJ. The Structure and Function of Complex Networks. SIAM Rev 2003;45:167-256. Brown CA, Brown KS. Validation of coevolving residue algorithms via pipeline sensitivity analysis: ELSC and OMES and ZNMI, oh my!. PLoS One 2010;5:e10779. Horner DS, Pirovano W, Pesole G. Correlated substitution analysis and the prediction of amino acid structural contacts. Brief Bioinform 2008;9:46-56. Fichtenberg CM, Muth SQ, Brown B, Padian NS, Glass TA, Ellen JM. Sexual network structure among a household sample of urban african american adolescents in an endemic sexually transmitted infection setting. Sex Transm Dis 2009;36:41-48. Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One 2010;5:e10232. Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, Muller-Hill B. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 1996;261:509-523. Kleina LG, Miller JH. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 1990;212:295-318. Falcon CM, Swint-Kruse L, Matthews KS. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage. J Biol Chem 1997;272:26818-26821. Chakrabarti S, Panchenko AR. Structural and Functional Roles of Coevolved Sites in Proteins. PLoS ONE 2010;5:e8591 Burger L, van Nimwegen E. Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments. PLoS Comput Biol 2010;6:e1000633. Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 2011;6:e28766. Teşileanu T, Colwell LJ, Leibler S. Protein sectors: statistical coupling analysis versus conservation. PLoS Comput Biol 2015;11:e1004091. Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 2004;118:731-741. Landherr A, Friedl B, Heidemann J. A critical revie 1994; 176 2004; 20 2002; 18 1997; 272 2004; 25 1999; 293 2000; 7 2015; 32 2008; 9 2008; 36 1999; 46 1996; 261 1999; 286 2004; 5 2005; 21 2008; 105 1997; 2 2015; 427 2008; 72 2013; 8 2012; 13 2001; 307 2005; 22 2003; 12 2004; 32 1969; 8 2002; 48 2009; 2009 2010; 20 2004; 336 2010; 27 2007; 373 2012; 490 2008; 24 2010; 395 2001; 11 1996; 257 2010; 2 1990; 212 2010; 5 2007; 23 2010; 6 2003; 45 2001; 10 2010; 78 2007; 368 2009; 25 2010; 38 2002; 30 2008; 18 1997; 25 2006; 14 2015; 11 2013; 41 2011; 79 2011; 39 2011; 6 2014; 82 2005; 44 2011; 7 1972; 2 2009; 138 2009; 36 2010; 49 2004; 279 2006; 45 1994; 240 1999; 38 2004; 56 2004; 13 2011; 50 2009; 385 2008; 337 1954; 38 1994; 18 2012; 796 1998; 7 2012; 7 2004; 118 1970; 48 2005; 58 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_65_1 e_1_2_5_88_1 e_1_2_5_67_1 e_1_2_5_69_1 e_1_2_5_29_1 e_1_2_5_80_1 e_1_2_5_82_1 e_1_2_5_61_1 e_1_2_5_84_1 e_1_2_5_63_1 e_1_2_5_86_1 e_1_2_5_42_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_59_1 e_1_2_5_9_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_76_1 e_1_2_5_3_1 e_1_2_5_78_1 e_1_2_5_19_1 e_1_2_5_91_1 e_1_2_5_70_1 e_1_2_5_93_1 e_1_2_5_72_1 e_1_2_5_74_1 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 Gundlapalli A (e_1_2_5_51_1) 2009; 2009 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_66_1 e_1_2_5_87_1 e_1_2_5_68_1 e_1_2_5_89_1 e_1_2_5_81_1 e_1_2_5_60_1 e_1_2_5_83_1 e_1_2_5_62_1 e_1_2_5_64_1 e_1_2_5_85_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_6_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_77_1 e_1_2_5_2_1 e_1_2_5_79_1 e_1_2_5_18_1 e_1_2_5_90_1 e_1_2_5_71_1 e_1_2_5_92_1 e_1_2_5_73_1 e_1_2_5_75_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 18485694 - Curr Opin Struct Biol. 2008 Jun;18(3):382-6 15994190 - Bioinformatics. 2005 Sep 1;21(17):3482-9 19818797 - J Mol Biol. 2010 Jan 29;395(4):785-802 20351852 - AMIA Annu Symp Proc. 2009;2009:213-7 19768681 - Proteins. 2010 Feb 15;78(3):548-58 14962924 - Bioinformatics. 2004 Jul 10;20(10):1565-72 8208723 - Proteins. 1994 Apr;18(4):309-17 17519246 - Bioinformatics. 2007 Aug 1;23(15):1875-82 21390205 - PLoS Genet. 2011 Feb;7(2):e1001301 11266612 - Protein Sci. 2001 Feb;10(2):262-76 15318951 - BMC Bioinformatics. 2004 Aug 19;5:113 12211028 - Proteins. 2002 Sep 1;48(4):611-7 5420325 - J Mol Biol. 1970 Mar;48(3):443-53 17868687 - J Mol Biol. 2007 Oct 26;373(3):801-10 18304936 - Bioinformatics. 2008 Apr 1;24(7):908-15 15023994 - J Biol Chem. 2004 Apr 30;279(18):19046-50 8609628 - J Mol Biol. 1996 Mar 29;257(2):342-58 24386217 - PLoS One. 2013;8(12):e83502 18487241 - Bioinformatics. 2008 Jul 15;24(14):1641-2 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 10346891 - Biochemistry. 1999 May 25;38(21):6715-22 18287115 - Nucleic Acids Res. 2008 Apr;36(7):2295-300 20436911 - PLoS One. 2010;5(4):e10232 18000015 - Brief Bioinform. 2008 Jan;9(1):46-56 21930656 - Brief Bioinform. 2012 May;13(3):329-36 18057019 - Bioinformatics. 2008 Feb 1;24(3):333-40 15211506 - Proteins. 2004 Aug 1;56(2):211-21 25723535 - PLoS Comput Biol. 2015 Feb;11(2):e1004091 22685552 - PLoS One. 2012;7(6):e38114 24391951 - PLoS One. 2013;8(12):e84398 2157024 - J Mol Biol. 1990 Mar 20;212(2):295-318 15037084 - J Mol Biol. 2004 Mar 5;336(5):1265-82 10514373 - Science. 1999 Oct 8;286(5438):295-9 20531955 - PLoS One. 2010;5(6):e10779 25944916 - Mol Biol Evol. 2015 Sep;32(9):2456-68 9865945 - Protein Sci. 1998 Dec;7(12):2511-21 18339805 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4679-84 15882054 - Biochemistry. 2005 May 17;44(19):7156-65 20052271 - PLoS Comput Biol. 2010 Jan;6(1):e1000633 16669632 - Biochemistry. 2006 May 9;45(18):5896-906 15573397 - Proteins. 2005 Feb 1;58(2):309-20 18930732 - J Mol Biol. 2009 Jan 9;385(1):91-8 20590334 - Chaos. 2010 Jun;20(2):026105 23716641 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W8-14 18275083 - Proteins. 2008 Aug 15;72(3):863-72 18830136 - Sex Transm Dis. 2009 Jan;36(1):41-8 12202775 - Nucleic Acids Res. 2002 Sep 1;30(17):3894-900 10700279 - Nat Struct Biol. 2000 Mar;7(3):209-14 22052502 - Methods Mol Biol. 2012;796:385-98 15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63 5777313 - Biochemistry. 1969 Jan;8(1):109-21 8132474 - J Bacteriol. 1994 Mar;176(6):1767-72 20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33 20066038 - PLoS One. 2010;5(1):e8591 11243830 - J Mol Biol. 2001 Mar 16;307(1):447-63 11337480 - Genome Res. 2001 May;11(5):863-74 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 8794873 - J Mol Biol. 1996 Aug 30;261(4):509-23 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 11934757 - Bioinformatics. 2002 Mar;18(3):500-1 22163331 - PLoS One. 2011;6(12):e28766 10547297 - J Mol Biol. 1999 Nov 12;293(5):1221-39 19056788 - BMJ. 2008;337:a2338 19703402 - Cell. 2009 Aug 21;138(4):774-86 15215423 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W424-8 9278422 - J Biol Chem. 1997 Sep 5;272(36):22648-53 15858204 - Mol Biol Evol. 2005 Jul;22(7):1627-34 20804152 - Biochemistry. 2010 Oct 5;49(39):8636-45 23064225 - Nature. 2012 Oct 25;490(7421):535-8 9218963 - Fold Des. 1997;2(3):S25-32 21106498 - Nucleic Acids Res. 2011 Apr;39(7):2931-42 17376479 - J Mol Biol. 2007 May 11;368(4):1042-50 15369672 - Cell. 2004 Sep 17;118(6):731-41 9341111 - J Biol Chem. 1997 Oct 24;272(43):26818-21 20065119 - Mol Biol Evol. 2010 May;27(5):1181-91 22132149 - PLoS One. 2011;6(11):e27813 8046748 - J Mol Biol. 1994 Jul 29;240(5):421-33 14573864 - Protein Sci. 2003 Nov;12(11):2523-41 15537755 - Protein Sci. 2004 Dec;13(12):3077-84 21374721 - Proteins. 2011 May;79(5):1589-608 21928765 - Biochemistry. 2011 Oct 25;50(42):9002-13 24677372 - Proteins. 2014 Sep;82(9):2141-56 19276150 - Bioinformatics. 2009 May 1;25(9):1125-31 12112692 - Proteins. 2002 Aug 1;48(2):227-41 26004540 - J Mol Biol. 2015 Jul 17;427(14):2396-409 |
References_xml | – reference: Landherr A, Friedl B, Heidemann J. A critical review of centrality measures in social networks. Bus Informat Syst Eng 2010;2:371-385. – reference: Brown CA, Brown KS. Validation of coevolving residue algorithms via pipeline sensitivity analysis: ELSC and OMES and ZNMI, oh my!. PLoS One 2010;5:e10779. – reference: Talavera D, Lovell SC, Whelan S. Covariation is a poor measure of molecular coevolution. Mol Biol Evol 2015;32:2456-2468. – reference: Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res 2002;30:3894-3900. – reference: Swint-Kruse L, Elam CR, Lin JW, Wycuff DR, Shive Matthews K. Plasticity of quaternary structure: twenty-two ways to form a LacI dimer. Protein Sci 2001;10:262-276. – reference: Burger L, van Nimwegen E. Disentangling Direct from Indirect Co-Evolution of Residues in Protein Alignments. PLoS Comput Biol 2010;6:e1000633. – reference: Gundlapalli A, Ma X, Benuzillo J, Pettey W, Greenberg R, Hales J, Leecaster M, Samore M. Social network analyses of patient-healthcare worker interactions: implications for disease transmission. AMIA Annu Symp Proc 2009;2009:213-217. – reference: Kalinina OV, Novichkov PS, Mironov AA, Gelfand MS, Rakhmaninova AB. SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins. Nucleic Acids Res 2004;32:W424-428. – reference: Olmea O, Valencia A. Improving contact predictions by the combination of correlated mutations and other sources of sequence information. Fold Des 1997;2:S25-32. – reference: Zhan H, Camargo M, Matthews KS. Positions 94-98 of the lactose repressor N-subdomain monomer-monomer interface are critical for allosteric communication. Biochemistry 2010;49:8636-8645. – reference: Chakrabarti S, Panchenko AR. Structural and Functional Roles of Coevolved Sites in Proteins. PLoS ONE 2010;5:e8591 – reference: Bell CE, Lewis M. A closer view of the conformation of the Lac repressor bound to operator. Nat Struct Biol 2000;7:209-214. – reference: Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389-3402. – reference: Pei J, Kim BH, Grishin NV. PROMALS3D: a tool for multiple protein sequence and structure alignments. Nucleic Acids Res 2008;36:2295-2300. – reference: Zhan H, Swint-Kruse L, Matthews KS. Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix. Biochemistry 2006;45:5896-5906. – reference: Buslje CM, Santos J, Delfino JM, Nielsen M. Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information. Bioinformatics 2009;25:1125-1131. – reference: Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Res 2010;38 Suppl:W529-533. – reference: Breen MS, Kemena C, Vlasov PK, Notredame C, Kondrashov FA. Epistasis as the primary factor in molecular evolution. Nature 2012;490:535-538 advance online publication. – reference: Chakrabarti S, Bryant SH, Panchenko AR. Functional specificity lies within the properties and evolutionary changes of amino acids. J Mol Biol 2007;373:801-810. – reference: Arakaki TL, Pezza JA, Cronin MA, Hopkins CE, Zimmer DB, Tolan DR, Allen KN. Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. Protein Sci 2004;13:3077-3084. – reference: Horner DS, Pirovano W, Pesole G. Correlated substitution analysis and the prediction of amino acid structural contacts. Brief Bioinform 2008;9:46-56. – reference: Sato T, Yamanishi Y, Kanehisa M, Toh H. The inference of protein-protein interactions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 2005;21:3482-3489. – reference: Meinhardt S, Manley MW, Jr., Parente DJ, Swint-Kruse L. Rheostats and toggle switches for modulating protein function. PLoS One 2013;8:e83502 – reference: Kleina LG, Miller JH. Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors. J Mol Biol 1990;212:295-318. – reference: Olmea O, Rost B, Valencia A. Effective use of sequence correlation and conservation in fold recognition. J Mol Biol 1999;293:1221-1239. – reference: Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res 2001;11:863-874. – reference: Gu X, Vander Velden K. DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 2002;18:500-501. – reference: Chi CN, Elfström L, Shi Y, Snäll T, Engström Å, Jemth P. Reassessing a sparse energetic network within a single protein domain. Proc Natl Acad Sci USA 2008;105:4679-4684. – reference: Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007;23:1875-1882. – reference: Kass I, Horovitz A. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 2002;48:611-617. – reference: Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 2004;5:113. – reference: Markiewicz P, Kleina LG, Cruz C, Ehret S, Miller JH. Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non-essential residues, as well as "spacers" which do not require a specific sequence. J Mol Biol 1994;240:421-433. – reference: Flynn TC, Swint-Kruse L, Kong Y, Booth C, Matthews KS, Ma J. Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer. Protein Sci 2003;12:2523-2541. – reference: Fodor AA, Aldrich RW. Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins 2004;56:211-221. – reference: Newman MEJ. The Structure and Function of Complex Networks. SIAM Rev 2003;45:167-256. – reference: Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004;25:1605-1612. – reference: Pelé J, Moreau M, Abdi H, Rodien P, Castel H, Chabbert M. Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families. Proteins 2014;82:2141-2156. – reference: Fodor AA, Aldrich RW. On evolutionary conservation of thermodynamic coupling in proteins. J Biol Chem 2004;279:19046-19050. – reference: Dawid A, Kiviet DJ, Kogenaru M, de Vos M, Tans SJ. Multiple peaks and reciprocal sign epistasis in an empirically determined genotype-phenotype landscape. Chaos 2010;20:026105. – reference: Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics 2008;24:333-340. – reference: Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 1970;48:443-453. – reference: Lebherz HG, Rutter WJ. Distribution of Fructose Diphosphate Aldolase Variants in Biological Systems. Biochemistry 1969;8:109-121. – reference: Mihalek I, Res I, Lichtarge O. A family of evolution-entropy hybrid methods for ranking protein residues by importance. J Mol Biol 2004;336:1265. – reference: Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999;286:295-299. – reference: Fowler JH. Connecting the congress: a study of cosponsorship networks. Political Anal 2006;14:456-487. – reference: Fowler JH, Christakis NA. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study. Bmj 2008;337:a2338 – reference: Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, Schloegl H, Stumvoll M, Villringer A, Turner R. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PLoS One 2010;5:e10232. – reference: Stamatakis A, Ludwig T, Meier H. RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 2005;21:456-463. – reference: Suckow J, Markiewicz P, Kleina LG, Miller J, Kisters-Woike B, Muller-Hill B. Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure. J Mol Biol 1996;261:509-523. – reference: Tungtur S, Parente DJ, Swint-Kruse L. Functionally important positions can comprise the majority of a protein's architecture. Proteins 2011;79:1589-1608. – reference: Fatakia SN, Costanzi S, Chow CC. Molecular evolution of the transmembrane domains of G protein-coupled receptors. PLoS ONE 2011;6:e27813. – reference: Kleinberg JM. Authoritative sources in a hyperlinked environment. J ACM 1999;46:604-632. – reference: Fichtenberg CM, Muth SQ, Brown B, Padian NS, Glass TA, Ellen JM. Sexual network structure among a household sample of urban african american adolescents in an endemic sexually transmitted infection setting. Sex Transm Dis 2009;36:41-48. – reference: Schumacher MA, Sprehe M, Bartholomae M, Hillen W, Brennan RG. Structures of carbon catabolite protein A-(HPr-Ser46-P) bound to diverse catabolite response element sites reveal the basis for high-affinity binding to degenerate DNA operators. Nucleic Acids Res 2011;39:2931-2942. – reference: Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 2004;20:1565-1572. – reference: Teşileanu T, Colwell LJ, Leibler S. Protein sectors: statistical coupling analysis versus conservation. PLoS Comput Biol 2015;11:e1004091. – reference: Lee BC, Park K, Kim D. Analysis of the residue-residue coevolution network and the functionally important residues in proteins. Proteins 2008;72:863-872. – reference: Marks DS, Colwell LJ, Sheridan R, Hopf TA, Pagnani A, Zecchina R, Sander C. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 2011;6:e28766. – reference: Gloor GB, Tyagi G, Abrassart DM, Kingston AJ, Fernandes AD, Dunn SD, Brandl CJ. Functionally compensating coevolving positions are neither homoplasic nor conserved in clades. Mol Biol Evol 2010;27:1181-1191. – reference: Kryazhimskiy S, Dushoff J, Bazykin GA, Plotkin JB. Prevalence of epistasis in the evolution of influenza a surface proteins. PLoS Genet 2011;7:e1001301. – reference: La D, Sutch B, Livesay DR. Predicting protein functional sites with phylogenetic motifs. Proteins 2005;58:309-320. – reference: Gloor GB, Martin LC, Wahl LM, Dunn SD. Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions. Biochemistry 2005;44:7156-7165. – reference: Simonetti FL, Teppa E, Chernomoretz A, Nielsen M, Marino Buslje C. MISTIC: mutual information server to infer coevolution. Nucleic Acids Res 2013;41:W8-W14. – reference: Ozarowski A, Barry JK, Matthews KS, Maki AH. Ligand-induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single-tryptophan mutants. Biochemistry 1999;38:6715-6722. – reference: Jordan GE, Piel WH. PhyloWidget: web-based visualizations for the tree of life. Bioinformatics 2008;24:1641-1642. – reference: Halabi N, Rivoire O, Leibler S, Ranganathan R. Protein sectors: evolutionary units of three-dimensional structure. Cell 2009;138:774-786. – reference: Falcon CM, Swint-Kruse L, Matthews KS. Designed disulfide between N-terminal domains of lactose repressor disrupts allosteric linkage. J Biol Chem 1997;272:26818-26821. – reference: Livesay DR, Kreth KE, Fodor AA. A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms. Methods Mol Biol 2012;796:385-398. – reference: Tungtur S, Meinhardt S, Swint-Kruse L. Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses. J Mol Biol 2010;395:785-802. – reference: Lichtarge O, Bourne HR, Cohen FE. An evolutionary trace method defines binding surfaces common to protein families. J Mol Biol 1996;257:342. – reference: Bonacich P. Factoring and weighting approaches to status scores and clique identification. J Math Sociol 1972;2:113-120. – reference: Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792-1797. – reference: Pei J. Multiple protein sequence alignment. Curr Opin Struct Biol 2008;18:382-386. – reference: Shaw ME. Group structure and the behavior of individuals in small groups. J Psychol 1954;38:139-149. – reference: Buck MJ, Atchley WR. Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins. Mol Biol Evol 2005;22:1627-1634. – reference: Gobel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins 1994;18:309-317. – reference: Schumacher MA, Allen GS, Diel M, Seidel G, Hillen W, Brennan RG. Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr-Ser46-P. Cell 2004;118:731-741. – reference: Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012;7:e38114 – reference: Xu J, Liu S, Chen M, Ma J, Matthews KS. Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor. Biochemistry 2011;50:9002-9013. – reference: Choi KY, Zalkin H. Role of the purine repressor hinge sequence in repressor function. J Bacteriol 1994;176:1767-1772. – reference: Kann MG, Shoemaker BA, Panchenko AR, Przytycka TM. Correlated evolution of interacting proteins: looking behind the mirrortree. J Mol Biol 2009;385:91-98. – reference: Xu Y, Tillier ERM. Regional covariation and its application for predicting protein contact patches. Proteins 2010;78:548-558. – reference: Parente DJ, Swint-Kruse L. Multiple co-evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins. PLoS ONE 2013;8:e84398. – reference: Benítez-Páez A, Cárdenas-Brito S, Gutiérrez AJ. A practical guide for the computational selection of residues to be experimentally characterized in protein families. Brief Bioinform 2012;13:329-336. – reference: Armon A, Graur D, Ben-Tal N. ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information. J Mol Biol 2001;307:447-463. – reference: Ye K, Vriend G, Ij AP. Tracing evolutionary pressure. Bioinformatics 2008;24:908-915. – reference: Valdar WS. Scoring residue conservation. Proteins 2002;48:227-241. – reference: Schumacher MA, Glasfeld A, Zalkin H, Brennan RG. The X-ray structure of the PurR-guanine-purF operator complex reveals the contributions of complementary electrostatic surfaces and a water-mediated hydrogen bond to corepressor specificity and binding affinity. J Biol Chem 1997;272:22648-22653. – reference: Dellus-Gur E, Elias M, Caselli E, Prati F, Salverda ML, de Visser JA, Fraser JS, Tawfik DS. Negative epistasis and evolvability in TEM-1 beta-lactamase-The thin line between an enzyme's conformational freedom and disorder. J Mol Biol 2015;427:2396-409. – reference: Hars U, Horlacher R, Boos W, Welte W, Diederichs K. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Protein Sci 1998;7:2511-2521. – reference: Schumacher MA, Seidel G, Hillen W, Brennan RG. Structural mechanism for the fine-tuning of CcpA function by the small molecule effectors glucose 6-phosphate and fructose 1,6-bisphosphate. J Mol Biol 2007;368:1042-1050. – volume: 82 start-page: 2141 year: 2014 end-page: 2156 article-title: Comparative analysis of sequence covariation methods to mine evolutionary hubs: examples from selected GPCR families publication-title: Proteins – volume: 18 start-page: 382 year: 2008 end-page: 386 article-title: Multiple protein sequence alignment publication-title: Curr Opin Struct Biol – volume: 336 start-page: 1265. year: 2004 article-title: A family of evolution‐entropy hybrid methods for ranking protein residues by importance publication-title: J Mol Biol – volume: 490 start-page: 535 year: 2012 end-page: 538 article-title: Epistasis as the primary factor in molecular evolution publication-title: Nature – volume: 11 start-page: 863 year: 2001 end-page: 874 article-title: Predicting deleterious amino acid substitutions publication-title: Genome Res – volume: 24 start-page: 333 year: 2008 end-page: 340 article-title: Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction publication-title: Bioinformatics – volume: 58 start-page: 309 year: 2005 end-page: 320 article-title: Predicting protein functional sites with phylogenetic motifs publication-title: Proteins – volume: 138 start-page: 774 year: 2009 end-page: 786 article-title: Protein sectors: evolutionary units of three‐dimensional structure publication-title: Cell – volume: 18 start-page: 309 year: 1994 end-page: 317 article-title: Correlated mutations and residue contacts in proteins publication-title: Proteins – volume: 25 start-page: 1605 year: 2004 end-page: 1612 article-title: UCSF Chimera–a visualization system for exploratory research and analysis publication-title: J Comput Chem – volume: 240 start-page: 421 year: 1994 end-page: 433 article-title: Genetic studies of the lac repressor. XIV. Analysis of 4000 altered Escherichia coli lac repressors reveals essential and non‐essential residues, as well as “spacers” which do not require a specific sequence publication-title: J Mol Biol – volume: 48 start-page: 227 year: 2002 end-page: 241 article-title: Scoring residue conservation publication-title: Proteins – volume: 41 start-page: W8 year: 2013 end-page: W14 article-title: MISTIC: mutual information server to infer coevolution publication-title: Nucleic Acids Res – volume: 2 start-page: 113 year: 1972 end-page: 120 article-title: Factoring and weighting approaches to status scores and clique identification publication-title: J Math Sociol – volume: 18 start-page: 500 year: 2002 end-page: 501 article-title: DIVERGE: phylogeny‐based analysis for functional–structural divergence of a protein family publication-title: Bioinformatics – volume: 5 start-page: e10779. year: 2010 article-title: Validation of coevolving residue algorithms via pipeline sensitivity analysis: ELSC and OMES and ZNMI, oh my! publication-title: PLoS One – volume: 45 start-page: 5896 year: 2006 end-page: 5906 article-title: Extrinsic interactions dominate helical propensity in coupled binding and folding of the lactose repressor protein hinge helix publication-title: Biochemistry – volume: 337 start-page: a2338 year: 2008 article-title: Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the Framingham Heart Study publication-title: Bmj – volume: 105 start-page: 4679 year: 2008 end-page: 4684 article-title: Reassessing a sparse energetic network within a single protein domain publication-title: Proc Natl Acad Sci USA – volume: 272 start-page: 22648 year: 1997 end-page: 22653 article-title: The X‐ray structure of the PurR‐guanine‐purF operator complex reveals the contributions of complementary electrostatic surfaces and a water‐mediated hydrogen bond to corepressor specificity and binding affinity publication-title: J Biol Chem – volume: 32 start-page: 1792 year: 2004 end-page: 1797 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res – volume: 2 start-page: S25 year: 1997 end-page: 32 article-title: Improving contact predictions by the combination of correlated mutations and other sources of sequence information publication-title: Fold Des – volume: 78 start-page: 548 year: 2010 end-page: 558 article-title: Regional covariation and its application for predicting protein contact patches publication-title: Proteins – volume: 30 start-page: 3894 year: 2002 end-page: 3900 article-title: Human non‐synonymous SNPs: server and survey publication-title: Nucleic Acids Res – volume: 39 start-page: 2931 year: 2011 end-page: 2942 article-title: Structures of carbon catabolite protein A‐(HPr‐Ser46‐P) bound to diverse catabolite response element sites reveal the basis for high‐affinity binding to degenerate DNA operators publication-title: Nucleic Acids Res – volume: 20 start-page: 026105 year: 2010 article-title: Multiple peaks and reciprocal sign epistasis in an empirically determined genotype‐phenotype landscape publication-title: Chaos – volume: 8 start-page: 109 year: 1969 end-page: 121 article-title: Distribution of Fructose Diphosphate Aldolase Variants in Biological Systems publication-title: Biochemistry – volume: 72 start-page: 863 year: 2008 end-page: 872 article-title: Analysis of the residue‐residue coevolution network and the functionally important residues in proteins publication-title: Proteins – volume: 12 start-page: 2523 year: 2003 end-page: 2541 article-title: Allosteric transition pathways in the lactose repressor protein core domains: asymmetric motions in a homodimer publication-title: Protein Sci – volume: 796 start-page: 385 year: 2012 end-page: 398 article-title: A critical evaluation of correlated mutation algorithms and coevolution within allosteric mechanisms publication-title: Methods Mol Biol – volume: 5 start-page: e8591 year: 2010 article-title: Structural and Functional Roles of Coevolved Sites in Proteins publication-title: PLoS ONE – volume: 32 start-page: W424 year: 2004 end-page: 428 article-title: SDPpred: a tool for prediction of amino acid residues that determine differences in functional specificity of homologous proteins publication-title: Nucleic Acids Res – volume: 49 start-page: 8636 year: 2010 end-page: 8645 article-title: Positions 94‐98 of the lactose repressor N‐subdomain monomer‐monomer interface are critical for allosteric communication publication-title: Biochemistry – volume: 212 start-page: 295 year: 1990 end-page: 318 article-title: Genetic studies of the lac repressor. XIII. Extensive amino acid replacements generated by the use of natural and synthetic nonsense suppressors publication-title: J Mol Biol – volume: 6 start-page: e1000633 year: 2010 article-title: Disentangling Direct from Indirect Co‐Evolution of Residues in Protein Alignments publication-title: PLoS Comput Biol – volume: 56 start-page: 211 year: 2004 end-page: 221 article-title: Influence of conservation on calculations of amino acid covariance in multiple sequence alignments publication-title: Proteins – volume: 5 start-page: e10232. year: 2010 article-title: Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain publication-title: PLoS One – volume: 13 start-page: 329 year: 2012 end-page: 336 article-title: A practical guide for the computational selection of residues to be experimentally characterized in protein families publication-title: Brief Bioinform – volume: 24 start-page: 908 year: 2008 end-page: 915 article-title: Tracing evolutionary pressure publication-title: Bioinformatics – volume: 176 start-page: 1767 year: 1994 end-page: 1772 article-title: Role of the purine repressor hinge sequence in repressor function publication-title: J Bacteriol – volume: 22 start-page: 1627 year: 2005 end-page: 1634 article-title: Networks of Coevolving Sites in Structural and Functional Domains of Serpin Proteins publication-title: Mol Biol Evol – volume: 7 start-page: e1001301. year: 2011 article-title: Prevalence of epistasis in the evolution of influenza a surface proteins publication-title: PLoS Genet – volume: 286 start-page: 295 year: 1999 end-page: 299 article-title: Evolutionarily conserved pathways of energetic connectivity in protein families publication-title: Science – volume: 21 start-page: 456 year: 2005 end-page: 463 article-title: RAxML‐III: a fast program for maximum likelihood‐based inference of large phylogenetic trees publication-title: Bioinformatics – volume: 7 start-page: e38114 year: 2012 article-title: A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family publication-title: PLoS One – volume: 36 start-page: 2295 year: 2008 end-page: 2300 article-title: PROMALS3D: a tool for multiple protein sequence and structure alignments publication-title: Nucleic Acids Res – volume: 9 start-page: 46 year: 2008 end-page: 56 article-title: Correlated substitution analysis and the prediction of amino acid structural contacts publication-title: Brief Bioinform – volume: 21 start-page: 3482 year: 2005 end-page: 3489 article-title: The inference of protein–protein interactions by co‐evolutionary analysis is improved by excluding the information about the phylogenetic relationships publication-title: Bioinformatics – volume: 307 start-page: 447 year: 2001 end-page: 463 article-title: ConSurf: an algorithmic tool for the identification of functional regions in proteins by surface mapping of phylogenetic information publication-title: J Mol Biol – volume: 13 start-page: 3077 year: 2004 end-page: 3084 article-title: Structure of human brain fructose 1,6‐(bis)phosphate aldolase: linking isozyme structure with function publication-title: Protein Sci – volume: 8 start-page: e84398. year: 2013 article-title: Multiple co‐evolutionary networks are supported by the common tertiary scaffold of the LacI/GalR proteins publication-title: PLoS ONE – volume: 50 start-page: 9002 year: 2011 end-page: 9013 article-title: Altering residues N125 and D149 impacts sugar effector binding and allosteric parameters in Escherichia coli lactose repressor publication-title: Biochemistry – volume: 25 start-page: 1125 year: 2009 end-page: 1131 article-title: Correction for phylogeny, small number of observations and data redundancy improves the identification of coevolving amino acid pairs using mutual information publication-title: Bioinformatics – volume: 7 start-page: 2511 year: 1998 end-page: 2521 article-title: Crystal structure of the effector‐binding domain of the trehalose‐repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose‐6‐phosphate and noninducer trehalose publication-title: Protein Sci – volume: 79 start-page: 1589 year: 2011 end-page: 1608 article-title: Functionally important positions can comprise the majority of a protein's architecture publication-title: Proteins – volume: 385 start-page: 91 year: 2009 end-page: 98 article-title: Correlated evolution of interacting proteins: looking behind the mirrortree publication-title: J Mol Biol – volume: 38 start-page: 6715 year: 1999 end-page: 6722 article-title: Ligand‐induced conformational changes in lactose repressor: a phosphorescence and ODMR study of single‐tryptophan mutants publication-title: Biochemistry – volume: 293 start-page: 1221 year: 1999 end-page: 1239 article-title: Effective use of sequence correlation and conservation in fold recognition publication-title: J Mol Biol – volume: 44 start-page: 7156 year: 2005 end-page: 7165 article-title: Mutual information in protein multiple sequence alignments reveals two classes of coevolving positions publication-title: Biochemistry – volume: 38 start-page: 139 year: 1954 end-page: 149 article-title: Group structure and the behavior of individuals in small groups publication-title: J Psychol – volume: 8 start-page: e83502 year: 2013 article-title: Rheostats and toggle switches for modulating protein function publication-title: PLoS One – volume: 395 start-page: 785 year: 2010 end-page: 802 article-title: Comparing the functional roles of nonconserved sequence positions in homologous transcription repressors: implications for sequence/function analyses publication-title: J Mol Biol – volume: 272 start-page: 26818 year: 1997 end-page: 26821 article-title: Designed disulfide between N‐terminal domains of lactose repressor disrupts allosteric linkage publication-title: J Biol Chem – volume: 11 start-page: e1004091 year: 2015 article-title: Protein sectors: statistical coupling analysis versus conservation publication-title: PLoS Comput Biol – volume: 257 start-page: 342 year: 1996 article-title: An evolutionary trace method defines binding surfaces common to protein families publication-title: J Mol Biol – volume: 373 start-page: 801 year: 2007 end-page: 810 article-title: Functional specificity lies within the properties and evolutionary changes of amino acids publication-title: J Mol Biol – volume: 7 start-page: 209 year: 2000 end-page: 214 article-title: A closer view of the conformation of the Lac repressor bound to operator publication-title: Nat Struct Biol – volume: 10 start-page: 262 year: 2001 end-page: 276 article-title: Plasticity of quaternary structure: twenty‐two ways to form a LacI dimer publication-title: Protein Sci – volume: 6 start-page: e27813 year: 2011 article-title: Molecular evolution of the transmembrane domains of G protein‐coupled receptors publication-title: PLoS ONE – volume: 32 start-page: 2456 year: 2015 end-page: 2468 article-title: Covariation is a poor measure of molecular coevolution publication-title: Mol Biol Evol – volume: 427 start-page: 2396 year: 2015 end-page: 409 article-title: Negative epistasis and evolvability in TEM‐1 beta‐lactamase—The thin line between an enzyme's conformational freedom and disorder publication-title: J Mol Biol – volume: 261 start-page: 509 year: 1996 end-page: 523 article-title: Genetic studies of the Lac repressor. XV: 4000 single amino acid substitutions and analysis of the resulting phenotypes on the basis of the protein structure publication-title: J Mol Biol – volume: 38 start-page: W529 issue: Suppl year: 2010 end-page: 533 article-title: ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids publication-title: Nucleic Acids Res – volume: 2 start-page: 371 year: 2010 end-page: 385 article-title: A critical review of centrality measures in social networks publication-title: Bus Informat Syst Eng – volume: 20 start-page: 1565 year: 2004 end-page: 1572 article-title: A perturbation‐based method for calculating explicit likelihood of evolutionary co‐variance in multiple sequence alignments publication-title: Bioinformatics – volume: 25 start-page: 3389 year: 1997 end-page: 3402 article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res – volume: 46 start-page: 604 year: 1999 end-page: 632 article-title: Authoritative sources in a hyperlinked environment publication-title: J ACM – volume: 27 start-page: 1181 year: 2010 end-page: 1191 article-title: Functionally compensating coevolving positions are neither homoplasic nor conserved in clades publication-title: Mol Biol Evol – volume: 48 start-page: 443 year: 1970 end-page: 453 article-title: A general method applicable to the search for similarities in the amino acid sequence of two proteins publication-title: J Mol Biol – volume: 118 start-page: 731 year: 2004 end-page: 741 article-title: Structural basis for allosteric control of the transcription regulator CcpA by the phosphoprotein HPr‐Ser46‐P publication-title: Cell – volume: 14 start-page: 456 year: 2006 end-page: 487 article-title: Connecting the congress: a study of cosponsorship networks publication-title: Political Anal – volume: 48 start-page: 611 year: 2002 end-page: 617 article-title: Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations publication-title: Proteins – volume: 5 start-page: 113 year: 2004 article-title: MUSCLE: a multiple sequence alignment method with reduced time and space complexity publication-title: BMC Bioinform – volume: 24 start-page: 1641 year: 2008 end-page: 1642 article-title: PhyloWidget: web‐based visualizations for the tree of life publication-title: Bioinformatics – volume: 368 start-page: 1042 year: 2007 end-page: 1050 article-title: Structural mechanism for the fine‐tuning of CcpA function by the small molecule effectors glucose 6‐phosphate and fructose 1,6‐bisphosphate publication-title: J Mol Biol – volume: 36 start-page: 41 year: 2009 end-page: 48 article-title: Sexual network structure among a household sample of urban african american adolescents in an endemic sexually transmitted infection setting publication-title: Sex Transm Dis – volume: 279 start-page: 19046 year: 2004 end-page: 19050 article-title: On evolutionary conservation of thermodynamic coupling in proteins publication-title: J Biol Chem – volume: 6 start-page: e28766. year: 2011 article-title: Protein 3D structure computed from evolutionary sequence variation publication-title: PLoS ONE – volume: 45 start-page: 167 year: 2003 end-page: 256 article-title: The Structure and Function of Complex Networks publication-title: SIAM Rev – volume: 23 start-page: 1875 year: 2007 end-page: 1882 article-title: Predicting functionally important residues from sequence conservation publication-title: Bioinformatics – volume: 2009 start-page: 213 year: 2009 end-page: 217 article-title: Social network analyses of patient‐healthcare worker interactions: implications for disease transmission publication-title: AMIA Annu Symp Proc – ident: e_1_2_5_20_1 doi: 10.1126/science.286.5438.295 – ident: e_1_2_5_54_1 doi: 10.1038/78907 – ident: e_1_2_5_25_1 doi: 10.1371/journal.pone.0028766 – ident: e_1_2_5_77_1 doi: 10.1021/bi200896t – ident: e_1_2_5_34_1 doi: 10.1093/nar/25.17.3389 – ident: e_1_2_5_36_1 doi: 10.1111/j.1574-6941.2006.00060.x – ident: e_1_2_5_8_1 doi: 10.1093/nar/gkh391 – ident: e_1_2_5_21_1 doi: 10.1006/jmbi.1999.3208 – ident: e_1_2_5_41_1 doi: 10.1093/bioinformatics/bti191 – ident: e_1_2_5_2_1 doi: 10.1016/j.jmb.2003.12.078 – ident: e_1_2_5_55_1 doi: 10.1002/pro.5560071204 – ident: e_1_2_5_93_1 doi: 10.1016/j.jmb.2009.10.001 – ident: e_1_2_5_38_1 doi: 10.1186/1471-2105-5-113 – ident: e_1_2_5_73_1 doi: 10.1021/bi990242f – ident: e_1_2_5_43_1 doi: 10.1016/j.cell.2009.07.038 – ident: e_1_2_5_29_1 doi: 10.1371/journal.pone.0084398 – ident: e_1_2_5_78_1 doi: 10.1371/journal.pone.0083502 – ident: e_1_2_5_35_1 doi: 10.1093/nar/gkn072 – ident: e_1_2_5_18_1 doi: 10.1002/prot.340180402 – ident: e_1_2_5_65_1 doi: 10.1371/journal.pone.0008591 – ident: e_1_2_5_31_1 doi: 10.1080/00223980.1954.9712925 – ident: e_1_2_5_39_1 doi: 10.1093/bib/bbr052 – ident: e_1_2_5_3_1 doi: 10.1006/jmbi.1996.0167 – ident: e_1_2_5_57_1 doi: 10.1016/j.jmb.2007.02.054 – ident: e_1_2_5_45_1 doi: 10.1093/bioinformatics/bti564 – ident: e_1_2_5_19_1 doi: 10.1016/S1359-0278(97)00060-6 – ident: e_1_2_5_58_1 doi: 10.1016/j.cell.2004.08.027 – ident: e_1_2_5_62_1 doi: 10.1021/bi00829a016 – ident: e_1_2_5_75_1 doi: 10.1110/ps.03188303 – ident: e_1_2_5_10_1 doi: 10.1093/bioinformatics/btn057 – ident: e_1_2_5_32_1 doi: 10.1080/0022250X.1972.9989806 – ident: e_1_2_5_37_1 doi: 10.1016/0022-2836(70)90057-4 – ident: e_1_2_5_74_1 doi: 10.1110/ps.35801 – ident: e_1_2_5_82_1 doi: 10.1093/molbev/msi157 – ident: e_1_2_5_91_1 doi: 10.1016/j.jmb.2015.05.011 – ident: e_1_2_5_87_1 doi: 10.1074/jbc.M402560200 – ident: e_1_2_5_81_1 doi: 10.1006/jmbi.1994.1458 – volume: 2009 start-page: 213 year: 2009 ident: e_1_2_5_51_1 article-title: Social network analyses of patient‐healthcare worker interactions: implications for disease transmission publication-title: AMIA Annu Symp Proc – ident: e_1_2_5_86_1 doi: 10.1093/molbev/msq004 – ident: e_1_2_5_16_1 doi: 10.1371/journal.pcbi.1000633 – ident: e_1_2_5_76_1 doi: 10.1021/bi101106x – ident: e_1_2_5_33_1 doi: 10.1002/prot.22985 – ident: e_1_2_5_14_1 doi: 10.1002/prot.10146 – ident: e_1_2_5_27_1 doi: 10.1093/bioinformatics/btp135 – ident: e_1_2_5_15_1 doi: 10.1007/978-1-61779-334-9_21 – ident: e_1_2_5_48_1 doi: 10.1136/bmj.a2338 – ident: e_1_2_5_46_1 doi: 10.1145/324133.324140 – ident: e_1_2_5_42_1 doi: 10.1093/bioinformatics/btn235 – ident: e_1_2_5_30_1 doi: 10.1002/prot.20098 – ident: e_1_2_5_61_1 doi: 10.1002/jcc.20084 – ident: e_1_2_5_22_1 doi: 10.1002/prot.10180 – ident: e_1_2_5_92_1 doi: 10.1371/journal.pgen.1001301 – ident: e_1_2_5_79_1 doi: 10.1021/bi052619p – ident: e_1_2_5_17_1 doi: 10.1093/bib/bbm052 – ident: e_1_2_5_56_1 doi: 10.1074/jbc.272.36.22648 – ident: e_1_2_5_9_1 doi: 10.1002/prot.20321 – ident: e_1_2_5_88_1 doi: 10.1073/pnas.0711732105 – ident: e_1_2_5_28_1 doi: 10.1093/nar/gkt427 – ident: e_1_2_5_64_1 doi: 10.1002/prot.24570 – ident: e_1_2_5_72_1 doi: 10.1074/jbc.272.43.26818 – ident: e_1_2_5_12_1 doi: 10.1093/bioinformatics/btm270 – ident: e_1_2_5_84_1 doi: 10.1371/journal.pone.0027813 – ident: e_1_2_5_52_1 doi: 10.1097/OLQ.0b013e3181860711 – ident: e_1_2_5_85_1 doi: 10.1371/journal.pcbi.1004091 – ident: e_1_2_5_47_1 – ident: e_1_2_5_60_1 doi: 10.1093/nar/gkq1177 – ident: e_1_2_5_5_1 doi: 10.1101/gr.176601 – ident: e_1_2_5_24_1 doi: 10.1371/journal.pone.0010779 – ident: e_1_2_5_53_1 doi: 10.1137/S003614450342480 – ident: e_1_2_5_69_1 doi: 10.1093/bioinformatics/btm604 – ident: e_1_2_5_44_1 doi: 10.1016/j.jmb.2008.09.078 – ident: e_1_2_5_83_1 doi: 10.1002/prot.22576 – ident: e_1_2_5_90_1 doi: 10.1063/1.3453602 – ident: e_1_2_5_66_1 doi: 10.1002/prot.21972 – ident: e_1_2_5_26_1 doi: 10.1021/bi050293e – ident: e_1_2_5_49_1 doi: 10.1093/pan/mpl002 – ident: e_1_2_5_4_1 doi: 10.1093/bioinformatics/18.3.500 – ident: e_1_2_5_63_1 doi: 10.1371/journal.pone.0038114 – ident: e_1_2_5_7_1 doi: 10.1093/nar/gkf493 – ident: e_1_2_5_89_1 doi: 10.1038/nature11510 – ident: e_1_2_5_67_1 doi: 10.1007/s12599-010-0127-3 – ident: e_1_2_5_71_1 doi: 10.1006/jmbi.1996.0479 – ident: e_1_2_5_80_1 doi: 10.1016/0022-2836(90)90126-7 – ident: e_1_2_5_40_1 doi: 10.1016/j.sbi.2008.03.007 – ident: e_1_2_5_13_1 doi: 10.1016/j.jmb.2007.08.036 – ident: e_1_2_5_23_1 doi: 10.1093/bioinformatics/bth128 – ident: e_1_2_5_59_1 doi: 10.1110/ps.04915904 – ident: e_1_2_5_68_1 doi: 10.1093/molbev/msv109 – ident: e_1_2_5_11_1 doi: 10.1093/nar/gkq399 – ident: e_1_2_5_70_1 doi: 10.1128/jb.176.6.1767-1772.1994 – ident: e_1_2_5_6_1 doi: 10.1006/jmbi.2000.4474 – ident: e_1_2_5_50_1 doi: 10.1371/journal.pone.0010232 – reference: 15537755 - Protein Sci. 2004 Dec;13(12):3077-84 – reference: 19276150 - Bioinformatics. 2009 May 1;25(9):1125-31 – reference: 12202775 - Nucleic Acids Res. 2002 Sep 1;30(17):3894-900 – reference: 20478830 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W529-33 – reference: 18287115 - Nucleic Acids Res. 2008 Apr;36(7):2295-300 – reference: 15037084 - J Mol Biol. 2004 Mar 5;336(5):1265-82 – reference: 25944916 - Mol Biol Evol. 2015 Sep;32(9):2456-68 – reference: 12211028 - Proteins. 2002 Sep 1;48(4):611-7 – reference: 18057019 - Bioinformatics. 2008 Feb 1;24(3):333-40 – reference: 8794873 - J Mol Biol. 1996 Aug 30;261(4):509-23 – reference: 26004540 - J Mol Biol. 2015 Jul 17;427(14):2396-409 – reference: 11243830 - J Mol Biol. 2001 Mar 16;307(1):447-63 – reference: 22685552 - PLoS One. 2012;7(6):e38114 – reference: 20531955 - PLoS One. 2010;5(6):e10779 – reference: 5777313 - Biochemistry. 1969 Jan;8(1):109-21 – reference: 10547297 - J Mol Biol. 1999 Nov 12;293(5):1221-39 – reference: 5420325 - J Mol Biol. 1970 Mar;48(3):443-53 – reference: 18930732 - J Mol Biol. 2009 Jan 9;385(1):91-8 – reference: 15211506 - Proteins. 2004 Aug 1;56(2):211-21 – reference: 22052502 - Methods Mol Biol. 2012;796:385-98 – reference: 2157024 - J Mol Biol. 1990 Mar 20;212(2):295-318 – reference: 9865945 - Protein Sci. 1998 Dec;7(12):2511-21 – reference: 18339805 - Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4679-84 – reference: 19818797 - J Mol Biol. 2010 Jan 29;395(4):785-802 – reference: 9278422 - J Biol Chem. 1997 Sep 5;272(36):22648-53 – reference: 23064225 - Nature. 2012 Oct 25;490(7421):535-8 – reference: 21106498 - Nucleic Acids Res. 2011 Apr;39(7):2931-42 – reference: 17519246 - Bioinformatics. 2007 Aug 1;23(15):1875-82 – reference: 15369672 - Cell. 2004 Sep 17;118(6):731-41 – reference: 8132474 - J Bacteriol. 1994 Mar;176(6):1767-72 – reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 – reference: 22163331 - PLoS One. 2011;6(12):e28766 – reference: 20066038 - PLoS One. 2010;5(1):e8591 – reference: 15608047 - Bioinformatics. 2005 Feb 15;21(4):456-63 – reference: 18830136 - Sex Transm Dis. 2009 Jan;36(1):41-8 – reference: 17376479 - J Mol Biol. 2007 May 11;368(4):1042-50 – reference: 20052271 - PLoS Comput Biol. 2010 Jan;6(1):e1000633 – reference: 15858204 - Mol Biol Evol. 2005 Jul;22(7):1627-34 – reference: 8208723 - Proteins. 1994 Apr;18(4):309-17 – reference: 18275083 - Proteins. 2008 Aug 15;72(3):863-72 – reference: 9218963 - Fold Des. 1997;2(3):S25-32 – reference: 18487241 - Bioinformatics. 2008 Jul 15;24(14):1641-2 – reference: 20065119 - Mol Biol Evol. 2010 May;27(5):1181-91 – reference: 15994190 - Bioinformatics. 2005 Sep 1;21(17):3482-9 – reference: 20804152 - Biochemistry. 2010 Oct 5;49(39):8636-45 – reference: 24391951 - PLoS One. 2013;8(12):e84398 – reference: 10700279 - Nat Struct Biol. 2000 Mar;7(3):209-14 – reference: 20436911 - PLoS One. 2010;5(4):e10232 – reference: 16669632 - Biochemistry. 2006 May 9;45(18):5896-906 – reference: 15023994 - J Biol Chem. 2004 Apr 30;279(18):19046-50 – reference: 15215423 - Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W424-8 – reference: 14962924 - Bioinformatics. 2004 Jul 10;20(10):1565-72 – reference: 22132149 - PLoS One. 2011;6(11):e27813 – reference: 10346891 - Biochemistry. 1999 May 25;38(21):6715-22 – reference: 18304936 - Bioinformatics. 2008 Apr 1;24(7):908-15 – reference: 21928765 - Biochemistry. 2011 Oct 25;50(42):9002-13 – reference: 15882054 - Biochemistry. 2005 May 17;44(19):7156-65 – reference: 19056788 - BMJ. 2008;337:a2338 – reference: 19768681 - Proteins. 2010 Feb 15;78(3):548-58 – reference: 11337480 - Genome Res. 2001 May;11(5):863-74 – reference: 12112692 - Proteins. 2002 Aug 1;48(2):227-41 – reference: 18485694 - Curr Opin Struct Biol. 2008 Jun;18(3):382-6 – reference: 14573864 - Protein Sci. 2003 Nov;12(11):2523-41 – reference: 17868687 - J Mol Biol. 2007 Oct 26;373(3):801-10 – reference: 20351852 - AMIA Annu Symp Proc. 2009;2009:213-7 – reference: 8609628 - J Mol Biol. 1996 Mar 29;257(2):342-58 – reference: 11266612 - Protein Sci. 2001 Feb;10(2):262-76 – reference: 18000015 - Brief Bioinform. 2008 Jan;9(1):46-56 – reference: 25723535 - PLoS Comput Biol. 2015 Feb;11(2):e1004091 – reference: 20590334 - Chaos. 2010 Jun;20(2):026105 – reference: 21390205 - PLoS Genet. 2011 Feb;7(2):e1001301 – reference: 9341111 - J Biol Chem. 1997 Oct 24;272(43):26818-21 – reference: 21374721 - Proteins. 2011 May;79(5):1589-608 – reference: 21930656 - Brief Bioinform. 2012 May;13(3):329-36 – reference: 15318951 - BMC Bioinformatics. 2004 Aug 19;5:113 – reference: 8046748 - J Mol Biol. 1994 Jul 29;240(5):421-33 – reference: 10514373 - Science. 1999 Oct 8;286(5438):295-9 – reference: 19703402 - Cell. 2009 Aug 21;138(4):774-86 – reference: 9254694 - Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 – reference: 11934757 - Bioinformatics. 2002 Mar;18(3):500-1 – reference: 24677372 - Proteins. 2014 Sep;82(9):2141-56 – reference: 23716641 - Nucleic Acids Res. 2013 Jul;41(Web Server issue):W8-14 – reference: 24386217 - PLoS One. 2013;8(12):e83502 – reference: 15034147 - Nucleic Acids Res. 2004;32(5):1792-7 – reference: 15573397 - Proteins. 2005 Feb 1;58(2):309-20 |
SSID | ssj0006936 |
Score | 2.2783253 |
Snippet | ABSTRACT
As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected... As proteins evolve, amino acid positions key to protein structure or function are subject to mutational constraints. These positions can be detected by... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2293 |
SubjectTerms | aldolase Algorithms amino acid Amino acids Amino Acids - chemistry coevolution Entropy Escherichia coli Proteins - chemistry Escherichia coli Proteins - metabolism Evolution, Molecular Fructose-Bisphosphate Aldolase - chemistry Fructose-Bisphosphate Aldolase - metabolism graph theory Lac Repressors - chemistry Lac Repressors - metabolism LacI/GalR Protein Conformation protein evolution Proteins - chemistry Proteins - metabolism Repressor Proteins - chemistry Repressor Proteins - metabolism sequence alignment |
Title | Amino acid positions subject to multiple coevolutionary constraints can be robustly identified by their eigenvector network centrality scores |
URI | https://api.istex.fr/ark:/67375/WNG-8C1SH6SD-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.24948 https://www.ncbi.nlm.nih.gov/pubmed/26503808 https://www.proquest.com/docview/1757599358 https://www.proquest.com/docview/1760873465 https://www.proquest.com/docview/1780521910 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9UwFA5jIvrFl82Xq1OOKAOF3nVpk7Tgl-vVeRGcshfcFylJk8JlWyu37fD6H_zPniRtL5Mx0G8pPaVJz8nJk-TpE0JeiUKwvJBRIFWME5REYx4UJgyo0iLSStPQqe1_3uez4_jTCTtZI2_7f2G8PsSw4GZ7hsvXtoNLVe-sREOtjsGYWnUTTMCWrGUR0cFKO4qn7nxA34sQFA_apHRn9eil0eiG_bA_r4Kal5GrG3r27pLvfaU94-R03DZqnP_6S8_xf1t1j9zpMClMfBDdJ2um3CCbkxLn4-dL2AbHEnXL7xvk5ru-dGvanxW3SX5PzudlBTKfaxhoYFC3yq7yQFNBz1uEvDIXXbRjJfHSKtjKednUgE4GZWBRqbZuzpYw157JZDSoJbgdDTBWPPTC7TRA6Rns0PFLcToBtRXlrB-Q470PR9NZ0B30EOQsipOA6QjH6twUiFYVxTLToUy40JalLlORGoUwSeeCskLvFoYpKnMmqCwMR7gTRg_JelmV5jEBXWDCjllEEyNiHWmZGs5VZIwUaZJyMyKve4dneaeCbpt5lnn9ZppZD2TOAyPycrD94bU_rrTadnEzmMjFqWXLCZZ92_-YJdPdwxk_fJ-h4VYfWFmXKOoM0Ztgqd2MHpEXw230nt23kaWpWmvDw0REMWfX2bizKfBrjMgjH7RDhSi3mj8hvuGNC71rGpN9Pfhy5EpP_sX4KbmNQJJ5ms8WWW8WrXmGYK1Rz12n_ANpFj_W |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVgExovAzY-CgOMQJNAapc5cZw8lsIosBW0dWJvlh07UrUtmZpkovwH_jP3Oh_V0DQJ3hzlRol9r-1j--RcQt6IVPAkVX5f6QAWKJGBcVBYr8-0Eb7RhnlObf9gEo6Pgy8n_KTh5uC_MLU-RLfhhj3DjdfYwXFDemepGopCBgOG8ia3ySqm9HYrqsOlelQYuwyBdT8CWNypk7Kd5bNX5qNVbNqf14HNq9jVTT579-oMq4XTLETOyemgKvUg-fWXouN_1-s-WW9gKR3WcfSA3LLZBtkcZrAkP1_QbeqIom4HfoPced-W1kZturhN8nt4PstyqpKZoR0TjBaVxo0eWua0pS7SJLeXTcDDV8IlitiqWVYWFPxMtaXzXFdFebagM1OTmayhekHdoQa1qB966Q4baFaT2GlDMYUVBS1Ql7N4SI73Pk5H436T66GfcD-I-tz4MF0nNgXAqhmUufFUFAqDRHUVi9hqQEomEYynZje1XDOVcMFUakNAPJ7_iKxkeWafEGpSGLMD7rPIisD4RsU2DLVvrRJxFIe2R962HpdJI4SO1TyTtYQzk-gB6TzQI68724ta_uNaq20XOJ2Jmp8iYU5w-WPySUaj3aNxePRBguFWG1myGSsKCQBO8BjPo3vkVXcbvIdHNyqzeYU2oRcJH6L8JhuXngJao0ce11HbfRALUfbHgze8c7F3Q2Xk98NvU1d6-i_GL8naeHqwL_c_T74-I3cBV_Ka9bNFVsp5ZZ8Ddiv1C9dD_wAsl0Px |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGJi4vXDYuhQFGoEkgpcuc2E4kXkpLKbcy7SL2giw7dqRqWzI1yUT5D_xnjp1LNTRNgjdHOVHsnGP7s8-Xzwi94imnSSoDT6oQFiiRhnGQG98jSvNAK018p7b_dcomh-GnI3q0gt62_8LU-hDdhpvtGW68th38TKfbS9FQq2PQJ1bd5BpaC5kf2Zge7S3Fo1jsDgisuxGg4k6clGwvn70wHa3ZL_vzMqx5Ebq6uWd8B_1oa11TTo77Van6ya-_BB3_t1l30e0GlOJBHUX30IrJ1tHGIIMF-ekCb2FHE3X77-vo-ru2dHPYHha3gX4PTmdZjmUy07jjgeGiUnabB5c5bomLOMnNeRPuUEm4tBK2cpaVBQYvY2XwPFdVUZ4s8EzXVCajsVpgl9LAxqqHnrtUA85qCjtuCKawnsCFVeUs7qPD8fuD4cRrTnrwEhqEkUd1AJN1YlKAq4pAmWpfRoxrS1OXMY-NApykE05oqndSQxWRCeVEpoYB3vGDB2g1yzPzCGGdwogd0oBEhoc60DI2jKnAGMnjKGamh163DhdJI4Num3kiagFnIqwHhPNAD73sbM9q8Y9LrbZc3HQmcn5s6XKciu_TDyIa7uxP2P5IgOFmG1iiGSkKAfCN09hmo3voRXcbvGcTNzIzeWVtILx5EDJ6lY07nAK-Rg89rIO2qxBhVvTHhze8caF3RWPE7t63A1d6_C_Gz9GN3dFYfPk4_fwE3QJQSWvKzyZaLeeVeQrArVTPXP_8A1yFQqk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amino+acid+positions+subject+to+multiple+coevolutionary+constraints+can+be+robustly+identified+by+their+eigenvector+network+centrality+scores&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Parente%2C+Daniel+J&rft.au=Ray%2C+J+Christian+J&rft.au=Swint-Kruse%2C+Liskin&rft.date=2015-12-01&rft.eissn=1097-0134&rft.volume=83&rft.issue=12&rft.spage=2293&rft_id=info:doi/10.1002%2Fprot.24948&rft_id=info%3Apmid%2F26503808&rft.externalDocID=26503808 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |