Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging
Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon–Bloembergen–Morgan and the outer‐sphere quantum mechanical theories established on simplistic models...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 8; pp. e1804567 - n/a |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon–Bloembergen–Morgan and the outer‐sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure–relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.
Structure–relaxivity relationships between different structural features of magnetic nanoparticles (MNPs) and the resulting T1 and T2 relaxivities in magnetic resonance imaging (MRI) are reviewed. The factors of size, shape, crystal structure, surface functionality, and assembly structure of magnetic nanoparticles are summarized to decipher how physical properties of MNPs influence proton relaxation in MRI. |
---|---|
AbstractList | Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields. Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. We reviewed recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales, namely the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. We placed a special emphasis on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, we hope this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields. Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields.Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon-Bloembergen-Morgan and the outer-sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure-relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields. Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the structure of modern MNPs, the classical Solomon–Bloembergen–Morgan and the outer‐sphere quantum mechanical theories established on simplistic models have encountered limitations for defining the emergent phenomena of relaxation enhancement in MRI. Recent progress in probing MRI relaxivity of MNPs based on structural features at the molecular and atomic scales is reviewed, namely, the structure–relaxivity relationships, including size, shape, crystal structure, surface modification, and assembled structure. A special emphasis is placed on bridging the gaps between classical simplistic models and modern MNPs with elegant structural complexity. In the pursuit of novel MRI contrast agents, it is hoped that this review will spur the critical thinking for design and engineering of novel MNPs for MRI applications across a broad spectrum of research fields. Structure–relaxivity relationships between different structural features of magnetic nanoparticles (MNPs) and the resulting T1 and T2 relaxivities in magnetic resonance imaging (MRI) are reviewed. The factors of size, shape, crystal structure, surface functionality, and assembly structure of magnetic nanoparticles are summarized to decipher how physical properties of MNPs influence proton relaxation in MRI. |
Author | Yang, Lijiao Gao, Jinhao Chen, Xiaoyuan Zhou, Zijian |
AuthorAffiliation | Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China |
AuthorAffiliation_xml | – name: State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China – name: Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA |
Author_xml | – sequence: 1 givenname: Zijian surname: Zhou fullname: Zhou, Zijian organization: National Institutes of Health – sequence: 2 givenname: Lijiao surname: Yang fullname: Yang, Lijiao organization: Xiamen University – sequence: 3 givenname: Jinhao surname: Gao fullname: Gao, Jinhao email: jhgao@xmu.edu.cn organization: Xiamen University – sequence: 4 givenname: Xiaoyuan orcidid: 0000-0002-9622-0870 surname: Chen fullname: Chen, Xiaoyuan email: shawn.chen@nih.gov organization: National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30600553$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAUhS1URKeFLUsUiQ2bDNd27NgbpFH5q9SCVGCJLNexp64Se7CTtrPjHXhDngQP0x-ohFj5Svc7R8fn7qGdEINF6CmGOQYgL3U36DkBLKBhvH2AZpgRXDcg2Q6agaSslrwRu2gv53MAkBz4I7RLgQMwRmfo66cxTWackv35_ceJ7fWVv_DjutqMo48hn_lVrqKrjvUy2NGb6oMOcaVTGXubKxfT3erE5hh0MLY6HPTSh-Vj9NDpPtsn1-8--vL2zeeD9_XRx3eHB4uj2jDatHVHCcaWOmE1F7ITDXetsdKVwJqQljh22pGu0do4RznutGhkixkHKURHJNB99Grru5pOB9sZG8ake7VKftBpraL26u9N8GdqGS8Up7KUh4vBi2uDFL9NNo9q8NnYvtfBxikrgjlp2xKTF_T5PfQ8TimU7xVKUJDABSvUsz8T3Ua5ab4AzRYwKeacrFPGj78rLwF9rzCozYHV5sDq9sBFNr8nu3H-p0BuBZe-t-v_0Grx-nhxp_0FQ6u6qw |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_0c02701 crossref_primary_10_1016_j_ccr_2023_215548 crossref_primary_10_1016_j_cej_2019_122406 crossref_primary_10_3390_app12199969 crossref_primary_10_1039_D1NR00338K crossref_primary_10_3390_life13040870 crossref_primary_10_1007_s00216_024_05679_x crossref_primary_10_1016_j_ijbiomac_2021_02_183 crossref_primary_10_3389_fchem_2020_00203 crossref_primary_10_3762_bjnano_12_9 crossref_primary_10_1021_acsami_2c15295 crossref_primary_10_3390_ma12244234 crossref_primary_10_1002_adhm_202403099 crossref_primary_10_1016_j_cej_2024_154269 crossref_primary_10_1016_j_pmatsci_2024_101267 crossref_primary_10_1039_D4AN00189C crossref_primary_10_1039_C9RA06886D crossref_primary_10_1002_smll_202107808 crossref_primary_10_1039_D2NR04979A crossref_primary_10_1021_cbmi_3c00026 crossref_primary_10_1021_cbmi_3c00024 crossref_primary_10_1039_D2TB00600F crossref_primary_10_3390_ijms24119293 crossref_primary_10_1002_adfm_202300023 crossref_primary_10_1021_acs_analchem_4c03890 crossref_primary_10_1002_adma_201904385 crossref_primary_10_1016_j_chempr_2020_01_023 crossref_primary_10_1021_acsami_1c13341 crossref_primary_10_1021_acsanm_2c03537 crossref_primary_10_1021_jacsau_4c00009 crossref_primary_10_1080_13543776_2022_2109413 crossref_primary_10_1021_acs_langmuir_3c03049 crossref_primary_10_1039_D1TB02572D crossref_primary_10_1039_D3DT00381G crossref_primary_10_1039_D0TB02858D crossref_primary_10_1039_D1NJ00419K crossref_primary_10_1021_acsnano_9b06842 crossref_primary_10_1021_acs_jpcc_2c06299 crossref_primary_10_1002_ejic_201900697 crossref_primary_10_1002_slct_201902548 crossref_primary_10_1039_D1CC03913J crossref_primary_10_1021_acs_bioconjchem_1c00288 crossref_primary_10_1016_j_foodchem_2024_138847 crossref_primary_10_1002_adma_201906799 crossref_primary_10_1073_pnas_2211228119 crossref_primary_10_1021_acsanm_5c00309 crossref_primary_10_3390_magnetochemistry9070181 crossref_primary_10_1021_acsami_0c13825 crossref_primary_10_1002_advs_202205109 crossref_primary_10_1007_s12274_023_6158_0 crossref_primary_10_1088_1361_6668_ac2f01 crossref_primary_10_1016_j_addr_2022_114484 crossref_primary_10_1002_EXP_20230027 crossref_primary_10_1007_s00604_021_04718_z crossref_primary_10_1021_acsnano_0c01505 crossref_primary_10_1073_pnas_2220036120 crossref_primary_10_1021_acs_nanolett_1c03786 crossref_primary_10_1002_bmm2_12085 crossref_primary_10_1038_s41467_024_50688_0 crossref_primary_10_1007_s40843_020_1434_1 crossref_primary_10_1007_s00339_020_03575_6 crossref_primary_10_1007_s41365_024_01527_w crossref_primary_10_1007_s10853_023_08914_5 crossref_primary_10_1021_acs_chemmater_3c01356 crossref_primary_10_1002_anie_202318948 crossref_primary_10_1021_acs_analchem_0c04296 crossref_primary_10_1016_j_ccr_2022_214821 crossref_primary_10_1021_acsnano_0c09223 crossref_primary_10_1002_smll_202101460 crossref_primary_10_1016_j_xcrp_2022_100920 crossref_primary_10_1021_acs_nanolett_4c02669 crossref_primary_10_1016_j_bios_2022_114717 crossref_primary_10_1021_acs_analchem_2c04539 crossref_primary_10_1021_acsami_4c08256 crossref_primary_10_1002_pol_20230820 crossref_primary_10_1021_acs_analchem_0c04605 crossref_primary_10_1021_acs_inorgchem_4c03878 crossref_primary_10_3390_nano15010033 crossref_primary_10_1007_s10853_020_05296_w crossref_primary_10_1002_wnan_1740 crossref_primary_10_1021_acsomega_2c00071 crossref_primary_10_1002_cmdc_202100701 crossref_primary_10_1016_j_carbpol_2022_120061 crossref_primary_10_1039_C9RA10509C crossref_primary_10_1038_s41467_021_24055_2 crossref_primary_10_1021_acsnano_4c03999 crossref_primary_10_1021_acs_chemrev_4c00710 crossref_primary_10_1016_j_ccr_2022_214809 crossref_primary_10_1016_j_foodchem_2023_137061 crossref_primary_10_1371_journal_pone_0260606 crossref_primary_10_1021_acs_nanolett_3c02214 crossref_primary_10_1021_acs_chemmater_2c00708 crossref_primary_10_1021_acsnano_3c05853 crossref_primary_10_1186_s12951_024_02629_8 crossref_primary_10_1002_viw2_20 crossref_primary_10_1002_smsc_202300015 crossref_primary_10_1039_D1NR00115A crossref_primary_10_1002_adfm_202209278 crossref_primary_10_1007_s12274_022_4877_4 crossref_primary_10_1039_D1TB01771C crossref_primary_10_1177_08853282221102673 crossref_primary_10_1002_advs_202000467 crossref_primary_10_1039_D2NH00478J crossref_primary_10_1021_acs_langmuir_4c01332 crossref_primary_10_1021_acsami_1c20617 crossref_primary_10_1021_acs_jpcc_4c07127 crossref_primary_10_1093_rb_rbab027 crossref_primary_10_1002_admi_202100455 crossref_primary_10_3390_ph16020166 crossref_primary_10_1002_adhm_201900672 crossref_primary_10_1016_j_biomaterials_2023_122139 crossref_primary_10_26599_NR_2025_94907251 crossref_primary_10_1039_D4SC04675G crossref_primary_10_1039_D2AN00325B crossref_primary_10_1016_j_nano_2020_102219 crossref_primary_10_1016_j_bioactmat_2020_12_001 crossref_primary_10_1021_acsanm_4c00511 crossref_primary_10_1039_D2RA03995H crossref_primary_10_1021_acsomega_1c05420 crossref_primary_10_1002_smll_202208241 crossref_primary_10_1039_D1NR00877C crossref_primary_10_1002_adma_202005657 crossref_primary_10_1039_D3BM00264K crossref_primary_10_3390_sci4010011 crossref_primary_10_1002_ange_202117229 crossref_primary_10_1142_S0217984924502373 crossref_primary_10_1002_cmdc_202400586 crossref_primary_10_1007_s00432_022_04427_x crossref_primary_10_3390_ma14133611 crossref_primary_10_1039_D2RA01294D crossref_primary_10_1021_acs_nanolett_1c04676 crossref_primary_10_1021_acs_analchem_0c02859 crossref_primary_10_1002_smtd_202001025 crossref_primary_10_1021_acsanm_4c00404 crossref_primary_10_1002_smll_202308247 crossref_primary_10_1021_acsbiomaterials_4c00890 crossref_primary_10_1021_acs_langmuir_9b00337 crossref_primary_10_1039_D2NR02059A crossref_primary_10_1039_D3CC00418J crossref_primary_10_1002_EXP_20230064 crossref_primary_10_1007_s11706_023_0658_4 crossref_primary_10_1002_anie_202117229 crossref_primary_10_1016_j_jre_2024_04_018 crossref_primary_10_1021_acsnano_1c06026 crossref_primary_10_3390_molecules29081824 crossref_primary_10_1016_j_mtadv_2020_100119 crossref_primary_10_1021_acsami_1c11261 crossref_primary_10_1016_j_jmmm_2019_02_067 crossref_primary_10_1021_acs_chemmater_2c02537 crossref_primary_10_1021_acs_jpclett_4c01876 crossref_primary_10_1016_j_actbio_2023_02_033 crossref_primary_10_1002_EXP_20210009 crossref_primary_10_1007_s00210_025_04038_6 crossref_primary_10_1186_s42649_021_00058_7 crossref_primary_10_1002_adhm_202303389 crossref_primary_10_1016_j_nano_2025_102811 crossref_primary_10_1021_acsami_4c09269 crossref_primary_10_1039_D1TC01477C crossref_primary_10_1021_acs_nanolett_9b01900 crossref_primary_10_3390_polym13172989 crossref_primary_10_1002_adma_202401538 crossref_primary_10_1007_s10570_021_03693_1 crossref_primary_10_1002_adfm_202425466 crossref_primary_10_1002_ange_202318948 crossref_primary_10_1007_s10904_020_01719_y crossref_primary_10_3390_magnetochemistry10070046 crossref_primary_10_1186_s12951_024_02394_8 crossref_primary_10_3390_bios14040164 crossref_primary_10_1002_adma_202305932 crossref_primary_10_1002_adfm_202422876 crossref_primary_10_1039_C9CS00011A crossref_primary_10_1002_adtp_202100018 crossref_primary_10_1021_acsami_1c07739 crossref_primary_10_1039_D3SD00293D crossref_primary_10_1021_acsami_9b08948 crossref_primary_10_1039_D0TB00552E crossref_primary_10_3390_nano11113034 crossref_primary_10_1016_j_biomaterials_2020_120386 crossref_primary_10_1016_j_cej_2021_129170 crossref_primary_10_1021_acsnano_3c02265 crossref_primary_10_1007_s10853_020_05647_7 crossref_primary_10_1093_rb_rbab064 crossref_primary_10_1186_s12951_022_01524_4 crossref_primary_10_1021_acs_analchem_2c01341 crossref_primary_10_1002_adhm_201901058 crossref_primary_10_1088_2516_1091_ac3111 crossref_primary_10_1021_acsanm_0c00474 crossref_primary_10_1039_D4NA00014E crossref_primary_10_3390_nano13050804 crossref_primary_10_1007_s10904_023_02933_0 crossref_primary_10_1021_acsnano_4c17959 crossref_primary_10_1016_j_chempr_2022_06_006 crossref_primary_10_3390_nano10050889 crossref_primary_10_1002_anie_202102833 crossref_primary_10_1016_j_compositesb_2021_109401 crossref_primary_10_1016_j_jcis_2022_06_118 crossref_primary_10_3390_nano13061027 crossref_primary_10_1016_j_ccr_2021_214184 crossref_primary_10_1016_j_jddst_2024_106224 crossref_primary_10_1002_smll_202206821 crossref_primary_10_1039_D3CP05043B crossref_primary_10_1016_j_actbio_2023_04_006 crossref_primary_10_1002_adhm_202202391 crossref_primary_10_1126_sciadv_add8539 crossref_primary_10_3390_polym13234146 crossref_primary_10_1016_j_addr_2022_114536 crossref_primary_10_1016_j_porgcoat_2024_108820 crossref_primary_10_1021_acs_analchem_3c04036 crossref_primary_10_1016_j_bioactmat_2022_04_024 crossref_primary_10_3390_coatings13091589 crossref_primary_10_1016_j_nano_2023_102713 crossref_primary_10_1007_s40843_023_2839_5 crossref_primary_10_1002_EXP_20210223 crossref_primary_10_3390_molecules25215072 crossref_primary_10_1016_j_inoche_2021_108995 crossref_primary_10_1021_acsanm_4c00833 crossref_primary_10_1080_24701556_2020_1745836 crossref_primary_10_1002_asia_202200561 crossref_primary_10_1039_D1TB01596F crossref_primary_10_1016_j_ccr_2020_213261 crossref_primary_10_1016_j_jmmm_2024_172447 crossref_primary_10_1007_s00723_023_01629_5 crossref_primary_10_1021_acsnano_2c12793 crossref_primary_10_1002_ird3_10 crossref_primary_10_3389_fbioe_2021_647905 crossref_primary_10_3390_nano11102601 crossref_primary_10_1002_anse_202300038 crossref_primary_10_3390_nano11010017 crossref_primary_10_1016_j_apmt_2020_100686 crossref_primary_10_1007_s00339_023_07160_5 crossref_primary_10_1002_adhm_202301435 crossref_primary_10_1007_s10948_023_06607_3 crossref_primary_10_1002_open_202200110 crossref_primary_10_1002_adma_202008683 crossref_primary_10_1002_smll_202304127 crossref_primary_10_1002_smll_202301894 crossref_primary_10_1002_adfm_202313286 crossref_primary_10_1007_s42247_022_00441_4 crossref_primary_10_1038_s41467_024_52308_3 crossref_primary_10_1002_smtd_202101145 crossref_primary_10_1016_j_bioactmat_2021_10_014 crossref_primary_10_1016_j_ccr_2022_214540 crossref_primary_10_1007_s12598_023_02443_5 crossref_primary_10_1016_j_addr_2022_114637 crossref_primary_10_1016_j_steroids_2022_109170 crossref_primary_10_1186_s12951_023_01769_7 crossref_primary_10_1002_smll_202302856 crossref_primary_10_1016_j_carbon_2019_04_046 crossref_primary_10_1038_s41427_022_00442_z crossref_primary_10_1016_j_jconrel_2020_07_045 crossref_primary_10_1039_C9RA08612A crossref_primary_10_1002_zaac_202100190 crossref_primary_10_1021_acs_analchem_1c03744 crossref_primary_10_1021_cbmi_3c00117 crossref_primary_10_1021_acs_jpcc_1c05172 crossref_primary_10_1016_j_jhazmat_2024_136882 crossref_primary_10_1021_acs_langmuir_3c00657 crossref_primary_10_1016_j_cej_2024_154066 crossref_primary_10_1016_j_cej_2024_158788 crossref_primary_10_1039_D2TB01855A crossref_primary_10_1021_acs_jpcc_2c05390 crossref_primary_10_1002_smll_202308547 crossref_primary_10_1039_D2NR04878G crossref_primary_10_1002_smtd_202000310 crossref_primary_10_1021_acsbiomaterials_0c01076 crossref_primary_10_3390_ph15040480 crossref_primary_10_3390_magnetochemistry6010011 crossref_primary_10_1021_acsanm_4c00242 crossref_primary_10_1002_adma_201903497 crossref_primary_10_3762_bjnano_11_84 crossref_primary_10_1016_j_cej_2024_157681 crossref_primary_10_1039_D3BM00443K crossref_primary_10_1039_D1CP00708D crossref_primary_10_1021_acs_chemrev_4c00546 crossref_primary_10_1016_j_cej_2024_153086 crossref_primary_10_3390_catal13060980 crossref_primary_10_1002_adfm_202313938 crossref_primary_10_1007_s12274_023_6214_9 crossref_primary_10_1021_acs_chemmater_2c01746 crossref_primary_10_1039_D1TC01524A crossref_primary_10_1007_s41061_021_00325_x crossref_primary_10_1039_D1NA00818H crossref_primary_10_1016_j_colsurfa_2022_130518 crossref_primary_10_1002_adma_202310404 crossref_primary_10_1039_D0NR00039F crossref_primary_10_1021_acsanm_2c01392 crossref_primary_10_1002_smll_202303522 crossref_primary_10_3390_nano9091345 crossref_primary_10_1002_adhm_202000533 crossref_primary_10_1039_D1NJ00508A crossref_primary_10_4103_jispcd_JISPCD_175_22 crossref_primary_10_1088_2057_1976_ad795b crossref_primary_10_2174_2468187312666220509213555 crossref_primary_10_1039_D4TB00655K crossref_primary_10_1039_C9TB02871D crossref_primary_10_1016_j_addr_2021_113832 crossref_primary_10_1016_j_ccr_2020_213620 crossref_primary_10_1021_acsbiomaterials_0c00409 crossref_primary_10_1016_j_biomaterials_2020_119979 crossref_primary_10_1039_D0NR07590F crossref_primary_10_1021_acs_langmuir_4c01864 crossref_primary_10_1021_acs_chemmater_9b03662 crossref_primary_10_1149_2162_8777_abc80d crossref_primary_10_3390_nano14090734 crossref_primary_10_1021_acsami_4c03434 crossref_primary_10_1021_acs_langmuir_2c01764 crossref_primary_10_1038_s41563_024_02054_0 crossref_primary_10_1080_17425247_2023_2166484 crossref_primary_10_1007_s11164_023_04966_z crossref_primary_10_1088_1361_6463_abbe4d crossref_primary_10_1021_acsnano_4c01723 crossref_primary_10_1002_cnm_3568 crossref_primary_10_1016_j_jmmm_2023_170835 crossref_primary_10_1002_adhm_202001091 crossref_primary_10_1109_TNB_2021_3126905 crossref_primary_10_1021_acs_iecr_1c04879 crossref_primary_10_1007_s12652_021_03612_z crossref_primary_10_1002_ange_202102833 crossref_primary_10_1039_D3NR05391A crossref_primary_10_3390_ijms22126546 |
Cites_doi | 10.1038/s41598-017-09897-5 10.1021/acsnano.8b01048 10.1002/ejic.201101193 10.1073/pnas.1511443112 10.1529/biophysj.107.116145 10.1021/cr068445e 10.1021/nn402487q 10.1038/nature12863 10.1021/ja805152t 10.1021/ja1084095 10.1038/ncomms6093 10.1038/265521a0 10.1021/ja1109584 10.1021/ja905811h 10.1021/cm402036d 10.1021/acs.chemmater.6b01256 10.1021/ja0768744 10.1002/wnan.1468 10.1021/nn101643u 10.1088/0957-4484/21/3/035103 10.1002/anie.201100562 10.1126/science.1261412 10.1021/acsami.7b05389 10.1021/jp404199f 10.1021/cm502301u 10.1021/acsami.5b12463 10.1021/nn204591r 10.1021/ja308962w 10.1039/C7NR07035G 10.1002/anie.201106180 10.1021/nl302160d 10.1016/0304-8853(94)90462-6 10.1039/c2nr31865b 10.1039/C4NR05825A 10.1021/nn304477s 10.1038/35008037 10.1039/C6CS00426A 10.1007/s12274-012-0252-z 10.1021/jz201664h 10.1063/1.478435 10.1002/adma.201405634 10.7150/thno.12570 10.1021/acs.accounts.7b00301 10.1021/nl035004r 10.1038/nchem.1195 10.1021/ar400092x 10.1002/mrm.22966 10.1021/la0008636 10.1016/j.mattod.2015.08.022 10.1016/j.jmmm.2005.01.070 10.1021/cr400544s 10.1016/j.biomaterials.2012.11.054 10.1073/pnas.1222109110 10.1021/nn2045246 10.1002/adfm.201101663 10.1002/anie.200604775 10.1021/acs.jpcc.6b00254 10.1021/acs.jpcc.6b08362 10.1021/la900730b 10.1038/nnano.2009.453 10.1021/nl501193x 10.1039/C6CP02094A 10.1039/c3tb00369h 10.1039/C6RA14265F 10.1002/adhm.201700306 10.1021/nn305991e 10.1126/science.1219468 10.1016/j.jmmm.2016.05.019 10.1021/nn2002272 10.1038/ncomms3266 10.1021/ar9000026 10.1073/pnas.0902365106 10.1002/anie.200901791 10.1016/S0304-8853(99)00347-9 10.1039/C5NR04400F 10.1002/ejic.201000496 10.1063/1.1731684 10.1038/s41551-017-0116-7 10.1021/ja409490q 10.1166/jbn.2014.2035 10.1039/c3nr02797j 10.1039/C6CC03225G 10.1021/acsami.5b08422 10.1021/ja803920b 10.1021/acsnano.7b01297 10.1021/acsami.6b16505 10.1021/nn5038652 10.1002/adma.201305222 10.1039/c1cs15246g 10.1039/C3NR04691E 10.1021/cm960077f 10.1139/v69-435 10.1021/jp031148i 10.1021/cr900232t 10.1002/mrm.1910340214 10.1002/anie.201100101 10.1039/C6TC00540C 10.1002/adfm.201400653 10.1021/acs.chemmater.5b00944 10.1016/0021-9797(80)90187-3 10.1021/jp110716g 10.1002/mrm.10059 10.1021/nn101129r 10.1039/C6BM00706F 10.1103/PhysRevLett.104.217204 10.1103/PhysRevD.11.790 10.1063/1.1616655 10.1039/C7RA01224A 10.1016/j.chempr.2017.06.007 10.1021/nn406158h 10.1021/ja104503g 10.1039/c2cs15327k 10.1021/ar2000277 10.1002/mrm.20605 10.1039/C6FD00012F 10.1039/C4NR03505D 10.1039/C5TB02709H 10.1021/ac701976p 10.1021/acs.chemrev.5b00687 10.1039/C5NR08402D 10.1021/nn100869j 10.1002/anie.200602866 10.1021/acs.accounts.6b00343 10.1021/jp9704067 10.1002/smll.201303263 10.1002/9783527803255.ch12 10.1103/PhysRevLett.67.248 10.1103/PhysRev.73.679 10.1002/adma.201304744 10.1021/ja211363w 10.1039/c0cc05862a 10.1021/ar200085c 10.1080/00268970110053468 10.1002/adma.201505350 10.1002/anie.201608338 10.1021/ja9613116 10.1002/adma.201203169 10.1002/cphc.200300835 10.1038/nnano.2011.95 10.1063/1.368661 10.1039/c3nr00544e 10.1021/nn405977t 10.1039/b510982p 10.1038/natrevmats.2016.21 10.1021/la063415s 10.1021/nn4004583 10.1002/anie.200704392 10.1039/c0jm01465f 10.1063/1.356902 10.1021/nn507193f 10.1021/nl301499u 10.1002/adhm.201700831 10.1021/am100641z 10.1021/ja8086906 10.1002/adma.200401904 10.1039/b516376p 10.1038/nmat4846 10.1002/mrm.1910320610 10.1002/anie.200805149 10.1039/c2cs15315g 10.1002/1521-3765(20010202)7:3<600::AID-CHEM600>3.0.CO;2-H 10.1002/adma.201104763 10.1038/ncomms8664 10.1021/acsnano.6b07959 10.1039/C7NR01406F 10.1021/acsnano.7b03075 10.1038/srep32852 10.1038/414735a 10.1021/ja504088n 10.1002/ange.201707128 10.1039/b207789b 10.1021/acs.molpharmaceut.6b00839 10.1021/nl3010308 10.1021/la060693i 10.1016/j.jallcom.2016.03.279 10.1016/j.physrep.2014.09.007 10.1038/ncomms4565 10.1021/acs.nanolett.6b02978 10.1002/adma.201302919 10.4155/tde.14.112 10.1038/nature01208 10.1039/C6NR06444B 10.1039/b719096d 10.1038/nnano.2011.112 10.1002/cmmi.417 10.1002/smll.200900358 10.1021/la403591z 10.1039/c3nr01533e 10.1002/admi.201300069 10.1039/C4CS00199K 10.1021/cm200414c 10.1016/j.biomaterials.2017.05.013 10.1039/c2jm16401a 10.1021/nn200928r 10.1021/am400713j 10.1039/C1CS15213K 10.1021/jp101443v 10.1016/j.biomaterials.2013.08.009 10.1016/j.biomaterials.2010.09.039 10.1021/nl071099b 10.1016/j.nano.2014.05.003 10.1021/acs.accounts.5b00038 10.7150/thno.11544 10.1021/acs.chemrev.5b00112 10.1039/C6SC01359G 10.1021/cr100156x 10.1002/wnan.84 10.1021/ac049307x 10.1021/la502409r 10.1002/ejic.201101364 10.1021/jp994114c 10.1063/1.2967709 10.1126/science.1224221 10.1063/1.341858 10.1063/1.464255 10.1021/acs.chemmater.7b00035 10.1039/C5NR00752F 10.1063/1.459468 10.1039/c2cs15337h 10.1038/nm1467 10.1029/JB080i029p04049 10.1103/PhysRev.69.37 10.1021/nn302393e 10.1039/c0dt01656j 10.1126/science.1078962 10.1103/PhysRev.130.1677 10.1103/PhysRev.70.460 10.1039/C7NR01134B 10.1038/nnano.2010.203 10.1039/C4NR02680B 10.1021/cr00081a003 10.1038/nmat1775 10.1021/acsami.5b03335 10.1021/ja1090113 10.1021/ja078034v 10.1070/RC2005v074n06ABEH000897 10.1021/acs.chemrev.5b00091 10.1039/c3nr00345k 10.1039/C3NR06103E 10.1021/cr3002752 10.1021/acsnano.7b04924 10.1039/c3cs60149h 10.1002/cctc.201200229 10.1016/j.biomaterials.2010.01.087 10.1039/c2tb00275b 10.1021/cm5019025 10.1002/adfm.201501269 10.1063/1.1357133 10.1021/nn900118a 10.1038/nature08439 10.1002/anie.200701694 10.7150/thno.3465 10.1021/acs.inorgchem.7b00956 10.1038/ncomms10394 10.7150/thno.4006 10.1021/cr980440x 10.1021/ja045911d 10.1021/acsnano.7b06074 10.1063/1.4928914 10.1016/j.nantod.2016.07.003 10.1002/mrm.10064 10.1038/srep03653 10.1103/PhysRev.99.559 10.1002/adma.201104145 10.1002/anie.201406740 10.1063/1.431841 10.1038/ncomms11331 10.1016/j.nantod.2015.04.001 10.1039/C6NR07542H 10.1039/B612876A 10.1016/j.addr.2010.07.009 10.1002/smll.201502309 10.1103/PhysRevLett.52.1433 10.1038/s41598-018-30264-5 10.1021/mp200006f 10.1021/nl200110t 10.1039/C7EN01060E 10.1021/acs.chemrev.5b00589 10.1021/nl102623x 10.1039/C7TB00794A 10.1038/ki.2008.496 10.1021/acsnano.6b02559 10.1016/j.jmr.2011.06.024 10.1021/acs.accounts.5b00059 10.1021/ar200044b 10.1021/jp2086413 10.1021/ja808433d 10.2217/nnm.16.8 10.1126/science.1140484 10.1021/nn5070953 10.1002/adma.201305811 10.1021/jp063148z 10.1039/c4dt00024b 10.1039/c2cs35197h 10.1021/nn500188y 10.1038/nbt720 10.1039/C6NR02620F 10.1039/C4TB02023E 10.1021/nl0495256 10.1038/srep12135 10.1021/cm402225z 10.1109/20.364589 10.1039/c0nr00776e 10.1002/anie.200603148 10.1002/jmri.1880030127 10.1073/pnas.1016409108 10.1038/nm.1711 10.1021/ja0422155 10.1039/c1lc20177h 10.1021/nl2034514 10.1002/mrm.1910050404 10.1021/ja203340u 10.1002/anie.201702572 10.1002/anie.200802323 10.1109/9780470545652 10.1002/anie.201203190 10.1002/anie.200700197 10.1021/ja305048p 10.1063/1.436302 10.1021/cr500698d 10.1021/cr300068p 10.1038/natrevmats.2017.59 10.1039/C5NR00055F 10.1002/adhm.201200078 10.1021/acs.nanolett.7b01753 10.1039/C6CS00724D 10.1039/C5NR00774G 10.1002/mrm.1135 10.1039/C4CS00345D 10.1002/anie.201402986 10.1038/nnano.2011.121 10.1039/C5CS00501A 10.1021/acs.chemrev.5b00611 10.1021/jp508951t 10.1002/ange.200700677 10.1088/0957-4484/27/15/155706 10.1002/jmri.21194 10.1021/ja302856z 10.1039/C6NR07567C 10.1039/c2cc35945f 10.1021/nn301615b 10.1016/j.jmmm.2009.02.073 10.1038/ncomms15468 10.1002/anie.200462551 10.1039/c0cc00246a 10.1007/s12274-012-0275-5 10.1021/acscatal.5b00320 10.1039/c0dt00689k 10.1126/science.1070821 10.1038/ncomms3960 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1002/adma.201804567 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | PMC6392011 30600553 10_1002_adma_201804567 ADMA201804567 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: Intramural Research Program – fundername: National Institutes of Health – fundername: National Science Foundation of China funderid: 81601489; 21771148; 21521004; 81430041 – fundername: National Institute of Biomedical Imaging and Bioengineering – fundername: National Science Foundation of China grantid: 21521004 – fundername: National Science Foundation of China grantid: 21771148 – fundername: Intramural NIH HHS grantid: Z99 EB999999 – fundername: National Science Foundation of China grantid: 81430041 – fundername: National Science Foundation of China grantid: 81601489 – fundername: NIH HHS – fundername: NIBIB NIH HHS |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c5347-d3211e3f8ea689d846f7ce9f000a2272f5bd2d4aacff361da84971560988d2903 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Aug 21 14:12:22 EDT 2025 Fri Jul 11 02:30:05 EDT 2025 Fri Jul 25 02:32:12 EDT 2025 Mon Jul 21 05:35:44 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Tue Jul 01 00:44:48 EDT 2025 Wed Jan 22 16:21:57 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | crystallinity magnetic nanoparticles structure-activity relationship surface modification shape effect |
Language | English |
License | 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5347-d3211e3f8ea689d846f7ce9f000a2272f5bd2d4aacff361da84971560988d2903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9622-0870 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6392011 |
PMID | 30600553 |
PQID | 2183090685 |
PQPubID | 2045203 |
PageCount | 32 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6392011 proquest_miscellaneous_2162773216 proquest_journals_2183090685 pubmed_primary_30600553 crossref_citationtrail_10_1002_adma_201804567 crossref_primary_10_1002_adma_201804567 wiley_primary_10_1002_adma_201804567_ADMA201804567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-Feb |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-Feb |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 2013 2015; 4 553 2005; 293 2009 2007; 48 13 2013; 1 1994; 136 2016 2004 2015; 7 4 44 2006 2015 2014; 35 115 26 2008 2012; 130 12 1963 1996; 130 8 2012 2011; 1 212 2008; 108 2014; 26 2014; 24 1999 2006; 99 35 2017 2017 2016 2006 2008 2012 2008; 9 56 191 22 47 4 130 1975; 11 2002 2004 2016 2008 2012; 420 4 4 130 134 2017 2016; 9 27 1999; 200 2002 2002; 47 47 2013; 7 2009 2012; 3 6 2001; 45 1998; 84 2013; 5 2016 2016 2007; 116 8 46 1946 1946; 70 69 2014; 136 2014 2003; 26 83 2018; 8 2013 2015; 135 7 2012; 134 2015 2016 2012 2017; 3 12 2 14 2006 2015 2013; 110 5 25 2010; 114 2012 2013 2015 2016 2018; 12 4 27 11 12 2003 2013 2009 2012 2015; 299 113 131 134 4 2013; 117 2015 2003; 48 2017 2018; 29 30 2005; 74 2011; 66 2014; 14 2012 2015; 336 347 2012 2014 2016; 338 5 55 2009 2008 2017; 106 14 11 2010; 5 2012; 22 2002 2011 2010; 20 11 2 2010; 4 2005; 77 2014 2016 2017 2016 2017; 30 18 56 120 9 2014; 10 1975; 80 2015 2004; 112 108 2015 2010 2011; 5 62 44 2011 2017; 40 29 2015 2012 2017; 7 24 9 2015; 54 1961 1995; 12 31 2012 2013; 24 110 2016; 10 2017 2012 2012; 9 24 41 2015 2017 2016 2010; 7 3 7 2010 2009 2004; 131 126 2011; 6 2011; 5 2011; 8 2011; 133 2001 2008; 89 104 2014; 43 2016; 11 1999 2016; 6 2015 2017 2014 2014 2011 2013 2017 2014; 27 5 6 26 23 7 129 10 2007; 316 2010; 46 2009 2007; 75 23 2012 2014 2014 2014; 12 26 6 10 2005; 127 1999; 110 2001 2001; 7 99 2012; 48 2016; 28 2018; 10 1969 2007; 47 0 2008; 130 2016; 8 2005 2007 2009; 44 46 131 1996; 118 1993 2000; 98 104 2009 2011 2000 2010; 461 6 404 4 2017; 7 2013 2015 2017; 5 7 5 2017; 8 2017; 1 2012; 2012 2013; 25 2012 2010 2014 2010; 116 4 8 132 2016 2016; 8 4 1987; 5 1955 1961 1975 1978; 99 34 63 68 2007 2010 2010 2010; 46 2 31 20 2011; 11 2016 2017; 8 9 2011 2010 2012; 115 104 12 2018 2015 2012; 5 6 4 2016 2015 2016 2017; 678 5 16 7 2011 2011; 50 50 2015; 107 1993; 3 2013 2012; 34 4 2007 2012; 79 6 2007 2006 2013 2014 2015; 7 5 7 6 7 2009; 48 2014; 1 2014; 5 2012 2008; 51 95 1980; 74 2007 2012; 46 41 2016 2012 2012; 116 41 41 2018 2015 2017; 7 6 46 2009; 321 2011; 21 2011 2011 2011 2012; 32 133 5 5 1975 2003; 4 2017 2016 2015 2015 2012 2009 2013; 6 19 115 115 112 42 42 2014; 8 2014 2010; 30 21 1987 1995; 87 34 2010 2015 2013; 110 44 5 2011 2011; 44 44 2014; 6 1991 1994; 67 75 1994; 32 1990; 93 2007; 26 2014; 53 2017 2015 2011 2014; 46 44 111 47 2009; 25 1948; 73 2015; 5 2002; 295 2016 2011 2011 2001; 416 133 50 17 1984 2009; 52 5 2017; 29 2011 2017; 40 136 1977; 265 2015; 9 2016; 120 2014; 114 2016 2013; 7 504 2016 2015 2005 2001; 28 10 17 414 2015 2017 2011; 48 50 133 2015; 25 2012 2008 2016; 41 18 52 2012; 2 2012; 3 2011; 108 2007; 119 2016 2017 2016 2012 2013; 1 2 116 41 5 2017; 17 2013; 34 2017; 16 2017; 11 2012 2011 2012 2015; 2012 3 134 7 2015 2013; 119 6 2017 2005; 54 2018; 51 1988; 64 2011; 47 2012; 6 1977; 9 1998; 102 2007; 46 2016 2015; 8 7 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_70_2 e_1_2_11_186_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_78_2 e_1_2_11_29_1 e_1_2_11_102_2 e_1_2_11_4_3 e_1_2_11_125_1 e_1_2_11_4_2 e_1_2_11_4_1 e_1_2_11_148_1 e_1_2_11_102_1 e_1_2_11_163_2 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_2 e_1_2_11_89_2 e_1_2_11_20_1 e_1_2_11_66_1 Chang H. (e_1_2_11_78_1) 1961; 12 e_1_2_11_89_3 e_1_2_11_89_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_113_1 e_1_2_11_174_1 e_1_2_11_151_1 e_1_2_11_92_2 Stoneham A. M. (e_1_2_11_116_1) 1975 e_1_2_11_92_1 Werbelow L. G. (e_1_2_11_25_1) 1977 e_1_2_11_77_2 e_1_2_11_187_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_138_3 e_1_2_11_54_1 e_1_2_11_138_4 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_89_4 e_1_2_11_141_3 e_1_2_11_141_4 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_141_2 e_1_2_11_190_1 e_1_2_11_80_1 e_1_2_11_88_3 e_1_2_11_88_4 e_1_2_11_88_1 e_1_2_11_88_2 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_42_2 e_1_2_11_137_2 e_1_2_11_16_2 e_1_2_11_114_1 e_1_2_11_16_1 e_1_2_11_137_1 e_1_2_11_39_1 e_1_2_11_152_1 e_1_2_11_175_1 e_1_2_11_152_2 e_1_2_11_180_1 e_1_2_11_72_1 e_1_2_11_180_2 e_1_2_11_180_3 e_1_2_11_180_4 e_1_2_11_188_1 e_1_2_11_57_1 e_1_2_11_188_2 e_1_2_11_188_3 e_1_2_11_188_4 e_1_2_11_188_5 e_1_2_11_34_1 e_1_2_11_95_1 e_1_2_11_139_2 e_1_2_11_11_1 e_1_2_11_139_3 e_1_2_11_104_1 e_1_2_11_2_4 e_1_2_11_2_3 e_1_2_11_127_1 e_1_2_11_2_2 e_1_2_11_46_3 e_1_2_11_2_1 e_1_2_11_46_4 e_1_2_11_165_3 e_1_2_11_46_5 e_1_2_11_142_2 e_1_2_11_165_2 e_1_2_11_165_1 e_1_2_11_142_1 e_1_2_11_83_1 e_1_2_11_191_1 e_1_2_11_60_2 e_1_2_11_191_2 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_60_3 e_1_2_11_22_2 e_1_2_11_83_2 e_1_2_11_22_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_138_2 Zhou Z. (e_1_2_11_8_1) 2017 e_1_2_11_115_2 e_1_2_11_176_2 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_1 e_1_2_11_94_1 e_1_2_11_71_2 e_1_2_11_181_1 e_1_2_11_71_1 e_1_2_11_181_2 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_56_2 e_1_2_11_189_1 e_1_2_11_79_1 e_1_2_11_117_3 e_1_2_11_117_2 e_1_2_11_33_2 e_1_2_11_33_1 e_1_2_11_3_5 e_1_2_11_3_4 e_1_2_11_3_3 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_3_2 e_1_2_11_105_2 e_1_2_11_3_1 e_1_2_11_166_2 e_1_2_11_166_1 e_1_2_11_120_1 e_1_2_11_82_1 e_1_2_11_192_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_44_2 e_1_2_11_67_3 e_1_2_11_67_2 e_1_2_11_21_4 e_1_2_11_3_7 e_1_2_11_21_3 e_1_2_11_3_6 e_1_2_11_21_2 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_2 e_1_2_11_154_5 e_1_2_11_154_3 e_1_2_11_177_3 e_1_2_11_18_4 e_1_2_11_154_4 e_1_2_11_177_2 e_1_2_11_18_3 e_1_2_11_154_1 e_1_2_11_177_1 e_1_2_11_18_2 e_1_2_11_154_2 e_1_2_11_131_1 e_1_2_11_182_1 e_1_2_11_118_5 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_118_2 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_118_4 e_1_2_11_118_3 e_1_2_11_106_1 e_1_2_11_167_3 e_1_2_11_48_1 e_1_2_11_121_2 e_1_2_11_167_2 e_1_2_11_121_1 e_1_2_11_167_1 e_1_2_11_144_1 e_1_2_11_193_1 e_1_2_11_47_1 e_1_2_11_62_2 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_62_3 e_1_2_11_85_1 e_1_2_11_117_1 e_1_2_11_36_2 e_1_2_11_59_1 e_1_2_11_59_2 e_1_2_11_178_1 e_1_2_11_59_3 e_1_2_11_132_1 e_1_2_11_59_4 e_1_2_11_155_1 e_1_2_11_170_4 e_1_2_11_170_3 e_1_2_11_170_2 e_1_2_11_170_1 e_1_2_11_50_1 e_1_2_11_183_1 e_1_2_11_58_1 e_1_2_11_12_3 e_1_2_11_50_2 e_1_2_11_119_1 e_1_2_11_12_2 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_96_1 e_1_2_11_145_5 e_1_2_11_145_6 e_1_2_11_1_5 e_1_2_11_145_3 e_1_2_11_1_4 e_1_2_11_145_4 e_1_2_11_1_3 e_1_2_11_47_2 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_1_2 e_1_2_11_47_3 e_1_2_11_145_2 e_1_2_11_1_1 e_1_2_11_47_4 e_1_2_11_122_3 e_1_2_11_122_2 e_1_2_11_160_2 e_1_2_11_160_1 Wang S. (e_1_2_11_144_2) 2017; 29 e_1_2_11_61_1 e_1_2_11_194_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_46_2 e_1_2_11_9_3 e_1_2_11_107_1 e_1_2_11_9_2 e_1_2_11_23_2 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_84_1 e_1_2_11_145_7 e_1_2_11_110_2 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_133_1 e_1_2_11_171_3 e_1_2_11_171_2 e_1_2_11_171_1 e_1_2_11_91_3 e_1_2_11_91_4 e_1_2_11_91_1 e_1_2_11_91_2 e_1_2_11_184_1 e_1_2_11_184_2 e_1_2_11_30_1 e_1_2_11_99_1 e_1_2_11_99_2 e_1_2_11_53_1 e_1_2_11_76_1 e_1_2_11_6_1 e_1_2_11_169_3 e_1_2_11_27_1 e_1_2_11_146_2 e_1_2_11_169_2 e_1_2_11_146_3 e_1_2_11_169_1 e_1_2_11_88_7 e_1_2_11_88_8 e_1_2_11_100_1 e_1_2_11_146_1 e_1_2_11_88_5 e_1_2_11_123_2 e_1_2_11_88_6 e_1_2_11_123_1 e_1_2_11_161_1 e_1_2_11_195_1 e_1_2_11_41_1 e_1_2_11_87_1 e_1_2_11_108_1 e_1_2_11_64_1 Lin L. (e_1_2_11_143_1) 2017; 29 e_1_2_11_15_2 e_1_2_11_157_2 e_1_2_11_15_1 e_1_2_11_157_3 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_172_1 e_1_2_11_90_1 e_1_2_11_185_1 e_1_2_11_52_4 e_1_2_11_52_5 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_52_2 e_1_2_11_52_3 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_101_3 e_1_2_11_101_4 e_1_2_11_26_2 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_101_2 e_1_2_11_162_4 e_1_2_11_162_3 e_1_2_11_162_2 Lin L.‐S. (e_1_2_11_143_2) 2018; 30 e_1_2_11_162_1 e_1_2_11_109_3 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_40_2 e_1_2_11_86_2 e_1_2_11_7_3 e_1_2_11_109_1 e_1_2_11_7_2 e_1_2_11_109_2 e_1_2_11_112_3 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_37_2 e_1_2_11_135_1 e_1_2_11_112_2 e_1_2_11_112_1 e_1_2_11_150_1 e_1_2_11_173_1 e_1_2_11_150_2 |
References_xml | – volume: 6 start-page: 1619 year: 2012 publication-title: ACS Nano – volume: 26 83 start-page: 59 2862 year: 2014 2003 publication-title: Chem. Mater. Appl. Phys. Lett. – volume: 133 start-page: 12624 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 64 start-page: 1347 year: 1988 publication-title: J. Appl. Phys. – volume: 115 104 12 start-page: 2665 217204 246 year: 2011 2010 2012 publication-title: J. Phys. Chem. C Phys. Rev. Lett. Nano Lett. – volume: 6 start-page: 3764 year: 2014 publication-title: Nanoscale – volume: 47 0 start-page: 2645 493 year: 1969 2007 publication-title: Can. J. Chem. Dalton Trans. – volume: 117 start-page: 15369 year: 2013 publication-title: J. Phys. Chem. C – volume: 5 62 44 start-page: 1249 1064 863 year: 2015 2010 2011 publication-title: Theranostics Adv. Drug Delivery Rev. Acc. Chem. Res. – volume: 51 start-page: 342 year: 2018 publication-title: Acc. Chem. Res. – volume: 1 start-page: 637 year: 2017 publication-title: Nat. Biomed. Eng. – volume: 77 start-page: 814 year: 2005 publication-title: Anal. Chem. – volume: 17 start-page: 4873 year: 2017 publication-title: Nano Lett. – volume: 8 start-page: 9884 year: 2014 publication-title: ACS Nano – volume: 16 start-page: 537 year: 2017 publication-title: Nat. Mater. – volume: 27 5 6 26 23 7 129 10 start-page: 3285 3629 13637 6328 3318 2850 13171 3620 year: 2015 2017 2014 2014 2011 2013 2017 2014 publication-title: Adv. Mater. J. Mater. Chem. B Nanoscale Chem. Mater. Chem. Mater. ACS Nano Angew. Chem. J. Biomed. Nanotechnol. – volume: 5 start-page: 815 year: 2010 publication-title: Nat. Nanotechnol. – volume: 1 212 start-page: 502 139 year: 2012 2011 publication-title: Adv. Healthcare Mater. J. Magn. Reson. – volume: 461 6 404 4 start-page: 964 580 746 3591 year: 2009 2011 2000 2010 publication-title: Nature Nat. Nanotechnol. Nature ACS Nano – volume: 73 start-page: 679 year: 1948 publication-title: Phys. Rev. – volume: 46 2 31 20 start-page: 5397 2949 4073 8297 year: 2007 2010 2010 2010 publication-title: Angew. Chem., Int. Ed. ACS Appl. Mater. Interfaces Biomaterials J. Mater. Chem. – volume: 53 start-page: 12268 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 9 27 start-page: e1468 155706 year: 2017 2016 publication-title: Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. Nanotechnology – volume: 67 75 start-page: 248 6583 year: 1991 1994 publication-title: Phys. Rev. Lett. J. Appl. Phys. – volume: 26 start-page: 1634 year: 2007 publication-title: J. Magn. Reson. Imaging – volume: 299 113 131 134 4 start-page: 377 2139 3140 3995 3653 year: 2003 2013 2009 2012 2015 publication-title: Science Chem. Rev. J. Am. Chem. Soc. J. Am. Chem. Soc. Sci. Rep. – volume: 11 start-page: 790 year: 1975 publication-title: Phys. Rev. D – volume: 11 start-page: 10992 year: 2017 publication-title: ACS Nano – volume: 46 41 start-page: 4342 6874 year: 2007 2012 publication-title: Angew. Chem., Int. Ed. Chem. Soc. Rev. – volume: 8 start-page: 17887 year: 2016 publication-title: Nanoscale – volume: 120 start-page: 22103 year: 2016 publication-title: J. Phys. Chem. C – volume: 114 start-page: 7610 year: 2014 publication-title: Chem. Rev. – volume: 5 start-page: 4632 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 116 4 8 132 start-page: 2285 5339 3393 11015 year: 2012 2010 2014 2010 publication-title: J. Phys. Chem. C ACS Nano ACS Nano J. Am. Chem. Soc. – volume: 6 start-page: 7281 year: 2012 publication-title: ACS Nano – volume: 25 start-page: 9487 year: 2009 publication-title: Langmuir – volume: 28 10 17 414 start-page: 5400 278 1949 735 year: 2016 2015 2005 2001 publication-title: Adv. Mater. Nano Today Adv. Mater. Nature – volume: 8 start-page: 7976 year: 2014 publication-title: ACS Nano – volume: 50 50 start-page: 4206 4663 year: 2011 2011 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 4 start-page: 1041 year: 1975 2003 publication-title: ChemPhysChem – volume: 35 115 26 start-page: 557 10725 3867 year: 2006 2015 2014 publication-title: Chem. Soc. Rev. Chem. Rev. Adv. Mater. – volume: 1 start-page: 1300069 year: 2014 publication-title: Adv. Mater. Interfaces – volume: 89 104 start-page: 7591 043903 year: 2001 2008 publication-title: J. Appl. Phys. J. Appl. Phys. – volume: 32 133 5 5 start-page: 176 2955 4177 679 year: 2011 2011 2011 2012 publication-title: Biomaterials J. Am. Chem. Soc. ACS Nano Nano Res. – volume: 134 start-page: 15814 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1679 year: 2014 publication-title: Nanomed.: Nanotechnol., Biol. Med. – volume: 678 5 16 7 start-page: 478 12135 7408 9894 year: 2016 2015 2016 2017 publication-title: J. Alloys Compd. Sci. Rep. Nano Lett. Sci. Rep. – volume: 21 start-page: 4285 year: 2011 publication-title: Adv. Funct. Mater. – volume: 7 4 44 start-page: 11331 1343 8399 year: 2016 2004 2015 publication-title: Nat. Commun. Nano Lett. Chem. Soc. Rev. – volume: 79 6 start-page: 8863 6821 year: 2007 2012 publication-title: Anal. Chem. ACS Nano – volume: 136 start-page: 10393 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 3 6 start-page: 1379 1065 year: 2009 2012 publication-title: ACS Nano ACS Nano – volume: 5 start-page: 1225 year: 2015 publication-title: Theranostics – volume: 11 start-page: 464 year: 2016 publication-title: Nano Today – volume: 116 8 46 start-page: 10473 19421 1222 year: 2016 2016 2007 publication-title: Chem. Rev. Nanoscale Angew. Chem., Int. Ed. – volume: 336 347 start-page: 889 292 year: 2012 2015 publication-title: Science Science – volume: 2012 start-page: 1916 year: 2012 publication-title: Eur. J. Inorg. Chem. – volume: 316 start-page: 732 year: 2007 publication-title: Science – volume: 75 23 start-page: 465 4583 year: 2009 2007 publication-title: Kidney Int. Langmuir – volume: 8 start-page: 11863 year: 2018 publication-title: Sci. Rep. – volume: 9 start-page: 3385 year: 2015 publication-title: ACS Nano – volume: 54 start-page: 2022 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 99 34 63 68 start-page: 559 842 4017 4034 year: 1955 1961 1975 1978 publication-title: Phys. Rev. J. Chem. Phys. J. Chem. Phys. J. Chem. Phys. – volume: 106 14 11 start-page: 12459 869 11425 year: 2009 2008 2017 publication-title: Proc. Natl. Acad. Sci. USA Nat. Med. ACS Nano – volume: 3 12 2 14 start-page: 2241 556 86 1352 year: 2015 2016 2012 2017 publication-title: J. Mater. Chem. B Small Theranostics Mol. Pharmaceutics – volume: 10 start-page: 4607 year: 2010 publication-title: Nano Lett. – volume: 44 44 start-page: 853 883 year: 2011 2011 publication-title: Acc. Chem. Res. Acc. Chem. Res. – volume: 116 41 41 start-page: 5338 4306 2912 year: 2016 2012 2012 publication-title: Chem. Rev. Chem. Soc. Rev. Chem. Soc. Rev. – volume: 5 start-page: 15 year: 2010 publication-title: Nat. Nanotechnol. – volume: 11 start-page: 1641 year: 2011 publication-title: Nano Lett. – volume: 1 2 116 41 5 start-page: 16021 17059 4850 2545 5644 year: 2016 2017 2016 2012 2013 publication-title: Nat. Rev. Mater. Nat. Rev. Mater. Chem. Rev. Chem. Soc. Rev. Nanoscale – volume: 12 26 6 10 start-page: 4722 4114 726 1245 year: 2012 2014 2014 2014 publication-title: Nano Lett. Adv. Mater. Nanoscale Small – volume: 3 start-page: 524 year: 2012 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 3104 year: 2011 publication-title: ACS Nano – volume: 20 11 2 start-page: 816 2282 291 year: 2002 2011 2010 publication-title: Nat. Biotechnol. Lab Chip Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. – volume: 2012 3 134 7 start-page: 2148 1446 18225 9174 year: 2012 2011 2012 2015 publication-title: Eur. J. Inorg. Chem. Nanoscale J. Am. Chem. Soc. Nanoscale – volume: 7 99 start-page: 600 1435 year: 2001 2001 publication-title: Chemistry Mol. Phys. – volume: 3 start-page: 149 year: 1993 publication-title: J. Magn. Reson. Imaging – volume: 66 start-page: 1748 year: 2011 publication-title: Magn. Reson. Med. – volume: 54 start-page: 507 year: 2005 publication-title: Magn. Reson. Med. – start-page: 365 year: 2017 – volume: 10 start-page: 8299 year: 2016 publication-title: ACS Nano – volume: 416 133 50 17 start-page: 275 2955 12505 2900 year: 2016 2011 2011 2001 publication-title: J. Magn. Magn. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Langmuir – volume: 51 95 start-page: 9119 342 year: 2012 2008 publication-title: Angew. Chem., Int. Ed. Biophys. J. – volume: 70 69 start-page: 460 37 year: 1946 1946 publication-title: Phys. Rev. Phys. Rev. – volume: 24 start-page: 4584 year: 2014 publication-title: Adv. Funct. Mater. – volume: 130 8 start-page: 1677 1770 year: 1963 1996 publication-title: Phys. Rev. Chem. Mater. – volume: 110 5 25 start-page: 17860 4825 6459 year: 2006 2015 2013 publication-title: J. Phys. Chem. B ACS Catal. Adv. Mater. – volume: 10 start-page: 284 year: 2018 publication-title: Nanoscale – volume: 22 start-page: 7117 year: 2012 publication-title: J. Mater. Chem. – volume: 7 24 9 start-page: 16119 6223 4516 year: 2015 2012 2017 publication-title: Nanoscale Adv. Mater. Nanoscale – volume: 9 56 191 22 47 4 130 start-page: 9467 8110 47 5227 173 37 1477 year: 2017 2017 2016 2006 2008 2012 2008 publication-title: Nanoscale Angew. Chem., Int. Ed. Faraday Discuss. Langmuir Angew. Chem., Int. Ed. Nat. Chem. J. Am. Chem. Soc. – volume: 1 start-page: 2818 year: 2013 publication-title: J. Mater. Chem. B – volume: 1 start-page: 1142 year: 2013 publication-title: J. Mater. Chem. B – volume: 48 start-page: 5657 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 110 44 5 start-page: 2921 4501 4040 year: 2010 2015 2013 publication-title: Chem. Rev. Chem. Soc. Rev. Nanoscale – volume: 29 30 start-page: 201606681 201704639 year: 2017 2018 publication-title: Adv. Mater. Adv. Mater. – volume: 7 start-page: 17137 year: 2017 publication-title: RSC Adv. – volume: 127 start-page: 5732 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 119 start-page: 4233 year: 2007 publication-title: Angew. Chem. – volume: 130 start-page: 16968 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 7 6 46 start-page: 1700831 97 4774 year: 2018 2015 2017 publication-title: Adv. Healthcare Mater. Ther. Delivery Chem. Soc. Rev. – volume: 48 start-page: 1276 927 year: 2015 2003 publication-title: Acc. Chem. Res. Chem. Commun. – volume: 9 start-page: 189 year: 1977 – volume: 98 104 start-page: 912 4839 year: 1993 2000 publication-title: J. Chem. Phys. J. Phys. Chem. A – volume: 25 start-page: 3702 year: 2013 publication-title: Chem. Mater. – volume: 46 44 111 47 start-page: 2660 315 5179 308 year: 2017 2015 2011 2014 publication-title: Chem. Soc. Rev. Chem. Soc. Rev. Chem. Rev. Acc. Chem. Res. – volume: 5 7 5 start-page: 8098 28286 50 year: 2013 2015 2017 publication-title: Nanoscale ACS Appl. Mater. Interfaces Biomater. Sci. – volume: 45 start-page: 1014 year: 2001 publication-title: Magn. Reson. Med. – volume: 12 31 start-page: 160 830 year: 1961 1995 publication-title: Br. J. Appl. Sci. IEEE Trans. Magn. – volume: 43 start-page: 8395 year: 2014 publication-title: Dalton Trans. – volume: 48 50 133 start-page: 2506 12 1517 year: 2015 2017 2011 publication-title: Acc. Chem. Res. Acc. Chem. Res. J. Am. Chem. Soc. – volume: 135 7 start-page: 18621 2676 year: 2013 2015 publication-title: J. Am. Chem. Soc. Nanoscale – volume: 5 start-page: 4565 year: 2014 publication-title: Nat. Commun. – volume: 32 start-page: 749 year: 1994 publication-title: Magn. Reson. Med. – volume: 93 start-page: 6921 year: 1990 publication-title: J. Chem. Phys. – volume: 48 start-page: 321 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 24 110 start-page: 862 6669 year: 2012 2013 publication-title: Adv. Mater. Proc. Natl. Acad. Sci. USA – volume: 29 start-page: 3038 year: 2017 publication-title: Chem. Mater. – volume: 48 13 start-page: 1234 95 year: 2009 2007 publication-title: Angew. Chem., Int. Ed. Nat. Med. – volume: 9 24 41 start-page: 10309 1504 2590 year: 2017 2012 2012 publication-title: ACS Appl. Mater. Interfaces Adv. Mater. Chem. Soc. Rev. – volume: 2 start-page: 55 year: 2012 publication-title: Theranostics – volume: 102 start-page: 2117 year: 1998 publication-title: J. Phys. Chem. A – volume: 46 start-page: 3920 year: 2010 publication-title: Chem. Commun. – volume: 8 7 start-page: 12826 10519 year: 2016 2015 publication-title: Nanoscale Nanoscale – volume: 99 35 start-page: 2293 512 year: 1999 2006 publication-title: Chem. Rev. Chem. Soc. Rev. – volume: 8 start-page: 15468 year: 2017 publication-title: Nat. Commun. – volume: 420 4 4 130 134 start-page: 395 187 2302 11828 10182 year: 2002 2004 2016 2008 2012 publication-title: Nature Nano Lett. J. Mater. Chem. C J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 4 start-page: 7151 year: 2010 publication-title: ACS Nano – volume: 295 start-page: 2418 year: 2002 publication-title: Science – volume: 130 12 start-page: 13234 3716 year: 2008 2012 publication-title: J. Am. Chem. Soc. Nano Lett. – volume: 7 3 7 2010 start-page: 16338 303 5294 3725 year: 2015 2017 2016 2010 publication-title: ACS Appl. Mater. Interfaces Chem Chem. Sci. Eur. J. Inorg. Chem. – volume: 47 start-page: 5130 year: 2011 publication-title: Chem. Commun. – volume: 52 5 start-page: 1433 1600 year: 1984 2009 publication-title: Phys. Rev. Lett. Small – volume: 41 18 52 start-page: 1911 2629 7528 year: 2012 2008 2016 publication-title: Chem. Soc. Rev. J. Mater. Chem. Chem. Commun. – volume: 8 4 start-page: 3768 2322 year: 2016 2016 publication-title: Nanoscale J. Mater. Chem. B – volume: 6 start-page: 32852 year: 2016 publication-title: Sci. Rep. – volume: 131 126 start-page: 454 11458 year: 2009 2004 publication-title: J. Am. Chem. Soc. J. Am. Chem. Soc. – volume: 47 47 start-page: 257 388 year: 2002 2002 publication-title: Magn. Reson. Med. Magn. Reson. Med. – volume: 28 start-page: 3497 year: 2016 publication-title: Chem. Mater. – volume: 80 start-page: 4049 year: 1975 publication-title: J. Geophys. Res. – volume: 8 start-page: 1669 year: 2011 publication-title: Mol. Pharmaceutics – volume: 6 start-page: 418 year: 2011 publication-title: Nat. Nanotechnol. – volume: 136 start-page: 176 year: 1994 publication-title: J. Magn. Magn. Mater. – volume: 6 start-page: 10935 year: 2012 publication-title: ACS Nano – volume: 321 start-page: 1501 year: 2009 publication-title: J. Magn. Magn. Mater. – volume: 108 start-page: 2662 year: 2011 publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 504 start-page: 10394 237 year: 2016 2013 publication-title: Nat. Commun. Nature – volume: 112 108 start-page: 14484 3380 year: 2015 2004 publication-title: Proc. Natl. Acad. Sci. USA J. Phys. Chem. B – volume: 114 start-page: 8770 year: 2010 publication-title: J. Phys. Chem. B – volume: 14 start-page: 3914 year: 2014 publication-title: Nano Lett. – volume: 7 start-page: 7132 year: 2013 publication-title: ACS Nano – volume: 118 start-page: 12777 year: 1996 publication-title: J. Am. Chem. Soc. – volume: 7 5 7 6 7 start-page: 2422 971 3287 10404 6843 year: 2007 2006 2013 2014 2015 publication-title: Nano Lett. Nat. Mater. ACS Nano Nanoscale Nanoscale – volume: 200 start-page: 359 year: 1999 publication-title: J. Magn. Magn. Mater. – volume: 293 start-page: 532 year: 2005 publication-title: J. Magn. Magn. Mater. – volume: 6 start-page: 189 year: 2011 publication-title: Contrast Media Mol. Imaging – volume: 34 4 start-page: 2069 6235 year: 2013 2012 publication-title: Biomaterials Nanoscale – volume: 8 9 start-page: 5040 21688 year: 2016 2017 publication-title: ACS Appl. Mater. Interfaces ACS Appl. Mater. Interfaces – volume: 6 19 115 115 112 42 42 start-page: 1700306 157 10690 10637 5818 1097 7816 year: 2017 2016 2015 2015 2012 2009 2013 publication-title: Adv. Healthcare Mater. Mater. Today Chem. Rev. Chem. Rev. Chem. Rev. Acc. Chem. Res. Chem. Soc. Rev. – volume: 133 start-page: 3668 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 3012 year: 2015 publication-title: ACS Nano – volume: 6 start-page: 77558 year: 2016 publication-title: RSC Adv. – volume: 119 6 start-page: 6246 1 year: 2015 2013 publication-title: J. Phys. Chem. C Nano Res. – volume: 4 553 start-page: 2960 1 year: 2013 2015 publication-title: Nat. Commun. Phys. Rep. – volume: 5 start-page: 323 year: 1987 publication-title: Magn. Reson. Med. – volume: 110 start-page: 5403 year: 1999 publication-title: J. Chem. Phys. – volume: 44 46 131 start-page: 2782 4630 12900 year: 2005 2007 2009 publication-title: Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 11 start-page: 4256 year: 2017 publication-title: ACS Nano – volume: 74 start-page: 489 year: 2005 publication-title: Russ. Chem. Rev. – volume: 84 start-page: 4394 year: 1998 publication-title: J. Appl. Phys. – volume: 25 start-page: 5269 year: 2015 publication-title: Adv. Funct. Mater. – volume: 40 29 start-page: 6087 201701013 year: 2011 2017 publication-title: Dalton Trans. Adv. Mater. – volume: 34 start-page: 8941 year: 2013 publication-title: Biomaterials – volume: 6 start-page: 594 year: 2011 publication-title: Nat. Nanotechnol. – volume: 46 start-page: 6329 year: 2007 publication-title: Angew. Chem., Int. Ed. – volume: 11 start-page: 3642 year: 2017 publication-title: ACS Nano – volume: 11 start-page: 5227 year: 2017 publication-title: ACS Nano – volume: 26 start-page: 5252 year: 2014 publication-title: Chem. Mater. – volume: 40 136 start-page: 6315 98 year: 2011 2017 publication-title: Dalton Trans. Biomaterials – volume: 12 4 27 11 12 start-page: 3127 2266 3505 1017 4605 year: 2012 2013 2015 2016 2018 publication-title: Nano Lett. Nat. Commun. Chem. Mater. Nanomedicine ACS Nano – volume: 26 start-page: 2694 year: 2014 publication-title: Adv. Mater. – volume: 265 start-page: 521 year: 1977 publication-title: Nature – volume: 30 18 56 120 9 start-page: 8543 16848 8232 7381 305 year: 2014 2016 2017 2016 2017 publication-title: Langmuir Phys. Chem. Chem. Phys. Inorg. Chem. J. Phys. Chem. C Nanoscale – volume: 338 5 55 start-page: 358 5093 15297 year: 2012 2014 2016 publication-title: Science Nat. Commun. Angew. Chem., Int. Ed. – volume: 5 6 4 start-page: 752 7664 1512 year: 2018 2015 2012 publication-title: Environ. Sci.: Nano Nat. Commun. ChemCatChem – volume: 5 start-page: 8656 year: 2013 publication-title: Nanoscale – volume: 107 start-page: 073701 year: 2015 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 2269 year: 2014 publication-title: ACS Nano – volume: 108 start-page: 2064 year: 2008 publication-title: Chem. Rev. – volume: 74 start-page: 227 year: 1980 publication-title: J. Colloid Interface Sci. – volume: 87 34 start-page: 901 227 year: 1987 1995 publication-title: Chem. Rev. Magn. Reson. Med. – volume: 48 start-page: 10499 year: 2012 publication-title: Chem. Commun. – volume: 30 21 start-page: 1580 035103 year: 2014 2010 publication-title: Langmuir Nanotechnology – year: 1999 – ident: e_1_2_11_47_4 doi: 10.1038/s41598-017-09897-5 – ident: e_1_2_11_46_5 doi: 10.1021/acsnano.8b01048 – volume: 29 start-page: 201606681 year: 2017 ident: e_1_2_11_143_1 publication-title: Adv. Mater. – ident: e_1_2_11_89_1 doi: 10.1002/ejic.201101193 – ident: e_1_2_11_163_1 doi: 10.1073/pnas.1511443112 – ident: e_1_2_11_176_2 doi: 10.1529/biophysj.107.116145 – ident: e_1_2_11_5_1 doi: 10.1021/cr068445e – ident: e_1_2_11_120_1 doi: 10.1021/nn402487q – ident: e_1_2_11_86_2 doi: 10.1038/nature12863 – ident: e_1_2_11_75_1 doi: 10.1021/ja805152t – ident: e_1_2_11_91_2 doi: 10.1021/ja1084095 – ident: e_1_2_11_169_2 doi: 10.1038/ncomms6093 – ident: e_1_2_11_27_1 doi: 10.1038/265521a0 – ident: e_1_2_11_172_1 doi: 10.1021/ja1109584 – ident: e_1_2_11_12_3 doi: 10.1021/ja905811h – ident: e_1_2_11_189_1 doi: 10.1021/cm402036d – ident: e_1_2_11_107_1 doi: 10.1021/acs.chemmater.6b01256 – ident: e_1_2_11_16_1 doi: 10.1021/ja0768744 – ident: e_1_2_11_23_1 doi: 10.1002/wnan.1468 – ident: e_1_2_11_187_1 doi: 10.1021/nn101643u – ident: e_1_2_11_42_2 doi: 10.1088/0957-4484/21/3/035103 – ident: e_1_2_11_99_1 doi: 10.1002/anie.201100562 – ident: e_1_2_11_115_2 doi: 10.1126/science.1261412 – ident: e_1_2_11_137_2 doi: 10.1021/acsami.7b05389 – ident: e_1_2_11_17_1 doi: 10.1021/jp404199f – ident: e_1_2_11_88_4 doi: 10.1021/cm502301u – ident: e_1_2_11_137_1 doi: 10.1021/acsami.5b12463 – ident: e_1_2_11_54_1 doi: 10.1021/nn204591r – ident: e_1_2_11_89_3 doi: 10.1021/ja308962w – ident: e_1_2_11_194_1 doi: 10.1039/C7NR07035G – ident: e_1_2_11_138_3 doi: 10.1002/anie.201106180 – ident: e_1_2_11_101_1 doi: 10.1021/nl302160d – ident: e_1_2_11_49_1 doi: 10.1016/0304-8853(94)90462-6 – ident: e_1_2_11_160_2 doi: 10.1039/c2nr31865b – ident: e_1_2_11_102_2 doi: 10.1039/C4NR05825A – ident: e_1_2_11_185_1 doi: 10.1021/nn304477s – ident: e_1_2_11_162_3 doi: 10.1038/35008037 – ident: e_1_2_11_2_1 doi: 10.1039/C6CS00426A – ident: e_1_2_11_91_4 doi: 10.1007/s12274-012-0252-z – ident: e_1_2_11_53_1 doi: 10.1021/jz201664h – ident: e_1_2_11_11_1 doi: 10.1063/1.478435 – ident: e_1_2_11_88_1 doi: 10.1002/adma.201405634 – ident: e_1_2_11_132_1 doi: 10.7150/thno.12570 – ident: e_1_2_11_31_1 doi: 10.1021/acs.accounts.7b00301 – ident: e_1_2_11_154_2 doi: 10.1021/nl035004r – ident: e_1_2_11_145_6 doi: 10.1038/nchem.1195 – ident: e_1_2_11_2_4 doi: 10.1021/ar400092x – ident: e_1_2_11_38_1 doi: 10.1002/mrm.22966 – ident: e_1_2_11_138_4 doi: 10.1021/la0008636 – ident: e_1_2_11_3_2 doi: 10.1016/j.mattod.2015.08.022 – ident: e_1_2_11_41_1 doi: 10.1016/j.jmmm.2005.01.070 – ident: e_1_2_11_111_1 doi: 10.1021/cr400544s – ident: e_1_2_11_160_1 doi: 10.1016/j.biomaterials.2012.11.054 – ident: e_1_2_11_110_2 doi: 10.1073/pnas.1222109110 – ident: e_1_2_11_142_2 doi: 10.1021/nn2045246 – ident: e_1_2_11_63_1 doi: 10.1002/adfm.201101663 – ident: e_1_2_11_59_1 doi: 10.1002/anie.200604775 – volume: 29 start-page: 201701013 year: 2017 ident: e_1_2_11_144_2 publication-title: Adv. Mater. – ident: e_1_2_11_188_4 doi: 10.1021/acs.jpcc.6b00254 – ident: e_1_2_11_85_1 doi: 10.1021/acs.jpcc.6b08362 – ident: e_1_2_11_133_1 doi: 10.1021/la900730b – ident: e_1_2_11_164_1 doi: 10.1038/nnano.2009.453 – ident: e_1_2_11_106_1 doi: 10.1021/nl501193x – ident: e_1_2_11_188_2 doi: 10.1039/C6CP02094A – ident: e_1_2_11_48_1 doi: 10.1039/c3tb00369h – ident: e_1_2_11_156_1 doi: 10.1039/C6RA14265F – ident: e_1_2_11_3_1 doi: 10.1002/adhm.201700306 – ident: e_1_2_11_52_3 doi: 10.1021/nn305991e – ident: e_1_2_11_115_1 doi: 10.1126/science.1219468 – ident: e_1_2_11_138_1 doi: 10.1016/j.jmmm.2016.05.019 – ident: e_1_2_11_175_1 doi: 10.1021/nn2002272 – ident: e_1_2_11_46_2 doi: 10.1038/ncomms3266 – ident: e_1_2_11_3_6 doi: 10.1021/ar9000026 – ident: e_1_2_11_167_1 doi: 10.1073/pnas.0902365106 – ident: e_1_2_11_155_1 doi: 10.1002/anie.200901791 – ident: e_1_2_11_68_1 doi: 10.1016/S0304-8853(99)00347-9 – ident: e_1_2_11_62_1 doi: 10.1039/C5NR04400F – ident: e_1_2_11_180_4 doi: 10.1002/ejic.201000496 – ident: e_1_2_11_21_2 doi: 10.1063/1.1731684 – ident: e_1_2_11_58_1 doi: 10.1038/s41551-017-0116-7 – ident: e_1_2_11_102_1 doi: 10.1021/ja409490q – ident: e_1_2_11_88_8 doi: 10.1166/jbn.2014.2035 – ident: e_1_2_11_109_1 doi: 10.1039/c3nr02797j – ident: e_1_2_11_139_3 doi: 10.1039/C6CC03225G – ident: e_1_2_11_109_2 doi: 10.1021/acsami.5b08422 – ident: e_1_2_11_154_4 doi: 10.1021/ja803920b – ident: e_1_2_11_119_1 doi: 10.1021/acsnano.7b01297 – ident: e_1_2_11_146_1 doi: 10.1021/acsami.6b16505 – ident: e_1_2_11_30_1 doi: 10.1021/nn5038652 – ident: e_1_2_11_60_3 doi: 10.1002/adma.201305222 – ident: e_1_2_11_146_3 doi: 10.1039/c1cs15246g – ident: e_1_2_11_101_3 doi: 10.1039/C3NR04691E – ident: e_1_2_11_181_2 doi: 10.1021/cm960077f – ident: e_1_2_11_33_1 doi: 10.1139/v69-435 – ident: e_1_2_11_163_2 doi: 10.1021/jp031148i – ident: e_1_2_11_9_1 doi: 10.1021/cr900232t – ident: e_1_2_11_20_2 doi: 10.1002/mrm.1910340214 – ident: e_1_2_11_99_2 doi: 10.1002/anie.201100101 – ident: e_1_2_11_154_3 doi: 10.1039/C6TC00540C – ident: e_1_2_11_178_1 doi: 10.1002/adfm.201400653 – ident: e_1_2_11_46_3 doi: 10.1021/acs.chemmater.5b00944 – ident: e_1_2_11_13_1 doi: 10.1016/0021-9797(80)90187-3 – ident: e_1_2_11_157_1 doi: 10.1021/jp110716g – ident: e_1_2_11_37_1 doi: 10.1002/mrm.10059 – ident: e_1_2_11_141_2 doi: 10.1021/nn101129r – ident: e_1_2_11_109_3 doi: 10.1039/C6BM00706F – ident: e_1_2_11_157_2 doi: 10.1103/PhysRevLett.104.217204 – ident: e_1_2_11_69_1 doi: 10.1103/PhysRevD.11.790 – volume: 12 start-page: 160 year: 1961 ident: e_1_2_11_78_1 publication-title: Br. J. Appl. Sci. – ident: e_1_2_11_15_2 doi: 10.1063/1.1616655 – ident: e_1_2_11_140_1 doi: 10.1039/C7RA01224A – ident: e_1_2_11_180_2 doi: 10.1016/j.chempr.2017.06.007 – ident: e_1_2_11_103_1 doi: 10.1021/nn406158h – ident: e_1_2_11_141_4 doi: 10.1021/ja104503g – ident: e_1_2_11_1_4 doi: 10.1039/c2cs15327k – ident: e_1_2_11_123_1 doi: 10.1021/ar2000277 – ident: e_1_2_11_65_1 doi: 10.1002/mrm.20605 – ident: e_1_2_11_145_3 doi: 10.1039/C6FD00012F – ident: e_1_2_11_88_3 doi: 10.1039/C4NR03505D – ident: e_1_2_11_150_2 doi: 10.1039/C5TB02709H – ident: e_1_2_11_166_1 doi: 10.1021/ac701976p – ident: e_1_2_11_4_1 doi: 10.1021/acs.chemrev.5b00687 – ident: e_1_2_11_150_1 doi: 10.1039/C5NR08402D – ident: e_1_2_11_162_4 doi: 10.1021/nn100869j – ident: e_1_2_11_4_3 doi: 10.1002/anie.200602866 – ident: e_1_2_11_171_2 doi: 10.1021/acs.accounts.6b00343 – ident: e_1_2_11_34_1 doi: 10.1021/jp9704067 – ident: e_1_2_11_101_4 doi: 10.1002/smll.201303263 – start-page: 365 volume-title: Magnetic Nanomaterials: Fundamentals, Synthesis and Applications year: 2017 ident: e_1_2_11_8_1 doi: 10.1002/9783527803255.ch12 – ident: e_1_2_11_50_1 doi: 10.1103/PhysRevLett.67.248 – ident: e_1_2_11_24_1 doi: 10.1103/PhysRev.73.679 – ident: e_1_2_11_125_1 doi: 10.1002/adma.201304744 – ident: e_1_2_11_118_4 doi: 10.1021/ja211363w – ident: e_1_2_11_97_1 doi: 10.1039/c0cc05862a – ident: e_1_2_11_122_3 doi: 10.1021/ar200085c – ident: e_1_2_11_36_2 doi: 10.1080/00268970110053468 – ident: e_1_2_11_138_2 doi: 10.1021/ja1084095 – ident: e_1_2_11_170_1 doi: 10.1002/adma.201505350 – ident: e_1_2_11_169_3 doi: 10.1002/anie.201608338 – ident: e_1_2_11_32_1 doi: 10.1021/ja9613116 – ident: e_1_2_11_62_2 doi: 10.1002/adma.201203169 – ident: e_1_2_11_116_2 doi: 10.1002/cphc.200300835 – ident: e_1_2_11_153_1 doi: 10.1038/nnano.2011.95 – ident: e_1_2_11_79_1 doi: 10.1063/1.368661 – ident: e_1_2_11_9_3 doi: 10.1039/c3nr00544e – ident: e_1_2_11_141_3 doi: 10.1021/nn405977t – ident: e_1_2_11_26_2 doi: 10.1039/b510982p – ident: e_1_2_11_1_1 doi: 10.1038/natrevmats.2016.21 – ident: e_1_2_11_56_2 doi: 10.1021/la063415s – ident: e_1_2_11_88_6 doi: 10.1021/nn4004583 – ident: e_1_2_11_145_5 doi: 10.1002/anie.200704392 – ident: e_1_2_11_59_4 doi: 10.1039/c0jm01465f – ident: e_1_2_11_50_2 doi: 10.1063/1.356902 – ident: e_1_2_11_82_1 doi: 10.1021/nn507193f – ident: e_1_2_11_16_2 doi: 10.1021/nl301499u – ident: e_1_2_11_177_1 doi: 10.1002/adhm.201700831 – ident: e_1_2_11_59_2 doi: 10.1021/am100641z – ident: e_1_2_11_71_1 doi: 10.1021/ja8086906 – ident: e_1_2_11_170_3 doi: 10.1002/adma.200401904 – ident: e_1_2_11_60_1 doi: 10.1039/b516376p – ident: e_1_2_11_159_1 doi: 10.1038/nmat4846 – ident: e_1_2_11_39_1 doi: 10.1002/mrm.1910320610 – ident: e_1_2_11_105_1 doi: 10.1002/anie.200805149 – ident: e_1_2_11_7_3 doi: 10.1039/c2cs15315g – ident: e_1_2_11_36_1 doi: 10.1002/1521-3765(20010202)7:3<600::AID-CHEM600>3.0.CO;2-H – ident: e_1_2_11_146_2 doi: 10.1002/adma.201104763 – ident: e_1_2_11_112_2 doi: 10.1038/ncomms8664 – ident: e_1_2_11_134_1 doi: 10.1021/acsnano.6b07959 – ident: e_1_2_11_145_1 doi: 10.1039/C7NR01406F – volume: 30 start-page: 201704639 year: 2018 ident: e_1_2_11_143_2 publication-title: Adv. Mater. – ident: e_1_2_11_55_1 doi: 10.1021/acsnano.7b03075 – ident: e_1_2_11_95_1 doi: 10.1038/srep32852 – ident: e_1_2_11_170_4 doi: 10.1038/414735a – ident: e_1_2_11_87_1 doi: 10.1021/ja504088n – ident: e_1_2_11_88_7 doi: 10.1002/ange.201707128 – ident: e_1_2_11_70_2 doi: 10.1039/b207789b – ident: e_1_2_11_18_4 doi: 10.1021/acs.molpharmaceut.6b00839 – ident: e_1_2_11_46_1 doi: 10.1021/nl3010308 – ident: e_1_2_11_145_4 doi: 10.1021/la060693i – ident: e_1_2_11_47_1 doi: 10.1016/j.jallcom.2016.03.279 – ident: e_1_2_11_152_2 doi: 10.1016/j.physrep.2014.09.007 – ident: e_1_2_11_179_1 doi: 10.1038/ncomms4565 – ident: e_1_2_11_47_3 doi: 10.1021/acs.nanolett.6b02978 – ident: e_1_2_11_117_3 doi: 10.1002/adma.201302919 – ident: e_1_2_11_177_2 doi: 10.4155/tde.14.112 – ident: e_1_2_11_154_1 doi: 10.1038/nature01208 – ident: e_1_2_11_114_1 doi: 10.1039/C6NR06444B – ident: e_1_2_11_139_2 doi: 10.1039/b719096d – ident: e_1_2_11_195_1 doi: 10.1038/nnano.2011.112 – ident: e_1_2_11_124_1 doi: 10.1002/cmmi.417 – ident: e_1_2_11_191_2 doi: 10.1002/smll.200900358 – ident: e_1_2_11_42_1 doi: 10.1021/la403591z – ident: e_1_2_11_1_5 doi: 10.1039/c3nr01533e – ident: e_1_2_11_129_1 doi: 10.1002/admi.201300069 – ident: e_1_2_11_2_2 doi: 10.1039/C4CS00199K – ident: e_1_2_11_88_5 doi: 10.1021/cm200414c – ident: e_1_2_11_121_2 doi: 10.1016/j.biomaterials.2017.05.013 – ident: e_1_2_11_76_1 doi: 10.1039/c2jm16401a – ident: e_1_2_11_91_3 doi: 10.1021/nn200928r – ident: e_1_2_11_131_1 doi: 10.1021/am400713j – ident: e_1_2_11_139_1 doi: 10.1039/C1CS15213K – ident: e_1_2_11_35_1 doi: 10.1021/jp101443v – ident: e_1_2_11_148_1 doi: 10.1016/j.biomaterials.2013.08.009 – ident: e_1_2_11_91_1 doi: 10.1016/j.biomaterials.2010.09.039 – ident: e_1_2_11_52_1 doi: 10.1021/nl071099b – ident: e_1_2_11_64_1 doi: 10.1016/j.nano.2014.05.003 – ident: e_1_2_11_70_1 doi: 10.1021/acs.accounts.5b00038 – ident: e_1_2_11_122_1 doi: 10.7150/thno.11544 – ident: e_1_2_11_3_4 doi: 10.1021/acs.chemrev.5b00112 – ident: e_1_2_11_180_3 doi: 10.1039/C6SC01359G – ident: e_1_2_11_2_3 doi: 10.1021/cr100156x – ident: e_1_2_11_165_3 doi: 10.1002/wnan.84 – ident: e_1_2_11_126_1 doi: 10.1021/ac049307x – ident: e_1_2_11_188_1 doi: 10.1021/la502409r – ident: e_1_2_11_19_1 doi: 10.1002/ejic.201101364 – ident: e_1_2_11_44_2 doi: 10.1021/jp994114c – ident: e_1_2_11_77_2 doi: 10.1063/1.2967709 – ident: e_1_2_11_169_1 doi: 10.1126/science.1224221 – ident: e_1_2_11_45_1 doi: 10.1063/1.341858 – ident: e_1_2_11_44_1 doi: 10.1063/1.464255 – ident: e_1_2_11_108_1 doi: 10.1021/acs.chemmater.7b00035 – ident: e_1_2_11_83_2 doi: 10.1039/C5NR00752F – ident: e_1_2_11_43_1 doi: 10.1063/1.459468 – ident: e_1_2_11_7_2 doi: 10.1039/c2cs15337h – ident: e_1_2_11_105_2 doi: 10.1038/nm1467 – ident: e_1_2_11_182_1 doi: 10.1029/JB080i029p04049 – ident: e_1_2_11_22_2 doi: 10.1103/PhysRev.69.37 – ident: e_1_2_11_158_1 doi: 10.1021/nn302393e – ident: e_1_2_11_144_1 doi: 10.1039/c0dt01656j – ident: e_1_2_11_118_1 doi: 10.1126/science.1078962 – ident: e_1_2_11_181_1 doi: 10.1103/PhysRev.130.1677 – ident: e_1_2_11_22_1 doi: 10.1103/PhysRev.70.460 – ident: e_1_2_11_62_3 doi: 10.1039/C7NR01134B – ident: e_1_2_11_147_1 doi: 10.1038/nnano.2010.203 – ident: e_1_2_11_52_4 doi: 10.1039/C4NR02680B – ident: e_1_2_11_20_1 doi: 10.1021/cr00081a003 – ident: e_1_2_11_52_2 doi: 10.1038/nmat1775 – ident: e_1_2_11_180_1 doi: 10.1021/acsami.5b03335 – ident: e_1_2_11_171_3 doi: 10.1021/ja1090113 – ident: e_1_2_11_145_7 doi: 10.1021/ja078034v – ident: e_1_2_11_6_1 doi: 10.1070/RC2005v074n06ABEH000897 – ident: e_1_2_11_60_2 doi: 10.1021/acs.chemrev.5b00091 – ident: e_1_2_11_173_1 doi: 10.1039/c3nr00345k – ident: e_1_2_11_190_1 doi: 10.1039/C3NR06103E – ident: e_1_2_11_118_2 doi: 10.1021/cr3002752 – ident: e_1_2_11_61_1 doi: 10.1021/acsnano.7b04924 – ident: e_1_2_11_3_7 doi: 10.1039/c3cs60149h – ident: e_1_2_11_112_3 doi: 10.1002/cctc.201200229 – ident: e_1_2_11_59_3 doi: 10.1016/j.biomaterials.2010.01.087 – ident: e_1_2_11_174_1 doi: 10.1039/c2tb00275b – ident: e_1_2_11_81_1 doi: 10.1021/cm5019025 – ident: e_1_2_11_149_1 doi: 10.1002/adfm.201501269 – ident: e_1_2_11_77_1 doi: 10.1063/1.1357133 – ident: e_1_2_11_142_1 doi: 10.1021/nn900118a – ident: e_1_2_11_162_1 doi: 10.1038/nature08439 – ident: e_1_2_11_72_1 doi: 10.1002/anie.200701694 – ident: e_1_2_11_168_1 doi: 10.7150/thno.3465 – ident: e_1_2_11_188_3 doi: 10.1021/acs.inorgchem.7b00956 – ident: e_1_2_11_86_1 doi: 10.1038/ncomms10394 – ident: e_1_2_11_18_3 doi: 10.7150/thno.4006 – ident: e_1_2_11_26_1 doi: 10.1021/cr980440x – ident: e_1_2_11_71_2 doi: 10.1021/ja045911d – ident: e_1_2_11_167_3 doi: 10.1021/acsnano.7b06074 – ident: e_1_2_11_104_1 doi: 10.1063/1.4928914 – volume-title: Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors year: 1975 ident: e_1_2_11_116_1 – ident: e_1_2_11_151_1 doi: 10.1016/j.nantod.2016.07.003 – ident: e_1_2_11_37_2 doi: 10.1002/mrm.10064 – ident: e_1_2_11_118_5 doi: 10.1038/srep03653 – ident: e_1_2_11_21_1 doi: 10.1103/PhysRev.99.559 – ident: e_1_2_11_110_1 doi: 10.1002/adma.201104145 – ident: e_1_2_11_14_1 doi: 10.1002/anie.201406740 – ident: e_1_2_11_21_3 doi: 10.1063/1.431841 – ident: e_1_2_11_67_1 doi: 10.1038/ncomms11331 – ident: e_1_2_11_170_2 doi: 10.1016/j.nantod.2015.04.001 – ident: e_1_2_11_4_2 doi: 10.1039/C6NR07542H – ident: e_1_2_11_33_2 doi: 10.1039/B612876A – ident: e_1_2_11_122_2 doi: 10.1016/j.addr.2010.07.009 – start-page: 189 volume-title: Advances in Magnetic and Optical Resonance year: 1977 ident: e_1_2_11_25_1 – ident: e_1_2_11_18_2 doi: 10.1002/smll.201502309 – ident: e_1_2_11_191_1 doi: 10.1103/PhysRevLett.52.1433 – ident: e_1_2_11_66_1 doi: 10.1038/s41598-018-30264-5 – ident: e_1_2_11_130_1 doi: 10.1021/mp200006f – ident: e_1_2_11_100_1 doi: 10.1021/nl200110t – ident: e_1_2_11_112_1 doi: 10.1039/C7EN01060E – ident: e_1_2_11_7_1 doi: 10.1021/acs.chemrev.5b00589 – ident: e_1_2_11_127_1 doi: 10.1021/nl102623x – ident: e_1_2_11_88_2 doi: 10.1039/C7TB00794A – ident: e_1_2_11_56_1 doi: 10.1038/ki.2008.496 – ident: e_1_2_11_135_1 doi: 10.1021/acsnano.6b02559 – ident: e_1_2_11_40_2 doi: 10.1016/j.jmr.2011.06.024 – ident: e_1_2_11_171_1 doi: 10.1021/acs.accounts.5b00059 – ident: e_1_2_11_123_2 doi: 10.1021/ar200044b – ident: e_1_2_11_141_1 doi: 10.1021/jp2086413 – ident: e_1_2_11_118_3 doi: 10.1021/ja808433d – ident: e_1_2_11_46_4 doi: 10.2217/nnm.16.8 – ident: e_1_2_11_113_1 doi: 10.1126/science.1140484 – ident: e_1_2_11_84_1 doi: 10.1021/nn5070953 – ident: e_1_2_11_101_2 doi: 10.1002/adma.201305811 – ident: e_1_2_11_117_1 doi: 10.1021/jp063148z – ident: e_1_2_11_186_1 doi: 10.1039/c4dt00024b – ident: e_1_2_11_184_2 doi: 10.1039/c2cs35197h – ident: e_1_2_11_94_1 doi: 10.1021/nn500188y – ident: e_1_2_11_165_1 doi: 10.1038/nbt720 – ident: e_1_2_11_83_1 doi: 10.1039/C6NR02620F – ident: e_1_2_11_18_1 doi: 10.1039/C4TB02023E – ident: e_1_2_11_67_2 doi: 10.1021/nl0495256 – ident: e_1_2_11_47_2 doi: 10.1038/srep12135 – ident: e_1_2_11_15_1 doi: 10.1021/cm402225z – ident: e_1_2_11_78_2 doi: 10.1109/20.364589 – ident: e_1_2_11_89_2 doi: 10.1039/c0nr00776e – ident: e_1_2_11_12_2 doi: 10.1002/anie.200603148 – ident: e_1_2_11_28_1 doi: 10.1002/jmri.1880030127 – ident: e_1_2_11_80_1 doi: 10.1073/pnas.1016409108 – ident: e_1_2_11_167_2 doi: 10.1038/nm.1711 – ident: e_1_2_11_51_1 doi: 10.1021/ja0422155 – ident: e_1_2_11_165_2 doi: 10.1039/c1lc20177h – ident: e_1_2_11_157_3 doi: 10.1021/nl2034514 – ident: e_1_2_11_10_1 doi: 10.1002/mrm.1910050404 – ident: e_1_2_11_57_1 doi: 10.1021/ja203340u – ident: e_1_2_11_145_2 doi: 10.1002/anie.201702572 – ident: e_1_2_11_90_1 doi: 10.1002/anie.200802323 – ident: e_1_2_11_192_1 doi: 10.1109/9780470545652 – ident: e_1_2_11_176_1 doi: 10.1002/anie.201203190 – ident: e_1_2_11_184_1 doi: 10.1002/anie.200700197 – ident: e_1_2_11_98_1 doi: 10.1021/ja305048p – ident: e_1_2_11_21_4 doi: 10.1063/1.436302 – ident: e_1_2_11_3_3 doi: 10.1021/cr500698d – ident: e_1_2_11_3_5 doi: 10.1021/cr300068p – ident: e_1_2_11_1_2 doi: 10.1038/natrevmats.2017.59 – ident: e_1_2_11_89_4 doi: 10.1039/C5NR00055F – ident: e_1_2_11_40_1 doi: 10.1002/adhm.201200078 – ident: e_1_2_11_136_1 doi: 10.1021/acs.nanolett.7b01753 – ident: e_1_2_11_177_3 doi: 10.1039/C6CS00724D – ident: e_1_2_11_52_5 doi: 10.1039/C5NR00774G – ident: e_1_2_11_29_1 doi: 10.1002/mrm.1135 – ident: e_1_2_11_9_2 doi: 10.1039/C4CS00345D – ident: e_1_2_11_96_1 doi: 10.1002/anie.201402986 – ident: e_1_2_11_162_2 doi: 10.1038/nnano.2011.121 – ident: e_1_2_11_67_3 doi: 10.1039/C5CS00501A – ident: e_1_2_11_1_3 doi: 10.1021/acs.chemrev.5b00611 – ident: e_1_2_11_92_1 doi: 10.1021/jp508951t – ident: e_1_2_11_93_1 doi: 10.1002/ange.200700677 – ident: e_1_2_11_23_2 doi: 10.1088/0957-4484/27/15/155706 – ident: e_1_2_11_128_1 doi: 10.1002/jmri.21194 – ident: e_1_2_11_154_5 doi: 10.1021/ja302856z – ident: e_1_2_11_188_5 doi: 10.1039/C6NR07567C – ident: e_1_2_11_73_1 doi: 10.1039/c2cc35945f – ident: e_1_2_11_166_2 doi: 10.1021/nn301615b – ident: e_1_2_11_183_1 doi: 10.1016/j.jmmm.2009.02.073 – ident: e_1_2_11_193_1 doi: 10.1038/ncomms15468 – ident: e_1_2_11_12_1 doi: 10.1002/anie.200462551 – ident: e_1_2_11_74_1 doi: 10.1039/c0cc00246a – ident: e_1_2_11_92_2 doi: 10.1007/s12274-012-0275-5 – ident: e_1_2_11_117_2 doi: 10.1021/acscatal.5b00320 – ident: e_1_2_11_121_1 doi: 10.1039/c0dt00689k – ident: e_1_2_11_161_1 doi: 10.1126/science.1070821 – ident: e_1_2_11_152_1 doi: 10.1038/ncomms3960 |
SSID | ssj0009606 |
Score | 2.678039 |
SecondaryResourceType | review_article |
Snippet | Magnetic nanoparticles (MNPs) have been extensively explored as magnetic resonance imaging (MRI) contrast agents. With the increasing complexity in the... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e1804567 |
SubjectTerms | Complexity Contrast agents Contrast Media - chemistry Crystal structure crystallinity Design engineering magnetic nanoparticles Magnetic resonance imaging Magnetic Resonance Imaging - methods Magnetics - methods Magnetite Nanoparticles - chemistry Materials science Models, Molecular Nanoparticles NMR Nuclear magnetic resonance Particle Size Quantum mechanics shape effect Structure-Activity Relationship surface modification Surface Properties |
Title | Structure–Relaxivity Relationships of Magnetic Nanoparticles for Magnetic Resonance Imaging |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201804567 https://www.ncbi.nlm.nih.gov/pubmed/30600553 https://www.proquest.com/docview/2183090685 https://www.proquest.com/docview/2162773216 https://pubmed.ncbi.nlm.nih.gov/PMC6392011 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMdHFadyoLRACR9VKlXiZAi244_jqnS1IG0PBSQuKHJiG1DbLOqyEuLEO_QN-yT1ONnsbhGq1N4S2VFieyb-O5n5GeCDY8ZgkBoJs5siQf_nRFlvieGGeSZEpSQmCg8_i8E5P7nIL-ay-Bs-RPfBDT0jvq_RwU05PphBQ42N3KBDhaIE08kxYAtV0ZcZPwrleYTtsZxowdWU2pjRg8XLF2elJ1LzacTkvJKNU1H_FZhpI5oIlK_7k7tyv3r4g-_4P61chZVWp6a9xrBewwtXv4HlOXrhGlyeRvbs5If79fgTg-ru40YUaRdfd31zO05HPh2aqxpzJdPwKg9r9DYULw1yeVaEvxGQ_eHS4-9x46R1OO9_Ovs4IO1uDaTKGZfEsrCWdMwrZ4TSNugaLyunfRgGQ6mkPi8ttdyYygcjOLRGcS0xj1srZanO2AYs1aPabUJqpBNZxWzuEF-neMl1Ri1zJXWGl54nQKajVVQtyhx31PhWNBBmWmC3FV23JbDX1b9tIB7P1tyZDn7ROvO4QBWZ6UyoPIH3XXFwQ_y3Ymo3mmAdQaUMXSASeNvYSnersCpD1BlLQC5YUVcBEd-LJfXNdUR9B_2ICi0BGo3kL09f9I6Gve5s618u2oaX4Vg3cek7sBQMye0G2XVXvouu9RvxYybz |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEMdHlB5aDvQJTQttKlXqyRBsx4_jioeWluXQgtRLFTmxDYg2iworIU58h37DfpJ6nMeyoKpSe0zsKIk9E__tjH8D8M4xYzBIjYTRTZGg_3OirLfEcMM8E6JSEjcKj_bF8JB_-JJ30YS4F6bhQ_QLbugZ8XuNDo4L0utTaqixERy0oVCVyHtwH9N6x1nVpylBCgV6xO2xnGjBVcdtzOj67PWz49IdsXk3ZvKmlo2D0c4jKLvXaGJQTtcmF-VadXWL8Phf7_kYFlupmg4a23oCc65-Cgs3AIbP4OvniJ-d_HC_rn9iXN1lzEWR9iF2xydn5-nYpyNzVON2yTR8zcM0vY3GS4NinhbhnwTEf7h093vMnfQcDne2DzaHpE3YQKqccUksC9NJx7xyRihtg7TxsnLah34wlErq89JSy42pfLCDDWsU1xK3cmulLNUZW4L5ely7F5Aa6URWMZs7JNgpXnKdUctcSZ3hpecJkK67iqqlmWNSjW9Fw2GmBTZb0TdbAu_7-mcNx-OPNVe63i9afz4vUEhmOhMqT-BtXxw8EX-vmNqNJ1hHUClDE4gElhtj6W8VJmZIO2MJyBkz6isg5Xu2pD45jrTvICFRpCVAo5X85emLwdZo0B-9_JeL3sCD4cFor9jb3f_4Ch6G87oJU1-B-WBUbjWosIvydfSz30VjKw4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NbtQwEMdHpZUQPUD5KiktBAmJk9vUdvxxXLFdtcBWCKjUC4qc2KYVkF3RroQ49R36hn0SPE42u9sKIcExsa3E9kz8dzz-GeClY8ZgkBoJo5siQf_nRFlvieGGeSZEpSRuFB4eiv0j_uY4P57bxd_wIbofbugZ8XuNDj62fmcGDTU2coN2FYoSeQtWuMgU2nX_wwwghfo80vZYTrTgaoptzOjOYvnFYemG1rwZMjkvZeNYNLgHZlqLJgTl6_bkvNyufl0DPP5PNdfgbitU015jWfdhydUPYHUOX_gQPn-M8NnJD3d1cYlRdT_jSRRpF2B3cjo-S0c-HZovNW6WTMO3PEzS21i8NOjlWRKuIyD8w6UH3-PJSY_gaLD36fU-aY9rIFXOuCSWhcmkY145I5S2Qdh4WTntQzcYSiX1eWmp5cZUPljBrjWKa4kbubVSluqMPYblelS7J5Aa6URWMZs75NcpXnKdUctcSZ3hpecJkGlvFVXLMscjNb4VDYWZFthsRddsCbzq8o8biscfc25OO79ovfmsQBmZ6UyoPIEXXXLwQ1xcMbUbTTCPoFKGJhAJrDe20j0qTMuQdcYSkAtW1GVAxvdiSn16ElnfQUCiREuARiP5y9sXvf6w111t_Euh53D7fX9QvDs4fPsU7oTbuolR34TlYFNuK0iw8_JZ9LLfw30pxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93Relaxivity+Relationships+of+Magnetic+Nanoparticles+for+Magnetic+Resonance+Imaging&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhou%2C+Zijian&rft.au=Yang%2C+Lijiao&rft.au=Gao%2C+Jinhao&rft.au=Chen%2C+Xiaoyuan&rft.date=2019-02-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=8&rft_id=info:doi/10.1002%2Fadma.201804567&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_adma_201804567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |