Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging

Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon–Bloembergen–Morgan and the outer‐sphere quantum mechanical theories established on simplistic models...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 8; pp. e1804567 - n/a
Main Authors Zhou, Zijian, Yang, Lijiao, Gao, Jinhao, Chen, Xiaoyuan
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon–Bloembergen–Morgan and the outer‐sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure–relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields. Structure–relaxivity relationships between different structural features of magnetic nanoparticles (MNPs) and the resulting T1 and T2 relaxivities in magnetic resonance imaging (MRI) are reviewed. The factors of size, shape, crystal structure, surface functionality, and assembly structure of magnetic nanoparticles are summarized to decipher how physical properties of MNPs influence proton relaxation in MRI.
AbstractList Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. We reviewed recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales, namely the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. We placed a special emphasis on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, we hope this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon–Bloembergen–Morgan and the outer‐sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure–relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields. Structure–relaxivity relationships between different structural features of magnetic nanoparticles (MNPs) and the resulting T1 and T2 relaxivities in magnetic resonance imaging (MRI) are reviewed. The factors of size, shape, crystal structure, surface functionality, and assembly structure of magnetic nanoparticles are summarized to decipher how physical properties of MNPs influence proton relaxation in MRI.
Author Yang, Lijiao
Gao, Jinhao
Chen, Xiaoyuan
Zhou, Zijian
AuthorAffiliation Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
AuthorAffiliation_xml – name: State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
– name: Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
Author_xml – sequence: 1
  givenname: Zijian
  surname: Zhou
  fullname: Zhou, Zijian
  organization: National Institutes of Health
– sequence: 2
  givenname: Lijiao
  surname: Yang
  fullname: Yang, Lijiao
  organization: Xiamen University
– sequence: 3
  givenname: Jinhao
  surname: Gao
  fullname: Gao, Jinhao
  email: jhgao@xmu.edu.cn
  organization: Xiamen University
– sequence: 4
  givenname: Xiaoyuan
  orcidid: 0000-0002-9622-0870
  surname: Chen
  fullname: Chen, Xiaoyuan
  email: shawn.chen@nih.gov
  organization: National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30600553$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAUhS1URKeFLUsUiQ2bDNd27NgbpFH5q9SCVGCJLNexp64Se7CTtrPjHXhDngQP0x-ohFj5Svc7R8fn7qGdEINF6CmGOQYgL3U36DkBLKBhvH2AZpgRXDcg2Q6agaSslrwRu2gv53MAkBz4I7RLgQMwRmfo66cxTWackv35_ceJ7fWVv_DjutqMo48hn_lVrqKrjvUy2NGb6oMOcaVTGXubKxfT3erE5hh0MLY6HPTSh-Vj9NDpPtsn1-8--vL2zeeD9_XRx3eHB4uj2jDatHVHCcaWOmE1F7ITDXetsdKVwJqQljh22pGu0do4RznutGhkixkHKURHJNB99Grru5pOB9sZG8ake7VKftBpraL26u9N8GdqGS8Up7KUh4vBi2uDFL9NNo9q8NnYvtfBxikrgjlp2xKTF_T5PfQ8TimU7xVKUJDABSvUsz8T3Ua5ab4AzRYwKeacrFPGj78rLwF9rzCozYHV5sDq9sBFNr8nu3H-p0BuBZe-t-v_0Grx-nhxp_0FQ6u6qw
CitedBy_id crossref_primary_10_1021_acs_nanolett_0c02701
crossref_primary_10_1016_j_ccr_2023_215548
crossref_primary_10_1016_j_cej_2019_122406
crossref_primary_10_3390_app12199969
crossref_primary_10_1039_D1NR00338K
crossref_primary_10_3390_life13040870
crossref_primary_10_1007_s00216_024_05679_x
crossref_primary_10_1016_j_ijbiomac_2021_02_183
crossref_primary_10_3389_fchem_2020_00203
crossref_primary_10_3762_bjnano_12_9
crossref_primary_10_1021_acsami_2c15295
crossref_primary_10_3390_ma12244234
crossref_primary_10_1002_adhm_202403099
crossref_primary_10_1016_j_cej_2024_154269
crossref_primary_10_1016_j_pmatsci_2024_101267
crossref_primary_10_1039_D4AN00189C
crossref_primary_10_1039_C9RA06886D
crossref_primary_10_1002_smll_202107808
crossref_primary_10_1039_D2NR04979A
crossref_primary_10_1021_cbmi_3c00026
crossref_primary_10_1021_cbmi_3c00024
crossref_primary_10_1039_D2TB00600F
crossref_primary_10_3390_ijms24119293
crossref_primary_10_1002_adfm_202300023
crossref_primary_10_1021_acs_analchem_4c03890
crossref_primary_10_1002_adma_201904385
crossref_primary_10_1016_j_chempr_2020_01_023
crossref_primary_10_1021_acsami_1c13341
crossref_primary_10_1021_acsanm_2c03537
crossref_primary_10_1021_jacsau_4c00009
crossref_primary_10_1080_13543776_2022_2109413
crossref_primary_10_1021_acs_langmuir_3c03049
crossref_primary_10_1039_D1TB02572D
crossref_primary_10_1039_D3DT00381G
crossref_primary_10_1039_D0TB02858D
crossref_primary_10_1039_D1NJ00419K
crossref_primary_10_1021_acsnano_9b06842
crossref_primary_10_1021_acs_jpcc_2c06299
crossref_primary_10_1002_ejic_201900697
crossref_primary_10_1002_slct_201902548
crossref_primary_10_1039_D1CC03913J
crossref_primary_10_1021_acs_bioconjchem_1c00288
crossref_primary_10_1016_j_foodchem_2024_138847
crossref_primary_10_1002_adma_201906799
crossref_primary_10_1073_pnas_2211228119
crossref_primary_10_1021_acsanm_5c00309
crossref_primary_10_3390_magnetochemistry9070181
crossref_primary_10_1021_acsami_0c13825
crossref_primary_10_1002_advs_202205109
crossref_primary_10_1007_s12274_023_6158_0
crossref_primary_10_1088_1361_6668_ac2f01
crossref_primary_10_1016_j_addr_2022_114484
crossref_primary_10_1002_EXP_20230027
crossref_primary_10_1007_s00604_021_04718_z
crossref_primary_10_1021_acsnano_0c01505
crossref_primary_10_1073_pnas_2220036120
crossref_primary_10_1021_acs_nanolett_1c03786
crossref_primary_10_1002_bmm2_12085
crossref_primary_10_1038_s41467_024_50688_0
crossref_primary_10_1007_s40843_020_1434_1
crossref_primary_10_1007_s00339_020_03575_6
crossref_primary_10_1007_s41365_024_01527_w
crossref_primary_10_1007_s10853_023_08914_5
crossref_primary_10_1021_acs_chemmater_3c01356
crossref_primary_10_1002_anie_202318948
crossref_primary_10_1021_acs_analchem_0c04296
crossref_primary_10_1016_j_ccr_2022_214821
crossref_primary_10_1021_acsnano_0c09223
crossref_primary_10_1002_smll_202101460
crossref_primary_10_1016_j_xcrp_2022_100920
crossref_primary_10_1021_acs_nanolett_4c02669
crossref_primary_10_1016_j_bios_2022_114717
crossref_primary_10_1021_acs_analchem_2c04539
crossref_primary_10_1021_acsami_4c08256
crossref_primary_10_1002_pol_20230820
crossref_primary_10_1021_acs_analchem_0c04605
crossref_primary_10_1021_acs_inorgchem_4c03878
crossref_primary_10_3390_nano15010033
crossref_primary_10_1007_s10853_020_05296_w
crossref_primary_10_1002_wnan_1740
crossref_primary_10_1021_acsomega_2c00071
crossref_primary_10_1002_cmdc_202100701
crossref_primary_10_1016_j_carbpol_2022_120061
crossref_primary_10_1039_C9RA10509C
crossref_primary_10_1038_s41467_021_24055_2
crossref_primary_10_1021_acsnano_4c03999
crossref_primary_10_1021_acs_chemrev_4c00710
crossref_primary_10_1016_j_ccr_2022_214809
crossref_primary_10_1016_j_foodchem_2023_137061
crossref_primary_10_1371_journal_pone_0260606
crossref_primary_10_1021_acs_nanolett_3c02214
crossref_primary_10_1021_acs_chemmater_2c00708
crossref_primary_10_1021_acsnano_3c05853
crossref_primary_10_1186_s12951_024_02629_8
crossref_primary_10_1002_viw2_20
crossref_primary_10_1002_smsc_202300015
crossref_primary_10_1039_D1NR00115A
crossref_primary_10_1002_adfm_202209278
crossref_primary_10_1007_s12274_022_4877_4
crossref_primary_10_1039_D1TB01771C
crossref_primary_10_1177_08853282221102673
crossref_primary_10_1002_advs_202000467
crossref_primary_10_1039_D2NH00478J
crossref_primary_10_1021_acs_langmuir_4c01332
crossref_primary_10_1021_acsami_1c20617
crossref_primary_10_1021_acs_jpcc_4c07127
crossref_primary_10_1093_rb_rbab027
crossref_primary_10_1002_admi_202100455
crossref_primary_10_3390_ph16020166
crossref_primary_10_1002_adhm_201900672
crossref_primary_10_1016_j_biomaterials_2023_122139
crossref_primary_10_26599_NR_2025_94907251
crossref_primary_10_1039_D4SC04675G
crossref_primary_10_1039_D2AN00325B
crossref_primary_10_1016_j_nano_2020_102219
crossref_primary_10_1016_j_bioactmat_2020_12_001
crossref_primary_10_1021_acsanm_4c00511
crossref_primary_10_1039_D2RA03995H
crossref_primary_10_1021_acsomega_1c05420
crossref_primary_10_1002_smll_202208241
crossref_primary_10_1039_D1NR00877C
crossref_primary_10_1002_adma_202005657
crossref_primary_10_1039_D3BM00264K
crossref_primary_10_3390_sci4010011
crossref_primary_10_1002_ange_202117229
crossref_primary_10_1142_S0217984924502373
crossref_primary_10_1002_cmdc_202400586
crossref_primary_10_1007_s00432_022_04427_x
crossref_primary_10_3390_ma14133611
crossref_primary_10_1039_D2RA01294D
crossref_primary_10_1021_acs_nanolett_1c04676
crossref_primary_10_1021_acs_analchem_0c02859
crossref_primary_10_1002_smtd_202001025
crossref_primary_10_1021_acsanm_4c00404
crossref_primary_10_1002_smll_202308247
crossref_primary_10_1021_acsbiomaterials_4c00890
crossref_primary_10_1021_acs_langmuir_9b00337
crossref_primary_10_1039_D2NR02059A
crossref_primary_10_1039_D3CC00418J
crossref_primary_10_1002_EXP_20230064
crossref_primary_10_1007_s11706_023_0658_4
crossref_primary_10_1002_anie_202117229
crossref_primary_10_1016_j_jre_2024_04_018
crossref_primary_10_1021_acsnano_1c06026
crossref_primary_10_3390_molecules29081824
crossref_primary_10_1016_j_mtadv_2020_100119
crossref_primary_10_1021_acsami_1c11261
crossref_primary_10_1016_j_jmmm_2019_02_067
crossref_primary_10_1021_acs_chemmater_2c02537
crossref_primary_10_1021_acs_jpclett_4c01876
crossref_primary_10_1016_j_actbio_2023_02_033
crossref_primary_10_1002_EXP_20210009
crossref_primary_10_1007_s00210_025_04038_6
crossref_primary_10_1186_s42649_021_00058_7
crossref_primary_10_1002_adhm_202303389
crossref_primary_10_1016_j_nano_2025_102811
crossref_primary_10_1021_acsami_4c09269
crossref_primary_10_1039_D1TC01477C
crossref_primary_10_1021_acs_nanolett_9b01900
crossref_primary_10_3390_polym13172989
crossref_primary_10_1002_adma_202401538
crossref_primary_10_1007_s10570_021_03693_1
crossref_primary_10_1002_adfm_202425466
crossref_primary_10_1002_ange_202318948
crossref_primary_10_1007_s10904_020_01719_y
crossref_primary_10_3390_magnetochemistry10070046
crossref_primary_10_1186_s12951_024_02394_8
crossref_primary_10_3390_bios14040164
crossref_primary_10_1002_adma_202305932
crossref_primary_10_1002_adfm_202422876
crossref_primary_10_1039_C9CS00011A
crossref_primary_10_1002_adtp_202100018
crossref_primary_10_1021_acsami_1c07739
crossref_primary_10_1039_D3SD00293D
crossref_primary_10_1021_acsami_9b08948
crossref_primary_10_1039_D0TB00552E
crossref_primary_10_3390_nano11113034
crossref_primary_10_1016_j_biomaterials_2020_120386
crossref_primary_10_1016_j_cej_2021_129170
crossref_primary_10_1021_acsnano_3c02265
crossref_primary_10_1007_s10853_020_05647_7
crossref_primary_10_1093_rb_rbab064
crossref_primary_10_1186_s12951_022_01524_4
crossref_primary_10_1021_acs_analchem_2c01341
crossref_primary_10_1002_adhm_201901058
crossref_primary_10_1088_2516_1091_ac3111
crossref_primary_10_1021_acsanm_0c00474
crossref_primary_10_1039_D4NA00014E
crossref_primary_10_3390_nano13050804
crossref_primary_10_1007_s10904_023_02933_0
crossref_primary_10_1021_acsnano_4c17959
crossref_primary_10_1016_j_chempr_2022_06_006
crossref_primary_10_3390_nano10050889
crossref_primary_10_1002_anie_202102833
crossref_primary_10_1016_j_compositesb_2021_109401
crossref_primary_10_1016_j_jcis_2022_06_118
crossref_primary_10_3390_nano13061027
crossref_primary_10_1016_j_ccr_2021_214184
crossref_primary_10_1016_j_jddst_2024_106224
crossref_primary_10_1002_smll_202206821
crossref_primary_10_1039_D3CP05043B
crossref_primary_10_1016_j_actbio_2023_04_006
crossref_primary_10_1002_adhm_202202391
crossref_primary_10_1126_sciadv_add8539
crossref_primary_10_3390_polym13234146
crossref_primary_10_1016_j_addr_2022_114536
crossref_primary_10_1016_j_porgcoat_2024_108820
crossref_primary_10_1021_acs_analchem_3c04036
crossref_primary_10_1016_j_bioactmat_2022_04_024
crossref_primary_10_3390_coatings13091589
crossref_primary_10_1016_j_nano_2023_102713
crossref_primary_10_1007_s40843_023_2839_5
crossref_primary_10_1002_EXP_20210223
crossref_primary_10_3390_molecules25215072
crossref_primary_10_1016_j_inoche_2021_108995
crossref_primary_10_1021_acsanm_4c00833
crossref_primary_10_1080_24701556_2020_1745836
crossref_primary_10_1002_asia_202200561
crossref_primary_10_1039_D1TB01596F
crossref_primary_10_1016_j_ccr_2020_213261
crossref_primary_10_1016_j_jmmm_2024_172447
crossref_primary_10_1007_s00723_023_01629_5
crossref_primary_10_1021_acsnano_2c12793
crossref_primary_10_1002_ird3_10
crossref_primary_10_3389_fbioe_2021_647905
crossref_primary_10_3390_nano11102601
crossref_primary_10_1002_anse_202300038
crossref_primary_10_3390_nano11010017
crossref_primary_10_1016_j_apmt_2020_100686
crossref_primary_10_1007_s00339_023_07160_5
crossref_primary_10_1002_adhm_202301435
crossref_primary_10_1007_s10948_023_06607_3
crossref_primary_10_1002_open_202200110
crossref_primary_10_1002_adma_202008683
crossref_primary_10_1002_smll_202304127
crossref_primary_10_1002_smll_202301894
crossref_primary_10_1002_adfm_202313286
crossref_primary_10_1007_s42247_022_00441_4
crossref_primary_10_1038_s41467_024_52308_3
crossref_primary_10_1002_smtd_202101145
crossref_primary_10_1016_j_bioactmat_2021_10_014
crossref_primary_10_1016_j_ccr_2022_214540
crossref_primary_10_1007_s12598_023_02443_5
crossref_primary_10_1016_j_addr_2022_114637
crossref_primary_10_1016_j_steroids_2022_109170
crossref_primary_10_1186_s12951_023_01769_7
crossref_primary_10_1002_smll_202302856
crossref_primary_10_1016_j_carbon_2019_04_046
crossref_primary_10_1038_s41427_022_00442_z
crossref_primary_10_1016_j_jconrel_2020_07_045
crossref_primary_10_1039_C9RA08612A
crossref_primary_10_1002_zaac_202100190
crossref_primary_10_1021_acs_analchem_1c03744
crossref_primary_10_1021_cbmi_3c00117
crossref_primary_10_1021_acs_jpcc_1c05172
crossref_primary_10_1016_j_jhazmat_2024_136882
crossref_primary_10_1021_acs_langmuir_3c00657
crossref_primary_10_1016_j_cej_2024_154066
crossref_primary_10_1016_j_cej_2024_158788
crossref_primary_10_1039_D2TB01855A
crossref_primary_10_1021_acs_jpcc_2c05390
crossref_primary_10_1002_smll_202308547
crossref_primary_10_1039_D2NR04878G
crossref_primary_10_1002_smtd_202000310
crossref_primary_10_1021_acsbiomaterials_0c01076
crossref_primary_10_3390_ph15040480
crossref_primary_10_3390_magnetochemistry6010011
crossref_primary_10_1021_acsanm_4c00242
crossref_primary_10_1002_adma_201903497
crossref_primary_10_3762_bjnano_11_84
crossref_primary_10_1016_j_cej_2024_157681
crossref_primary_10_1039_D3BM00443K
crossref_primary_10_1039_D1CP00708D
crossref_primary_10_1021_acs_chemrev_4c00546
crossref_primary_10_1016_j_cej_2024_153086
crossref_primary_10_3390_catal13060980
crossref_primary_10_1002_adfm_202313938
crossref_primary_10_1007_s12274_023_6214_9
crossref_primary_10_1021_acs_chemmater_2c01746
crossref_primary_10_1039_D1TC01524A
crossref_primary_10_1007_s41061_021_00325_x
crossref_primary_10_1039_D1NA00818H
crossref_primary_10_1016_j_colsurfa_2022_130518
crossref_primary_10_1002_adma_202310404
crossref_primary_10_1039_D0NR00039F
crossref_primary_10_1021_acsanm_2c01392
crossref_primary_10_1002_smll_202303522
crossref_primary_10_3390_nano9091345
crossref_primary_10_1002_adhm_202000533
crossref_primary_10_1039_D1NJ00508A
crossref_primary_10_4103_jispcd_JISPCD_175_22
crossref_primary_10_1088_2057_1976_ad795b
crossref_primary_10_2174_2468187312666220509213555
crossref_primary_10_1039_D4TB00655K
crossref_primary_10_1039_C9TB02871D
crossref_primary_10_1016_j_addr_2021_113832
crossref_primary_10_1016_j_ccr_2020_213620
crossref_primary_10_1021_acsbiomaterials_0c00409
crossref_primary_10_1016_j_biomaterials_2020_119979
crossref_primary_10_1039_D0NR07590F
crossref_primary_10_1021_acs_langmuir_4c01864
crossref_primary_10_1021_acs_chemmater_9b03662
crossref_primary_10_1149_2162_8777_abc80d
crossref_primary_10_3390_nano14090734
crossref_primary_10_1021_acsami_4c03434
crossref_primary_10_1021_acs_langmuir_2c01764
crossref_primary_10_1038_s41563_024_02054_0
crossref_primary_10_1080_17425247_2023_2166484
crossref_primary_10_1007_s11164_023_04966_z
crossref_primary_10_1088_1361_6463_abbe4d
crossref_primary_10_1021_acsnano_4c01723
crossref_primary_10_1002_cnm_3568
crossref_primary_10_1016_j_jmmm_2023_170835
crossref_primary_10_1002_adhm_202001091
crossref_primary_10_1109_TNB_2021_3126905
crossref_primary_10_1021_acs_iecr_1c04879
crossref_primary_10_1007_s12652_021_03612_z
crossref_primary_10_1002_ange_202102833
crossref_primary_10_1039_D3NR05391A
crossref_primary_10_3390_ijms22126546
Cites_doi 10.1038/s41598-017-09897-5
10.1021/acsnano.8b01048
10.1002/ejic.201101193
10.1073/pnas.1511443112
10.1529/biophysj.107.116145
10.1021/cr068445e
10.1021/nn402487q
10.1038/nature12863
10.1021/ja805152t
10.1021/ja1084095
10.1038/ncomms6093
10.1038/265521a0
10.1021/ja1109584
10.1021/ja905811h
10.1021/cm402036d
10.1021/acs.chemmater.6b01256
10.1021/ja0768744
10.1002/wnan.1468
10.1021/nn101643u
10.1088/0957-4484/21/3/035103
10.1002/anie.201100562
10.1126/science.1261412
10.1021/acsami.7b05389
10.1021/jp404199f
10.1021/cm502301u
10.1021/acsami.5b12463
10.1021/nn204591r
10.1021/ja308962w
10.1039/C7NR07035G
10.1002/anie.201106180
10.1021/nl302160d
10.1016/0304-8853(94)90462-6
10.1039/c2nr31865b
10.1039/C4NR05825A
10.1021/nn304477s
10.1038/35008037
10.1039/C6CS00426A
10.1007/s12274-012-0252-z
10.1021/jz201664h
10.1063/1.478435
10.1002/adma.201405634
10.7150/thno.12570
10.1021/acs.accounts.7b00301
10.1021/nl035004r
10.1038/nchem.1195
10.1021/ar400092x
10.1002/mrm.22966
10.1021/la0008636
10.1016/j.mattod.2015.08.022
10.1016/j.jmmm.2005.01.070
10.1021/cr400544s
10.1016/j.biomaterials.2012.11.054
10.1073/pnas.1222109110
10.1021/nn2045246
10.1002/adfm.201101663
10.1002/anie.200604775
10.1021/acs.jpcc.6b00254
10.1021/acs.jpcc.6b08362
10.1021/la900730b
10.1038/nnano.2009.453
10.1021/nl501193x
10.1039/C6CP02094A
10.1039/c3tb00369h
10.1039/C6RA14265F
10.1002/adhm.201700306
10.1021/nn305991e
10.1126/science.1219468
10.1016/j.jmmm.2016.05.019
10.1021/nn2002272
10.1038/ncomms3266
10.1021/ar9000026
10.1073/pnas.0902365106
10.1002/anie.200901791
10.1016/S0304-8853(99)00347-9
10.1039/C5NR04400F
10.1002/ejic.201000496
10.1063/1.1731684
10.1038/s41551-017-0116-7
10.1021/ja409490q
10.1166/jbn.2014.2035
10.1039/c3nr02797j
10.1039/C6CC03225G
10.1021/acsami.5b08422
10.1021/ja803920b
10.1021/acsnano.7b01297
10.1021/acsami.6b16505
10.1021/nn5038652
10.1002/adma.201305222
10.1039/c1cs15246g
10.1039/C3NR04691E
10.1021/cm960077f
10.1139/v69-435
10.1021/jp031148i
10.1021/cr900232t
10.1002/mrm.1910340214
10.1002/anie.201100101
10.1039/C6TC00540C
10.1002/adfm.201400653
10.1021/acs.chemmater.5b00944
10.1016/0021-9797(80)90187-3
10.1021/jp110716g
10.1002/mrm.10059
10.1021/nn101129r
10.1039/C6BM00706F
10.1103/PhysRevLett.104.217204
10.1103/PhysRevD.11.790
10.1063/1.1616655
10.1039/C7RA01224A
10.1016/j.chempr.2017.06.007
10.1021/nn406158h
10.1021/ja104503g
10.1039/c2cs15327k
10.1021/ar2000277
10.1002/mrm.20605
10.1039/C6FD00012F
10.1039/C4NR03505D
10.1039/C5TB02709H
10.1021/ac701976p
10.1021/acs.chemrev.5b00687
10.1039/C5NR08402D
10.1021/nn100869j
10.1002/anie.200602866
10.1021/acs.accounts.6b00343
10.1021/jp9704067
10.1002/smll.201303263
10.1002/9783527803255.ch12
10.1103/PhysRevLett.67.248
10.1103/PhysRev.73.679
10.1002/adma.201304744
10.1021/ja211363w
10.1039/c0cc05862a
10.1021/ar200085c
10.1080/00268970110053468
10.1002/adma.201505350
10.1002/anie.201608338
10.1021/ja9613116
10.1002/adma.201203169
10.1002/cphc.200300835
10.1038/nnano.2011.95
10.1063/1.368661
10.1039/c3nr00544e
10.1021/nn405977t
10.1039/b510982p
10.1038/natrevmats.2016.21
10.1021/la063415s
10.1021/nn4004583
10.1002/anie.200704392
10.1039/c0jm01465f
10.1063/1.356902
10.1021/nn507193f
10.1021/nl301499u
10.1002/adhm.201700831
10.1021/am100641z
10.1021/ja8086906
10.1002/adma.200401904
10.1039/b516376p
10.1038/nmat4846
10.1002/mrm.1910320610
10.1002/anie.200805149
10.1039/c2cs15315g
10.1002/1521-3765(20010202)7:3<600::AID-CHEM600>3.0.CO;2-H
10.1002/adma.201104763
10.1038/ncomms8664
10.1021/acsnano.6b07959
10.1039/C7NR01406F
10.1021/acsnano.7b03075
10.1038/srep32852
10.1038/414735a
10.1021/ja504088n
10.1002/ange.201707128
10.1039/b207789b
10.1021/acs.molpharmaceut.6b00839
10.1021/nl3010308
10.1021/la060693i
10.1016/j.jallcom.2016.03.279
10.1016/j.physrep.2014.09.007
10.1038/ncomms4565
10.1021/acs.nanolett.6b02978
10.1002/adma.201302919
10.4155/tde.14.112
10.1038/nature01208
10.1039/C6NR06444B
10.1039/b719096d
10.1038/nnano.2011.112
10.1002/cmmi.417
10.1002/smll.200900358
10.1021/la403591z
10.1039/c3nr01533e
10.1002/admi.201300069
10.1039/C4CS00199K
10.1021/cm200414c
10.1016/j.biomaterials.2017.05.013
10.1039/c2jm16401a
10.1021/nn200928r
10.1021/am400713j
10.1039/C1CS15213K
10.1021/jp101443v
10.1016/j.biomaterials.2013.08.009
10.1016/j.biomaterials.2010.09.039
10.1021/nl071099b
10.1016/j.nano.2014.05.003
10.1021/acs.accounts.5b00038
10.7150/thno.11544
10.1021/acs.chemrev.5b00112
10.1039/C6SC01359G
10.1021/cr100156x
10.1002/wnan.84
10.1021/ac049307x
10.1021/la502409r
10.1002/ejic.201101364
10.1021/jp994114c
10.1063/1.2967709
10.1126/science.1224221
10.1063/1.341858
10.1063/1.464255
10.1021/acs.chemmater.7b00035
10.1039/C5NR00752F
10.1063/1.459468
10.1039/c2cs15337h
10.1038/nm1467
10.1029/JB080i029p04049
10.1103/PhysRev.69.37
10.1021/nn302393e
10.1039/c0dt01656j
10.1126/science.1078962
10.1103/PhysRev.130.1677
10.1103/PhysRev.70.460
10.1039/C7NR01134B
10.1038/nnano.2010.203
10.1039/C4NR02680B
10.1021/cr00081a003
10.1038/nmat1775
10.1021/acsami.5b03335
10.1021/ja1090113
10.1021/ja078034v
10.1070/RC2005v074n06ABEH000897
10.1021/acs.chemrev.5b00091
10.1039/c3nr00345k
10.1039/C3NR06103E
10.1021/cr3002752
10.1021/acsnano.7b04924
10.1039/c3cs60149h
10.1002/cctc.201200229
10.1016/j.biomaterials.2010.01.087
10.1039/c2tb00275b
10.1021/cm5019025
10.1002/adfm.201501269
10.1063/1.1357133
10.1021/nn900118a
10.1038/nature08439
10.1002/anie.200701694
10.7150/thno.3465
10.1021/acs.inorgchem.7b00956
10.1038/ncomms10394
10.7150/thno.4006
10.1021/cr980440x
10.1021/ja045911d
10.1021/acsnano.7b06074
10.1063/1.4928914
10.1016/j.nantod.2016.07.003
10.1002/mrm.10064
10.1038/srep03653
10.1103/PhysRev.99.559
10.1002/adma.201104145
10.1002/anie.201406740
10.1063/1.431841
10.1038/ncomms11331
10.1016/j.nantod.2015.04.001
10.1039/C6NR07542H
10.1039/B612876A
10.1016/j.addr.2010.07.009
10.1002/smll.201502309
10.1103/PhysRevLett.52.1433
10.1038/s41598-018-30264-5
10.1021/mp200006f
10.1021/nl200110t
10.1039/C7EN01060E
10.1021/acs.chemrev.5b00589
10.1021/nl102623x
10.1039/C7TB00794A
10.1038/ki.2008.496
10.1021/acsnano.6b02559
10.1016/j.jmr.2011.06.024
10.1021/acs.accounts.5b00059
10.1021/ar200044b
10.1021/jp2086413
10.1021/ja808433d
10.2217/nnm.16.8
10.1126/science.1140484
10.1021/nn5070953
10.1002/adma.201305811
10.1021/jp063148z
10.1039/c4dt00024b
10.1039/c2cs35197h
10.1021/nn500188y
10.1038/nbt720
10.1039/C6NR02620F
10.1039/C4TB02023E
10.1021/nl0495256
10.1038/srep12135
10.1021/cm402225z
10.1109/20.364589
10.1039/c0nr00776e
10.1002/anie.200603148
10.1002/jmri.1880030127
10.1073/pnas.1016409108
10.1038/nm.1711
10.1021/ja0422155
10.1039/c1lc20177h
10.1021/nl2034514
10.1002/mrm.1910050404
10.1021/ja203340u
10.1002/anie.201702572
10.1002/anie.200802323
10.1109/9780470545652
10.1002/anie.201203190
10.1002/anie.200700197
10.1021/ja305048p
10.1063/1.436302
10.1021/cr500698d
10.1021/cr300068p
10.1038/natrevmats.2017.59
10.1039/C5NR00055F
10.1002/adhm.201200078
10.1021/acs.nanolett.7b01753
10.1039/C6CS00724D
10.1039/C5NR00774G
10.1002/mrm.1135
10.1039/C4CS00345D
10.1002/anie.201402986
10.1038/nnano.2011.121
10.1039/C5CS00501A
10.1021/acs.chemrev.5b00611
10.1021/jp508951t
10.1002/ange.200700677
10.1088/0957-4484/27/15/155706
10.1002/jmri.21194
10.1021/ja302856z
10.1039/C6NR07567C
10.1039/c2cc35945f
10.1021/nn301615b
10.1016/j.jmmm.2009.02.073
10.1038/ncomms15468
10.1002/anie.200462551
10.1039/c0cc00246a
10.1007/s12274-012-0275-5
10.1021/acscatal.5b00320
10.1039/c0dt00689k
10.1126/science.1070821
10.1038/ncomms3960
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1002/adma.201804567
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID PMC6392011
30600553
10_1002_adma_201804567
ADMA201804567
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: Intramural Research Program
– fundername: National Institutes of Health
– fundername: National Science Foundation of China
  funderid: 81601489; 21771148; 21521004; 81430041
– fundername: National Institute of Biomedical Imaging and Bioengineering
– fundername: National Science Foundation of China
  grantid: 21521004
– fundername: National Science Foundation of China
  grantid: 21771148
– fundername: Intramural NIH HHS
  grantid: Z99 EB999999
– fundername: National Science Foundation of China
  grantid: 81430041
– fundername: National Science Foundation of China
  grantid: 81601489
– fundername: NIH HHS
– fundername: NIBIB NIH HHS
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c5347-d3211e3f8ea689d846f7ce9f000a2272f5bd2d4aacff361da84971560988d2903
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Aug 21 14:12:22 EDT 2025
Fri Jul 11 02:30:05 EDT 2025
Fri Jul 25 02:32:12 EDT 2025
Mon Jul 21 05:35:44 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Tue Jul 01 00:44:48 EDT 2025
Wed Jan 22 16:21:57 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords crystallinity
magnetic nanoparticles
structure-activity relationship
surface modification
shape effect
Language English
License 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5347-d3211e3f8ea689d846f7ce9f000a2272f5bd2d4aacff361da84971560988d2903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-9622-0870
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6392011
PMID 30600553
PQID 2183090685
PQPubID 2045203
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6392011
proquest_miscellaneous_2162773216
proquest_journals_2183090685
pubmed_primary_30600553
crossref_citationtrail_10_1002_adma_201804567
crossref_primary_10_1002_adma_201804567
wiley_primary_10_1002_adma_201804567_ADMA201804567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-Feb
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-Feb
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
2013 2015; 4 553
2005; 293
2009 2007; 48 13
2013; 1
1994; 136
2016 2004 2015; 7 4 44
2006 2015 2014; 35 115 26
2008 2012; 130 12
1963 1996; 130 8
2012 2011; 1 212
2008; 108
2014; 26
2014; 24
1999 2006; 99 35
2017 2017 2016 2006 2008 2012 2008; 9 56 191 22 47 4 130
1975; 11
2002 2004 2016 2008 2012; 420 4 4 130 134
2017 2016; 9 27
1999; 200
2002 2002; 47 47
2013; 7
2009 2012; 3 6
2001; 45
1998; 84
2013; 5
2016 2016 2007; 116 8 46
1946 1946; 70 69
2014; 136
2014 2003; 26 83
2018; 8
2013 2015; 135 7
2012; 134
2015 2016 2012 2017; 3 12 2 14
2006 2015 2013; 110 5 25
2010; 114
2012 2013 2015 2016 2018; 12 4 27 11 12
2003 2013 2009 2012 2015; 299 113 131 134 4
2013; 117
2015 2003; 48
2017 2018; 29 30
2005; 74
2011; 66
2014; 14
2012 2015; 336 347
2012 2014 2016; 338 5 55
2009 2008 2017; 106 14 11
2010; 5
2012; 22
2002 2011 2010; 20 11 2
2010; 4
2005; 77
2014 2016 2017 2016 2017; 30 18 56 120 9
2014; 10
1975; 80
2015 2004; 112 108
2015 2010 2011; 5 62 44
2011 2017; 40 29
2015 2012 2017; 7 24 9
2015; 54
1961 1995; 12 31
2012 2013; 24 110
2016; 10
2017 2012 2012; 9 24 41
2015 2017 2016 2010; 7 3 7 2010
2009 2004; 131 126
2011; 6
2011; 5
2011; 8
2011; 133
2001 2008; 89 104
2014; 43
2016; 11
1999
2016; 6
2015 2017 2014 2014 2011 2013 2017 2014; 27 5 6 26 23 7 129 10
2007; 316
2010; 46
2009 2007; 75 23
2012 2014 2014 2014; 12 26 6 10
2005; 127
1999; 110
2001 2001; 7 99
2012; 48
2016; 28
2018; 10
1969 2007; 47 0
2008; 130
2016; 8
2005 2007 2009; 44 46 131
1996; 118
1993 2000; 98 104
2009 2011 2000 2010; 461 6 404 4
2017; 7
2013 2015 2017; 5 7 5
2017; 8
2017; 1
2012; 2012
2013; 25
2012 2010 2014 2010; 116 4 8 132
2016 2016; 8 4
1987; 5
1955 1961 1975 1978; 99 34 63 68
2007 2010 2010 2010; 46 2 31 20
2011; 11
2016 2017; 8 9
2011 2010 2012; 115 104 12
2018 2015 2012; 5 6 4
2016 2015 2016 2017; 678 5 16 7
2011 2011; 50 50
2015; 107
1993; 3
2013 2012; 34 4
2007 2012; 79 6
2007 2006 2013 2014 2015; 7 5 7 6 7
2009; 48
2014; 1
2014; 5
2012 2008; 51 95
1980; 74
2007 2012; 46 41
2016 2012 2012; 116 41 41
2018 2015 2017; 7 6 46
2009; 321
2011; 21
2011 2011 2011 2012; 32 133 5 5
1975 2003; 4
2017 2016 2015 2015 2012 2009 2013; 6 19 115 115 112 42 42
2014; 8
2014 2010; 30 21
1987 1995; 87 34
2010 2015 2013; 110 44 5
2011 2011; 44 44
2014; 6
1991 1994; 67 75
1994; 32
1990; 93
2007; 26
2014; 53
2017 2015 2011 2014; 46 44 111 47
2009; 25
1948; 73
2015; 5
2002; 295
2016 2011 2011 2001; 416 133 50 17
1984 2009; 52 5
2017; 29
2011 2017; 40 136
1977; 265
2015; 9
2016; 120
2014; 114
2016 2013; 7 504
2016 2015 2005 2001; 28 10 17 414
2015 2017 2011; 48 50 133
2015; 25
2012 2008 2016; 41 18 52
2012; 2
2012; 3
2011; 108
2007; 119
2016 2017 2016 2012 2013; 1 2 116 41 5
2017; 17
2013; 34
2017; 16
2017; 11
2012 2011 2012 2015; 2012 3 134 7
2015 2013; 119 6
2017
2005; 54
2018; 51
1988; 64
2011; 47
2012; 6
1977; 9
1998; 102
2007; 46
2016 2015; 8 7
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_70_2
e_1_2_11_186_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_2
e_1_2_11_29_1
e_1_2_11_102_2
e_1_2_11_4_3
e_1_2_11_125_1
e_1_2_11_4_2
e_1_2_11_4_1
e_1_2_11_148_1
e_1_2_11_102_1
e_1_2_11_163_2
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_2
e_1_2_11_89_2
e_1_2_11_20_1
e_1_2_11_66_1
Chang H. (e_1_2_11_78_1) 1961; 12
e_1_2_11_89_3
e_1_2_11_89_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_113_1
e_1_2_11_174_1
e_1_2_11_151_1
e_1_2_11_92_2
Stoneham A. M. (e_1_2_11_116_1) 1975
e_1_2_11_92_1
Werbelow L. G. (e_1_2_11_25_1) 1977
e_1_2_11_77_2
e_1_2_11_187_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_138_3
e_1_2_11_54_1
e_1_2_11_138_4
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_89_4
e_1_2_11_141_3
e_1_2_11_141_4
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_141_2
e_1_2_11_190_1
e_1_2_11_80_1
e_1_2_11_88_3
e_1_2_11_88_4
e_1_2_11_88_1
e_1_2_11_88_2
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_42_2
e_1_2_11_137_2
e_1_2_11_16_2
e_1_2_11_114_1
e_1_2_11_16_1
e_1_2_11_137_1
e_1_2_11_39_1
e_1_2_11_152_1
e_1_2_11_175_1
e_1_2_11_152_2
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_180_2
e_1_2_11_180_3
e_1_2_11_180_4
e_1_2_11_188_1
e_1_2_11_57_1
e_1_2_11_188_2
e_1_2_11_188_3
e_1_2_11_188_4
e_1_2_11_188_5
e_1_2_11_34_1
e_1_2_11_95_1
e_1_2_11_139_2
e_1_2_11_11_1
e_1_2_11_139_3
e_1_2_11_104_1
e_1_2_11_2_4
e_1_2_11_2_3
e_1_2_11_127_1
e_1_2_11_2_2
e_1_2_11_46_3
e_1_2_11_2_1
e_1_2_11_46_4
e_1_2_11_165_3
e_1_2_11_46_5
e_1_2_11_142_2
e_1_2_11_165_2
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_83_1
e_1_2_11_191_1
e_1_2_11_60_2
e_1_2_11_191_2
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_60_3
e_1_2_11_22_2
e_1_2_11_83_2
e_1_2_11_22_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_138_2
Zhou Z. (e_1_2_11_8_1) 2017
e_1_2_11_115_2
e_1_2_11_176_2
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
e_1_2_11_94_1
e_1_2_11_71_2
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_181_2
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_56_2
e_1_2_11_189_1
e_1_2_11_79_1
e_1_2_11_117_3
e_1_2_11_117_2
e_1_2_11_33_2
e_1_2_11_33_1
e_1_2_11_3_5
e_1_2_11_3_4
e_1_2_11_3_3
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_3_2
e_1_2_11_105_2
e_1_2_11_3_1
e_1_2_11_166_2
e_1_2_11_166_1
e_1_2_11_120_1
e_1_2_11_82_1
e_1_2_11_192_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_44_2
e_1_2_11_67_3
e_1_2_11_67_2
e_1_2_11_21_4
e_1_2_11_3_7
e_1_2_11_21_3
e_1_2_11_3_6
e_1_2_11_21_2
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_2
e_1_2_11_154_5
e_1_2_11_154_3
e_1_2_11_177_3
e_1_2_11_18_4
e_1_2_11_154_4
e_1_2_11_177_2
e_1_2_11_18_3
e_1_2_11_154_1
e_1_2_11_177_1
e_1_2_11_18_2
e_1_2_11_154_2
e_1_2_11_131_1
e_1_2_11_182_1
e_1_2_11_118_5
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_118_2
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_118_4
e_1_2_11_118_3
e_1_2_11_106_1
e_1_2_11_167_3
e_1_2_11_48_1
e_1_2_11_121_2
e_1_2_11_167_2
e_1_2_11_121_1
e_1_2_11_167_1
e_1_2_11_144_1
e_1_2_11_193_1
e_1_2_11_47_1
e_1_2_11_62_2
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_62_3
e_1_2_11_85_1
e_1_2_11_117_1
e_1_2_11_36_2
e_1_2_11_59_1
e_1_2_11_59_2
e_1_2_11_178_1
e_1_2_11_59_3
e_1_2_11_132_1
e_1_2_11_59_4
e_1_2_11_155_1
e_1_2_11_170_4
e_1_2_11_170_3
e_1_2_11_170_2
e_1_2_11_170_1
e_1_2_11_50_1
e_1_2_11_183_1
e_1_2_11_58_1
e_1_2_11_12_3
e_1_2_11_50_2
e_1_2_11_119_1
e_1_2_11_12_2
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_96_1
e_1_2_11_145_5
e_1_2_11_145_6
e_1_2_11_1_5
e_1_2_11_145_3
e_1_2_11_1_4
e_1_2_11_145_4
e_1_2_11_1_3
e_1_2_11_47_2
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_1_2
e_1_2_11_47_3
e_1_2_11_145_2
e_1_2_11_1_1
e_1_2_11_47_4
e_1_2_11_122_3
e_1_2_11_122_2
e_1_2_11_160_2
e_1_2_11_160_1
Wang S. (e_1_2_11_144_2) 2017; 29
e_1_2_11_61_1
e_1_2_11_194_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_46_2
e_1_2_11_9_3
e_1_2_11_107_1
e_1_2_11_9_2
e_1_2_11_23_2
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_84_1
e_1_2_11_145_7
e_1_2_11_110_2
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_133_1
e_1_2_11_171_3
e_1_2_11_171_2
e_1_2_11_171_1
e_1_2_11_91_3
e_1_2_11_91_4
e_1_2_11_91_1
e_1_2_11_91_2
e_1_2_11_184_1
e_1_2_11_184_2
e_1_2_11_30_1
e_1_2_11_99_1
e_1_2_11_99_2
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_6_1
e_1_2_11_169_3
e_1_2_11_27_1
e_1_2_11_146_2
e_1_2_11_169_2
e_1_2_11_146_3
e_1_2_11_169_1
e_1_2_11_88_7
e_1_2_11_88_8
e_1_2_11_100_1
e_1_2_11_146_1
e_1_2_11_88_5
e_1_2_11_123_2
e_1_2_11_88_6
e_1_2_11_123_1
e_1_2_11_161_1
e_1_2_11_195_1
e_1_2_11_41_1
e_1_2_11_87_1
e_1_2_11_108_1
e_1_2_11_64_1
Lin L. (e_1_2_11_143_1) 2017; 29
e_1_2_11_15_2
e_1_2_11_157_2
e_1_2_11_15_1
e_1_2_11_157_3
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_172_1
e_1_2_11_90_1
e_1_2_11_185_1
e_1_2_11_52_4
e_1_2_11_52_5
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_52_2
e_1_2_11_52_3
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_101_3
e_1_2_11_101_4
e_1_2_11_26_2
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_101_2
e_1_2_11_162_4
e_1_2_11_162_3
e_1_2_11_162_2
Lin L.‐S. (e_1_2_11_143_2) 2018; 30
e_1_2_11_162_1
e_1_2_11_109_3
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_40_2
e_1_2_11_86_2
e_1_2_11_7_3
e_1_2_11_109_1
e_1_2_11_7_2
e_1_2_11_109_2
e_1_2_11_112_3
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_37_2
e_1_2_11_135_1
e_1_2_11_112_2
e_1_2_11_112_1
e_1_2_11_150_1
e_1_2_11_173_1
e_1_2_11_150_2
References_xml – volume: 6
  start-page: 1619
  year: 2012
  publication-title: ACS Nano
– volume: 26 83
  start-page: 59 2862
  year: 2014 2003
  publication-title: Chem. Mater. Appl. Phys. Lett.
– volume: 133
  start-page: 12624
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 64
  start-page: 1347
  year: 1988
  publication-title: J. Appl. Phys.
– volume: 115 104 12
  start-page: 2665 217204 246
  year: 2011 2010 2012
  publication-title: J. Phys. Chem. C Phys. Rev. Lett. Nano Lett.
– volume: 6
  start-page: 3764
  year: 2014
  publication-title: Nanoscale
– volume: 47 0
  start-page: 2645 493
  year: 1969 2007
  publication-title: Can. J. Chem. Dalton Trans.
– volume: 117
  start-page: 15369
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 5 62 44
  start-page: 1249 1064 863
  year: 2015 2010 2011
  publication-title: Theranostics Adv. Drug Delivery Rev. Acc. Chem. Res.
– volume: 51
  start-page: 342
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 1
  start-page: 637
  year: 2017
  publication-title: Nat. Biomed. Eng.
– volume: 77
  start-page: 814
  year: 2005
  publication-title: Anal. Chem.
– volume: 17
  start-page: 4873
  year: 2017
  publication-title: Nano Lett.
– volume: 8
  start-page: 9884
  year: 2014
  publication-title: ACS Nano
– volume: 16
  start-page: 537
  year: 2017
  publication-title: Nat. Mater.
– volume: 27 5 6 26 23 7 129 10
  start-page: 3285 3629 13637 6328 3318 2850 13171 3620
  year: 2015 2017 2014 2014 2011 2013 2017 2014
  publication-title: Adv. Mater. J. Mater. Chem. B Nanoscale Chem. Mater. Chem. Mater. ACS Nano Angew. Chem. J. Biomed. Nanotechnol.
– volume: 5
  start-page: 815
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 1 212
  start-page: 502 139
  year: 2012 2011
  publication-title: Adv. Healthcare Mater. J. Magn. Reson.
– volume: 461 6 404 4
  start-page: 964 580 746 3591
  year: 2009 2011 2000 2010
  publication-title: Nature Nat. Nanotechnol. Nature ACS Nano
– volume: 73
  start-page: 679
  year: 1948
  publication-title: Phys. Rev.
– volume: 46 2 31 20
  start-page: 5397 2949 4073 8297
  year: 2007 2010 2010 2010
  publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces Biomaterials J. Mater. Chem.
– volume: 53
  start-page: 12268
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 9 27
  start-page: e1468 155706
  year: 2017 2016
  publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. Nanotechnology
– volume: 67 75
  start-page: 248 6583
  year: 1991 1994
  publication-title: Phys. Rev. Lett. J. Appl. Phys.
– volume: 26
  start-page: 1634
  year: 2007
  publication-title: J. Magn. Reson. Imaging
– volume: 299 113 131 134 4
  start-page: 377 2139 3140 3995 3653
  year: 2003 2013 2009 2012 2015
  publication-title: Science Chem. Rev. J. Am. Chem. Soc. J. Am. Chem. Soc. Sci. Rep.
– volume: 11
  start-page: 790
  year: 1975
  publication-title: Phys. Rev. D
– volume: 11
  start-page: 10992
  year: 2017
  publication-title: ACS Nano
– volume: 46 41
  start-page: 4342 6874
  year: 2007 2012
  publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev.
– volume: 8
  start-page: 17887
  year: 2016
  publication-title: Nanoscale
– volume: 120
  start-page: 22103
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 7610
  year: 2014
  publication-title: Chem. Rev.
– volume: 5
  start-page: 4632
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 116 4 8 132
  start-page: 2285 5339 3393 11015
  year: 2012 2010 2014 2010
  publication-title: J. Phys. Chem. C ACS Nano ACS Nano J. Am. Chem. Soc.
– volume: 6
  start-page: 7281
  year: 2012
  publication-title: ACS Nano
– volume: 25
  start-page: 9487
  year: 2009
  publication-title: Langmuir
– volume: 28 10 17 414
  start-page: 5400 278 1949 735
  year: 2016 2015 2005 2001
  publication-title: Adv. Mater. Nano Today Adv. Mater. Nature
– volume: 8
  start-page: 7976
  year: 2014
  publication-title: ACS Nano
– volume: 50 50
  start-page: 4206 4663
  year: 2011 2011
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1041
  year: 1975 2003
  publication-title: ChemPhysChem
– volume: 35 115 26
  start-page: 557 10725 3867
  year: 2006 2015 2014
  publication-title: Chem. Soc. Rev. Chem. Rev. Adv. Mater.
– volume: 1
  start-page: 1300069
  year: 2014
  publication-title: Adv. Mater. Interfaces
– volume: 89 104
  start-page: 7591 043903
  year: 2001 2008
  publication-title: J. Appl. Phys. J. Appl. Phys.
– volume: 32 133 5 5
  start-page: 176 2955 4177 679
  year: 2011 2011 2011 2012
  publication-title: Biomaterials J. Am. Chem. Soc. ACS Nano Nano Res.
– volume: 134
  start-page: 15814
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1679
  year: 2014
  publication-title: Nanomed.: Nanotechnol., Biol. Med.
– volume: 678 5 16 7
  start-page: 478 12135 7408 9894
  year: 2016 2015 2016 2017
  publication-title: J. Alloys Compd. Sci. Rep. Nano Lett. Sci. Rep.
– volume: 21
  start-page: 4285
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 7 4 44
  start-page: 11331 1343 8399
  year: 2016 2004 2015
  publication-title: Nat. Commun. Nano Lett. Chem. Soc. Rev.
– volume: 79 6
  start-page: 8863 6821
  year: 2007 2012
  publication-title: Anal. Chem. ACS Nano
– volume: 136
  start-page: 10393
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 3 6
  start-page: 1379 1065
  year: 2009 2012
  publication-title: ACS Nano ACS Nano
– volume: 5
  start-page: 1225
  year: 2015
  publication-title: Theranostics
– volume: 11
  start-page: 464
  year: 2016
  publication-title: Nano Today
– volume: 116 8 46
  start-page: 10473 19421 1222
  year: 2016 2016 2007
  publication-title: Chem. Rev. Nanoscale Angew. Chem., Int. Ed.
– volume: 336 347
  start-page: 889 292
  year: 2012 2015
  publication-title: Science Science
– volume: 2012
  start-page: 1916
  year: 2012
  publication-title: Eur. J. Inorg. Chem.
– volume: 316
  start-page: 732
  year: 2007
  publication-title: Science
– volume: 75 23
  start-page: 465 4583
  year: 2009 2007
  publication-title: Kidney Int. Langmuir
– volume: 8
  start-page: 11863
  year: 2018
  publication-title: Sci. Rep.
– volume: 9
  start-page: 3385
  year: 2015
  publication-title: ACS Nano
– volume: 54
  start-page: 2022
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 99 34 63 68
  start-page: 559 842 4017 4034
  year: 1955 1961 1975 1978
  publication-title: Phys. Rev. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys.
– volume: 106 14 11
  start-page: 12459 869 11425
  year: 2009 2008 2017
  publication-title: Proc. Natl. Acad. Sci. USA Nat. Med. ACS Nano
– volume: 3 12 2 14
  start-page: 2241 556 86 1352
  year: 2015 2016 2012 2017
  publication-title: J. Mater. Chem. B Small Theranostics Mol. Pharmaceutics
– volume: 10
  start-page: 4607
  year: 2010
  publication-title: Nano Lett.
– volume: 44 44
  start-page: 853 883
  year: 2011 2011
  publication-title: Acc. Chem. Res. Acc. Chem. Res.
– volume: 116 41 41
  start-page: 5338 4306 2912
  year: 2016 2012 2012
  publication-title: Chem. Rev. Chem. Soc. Rev. Chem. Soc. Rev.
– volume: 5
  start-page: 15
  year: 2010
  publication-title: Nat. Nanotechnol.
– volume: 11
  start-page: 1641
  year: 2011
  publication-title: Nano Lett.
– volume: 1 2 116 41 5
  start-page: 16021 17059 4850 2545 5644
  year: 2016 2017 2016 2012 2013
  publication-title: Nat. Rev. Mater. Nat. Rev. Mater. Chem. Rev. Chem. Soc. Rev. Nanoscale
– volume: 12 26 6 10
  start-page: 4722 4114 726 1245
  year: 2012 2014 2014 2014
  publication-title: Nano Lett. Adv. Mater. Nanoscale Small
– volume: 3
  start-page: 524
  year: 2012
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 3104
  year: 2011
  publication-title: ACS Nano
– volume: 20 11 2
  start-page: 816 2282 291
  year: 2002 2011 2010
  publication-title: Nat. Biotechnol. Lab Chip Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol.
– volume: 2012 3 134 7
  start-page: 2148 1446 18225 9174
  year: 2012 2011 2012 2015
  publication-title: Eur. J. Inorg. Chem. Nanoscale J. Am. Chem. Soc. Nanoscale
– volume: 7 99
  start-page: 600 1435
  year: 2001 2001
  publication-title: Chemistry Mol. Phys.
– volume: 3
  start-page: 149
  year: 1993
  publication-title: J. Magn. Reson. Imaging
– volume: 66
  start-page: 1748
  year: 2011
  publication-title: Magn. Reson. Med.
– volume: 54
  start-page: 507
  year: 2005
  publication-title: Magn. Reson. Med.
– start-page: 365
  year: 2017
– volume: 10
  start-page: 8299
  year: 2016
  publication-title: ACS Nano
– volume: 416 133 50 17
  start-page: 275 2955 12505 2900
  year: 2016 2011 2011 2001
  publication-title: J. Magn. Magn. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Langmuir
– volume: 51 95
  start-page: 9119 342
  year: 2012 2008
  publication-title: Angew. Chem., Int. Ed. Biophys. J.
– volume: 70 69
  start-page: 460 37
  year: 1946 1946
  publication-title: Phys. Rev. Phys. Rev.
– volume: 24
  start-page: 4584
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 130 8
  start-page: 1677 1770
  year: 1963 1996
  publication-title: Phys. Rev. Chem. Mater.
– volume: 110 5 25
  start-page: 17860 4825 6459
  year: 2006 2015 2013
  publication-title: J. Phys. Chem. B ACS Catal. Adv. Mater.
– volume: 10
  start-page: 284
  year: 2018
  publication-title: Nanoscale
– volume: 22
  start-page: 7117
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 7 24 9
  start-page: 16119 6223 4516
  year: 2015 2012 2017
  publication-title: Nanoscale Adv. Mater. Nanoscale
– volume: 9 56 191 22 47 4 130
  start-page: 9467 8110 47 5227 173 37 1477
  year: 2017 2017 2016 2006 2008 2012 2008
  publication-title: Nanoscale Angew. Chem., Int. Ed. Faraday Discuss. Langmuir Angew. Chem., Int. Ed. Nat. Chem. J. Am. Chem. Soc.
– volume: 1
  start-page: 2818
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 1
  start-page: 1142
  year: 2013
  publication-title: J. Mater. Chem. B
– volume: 48
  start-page: 5657
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 110 44 5
  start-page: 2921 4501 4040
  year: 2010 2015 2013
  publication-title: Chem. Rev. Chem. Soc. Rev. Nanoscale
– volume: 29 30
  start-page: 201606681 201704639
  year: 2017 2018
  publication-title: Adv. Mater. Adv. Mater.
– volume: 7
  start-page: 17137
  year: 2017
  publication-title: RSC Adv.
– volume: 127
  start-page: 5732
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 119
  start-page: 4233
  year: 2007
  publication-title: Angew. Chem.
– volume: 130
  start-page: 16968
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 7 6 46
  start-page: 1700831 97 4774
  year: 2018 2015 2017
  publication-title: Adv. Healthcare Mater. Ther. Delivery Chem. Soc. Rev.
– volume: 48
  start-page: 1276 927
  year: 2015 2003
  publication-title: Acc. Chem. Res. Chem. Commun.
– volume: 9
  start-page: 189
  year: 1977
– volume: 98 104
  start-page: 912 4839
  year: 1993 2000
  publication-title: J. Chem. Phys. J. Phys. Chem. A
– volume: 25
  start-page: 3702
  year: 2013
  publication-title: Chem. Mater.
– volume: 46 44 111 47
  start-page: 2660 315 5179 308
  year: 2017 2015 2011 2014
  publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Rev. Acc. Chem. Res.
– volume: 5 7 5
  start-page: 8098 28286 50
  year: 2013 2015 2017
  publication-title: Nanoscale ACS Appl. Mater. Interfaces Biomater. Sci.
– volume: 45
  start-page: 1014
  year: 2001
  publication-title: Magn. Reson. Med.
– volume: 12 31
  start-page: 160 830
  year: 1961 1995
  publication-title: Br. J. Appl. Sci. IEEE Trans. Magn.
– volume: 43
  start-page: 8395
  year: 2014
  publication-title: Dalton Trans.
– volume: 48 50 133
  start-page: 2506 12 1517
  year: 2015 2017 2011
  publication-title: Acc. Chem. Res. Acc. Chem. Res. J. Am. Chem. Soc.
– volume: 135 7
  start-page: 18621 2676
  year: 2013 2015
  publication-title: J. Am. Chem. Soc. Nanoscale
– volume: 5
  start-page: 4565
  year: 2014
  publication-title: Nat. Commun.
– volume: 32
  start-page: 749
  year: 1994
  publication-title: Magn. Reson. Med.
– volume: 93
  start-page: 6921
  year: 1990
  publication-title: J. Chem. Phys.
– volume: 48
  start-page: 321
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 24 110
  start-page: 862 6669
  year: 2012 2013
  publication-title: Adv. Mater. Proc. Natl. Acad. Sci. USA
– volume: 29
  start-page: 3038
  year: 2017
  publication-title: Chem. Mater.
– volume: 48 13
  start-page: 1234 95
  year: 2009 2007
  publication-title: Angew. Chem., Int. Ed. Nat. Med.
– volume: 9 24 41
  start-page: 10309 1504 2590
  year: 2017 2012 2012
  publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Chem. Soc. Rev.
– volume: 2
  start-page: 55
  year: 2012
  publication-title: Theranostics
– volume: 102
  start-page: 2117
  year: 1998
  publication-title: J. Phys. Chem. A
– volume: 46
  start-page: 3920
  year: 2010
  publication-title: Chem. Commun.
– volume: 8 7
  start-page: 12826 10519
  year: 2016 2015
  publication-title: Nanoscale Nanoscale
– volume: 99 35
  start-page: 2293 512
  year: 1999 2006
  publication-title: Chem. Rev. Chem. Soc. Rev.
– volume: 8
  start-page: 15468
  year: 2017
  publication-title: Nat. Commun.
– volume: 420 4 4 130 134
  start-page: 395 187 2302 11828 10182
  year: 2002 2004 2016 2008 2012
  publication-title: Nature Nano Lett. J. Mater. Chem. C J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 4
  start-page: 7151
  year: 2010
  publication-title: ACS Nano
– volume: 295
  start-page: 2418
  year: 2002
  publication-title: Science
– volume: 130 12
  start-page: 13234 3716
  year: 2008 2012
  publication-title: J. Am. Chem. Soc. Nano Lett.
– volume: 7 3 7 2010
  start-page: 16338 303 5294 3725
  year: 2015 2017 2016 2010
  publication-title: ACS Appl. Mater. Interfaces Chem Chem. Sci. Eur. J. Inorg. Chem.
– volume: 47
  start-page: 5130
  year: 2011
  publication-title: Chem. Commun.
– volume: 52 5
  start-page: 1433 1600
  year: 1984 2009
  publication-title: Phys. Rev. Lett. Small
– volume: 41 18 52
  start-page: 1911 2629 7528
  year: 2012 2008 2016
  publication-title: Chem. Soc. Rev. J. Mater. Chem. Chem. Commun.
– volume: 8 4
  start-page: 3768 2322
  year: 2016 2016
  publication-title: Nanoscale J. Mater. Chem. B
– volume: 6
  start-page: 32852
  year: 2016
  publication-title: Sci. Rep.
– volume: 131 126
  start-page: 454 11458
  year: 2009 2004
  publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc.
– volume: 47 47
  start-page: 257 388
  year: 2002 2002
  publication-title: Magn. Reson. Med. Magn. Reson. Med.
– volume: 28
  start-page: 3497
  year: 2016
  publication-title: Chem. Mater.
– volume: 80
  start-page: 4049
  year: 1975
  publication-title: J. Geophys. Res.
– volume: 8
  start-page: 1669
  year: 2011
  publication-title: Mol. Pharmaceutics
– volume: 6
  start-page: 418
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 136
  start-page: 176
  year: 1994
  publication-title: J. Magn. Magn. Mater.
– volume: 6
  start-page: 10935
  year: 2012
  publication-title: ACS Nano
– volume: 321
  start-page: 1501
  year: 2009
  publication-title: J. Magn. Magn. Mater.
– volume: 108
  start-page: 2662
  year: 2011
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7 504
  start-page: 10394 237
  year: 2016 2013
  publication-title: Nat. Commun. Nature
– volume: 112 108
  start-page: 14484 3380
  year: 2015 2004
  publication-title: Proc. Natl. Acad. Sci. USA J. Phys. Chem. B
– volume: 114
  start-page: 8770
  year: 2010
  publication-title: J. Phys. Chem. B
– volume: 14
  start-page: 3914
  year: 2014
  publication-title: Nano Lett.
– volume: 7
  start-page: 7132
  year: 2013
  publication-title: ACS Nano
– volume: 118
  start-page: 12777
  year: 1996
  publication-title: J. Am. Chem. Soc.
– volume: 7 5 7 6 7
  start-page: 2422 971 3287 10404 6843
  year: 2007 2006 2013 2014 2015
  publication-title: Nano Lett. Nat. Mater. ACS Nano Nanoscale Nanoscale
– volume: 200
  start-page: 359
  year: 1999
  publication-title: J. Magn. Magn. Mater.
– volume: 293
  start-page: 532
  year: 2005
  publication-title: J. Magn. Magn. Mater.
– volume: 6
  start-page: 189
  year: 2011
  publication-title: Contrast Media Mol. Imaging
– volume: 34 4
  start-page: 2069 6235
  year: 2013 2012
  publication-title: Biomaterials Nanoscale
– volume: 8 9
  start-page: 5040 21688
  year: 2016 2017
  publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces
– volume: 6 19 115 115 112 42 42
  start-page: 1700306 157 10690 10637 5818 1097 7816
  year: 2017 2016 2015 2015 2012 2009 2013
  publication-title: Adv. Healthcare Mater. Mater. Today Chem. Rev. Chem. Rev. Chem. Rev. Acc. Chem. Res. Chem. Soc. Rev.
– volume: 133
  start-page: 3668
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 3012
  year: 2015
  publication-title: ACS Nano
– volume: 6
  start-page: 77558
  year: 2016
  publication-title: RSC Adv.
– volume: 119 6
  start-page: 6246 1
  year: 2015 2013
  publication-title: J. Phys. Chem. C Nano Res.
– volume: 4 553
  start-page: 2960 1
  year: 2013 2015
  publication-title: Nat. Commun. Phys. Rep.
– volume: 5
  start-page: 323
  year: 1987
  publication-title: Magn. Reson. Med.
– volume: 110
  start-page: 5403
  year: 1999
  publication-title: J. Chem. Phys.
– volume: 44 46 131
  start-page: 2782 4630 12900
  year: 2005 2007 2009
  publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 11
  start-page: 4256
  year: 2017
  publication-title: ACS Nano
– volume: 74
  start-page: 489
  year: 2005
  publication-title: Russ. Chem. Rev.
– volume: 84
  start-page: 4394
  year: 1998
  publication-title: J. Appl. Phys.
– volume: 25
  start-page: 5269
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 40 29
  start-page: 6087 201701013
  year: 2011 2017
  publication-title: Dalton Trans. Adv. Mater.
– volume: 34
  start-page: 8941
  year: 2013
  publication-title: Biomaterials
– volume: 6
  start-page: 594
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 46
  start-page: 6329
  year: 2007
  publication-title: Angew. Chem., Int. Ed.
– volume: 11
  start-page: 3642
  year: 2017
  publication-title: ACS Nano
– volume: 11
  start-page: 5227
  year: 2017
  publication-title: ACS Nano
– volume: 26
  start-page: 5252
  year: 2014
  publication-title: Chem. Mater.
– volume: 40 136
  start-page: 6315 98
  year: 2011 2017
  publication-title: Dalton Trans. Biomaterials
– volume: 12 4 27 11 12
  start-page: 3127 2266 3505 1017 4605
  year: 2012 2013 2015 2016 2018
  publication-title: Nano Lett. Nat. Commun. Chem. Mater. Nanomedicine ACS Nano
– volume: 26
  start-page: 2694
  year: 2014
  publication-title: Adv. Mater.
– volume: 265
  start-page: 521
  year: 1977
  publication-title: Nature
– volume: 30 18 56 120 9
  start-page: 8543 16848 8232 7381 305
  year: 2014 2016 2017 2016 2017
  publication-title: Langmuir Phys. Chem. Chem. Phys. Inorg. Chem. J. Phys. Chem. C Nanoscale
– volume: 338 5 55
  start-page: 358 5093 15297
  year: 2012 2014 2016
  publication-title: Science Nat. Commun. Angew. Chem., Int. Ed.
– volume: 5 6 4
  start-page: 752 7664 1512
  year: 2018 2015 2012
  publication-title: Environ. Sci.: Nano Nat. Commun. ChemCatChem
– volume: 5
  start-page: 8656
  year: 2013
  publication-title: Nanoscale
– volume: 107
  start-page: 073701
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 2269
  year: 2014
  publication-title: ACS Nano
– volume: 108
  start-page: 2064
  year: 2008
  publication-title: Chem. Rev.
– volume: 74
  start-page: 227
  year: 1980
  publication-title: J. Colloid Interface Sci.
– volume: 87 34
  start-page: 901 227
  year: 1987 1995
  publication-title: Chem. Rev. Magn. Reson. Med.
– volume: 48
  start-page: 10499
  year: 2012
  publication-title: Chem. Commun.
– volume: 30 21
  start-page: 1580 035103
  year: 2014 2010
  publication-title: Langmuir Nanotechnology
– year: 1999
– ident: e_1_2_11_47_4
  doi: 10.1038/s41598-017-09897-5
– ident: e_1_2_11_46_5
  doi: 10.1021/acsnano.8b01048
– volume: 29
  start-page: 201606681
  year: 2017
  ident: e_1_2_11_143_1
  publication-title: Adv. Mater.
– ident: e_1_2_11_89_1
  doi: 10.1002/ejic.201101193
– ident: e_1_2_11_163_1
  doi: 10.1073/pnas.1511443112
– ident: e_1_2_11_176_2
  doi: 10.1529/biophysj.107.116145
– ident: e_1_2_11_5_1
  doi: 10.1021/cr068445e
– ident: e_1_2_11_120_1
  doi: 10.1021/nn402487q
– ident: e_1_2_11_86_2
  doi: 10.1038/nature12863
– ident: e_1_2_11_75_1
  doi: 10.1021/ja805152t
– ident: e_1_2_11_91_2
  doi: 10.1021/ja1084095
– ident: e_1_2_11_169_2
  doi: 10.1038/ncomms6093
– ident: e_1_2_11_27_1
  doi: 10.1038/265521a0
– ident: e_1_2_11_172_1
  doi: 10.1021/ja1109584
– ident: e_1_2_11_12_3
  doi: 10.1021/ja905811h
– ident: e_1_2_11_189_1
  doi: 10.1021/cm402036d
– ident: e_1_2_11_107_1
  doi: 10.1021/acs.chemmater.6b01256
– ident: e_1_2_11_16_1
  doi: 10.1021/ja0768744
– ident: e_1_2_11_23_1
  doi: 10.1002/wnan.1468
– ident: e_1_2_11_187_1
  doi: 10.1021/nn101643u
– ident: e_1_2_11_42_2
  doi: 10.1088/0957-4484/21/3/035103
– ident: e_1_2_11_99_1
  doi: 10.1002/anie.201100562
– ident: e_1_2_11_115_2
  doi: 10.1126/science.1261412
– ident: e_1_2_11_137_2
  doi: 10.1021/acsami.7b05389
– ident: e_1_2_11_17_1
  doi: 10.1021/jp404199f
– ident: e_1_2_11_88_4
  doi: 10.1021/cm502301u
– ident: e_1_2_11_137_1
  doi: 10.1021/acsami.5b12463
– ident: e_1_2_11_54_1
  doi: 10.1021/nn204591r
– ident: e_1_2_11_89_3
  doi: 10.1021/ja308962w
– ident: e_1_2_11_194_1
  doi: 10.1039/C7NR07035G
– ident: e_1_2_11_138_3
  doi: 10.1002/anie.201106180
– ident: e_1_2_11_101_1
  doi: 10.1021/nl302160d
– ident: e_1_2_11_49_1
  doi: 10.1016/0304-8853(94)90462-6
– ident: e_1_2_11_160_2
  doi: 10.1039/c2nr31865b
– ident: e_1_2_11_102_2
  doi: 10.1039/C4NR05825A
– ident: e_1_2_11_185_1
  doi: 10.1021/nn304477s
– ident: e_1_2_11_162_3
  doi: 10.1038/35008037
– ident: e_1_2_11_2_1
  doi: 10.1039/C6CS00426A
– ident: e_1_2_11_91_4
  doi: 10.1007/s12274-012-0252-z
– ident: e_1_2_11_53_1
  doi: 10.1021/jz201664h
– ident: e_1_2_11_11_1
  doi: 10.1063/1.478435
– ident: e_1_2_11_88_1
  doi: 10.1002/adma.201405634
– ident: e_1_2_11_132_1
  doi: 10.7150/thno.12570
– ident: e_1_2_11_31_1
  doi: 10.1021/acs.accounts.7b00301
– ident: e_1_2_11_154_2
  doi: 10.1021/nl035004r
– ident: e_1_2_11_145_6
  doi: 10.1038/nchem.1195
– ident: e_1_2_11_2_4
  doi: 10.1021/ar400092x
– ident: e_1_2_11_38_1
  doi: 10.1002/mrm.22966
– ident: e_1_2_11_138_4
  doi: 10.1021/la0008636
– ident: e_1_2_11_3_2
  doi: 10.1016/j.mattod.2015.08.022
– ident: e_1_2_11_41_1
  doi: 10.1016/j.jmmm.2005.01.070
– ident: e_1_2_11_111_1
  doi: 10.1021/cr400544s
– ident: e_1_2_11_160_1
  doi: 10.1016/j.biomaterials.2012.11.054
– ident: e_1_2_11_110_2
  doi: 10.1073/pnas.1222109110
– ident: e_1_2_11_142_2
  doi: 10.1021/nn2045246
– ident: e_1_2_11_63_1
  doi: 10.1002/adfm.201101663
– ident: e_1_2_11_59_1
  doi: 10.1002/anie.200604775
– volume: 29
  start-page: 201701013
  year: 2017
  ident: e_1_2_11_144_2
  publication-title: Adv. Mater.
– ident: e_1_2_11_188_4
  doi: 10.1021/acs.jpcc.6b00254
– ident: e_1_2_11_85_1
  doi: 10.1021/acs.jpcc.6b08362
– ident: e_1_2_11_133_1
  doi: 10.1021/la900730b
– ident: e_1_2_11_164_1
  doi: 10.1038/nnano.2009.453
– ident: e_1_2_11_106_1
  doi: 10.1021/nl501193x
– ident: e_1_2_11_188_2
  doi: 10.1039/C6CP02094A
– ident: e_1_2_11_48_1
  doi: 10.1039/c3tb00369h
– ident: e_1_2_11_156_1
  doi: 10.1039/C6RA14265F
– ident: e_1_2_11_3_1
  doi: 10.1002/adhm.201700306
– ident: e_1_2_11_52_3
  doi: 10.1021/nn305991e
– ident: e_1_2_11_115_1
  doi: 10.1126/science.1219468
– ident: e_1_2_11_138_1
  doi: 10.1016/j.jmmm.2016.05.019
– ident: e_1_2_11_175_1
  doi: 10.1021/nn2002272
– ident: e_1_2_11_46_2
  doi: 10.1038/ncomms3266
– ident: e_1_2_11_3_6
  doi: 10.1021/ar9000026
– ident: e_1_2_11_167_1
  doi: 10.1073/pnas.0902365106
– ident: e_1_2_11_155_1
  doi: 10.1002/anie.200901791
– ident: e_1_2_11_68_1
  doi: 10.1016/S0304-8853(99)00347-9
– ident: e_1_2_11_62_1
  doi: 10.1039/C5NR04400F
– ident: e_1_2_11_180_4
  doi: 10.1002/ejic.201000496
– ident: e_1_2_11_21_2
  doi: 10.1063/1.1731684
– ident: e_1_2_11_58_1
  doi: 10.1038/s41551-017-0116-7
– ident: e_1_2_11_102_1
  doi: 10.1021/ja409490q
– ident: e_1_2_11_88_8
  doi: 10.1166/jbn.2014.2035
– ident: e_1_2_11_109_1
  doi: 10.1039/c3nr02797j
– ident: e_1_2_11_139_3
  doi: 10.1039/C6CC03225G
– ident: e_1_2_11_109_2
  doi: 10.1021/acsami.5b08422
– ident: e_1_2_11_154_4
  doi: 10.1021/ja803920b
– ident: e_1_2_11_119_1
  doi: 10.1021/acsnano.7b01297
– ident: e_1_2_11_146_1
  doi: 10.1021/acsami.6b16505
– ident: e_1_2_11_30_1
  doi: 10.1021/nn5038652
– ident: e_1_2_11_60_3
  doi: 10.1002/adma.201305222
– ident: e_1_2_11_146_3
  doi: 10.1039/c1cs15246g
– ident: e_1_2_11_101_3
  doi: 10.1039/C3NR04691E
– ident: e_1_2_11_181_2
  doi: 10.1021/cm960077f
– ident: e_1_2_11_33_1
  doi: 10.1139/v69-435
– ident: e_1_2_11_163_2
  doi: 10.1021/jp031148i
– ident: e_1_2_11_9_1
  doi: 10.1021/cr900232t
– ident: e_1_2_11_20_2
  doi: 10.1002/mrm.1910340214
– ident: e_1_2_11_99_2
  doi: 10.1002/anie.201100101
– ident: e_1_2_11_154_3
  doi: 10.1039/C6TC00540C
– ident: e_1_2_11_178_1
  doi: 10.1002/adfm.201400653
– ident: e_1_2_11_46_3
  doi: 10.1021/acs.chemmater.5b00944
– ident: e_1_2_11_13_1
  doi: 10.1016/0021-9797(80)90187-3
– ident: e_1_2_11_157_1
  doi: 10.1021/jp110716g
– ident: e_1_2_11_37_1
  doi: 10.1002/mrm.10059
– ident: e_1_2_11_141_2
  doi: 10.1021/nn101129r
– ident: e_1_2_11_109_3
  doi: 10.1039/C6BM00706F
– ident: e_1_2_11_157_2
  doi: 10.1103/PhysRevLett.104.217204
– ident: e_1_2_11_69_1
  doi: 10.1103/PhysRevD.11.790
– volume: 12
  start-page: 160
  year: 1961
  ident: e_1_2_11_78_1
  publication-title: Br. J. Appl. Sci.
– ident: e_1_2_11_15_2
  doi: 10.1063/1.1616655
– ident: e_1_2_11_140_1
  doi: 10.1039/C7RA01224A
– ident: e_1_2_11_180_2
  doi: 10.1016/j.chempr.2017.06.007
– ident: e_1_2_11_103_1
  doi: 10.1021/nn406158h
– ident: e_1_2_11_141_4
  doi: 10.1021/ja104503g
– ident: e_1_2_11_1_4
  doi: 10.1039/c2cs15327k
– ident: e_1_2_11_123_1
  doi: 10.1021/ar2000277
– ident: e_1_2_11_65_1
  doi: 10.1002/mrm.20605
– ident: e_1_2_11_145_3
  doi: 10.1039/C6FD00012F
– ident: e_1_2_11_88_3
  doi: 10.1039/C4NR03505D
– ident: e_1_2_11_150_2
  doi: 10.1039/C5TB02709H
– ident: e_1_2_11_166_1
  doi: 10.1021/ac701976p
– ident: e_1_2_11_4_1
  doi: 10.1021/acs.chemrev.5b00687
– ident: e_1_2_11_150_1
  doi: 10.1039/C5NR08402D
– ident: e_1_2_11_162_4
  doi: 10.1021/nn100869j
– ident: e_1_2_11_4_3
  doi: 10.1002/anie.200602866
– ident: e_1_2_11_171_2
  doi: 10.1021/acs.accounts.6b00343
– ident: e_1_2_11_34_1
  doi: 10.1021/jp9704067
– ident: e_1_2_11_101_4
  doi: 10.1002/smll.201303263
– start-page: 365
  volume-title: Magnetic Nanomaterials: Fundamentals, Synthesis and Applications
  year: 2017
  ident: e_1_2_11_8_1
  doi: 10.1002/9783527803255.ch12
– ident: e_1_2_11_50_1
  doi: 10.1103/PhysRevLett.67.248
– ident: e_1_2_11_24_1
  doi: 10.1103/PhysRev.73.679
– ident: e_1_2_11_125_1
  doi: 10.1002/adma.201304744
– ident: e_1_2_11_118_4
  doi: 10.1021/ja211363w
– ident: e_1_2_11_97_1
  doi: 10.1039/c0cc05862a
– ident: e_1_2_11_122_3
  doi: 10.1021/ar200085c
– ident: e_1_2_11_36_2
  doi: 10.1080/00268970110053468
– ident: e_1_2_11_138_2
  doi: 10.1021/ja1084095
– ident: e_1_2_11_170_1
  doi: 10.1002/adma.201505350
– ident: e_1_2_11_169_3
  doi: 10.1002/anie.201608338
– ident: e_1_2_11_32_1
  doi: 10.1021/ja9613116
– ident: e_1_2_11_62_2
  doi: 10.1002/adma.201203169
– ident: e_1_2_11_116_2
  doi: 10.1002/cphc.200300835
– ident: e_1_2_11_153_1
  doi: 10.1038/nnano.2011.95
– ident: e_1_2_11_79_1
  doi: 10.1063/1.368661
– ident: e_1_2_11_9_3
  doi: 10.1039/c3nr00544e
– ident: e_1_2_11_141_3
  doi: 10.1021/nn405977t
– ident: e_1_2_11_26_2
  doi: 10.1039/b510982p
– ident: e_1_2_11_1_1
  doi: 10.1038/natrevmats.2016.21
– ident: e_1_2_11_56_2
  doi: 10.1021/la063415s
– ident: e_1_2_11_88_6
  doi: 10.1021/nn4004583
– ident: e_1_2_11_145_5
  doi: 10.1002/anie.200704392
– ident: e_1_2_11_59_4
  doi: 10.1039/c0jm01465f
– ident: e_1_2_11_50_2
  doi: 10.1063/1.356902
– ident: e_1_2_11_82_1
  doi: 10.1021/nn507193f
– ident: e_1_2_11_16_2
  doi: 10.1021/nl301499u
– ident: e_1_2_11_177_1
  doi: 10.1002/adhm.201700831
– ident: e_1_2_11_59_2
  doi: 10.1021/am100641z
– ident: e_1_2_11_71_1
  doi: 10.1021/ja8086906
– ident: e_1_2_11_170_3
  doi: 10.1002/adma.200401904
– ident: e_1_2_11_60_1
  doi: 10.1039/b516376p
– ident: e_1_2_11_159_1
  doi: 10.1038/nmat4846
– ident: e_1_2_11_39_1
  doi: 10.1002/mrm.1910320610
– ident: e_1_2_11_105_1
  doi: 10.1002/anie.200805149
– ident: e_1_2_11_7_3
  doi: 10.1039/c2cs15315g
– ident: e_1_2_11_36_1
  doi: 10.1002/1521-3765(20010202)7:3<600::AID-CHEM600>3.0.CO;2-H
– ident: e_1_2_11_146_2
  doi: 10.1002/adma.201104763
– ident: e_1_2_11_112_2
  doi: 10.1038/ncomms8664
– ident: e_1_2_11_134_1
  doi: 10.1021/acsnano.6b07959
– ident: e_1_2_11_145_1
  doi: 10.1039/C7NR01406F
– volume: 30
  start-page: 201704639
  year: 2018
  ident: e_1_2_11_143_2
  publication-title: Adv. Mater.
– ident: e_1_2_11_55_1
  doi: 10.1021/acsnano.7b03075
– ident: e_1_2_11_95_1
  doi: 10.1038/srep32852
– ident: e_1_2_11_170_4
  doi: 10.1038/414735a
– ident: e_1_2_11_87_1
  doi: 10.1021/ja504088n
– ident: e_1_2_11_88_7
  doi: 10.1002/ange.201707128
– ident: e_1_2_11_70_2
  doi: 10.1039/b207789b
– ident: e_1_2_11_18_4
  doi: 10.1021/acs.molpharmaceut.6b00839
– ident: e_1_2_11_46_1
  doi: 10.1021/nl3010308
– ident: e_1_2_11_145_4
  doi: 10.1021/la060693i
– ident: e_1_2_11_47_1
  doi: 10.1016/j.jallcom.2016.03.279
– ident: e_1_2_11_152_2
  doi: 10.1016/j.physrep.2014.09.007
– ident: e_1_2_11_179_1
  doi: 10.1038/ncomms4565
– ident: e_1_2_11_47_3
  doi: 10.1021/acs.nanolett.6b02978
– ident: e_1_2_11_117_3
  doi: 10.1002/adma.201302919
– ident: e_1_2_11_177_2
  doi: 10.4155/tde.14.112
– ident: e_1_2_11_154_1
  doi: 10.1038/nature01208
– ident: e_1_2_11_114_1
  doi: 10.1039/C6NR06444B
– ident: e_1_2_11_139_2
  doi: 10.1039/b719096d
– ident: e_1_2_11_195_1
  doi: 10.1038/nnano.2011.112
– ident: e_1_2_11_124_1
  doi: 10.1002/cmmi.417
– ident: e_1_2_11_191_2
  doi: 10.1002/smll.200900358
– ident: e_1_2_11_42_1
  doi: 10.1021/la403591z
– ident: e_1_2_11_1_5
  doi: 10.1039/c3nr01533e
– ident: e_1_2_11_129_1
  doi: 10.1002/admi.201300069
– ident: e_1_2_11_2_2
  doi: 10.1039/C4CS00199K
– ident: e_1_2_11_88_5
  doi: 10.1021/cm200414c
– ident: e_1_2_11_121_2
  doi: 10.1016/j.biomaterials.2017.05.013
– ident: e_1_2_11_76_1
  doi: 10.1039/c2jm16401a
– ident: e_1_2_11_91_3
  doi: 10.1021/nn200928r
– ident: e_1_2_11_131_1
  doi: 10.1021/am400713j
– ident: e_1_2_11_139_1
  doi: 10.1039/C1CS15213K
– ident: e_1_2_11_35_1
  doi: 10.1021/jp101443v
– ident: e_1_2_11_148_1
  doi: 10.1016/j.biomaterials.2013.08.009
– ident: e_1_2_11_91_1
  doi: 10.1016/j.biomaterials.2010.09.039
– ident: e_1_2_11_52_1
  doi: 10.1021/nl071099b
– ident: e_1_2_11_64_1
  doi: 10.1016/j.nano.2014.05.003
– ident: e_1_2_11_70_1
  doi: 10.1021/acs.accounts.5b00038
– ident: e_1_2_11_122_1
  doi: 10.7150/thno.11544
– ident: e_1_2_11_3_4
  doi: 10.1021/acs.chemrev.5b00112
– ident: e_1_2_11_180_3
  doi: 10.1039/C6SC01359G
– ident: e_1_2_11_2_3
  doi: 10.1021/cr100156x
– ident: e_1_2_11_165_3
  doi: 10.1002/wnan.84
– ident: e_1_2_11_126_1
  doi: 10.1021/ac049307x
– ident: e_1_2_11_188_1
  doi: 10.1021/la502409r
– ident: e_1_2_11_19_1
  doi: 10.1002/ejic.201101364
– ident: e_1_2_11_44_2
  doi: 10.1021/jp994114c
– ident: e_1_2_11_77_2
  doi: 10.1063/1.2967709
– ident: e_1_2_11_169_1
  doi: 10.1126/science.1224221
– ident: e_1_2_11_45_1
  doi: 10.1063/1.341858
– ident: e_1_2_11_44_1
  doi: 10.1063/1.464255
– ident: e_1_2_11_108_1
  doi: 10.1021/acs.chemmater.7b00035
– ident: e_1_2_11_83_2
  doi: 10.1039/C5NR00752F
– ident: e_1_2_11_43_1
  doi: 10.1063/1.459468
– ident: e_1_2_11_7_2
  doi: 10.1039/c2cs15337h
– ident: e_1_2_11_105_2
  doi: 10.1038/nm1467
– ident: e_1_2_11_182_1
  doi: 10.1029/JB080i029p04049
– ident: e_1_2_11_22_2
  doi: 10.1103/PhysRev.69.37
– ident: e_1_2_11_158_1
  doi: 10.1021/nn302393e
– ident: e_1_2_11_144_1
  doi: 10.1039/c0dt01656j
– ident: e_1_2_11_118_1
  doi: 10.1126/science.1078962
– ident: e_1_2_11_181_1
  doi: 10.1103/PhysRev.130.1677
– ident: e_1_2_11_22_1
  doi: 10.1103/PhysRev.70.460
– ident: e_1_2_11_62_3
  doi: 10.1039/C7NR01134B
– ident: e_1_2_11_147_1
  doi: 10.1038/nnano.2010.203
– ident: e_1_2_11_52_4
  doi: 10.1039/C4NR02680B
– ident: e_1_2_11_20_1
  doi: 10.1021/cr00081a003
– ident: e_1_2_11_52_2
  doi: 10.1038/nmat1775
– ident: e_1_2_11_180_1
  doi: 10.1021/acsami.5b03335
– ident: e_1_2_11_171_3
  doi: 10.1021/ja1090113
– ident: e_1_2_11_145_7
  doi: 10.1021/ja078034v
– ident: e_1_2_11_6_1
  doi: 10.1070/RC2005v074n06ABEH000897
– ident: e_1_2_11_60_2
  doi: 10.1021/acs.chemrev.5b00091
– ident: e_1_2_11_173_1
  doi: 10.1039/c3nr00345k
– ident: e_1_2_11_190_1
  doi: 10.1039/C3NR06103E
– ident: e_1_2_11_118_2
  doi: 10.1021/cr3002752
– ident: e_1_2_11_61_1
  doi: 10.1021/acsnano.7b04924
– ident: e_1_2_11_3_7
  doi: 10.1039/c3cs60149h
– ident: e_1_2_11_112_3
  doi: 10.1002/cctc.201200229
– ident: e_1_2_11_59_3
  doi: 10.1016/j.biomaterials.2010.01.087
– ident: e_1_2_11_174_1
  doi: 10.1039/c2tb00275b
– ident: e_1_2_11_81_1
  doi: 10.1021/cm5019025
– ident: e_1_2_11_149_1
  doi: 10.1002/adfm.201501269
– ident: e_1_2_11_77_1
  doi: 10.1063/1.1357133
– ident: e_1_2_11_142_1
  doi: 10.1021/nn900118a
– ident: e_1_2_11_162_1
  doi: 10.1038/nature08439
– ident: e_1_2_11_72_1
  doi: 10.1002/anie.200701694
– ident: e_1_2_11_168_1
  doi: 10.7150/thno.3465
– ident: e_1_2_11_188_3
  doi: 10.1021/acs.inorgchem.7b00956
– ident: e_1_2_11_86_1
  doi: 10.1038/ncomms10394
– ident: e_1_2_11_18_3
  doi: 10.7150/thno.4006
– ident: e_1_2_11_26_1
  doi: 10.1021/cr980440x
– ident: e_1_2_11_71_2
  doi: 10.1021/ja045911d
– ident: e_1_2_11_167_3
  doi: 10.1021/acsnano.7b06074
– ident: e_1_2_11_104_1
  doi: 10.1063/1.4928914
– volume-title: Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors
  year: 1975
  ident: e_1_2_11_116_1
– ident: e_1_2_11_151_1
  doi: 10.1016/j.nantod.2016.07.003
– ident: e_1_2_11_37_2
  doi: 10.1002/mrm.10064
– ident: e_1_2_11_118_5
  doi: 10.1038/srep03653
– ident: e_1_2_11_21_1
  doi: 10.1103/PhysRev.99.559
– ident: e_1_2_11_110_1
  doi: 10.1002/adma.201104145
– ident: e_1_2_11_14_1
  doi: 10.1002/anie.201406740
– ident: e_1_2_11_21_3
  doi: 10.1063/1.431841
– ident: e_1_2_11_67_1
  doi: 10.1038/ncomms11331
– ident: e_1_2_11_170_2
  doi: 10.1016/j.nantod.2015.04.001
– ident: e_1_2_11_4_2
  doi: 10.1039/C6NR07542H
– ident: e_1_2_11_33_2
  doi: 10.1039/B612876A
– ident: e_1_2_11_122_2
  doi: 10.1016/j.addr.2010.07.009
– start-page: 189
  volume-title: Advances in Magnetic and Optical Resonance
  year: 1977
  ident: e_1_2_11_25_1
– ident: e_1_2_11_18_2
  doi: 10.1002/smll.201502309
– ident: e_1_2_11_191_1
  doi: 10.1103/PhysRevLett.52.1433
– ident: e_1_2_11_66_1
  doi: 10.1038/s41598-018-30264-5
– ident: e_1_2_11_130_1
  doi: 10.1021/mp200006f
– ident: e_1_2_11_100_1
  doi: 10.1021/nl200110t
– ident: e_1_2_11_112_1
  doi: 10.1039/C7EN01060E
– ident: e_1_2_11_7_1
  doi: 10.1021/acs.chemrev.5b00589
– ident: e_1_2_11_127_1
  doi: 10.1021/nl102623x
– ident: e_1_2_11_88_2
  doi: 10.1039/C7TB00794A
– ident: e_1_2_11_56_1
  doi: 10.1038/ki.2008.496
– ident: e_1_2_11_135_1
  doi: 10.1021/acsnano.6b02559
– ident: e_1_2_11_40_2
  doi: 10.1016/j.jmr.2011.06.024
– ident: e_1_2_11_171_1
  doi: 10.1021/acs.accounts.5b00059
– ident: e_1_2_11_123_2
  doi: 10.1021/ar200044b
– ident: e_1_2_11_141_1
  doi: 10.1021/jp2086413
– ident: e_1_2_11_118_3
  doi: 10.1021/ja808433d
– ident: e_1_2_11_46_4
  doi: 10.2217/nnm.16.8
– ident: e_1_2_11_113_1
  doi: 10.1126/science.1140484
– ident: e_1_2_11_84_1
  doi: 10.1021/nn5070953
– ident: e_1_2_11_101_2
  doi: 10.1002/adma.201305811
– ident: e_1_2_11_117_1
  doi: 10.1021/jp063148z
– ident: e_1_2_11_186_1
  doi: 10.1039/c4dt00024b
– ident: e_1_2_11_184_2
  doi: 10.1039/c2cs35197h
– ident: e_1_2_11_94_1
  doi: 10.1021/nn500188y
– ident: e_1_2_11_165_1
  doi: 10.1038/nbt720
– ident: e_1_2_11_83_1
  doi: 10.1039/C6NR02620F
– ident: e_1_2_11_18_1
  doi: 10.1039/C4TB02023E
– ident: e_1_2_11_67_2
  doi: 10.1021/nl0495256
– ident: e_1_2_11_47_2
  doi: 10.1038/srep12135
– ident: e_1_2_11_15_1
  doi: 10.1021/cm402225z
– ident: e_1_2_11_78_2
  doi: 10.1109/20.364589
– ident: e_1_2_11_89_2
  doi: 10.1039/c0nr00776e
– ident: e_1_2_11_12_2
  doi: 10.1002/anie.200603148
– ident: e_1_2_11_28_1
  doi: 10.1002/jmri.1880030127
– ident: e_1_2_11_80_1
  doi: 10.1073/pnas.1016409108
– ident: e_1_2_11_167_2
  doi: 10.1038/nm.1711
– ident: e_1_2_11_51_1
  doi: 10.1021/ja0422155
– ident: e_1_2_11_165_2
  doi: 10.1039/c1lc20177h
– ident: e_1_2_11_157_3
  doi: 10.1021/nl2034514
– ident: e_1_2_11_10_1
  doi: 10.1002/mrm.1910050404
– ident: e_1_2_11_57_1
  doi: 10.1021/ja203340u
– ident: e_1_2_11_145_2
  doi: 10.1002/anie.201702572
– ident: e_1_2_11_90_1
  doi: 10.1002/anie.200802323
– ident: e_1_2_11_192_1
  doi: 10.1109/9780470545652
– ident: e_1_2_11_176_1
  doi: 10.1002/anie.201203190
– ident: e_1_2_11_184_1
  doi: 10.1002/anie.200700197
– ident: e_1_2_11_98_1
  doi: 10.1021/ja305048p
– ident: e_1_2_11_21_4
  doi: 10.1063/1.436302
– ident: e_1_2_11_3_3
  doi: 10.1021/cr500698d
– ident: e_1_2_11_3_5
  doi: 10.1021/cr300068p
– ident: e_1_2_11_1_2
  doi: 10.1038/natrevmats.2017.59
– ident: e_1_2_11_89_4
  doi: 10.1039/C5NR00055F
– ident: e_1_2_11_40_1
  doi: 10.1002/adhm.201200078
– ident: e_1_2_11_136_1
  doi: 10.1021/acs.nanolett.7b01753
– ident: e_1_2_11_177_3
  doi: 10.1039/C6CS00724D
– ident: e_1_2_11_52_5
  doi: 10.1039/C5NR00774G
– ident: e_1_2_11_29_1
  doi: 10.1002/mrm.1135
– ident: e_1_2_11_9_2
  doi: 10.1039/C4CS00345D
– ident: e_1_2_11_96_1
  doi: 10.1002/anie.201402986
– ident: e_1_2_11_162_2
  doi: 10.1038/nnano.2011.121
– ident: e_1_2_11_67_3
  doi: 10.1039/C5CS00501A
– ident: e_1_2_11_1_3
  doi: 10.1021/acs.chemrev.5b00611
– ident: e_1_2_11_92_1
  doi: 10.1021/jp508951t
– ident: e_1_2_11_93_1
  doi: 10.1002/ange.200700677
– ident: e_1_2_11_23_2
  doi: 10.1088/0957-4484/27/15/155706
– ident: e_1_2_11_128_1
  doi: 10.1002/jmri.21194
– ident: e_1_2_11_154_5
  doi: 10.1021/ja302856z
– ident: e_1_2_11_188_5
  doi: 10.1039/C6NR07567C
– ident: e_1_2_11_73_1
  doi: 10.1039/c2cc35945f
– ident: e_1_2_11_166_2
  doi: 10.1021/nn301615b
– ident: e_1_2_11_183_1
  doi: 10.1016/j.jmmm.2009.02.073
– ident: e_1_2_11_193_1
  doi: 10.1038/ncomms15468
– ident: e_1_2_11_12_1
  doi: 10.1002/anie.200462551
– ident: e_1_2_11_74_1
  doi: 10.1039/c0cc00246a
– ident: e_1_2_11_92_2
  doi: 10.1007/s12274-012-0275-5
– ident: e_1_2_11_117_2
  doi: 10.1021/acscatal.5b00320
– ident: e_1_2_11_121_1
  doi: 10.1039/c0dt00689k
– ident: e_1_2_11_161_1
  doi: 10.1126/science.1070821
– ident: e_1_2_11_152_1
  doi: 10.1038/ncomms3960
SSID ssj0009606
Score 2.678039
SecondaryResourceType review_article
Snippet Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e1804567
SubjectTerms Complexity
Contrast agents
Contrast Media - chemistry
Crystal structure
crystallinity
Design engineering
magnetic nanoparticles
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Magnetics - methods
Magnetite Nanoparticles - chemistry
Materials science
Models, Molecular
Nanoparticles
NMR
Nuclear magnetic resonance
Particle Size
Quantum mechanics
shape effect
Structure-Activity Relationship
surface modification
Surface Properties
Title Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804567
https://www.ncbi.nlm.nih.gov/pubmed/30600553
https://www.proquest.com/docview/2183090685
https://www.proquest.com/docview/2162773216
https://pubmed.ncbi.nlm.nih.gov/PMC6392011
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHFadyoLRACR9VKlXiZAi244_jqnS1IG0PBSQuKHJiG1DbLOqyEuLEO_QN-yT1ONnsbhGq1N4S2VFieyb-O5n5GeCDY8ZgkBoJs5siQf_nRFlvieGGeSZEpSQmCg8_i8E5P7nIL-ay-Bs-RPfBDT0jvq_RwU05PphBQ42N3KBDhaIE08kxYAtV0ZcZPwrleYTtsZxowdWU2pjRg8XLF2elJ1LzacTkvJKNU1H_FZhpI5oIlK_7k7tyv3r4g-_4P61chZVWp6a9xrBewwtXv4HlOXrhGlyeRvbs5If79fgTg-ru40YUaRdfd31zO05HPh2aqxpzJdPwKg9r9DYULw1yeVaEvxGQ_eHS4-9x46R1OO9_Ovs4IO1uDaTKGZfEsrCWdMwrZ4TSNugaLyunfRgGQ6mkPi8ttdyYygcjOLRGcS0xj1srZanO2AYs1aPabUJqpBNZxWzuEF-neMl1Ri1zJXWGl54nQKajVVQtyhx31PhWNBBmWmC3FV23JbDX1b9tIB7P1tyZDn7ROvO4QBWZ6UyoPIH3XXFwQ_y3Ymo3mmAdQaUMXSASeNvYSnersCpD1BlLQC5YUVcBEd-LJfXNdUR9B_2ICi0BGo3kL09f9I6Gve5s618u2oaX4Vg3cek7sBQMye0G2XVXvouu9RvxYybz
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHlB5aDvQJTQttKlXqyRBsx4_jioeWluXQgtRLFTmxDYg2iworIU58h37DfpJ6nMeyoKpSe0zsKIk9E__tjH8D8M4xYzBIjYTRTZGg_3OirLfEcMM8E6JSEjcKj_bF8JB_-JJ30YS4F6bhQ_QLbugZ8XuNDo4L0utTaqixERy0oVCVyHtwH9N6x1nVpylBCgV6xO2xnGjBVcdtzOj67PWz49IdsXk3ZvKmlo2D0c4jKLvXaGJQTtcmF-VadXWL8Phf7_kYFlupmg4a23oCc65-Cgs3AIbP4OvniJ-d_HC_rn9iXN1lzEWR9iF2xydn5-nYpyNzVON2yTR8zcM0vY3GS4NinhbhnwTEf7h093vMnfQcDne2DzaHpE3YQKqccUksC9NJx7xyRihtg7TxsnLah34wlErq89JSy42pfLCDDWsU1xK3cmulLNUZW4L5ely7F5Aa6URWMZs7JNgpXnKdUctcSZ3hpecJkK67iqqlmWNSjW9Fw2GmBTZb0TdbAu_7-mcNx-OPNVe63i9afz4vUEhmOhMqT-BtXxw8EX-vmNqNJ1hHUClDE4gElhtj6W8VJmZIO2MJyBkz6isg5Xu2pD45jrTvICFRpCVAo5X85emLwdZo0B-9_JeL3sCD4cFor9jb3f_4Ch6G87oJU1-B-WBUbjWosIvydfSz30VjKw4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHpZUQPUD5KiktBAmJk9vUdvxxXLFdtcBWCKjUC4qc2KYVkF3RroQ49R36hn0SPE42u9sKIcExsa3E9kz8dzz-GeClY8ZgkBoJo5siQf_nRFlvieGGeSZEpSRuFB4eiv0j_uY4P57bxd_wIbofbugZ8XuNDj62fmcGDTU2coN2FYoSeQtWuMgU2nX_wwwghfo80vZYTrTgaoptzOjOYvnFYemG1rwZMjkvZeNYNLgHZlqLJgTl6_bkvNyufl0DPP5PNdfgbitU015jWfdhydUPYHUOX_gQPn-M8NnJD3d1cYlRdT_jSRRpF2B3cjo-S0c-HZovNW6WTMO3PEzS21i8NOjlWRKuIyD8w6UH3-PJSY_gaLD36fU-aY9rIFXOuCSWhcmkY145I5S2Qdh4WTntQzcYSiX1eWmp5cZUPljBrjWKa4kbubVSluqMPYblelS7J5Aa6URWMZs75NcpXnKdUctcSZ3hpecJkGlvFVXLMscjNb4VDYWZFthsRddsCbzq8o8biscfc25OO79ovfmsQBmZ6UyoPIEXXXLwQ1xcMbUbTTCPoFKGJhAJrDe20j0qTMuQdcYSkAtW1GVAxvdiSn16ElnfQUCiREuARiP5y9sXvf6w111t_Euh53D7fX9QvDs4fPsU7oTbuolR34TlYFNuK0iw8_JZ9LLfw30pxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93Relaxivity+Relationships+of+Magnetic+Nanoparticles+for+Magnetic+Resonance+Imaging&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhou%2C+Zijian&rft.au=Yang%2C+Lijiao&rft.au=Gao%2C+Jinhao&rft.au=Chen%2C+Xiaoyuan&rft.date=2019-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=8&rft_id=info:doi/10.1002%2Fadma.201804567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon