Searching for Sympatric Speciation in the Genomic Era

Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In cont...

Full description

Saved in:
Bibliographic Details
Published inBioEssays Vol. 41; no. 7; pp. e1900047 - n/a
Main Authors Richards, Emilie J., Servedio, Maria R., Martin, Christopher H.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation‐with‐gene‐flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature. Sympatric speciation means two different things to empirical and theoretical biologists. Recent genomic analyses of classic sympatric speciation examples reveal complex histories of secondary gene flow from outgroups. It is argued that reconciling diverse theoretical models with existing empirical examples requires investigating the role that gene flow played in the process.
AbstractList Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation-with-gene-flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.
Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation‐with‐gene‐flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature. Sympatric speciation means two different things to empirical and theoretical biologists. Recent genomic analyses of classic sympatric speciation examples reveal complex histories of secondary gene flow from outgroups. It is argued that reconciling diverse theoretical models with existing empirical examples requires investigating the role that gene flow played in the process.
Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation reveal complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. Here, theoretical differences among different types of sympatric speciation and speciation‐with‐gene‐flow models are reviewed and summarized, and genomic analyses are proposed for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.
Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic reanalyses of classic examples of sympatric speciation have revealed complex histories of secondary gene flow from outgroups into the radiation. In contrast, the rich theoretical literature on this process distinguishes among a diverse range of models based on simple genetic histories and different types of reproductive isolating barriers. Thus, there is a need to revisit how to connect theoretical models of sympatric speciation and their predictions to empirical case studies in the face of widespread gene flow. We summarize theoretical differences among different types of sympatric speciation and speciation-with-gene-flow models and propose genomic analyses for distinguishing which models apply to case studies based on the timing and function of adaptive introgression. Investigating whether secondary gene flow contributed to reproductive isolation is necessary to test whether predictions of theory are ultimately borne out in nature.
Author Richards, Emilie J.
Servedio, Maria R.
Martin, Christopher H.
AuthorAffiliation 1 Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
2 Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
AuthorAffiliation_xml – name: 1 Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill NC
– name: 2 Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
Author_xml – sequence: 1
  givenname: Emilie J.
  surname: Richards
  fullname: Richards, Emilie J.
  organization: University of North Carolina at Chapel Hill
– sequence: 2
  givenname: Maria R.
  surname: Servedio
  fullname: Servedio, Maria R.
  organization: University of North Carolina at Chapel Hill
– sequence: 3
  givenname: Christopher H.
  orcidid: 0000-0001-7989-9124
  surname: Martin
  fullname: Martin, Christopher H.
  email: chmartin@unc.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31245871$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAURi0EouWxMqJILCwpfsb2ggRVeUiVGMJuOY5LjRK72Cmo_55ULeWxMN3hO_foXn1HYN8HbwE4Q3CEIMRXlbNphCGSEELK98AQMYxyJLjYB0OIC5ZLTPkAHKX02iOywPQQDAjClAmOhoCVVkczd_4lm4WYlat2obvoTFYurHG6c8Fnzmfd3Gb31oe2TyZRn4CDmW6SPd3OY1DeTZ7HD_n06f5xfDPNDSOU51qKSiBSk7qoIKq5YKwoIJGihoZqg7DktWaCEVxZIiRlmhtWcI4o4XZGjsH1xrpYVq2tjfVd1I1aRNfquFJBO_U78W6uXsK7EogziEgvuNwKYnhb2tSp1iVjm0Z7G5ZJYUwFEVAUa_TiD_oaltH3z60pzkghMe-p0YYyMaQU7Wx3DIJq3Yda96F2ffQL5z9f2OFfBfSA3AAfrrGrf3Tq9nFSfss_AeOnlyA
CitedBy_id crossref_primary_10_1002_ece3_10600
crossref_primary_10_1073_pnas_2304848120
crossref_primary_10_1093_iob_obz018
crossref_primary_10_1038_s41559_023_02319_y
crossref_primary_10_3389_fmars_2021_753553
crossref_primary_10_1016_j_tree_2020_11_006
crossref_primary_10_1242_jeb_217570
crossref_primary_10_1002_ece3_7164
crossref_primary_10_1002_ece3_7901
crossref_primary_10_1073_pnas_2023801118
crossref_primary_10_1002_jez_b_23196
crossref_primary_10_1038_s41598_021_84407_2
crossref_primary_10_1073_pnas_2011811118
crossref_primary_10_26508_lsa_202000827
crossref_primary_10_1111_jeu_12944
crossref_primary_10_1093_biolinnean_blac081
crossref_primary_10_1111_jeb_14037
crossref_primary_10_1016_j_ympev_2023_107804
crossref_primary_10_1111_mec_15571
crossref_primary_10_1111_mec_15791
crossref_primary_10_1186_s40657_021_00252_x
crossref_primary_10_2108_zs220023
crossref_primary_10_31195_ejejfs_1260360
crossref_primary_10_3390_f12060690
crossref_primary_10_1002_ece3_10435
crossref_primary_10_1111_nph_18288
crossref_primary_10_1007_s11692_022_09587_9
crossref_primary_10_1016_j_cbd_2023_101174
crossref_primary_10_1038_s41586_020_2845_0
crossref_primary_10_1093_jhered_esz064
crossref_primary_10_1002_ece3_8821
crossref_primary_10_1111_eff_12661
crossref_primary_10_1111_mec_15304
crossref_primary_10_1186_s12936_024_04888_0
crossref_primary_10_7554_eLife_82825
crossref_primary_10_1111_jeb_13932
crossref_primary_10_1093_molbev_msz259
crossref_primary_10_1093_nsr_nwac294
crossref_primary_10_1111_jeb_14223
crossref_primary_10_1111_mec_16130
crossref_primary_10_3389_fgene_2022_680792
crossref_primary_10_1111_jeb_13874
crossref_primary_10_1093_nsr_nwad006
crossref_primary_10_1016_j_gene_2022_146389
crossref_primary_10_1111_evo_13821
Cites_doi 10.1186/1741-7007-8-60
10.1371/journal.pgen.1006971
10.1111/j.1558-5646.2009.00786.x
10.1038/nature01863
10.1111/evo.12090
10.1146/annurev.ecolsys.38.091206.095804
10.1098/rspb.2006.3539
10.1016/j.jtbi.2006.01.009
10.1111/j.1558-5646.1989.tb04233.x
10.1086/338370
10.1111/evo.12587
10.1111/j.0014-3820.2005.tb01771.x
10.1126/science.1121260
10.1371/journal.pgen.1007341
10.1017/S0016672300014634
10.1186/s12862-015-0287-3
10.1111/evo.12832
10.1111/nph.13392
10.1111/j.1420-9101.2008.01611.x
10.1111/j.1420-9101.2009.01833.x
10.1073/pnas.1730757100
10.1038/22521
10.1016/j.tpb.2014.11.001
10.1556/Select.2.2001.1-2.3
10.1002/evl3.37
10.1016/j.tree.2017.11.003
10.1111/evo.12154
10.1038/nature04566
10.1371/journal.pgen.1003905
10.1007/s00239-006-0261-1
10.1111/j.0014-3820.2003.tb01489.x
10.1111/mec.13478
10.1371/journal.pgen.1007526
10.1111/j.1420-9101.2008.01547.x
10.1556/Select.2.2001.1-2.4
10.1093/molbev/msy228
10.1086/667215
10.1111/evo.13252
10.1371/journal.pgen.1005928
10.1073/pnas.1713288114
10.1016/j.tree.2011.04.005
10.1111/evo.13046
10.1093/molbev/msy006
10.1098/rspb.2015.1666
10.1038/ncomms14363
10.1534/genetics.105.047985
10.1111/mec.14290
10.1098/rstb.2011.0249
10.1371/journal.pgen.1000695
10.1111/mec.13611
10.1016/S0169-5347(01)02177-2
10.1086/667586
10.1534/genetics.115.174912
10.1101/gr.3715005
10.1086/694889
10.1038/368629a0
10.1371/journal.pone.0074901
10.1111/mec.12415
10.1046/j.1365-2540.1999.00617.x
10.1534/g3.118.200262
10.1126/science.1258524
10.1111/mec.14083
10.1016/S0169-5347(01)02188-7
10.1146/annurev-genom-091416-035537
10.1111/ele.12260
10.1111/j.0014-3820.2003.tb00233.x
10.1534/genetics.112.147330
10.1371/journal.pgen.1006157
10.1111/mec.12796
10.1534/genetics.107.084418
10.1126/science.aac9927
10.1093/molbev/msn091
10.1111/evo.12399
10.1126/science.1245938
10.1186/s12861-017-0157-x
10.1038/nature13408
10.1038/ng.937
10.1371/journal.pgen.1007449
10.1038/nrg1269
10.1111/jeb.12026
10.1002/evl3.78
10.1111/j.1558-5646.2009.00612.x
10.1111/ele.12891
10.1016/S1055-7903(03)00225-2
10.1186/1471-2148-10-326
10.1111/j.0022-1112.2004.00433.x
10.1186/s12861-015-0061-1
10.1016/j.cell.2017.05.038
10.1007/s00265-010-1125-7
10.1093/biolinnean/bly063
10.1111/evo.12674
10.1038/nature04325
10.1515/9780691187051
10.1371/journal.pgen.1006919
10.1111/j.1558-5646.1981.tb04864.x
10.1002/evl3.46
10.1093/molbev/msv256
10.1111/mec.14195
10.1046/j.1420-9101.2001.00335.x
10.1111/mec.14784
10.1016/j.tree.2011.01.001
10.1146/annurev.es.06.110175.002011
10.1093/molbev/mss207
10.1038/ncomms6168
10.1086/693855
10.1038/ncomms5248
10.1146/annurev-ecolsys-110316-022905
10.1111/j.1420-9101.2009.01816.x
10.1093/jhered/esu045
10.1111/jeb.13047
10.1086/499375
10.1016/j.tree.2004.01.003
10.3390/genes9040217
ContentType Journal Article
Copyright 2019 WILEY Periodicals, Inc.
Copyright_xml – notice: 2019 WILEY Periodicals, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1002/bies.201900047
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1521-1878
EndPage n/a
ExternalDocumentID 10_1002_bies_201900047
31245871
BIES201900047
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Division of Environmental Biology
  funderid: CAREER 1749764
– fundername: National Science Foundation DEB CAREER
  funderid: #1749764
– fundername: National Institutes of Health
  funderid: 5R01DE027052‐02
– fundername: University of North Carolina
– fundername: NIDCR NIH HHS
  grantid: R01 DE027052
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACKIV
ACKOT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AETEA
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KD1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWR
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UDS
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
XG1
XV2
Y6R
YYQ
YZZ
ZGI
ZUP
ZXP
ZY4
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7QP
7QR
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5347-a98b813d3d6b01d7855660398d0c4ac1297da58532be38945a7c56771437ef3
IEDL.DBID DR2
ISSN 0265-9247
IngestDate Tue Sep 17 21:26:25 EDT 2024
Sat Aug 17 05:41:29 EDT 2024
Fri Sep 13 01:47:54 EDT 2024
Fri Aug 23 01:07:02 EDT 2024
Tue Aug 27 13:50:03 EDT 2024
Sat Aug 24 01:12:32 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords gene flow
cichlids
genomics
sympatric speciation
selection
introgression
Language English
License 2019 WILEY Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5347-a98b813d3d6b01d7855660398d0c4ac1297da58532be38945a7c56771437ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-2
Statement of Authorship: All authors contributed substantially to the ideas and writing of the manuscript. EJR wrote the first draft and all authors contributed to the revisions.
ORCID 0000-0001-7989-9124
OpenAccessLink https://rss.onlinelibrary.wiley.com/doi/am-pdf/10.1002/bies.201900047
PMID 31245871
PQID 2247536927
PQPubID 37030
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8175013
proquest_miscellaneous_2248380863
proquest_journals_2247536927
crossref_primary_10_1002_bies_201900047
pubmed_primary_31245871
wiley_primary_10_1002_bies_201900047_BIES201900047
PublicationCentury 2000
PublicationDate July 2019
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cambridge
PublicationTitle BioEssays
PublicationTitleAlternate Bioessays
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_1_13_1
e_1_2_9_1_32_1
e_1_2_9_1_4_1
e_1_2_9_1_104_1
e_1_2_9_1_100_1
e_1_2_9_1_62_1
Marques D. A. (e_1_2_9_1_81_1) 2019
e_1_2_9_1_85_1
e_1_2_9_1_66_1
e_1_2_9_1_29_1
e_1_2_9_1_89_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
Gavrilets S. (e_1_2_9_1_10_1) 2004
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_40_1
e_1_2_9_1_108_1
e_1_2_9_1_115_1
e_1_2_9_1_8_1
e_1_2_9_1_111_1
e_1_2_9_1_50_1
e_1_2_9_1_73_1
e_1_2_9_1_54_1
e_1_2_9_1_77_1
e_1_2_9_1_96_1
e_1_2_9_1_18_1
e_1_2_9_1_58_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
Doebeli M. (e_1_2_9_1_11_1) 2005; 59
e_1_2_9_1_31_1
e_1_2_9_1_119_1
e_1_2_9_1_5_1
McGirr J. A. (e_1_2_9_1_65_1) 2016; 34
e_1_2_9_1_103_1
e_1_2_9_1_82_1
e_1_2_9_1_63_1
e_1_2_9_1_86_1
e_1_2_9_1_67_1
e_1_2_9_1_28_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
Garner A. G. (e_1_2_9_1_36_1) 2018
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_107_1
e_1_2_9_1_9_1
e_1_2_9_1_114_1
e_1_2_9_1_70_1
e_1_2_9_1_51_1
e_1_2_9_1_93_1
e_1_2_9_1_110_1
e_1_2_9_1_74_1
e_1_2_9_1_55_1
e_1_2_9_1_97_1
e_1_2_9_1_78_1
e_1_2_9_1_17_1
e_1_2_9_1_59_1
e_1_2_9_1_15_1
e_1_2_9_1_34_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_6_1
e_1_2_9_1_118_1
e_1_2_9_1_102_1
e_1_2_9_1_60_1
e_1_2_9_1_83_1
e_1_2_9_1_64_1
e_1_2_9_1_87_1
e_1_2_9_1_68_1
e_1_2_9_1_27_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_1_42_1
e_1_2_9_1_106_1
e_1_2_9_1_90_1
e_1_2_9_1_113_1
e_1_2_9_1_71_1
e_1_2_9_1_94_1
e_1_2_9_1_52_1
e_1_2_9_1_75_1
e_1_2_9_1_98_1
e_1_2_9_1_56_1
e_1_2_9_1_79_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_1_33_1
e_1_2_9_1_3_1
e_1_2_9_1_117_1
e_1_2_9_1_105_1
e_1_2_9_1_80_1
e_1_2_9_1_101_1
e_1_2_9_1_61_1
e_1_2_9_1_84_1
e_1_2_9_1_88_1
e_1_2_9_1_69_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_41_1
Kern A. D. (e_1_2_9_1_92_1) 2018; 8
e_1_2_9_1_109_1
e_1_2_9_1_7_1
e_1_2_9_1_91_1
e_1_2_9_1_116_1
e_1_2_9_1_95_1
e_1_2_9_1_112_1
e_1_2_9_1_72_1
e_1_2_9_1_53_1
e_1_2_9_1_99_1
e_1_2_9_1_76_1
e_1_2_9_1_19_1
e_1_2_9_1_57_1
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_1_58_1
  doi: 10.1186/1741-7007-8-60
– ident: e_1_2_9_1_39_1
  doi: 10.1371/journal.pgen.1006971
– ident: e_1_2_9_1_46_1
  doi: 10.1111/j.1558-5646.2009.00786.x
– ident: e_1_2_9_1_118_1
  doi: 10.1038/nature01863
– ident: e_1_2_9_1_59_1
  doi: 10.1111/evo.12090
– ident: e_1_2_9_1_3_1
  doi: 10.1146/annurev.ecolsys.38.091206.095804
– ident: e_1_2_9_1_51_1
  doi: 10.1098/rspb.2006.3539
– year: 2019
  ident: e_1_2_9_1_81_1
  publication-title: TrendsEcol. Evol
  contributor:
    fullname: Marques D. A.
– ident: e_1_2_9_1_22_1
  doi: 10.1016/j.jtbi.2006.01.009
– ident: e_1_2_9_1_26_1
  doi: 10.1111/j.1558-5646.1989.tb04233.x
– ident: e_1_2_9_1_23_1
  doi: 10.1086/338370
– ident: e_1_2_9_1_69_1
  doi: 10.1111/evo.12587
– ident: e_1_2_9_1_21_1
  doi: 10.1111/j.0014-3820.2005.tb01771.x
– ident: e_1_2_9_1_110_1
  doi: 10.1126/science.1121260
– ident: e_1_2_9_1_94_1
  doi: 10.1371/journal.pgen.1007341
– ident: e_1_2_9_1_105_1
  doi: 10.1017/S0016672300014634
– ident: e_1_2_9_1_55_1
  doi: 10.1186/s12862-015-0287-3
– ident: e_1_2_9_1_63_1
  doi: 10.1111/evo.12832
– ident: e_1_2_9_1_108_1
  doi: 10.1111/nph.13392
– ident: e_1_2_9_1_4_1
  doi: 10.1111/j.1420-9101.2008.01611.x
– ident: e_1_2_9_1_5_1
  doi: 10.1111/j.1420-9101.2009.01833.x
– ident: e_1_2_9_1_82_1
  doi: 10.1073/pnas.1730757100
– ident: e_1_2_9_1_9_1
  doi: 10.1038/22521
– ident: e_1_2_9_1_101_1
  doi: 10.1016/j.tpb.2014.11.001
– ident: e_1_2_9_1_16_1
  doi: 10.1556/Select.2.2001.1-2.3
– ident: e_1_2_9_1_85_1
  doi: 10.1002/evl3.37
– ident: e_1_2_9_1_13_1
  doi: 10.1016/j.tree.2017.11.003
– ident: e_1_2_9_1_83_1
  doi: 10.1111/evo.12154
– ident: e_1_2_9_1_119_1
  doi: 10.1038/nature04566
– ident: e_1_2_9_1_86_1
  doi: 10.1371/journal.pgen.1003905
– ident: e_1_2_9_1_96_1
  doi: 10.1007/s00239-006-0261-1
– ident: e_1_2_9_1_33_1
  doi: 10.1111/j.0014-3820.2003.tb01489.x
– ident: e_1_2_9_1_100_1
  doi: 10.1111/mec.13478
– ident: e_1_2_9_1_47_1
  doi: 10.1371/journal.pgen.1007526
– ident: e_1_2_9_1_28_1
  doi: 10.1111/j.1420-9101.2008.01547.x
– ident: e_1_2_9_1_32_1
  doi: 10.1556/Select.2.2001.1-2.4
– ident: e_1_2_9_1_91_1
  doi: 10.1093/molbev/msy228
– ident: e_1_2_9_1_27_1
  doi: 10.1086/667215
– ident: e_1_2_9_1_25_1
  doi: 10.1111/evo.13252
– ident: e_1_2_9_1_95_1
  doi: 10.1371/journal.pgen.1005928
– ident: e_1_2_9_1_115_1
  doi: 10.1073/pnas.1713288114
– ident: e_1_2_9_1_45_1
  doi: 10.1016/j.tree.2011.04.005
– ident: e_1_2_9_1_74_1
  doi: 10.1111/evo.13046
– start-page: 9
  year: 2018
  ident: e_1_2_9_1_36_1
  publication-title: Genes
  contributor:
    fullname: Garner A. G.
– ident: e_1_2_9_1_102_1
  doi: 10.1093/molbev/msy006
– ident: e_1_2_9_1_77_1
  doi: 10.1098/rspb.2015.1666
– ident: e_1_2_9_1_41_1
  doi: 10.1038/ncomms14363
– ident: e_1_2_9_1_19_1
  doi: 10.1534/genetics.105.047985
– ident: e_1_2_9_1_84_1
  doi: 10.1111/mec.14290
– ident: e_1_2_9_1_106_1
  doi: 10.1098/rstb.2011.0249
– ident: e_1_2_9_1_87_1
  doi: 10.1371/journal.pgen.1000695
– ident: e_1_2_9_1_20_1
  doi: 10.1111/mec.13611
– ident: e_1_2_9_1_35_1
  doi: 10.1016/S0169-5347(01)02177-2
– ident: e_1_2_9_1_40_1
  doi: 10.1086/667586
– ident: e_1_2_9_1_93_1
  doi: 10.1534/genetics.115.174912
– ident: e_1_2_9_1_103_1
  doi: 10.1101/gr.3715005
– ident: e_1_2_9_1_43_1
  doi: 10.1086/694889
– ident: e_1_2_9_1_53_1
  doi: 10.1038/368629a0
– ident: e_1_2_9_1_68_1
  doi: 10.1371/journal.pone.0074901
– ident: e_1_2_9_1_75_1
  doi: 10.1111/mec.12415
– ident: e_1_2_9_1_78_1
  doi: 10.1046/j.1365-2540.1999.00617.x
– volume: 8
  start-page: 1959
  year: 2018
  ident: e_1_2_9_1_92_1
  publication-title: G3: Genes, Genomes, Genet
  doi: 10.1534/g3.118.200262
  contributor:
    fullname: Kern A. D.
– ident: e_1_2_9_1_66_1
  doi: 10.1126/science.1258524
– ident: e_1_2_9_1_114_1
  doi: 10.1111/mec.14083
– ident: e_1_2_9_1_6_1
  doi: 10.1016/S0169-5347(01)02188-7
– ident: e_1_2_9_1_104_1
  doi: 10.1146/annurev-genom-091416-035537
– ident: e_1_2_9_1_56_1
  doi: 10.1111/ele.12260
– ident: e_1_2_9_1_49_1
  doi: 10.1111/j.0014-3820.2003.tb00233.x
– ident: e_1_2_9_1_88_1
  doi: 10.1534/genetics.112.147330
– ident: e_1_2_9_1_54_1
  doi: 10.1371/journal.pgen.1006157
– ident: e_1_2_9_1_107_1
  doi: 10.1111/mec.12796
– ident: e_1_2_9_1_14_1
  doi: 10.1534/genetics.107.084418
– ident: e_1_2_9_1_50_1
  doi: 10.1126/science.aac9927
– ident: e_1_2_9_1_97_1
  doi: 10.1093/molbev/msn091
– ident: e_1_2_9_1_80_1
  doi: 10.1111/evo.12399
– ident: e_1_2_9_1_89_1
  doi: 10.1126/science.1245938
– ident: e_1_2_9_1_60_1
  doi: 10.1186/s12861-017-0157-x
– ident: e_1_2_9_1_76_1
  doi: 10.1038/nature13408
– volume: 59
  start-page: 691
  year: 2005
  ident: e_1_2_9_1_11_1
  publication-title: Evolution
  contributor:
    fullname: Doebeli M.
– ident: e_1_2_9_1_90_1
  doi: 10.1038/ng.937
– ident: e_1_2_9_1_112_1
  doi: 10.1371/journal.pgen.1007449
– ident: e_1_2_9_1_73_1
  doi: 10.1038/nrg1269
– ident: e_1_2_9_1_38_1
  doi: 10.1111/jeb.12026
– ident: e_1_2_9_1_57_1
  doi: 10.1002/evl3.78
– ident: e_1_2_9_1_42_1
  doi: 10.1111/j.1558-5646.2009.00612.x
– ident: e_1_2_9_1_79_1
  doi: 10.1111/ele.12891
– ident: e_1_2_9_1_52_1
  doi: 10.1016/S1055-7903(03)00225-2
– ident: e_1_2_9_1_72_1
  doi: 10.1186/1471-2148-10-326
– ident: e_1_2_9_1_2_1
  doi: 10.1111/j.0022-1112.2004.00433.x
– ident: e_1_2_9_1_61_1
  doi: 10.1186/s12861-015-0061-1
– ident: e_1_2_9_1_111_1
  doi: 10.1016/j.cell.2017.05.038
– ident: e_1_2_9_1_15_1
  doi: 10.1007/s00265-010-1125-7
– ident: e_1_2_9_1_67_1
  doi: 10.1093/biolinnean/bly063
– volume: 34
  start-page: 873
  year: 2016
  ident: e_1_2_9_1_65_1
  publication-title: Mol. Biol. Evol
  contributor:
    fullname: McGirr J. A.
– ident: e_1_2_9_1_70_1
  doi: 10.1111/evo.12674
– ident: e_1_2_9_1_62_1
  doi: 10.1038/nature04325
– volume-title: Fitness Landscape and Origin of Species
  year: 2004
  ident: e_1_2_9_1_10_1
  doi: 10.1515/9780691187051
  contributor:
    fullname: Gavrilets S.
– ident: e_1_2_9_1_31_1
  doi: 10.1371/journal.pgen.1006919
– ident: e_1_2_9_1_8_1
  doi: 10.1111/j.1558-5646.1981.tb04864.x
– ident: e_1_2_9_1_116_1
  doi: 10.1002/evl3.46
– ident: e_1_2_9_1_99_1
  doi: 10.1093/molbev/msv256
– ident: e_1_2_9_1_113_1
  doi: 10.1111/mec.14195
– ident: e_1_2_9_1_64_1
  doi: 10.1046/j.1420-9101.2001.00335.x
– ident: e_1_2_9_1_17_1
  doi: 10.1111/mec.14784
– ident: e_1_2_9_1_29_1
  doi: 10.1016/j.tree.2011.01.001
– ident: e_1_2_9_1_117_1
  doi: 10.1146/annurev.es.06.110175.002011
– ident: e_1_2_9_1_98_1
  doi: 10.1093/molbev/mss207
– ident: e_1_2_9_1_71_1
  doi: 10.1038/ncomms6168
– ident: e_1_2_9_1_24_1
  doi: 10.1086/693855
– ident: e_1_2_9_1_109_1
  doi: 10.1038/ncomms5248
– ident: e_1_2_9_1_44_1
  doi: 10.1146/annurev-ecolsys-110316-022905
– ident: e_1_2_9_1_12_1
  doi: 10.1111/j.1420-9101.2009.01816.x
– ident: e_1_2_9_1_48_1
  doi: 10.1093/jhered/esu045
– ident: e_1_2_9_1_30_1
  doi: 10.1111/jeb.13047
– ident: e_1_2_9_1_7_1
– ident: e_1_2_9_1_34_1
  doi: 10.1086/499375
– ident: e_1_2_9_1_37_1
  doi: 10.1016/j.tree.2004.01.003
– ident: e_1_2_9_1_18_1
  doi: 10.3390/genes9040217
SSID ssj0009624
Score 2.536309
SecondaryResourceType review_article
Snippet Sympatric speciation illustrates how natural and sexual selection may create new species in isolation without geographic barriers. However, recent genomic...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage e1900047
SubjectTerms Animal behavior
Animals
Case studies
cichlids
Cichlids - genetics
Empirical analysis
Gene flow
Gene Flow - genetics
Genetic Speciation
Genomic analysis
genomics
introgression
New species
Radiation
Reproductive isolation
selection
Sexual selection
Speciation
Sympatric populations
sympatric speciation
Sympatry - genetics
Title Searching for Sympatric Speciation in the Genomic Era
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbies.201900047
https://www.ncbi.nlm.nih.gov/pubmed/31245871
https://www.proquest.com/docview/2247536927/abstract/
https://search.proquest.com/docview/2248380863
https://pubmed.ncbi.nlm.nih.gov/PMC8175013
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4hJCQW3o9AQUZCYgpN7TiOR0CUioGBgsQW2bEjKkRA0A7w6znbbdrCgARborOT2OfLfZecvwM4ZhSdELUqpm5bT8pUGWvD05gpkeaZYcJUPsv3Juvdp9cP_GFmF3_gh2g-uDnL8O9rZ-BKv7enpKHaRZLUbYV2jIf4EnZseg4V3U75o2Tmq9pinMFjDDTEhLUxoe357vNe6QfU_JkxOYtkvSvqroKaDCJkoDydjob6tPz8xu_4n1GuwcoYp5KzsLDWYcHWG7AUKld-bAIPacro9wiiXtL_eH71XP8k1LN32iaDmiC6JFfW73wml29qC_rdy7uLXjyuwBCXnKUiVjLXeYcZZjKddIzIOaK_hMncJGWqSsQKwigMOBjVFpFPypUoeSZcTXVhK7YNi_VLbXeBCJ3hFWXH8sqkkmnJpO5UrjygsBKbRnAymf_iNdBsFIFQmRZuCopmCiJoTdRTjM0NpahbzjJJUXzUiNFQ3N8PVduXkW-TsxwjOBbBTtBmcyuGKIdj6BiBmNNz08CRcM9L6sGjJ-POEX8hjI6AejX-8vTFOYL85mzvL532Ydkdh5ThFiwO30b2AIHRUB_6xf8F0L0DCA
link.rule.ids 230,315,786,790,891,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCMGFfQmrkZA4BVo7juMjIKCsBxaJW2THrkCIgKr2UL6esd0ECgckOCZjJ7EnE79xZt4A7DCKixC1KqYurSdhqoi14UnMlEiy1DBh2j7K9zpt3SfnD7yKJnS5MIEfot5wc5bhv9fOwN2G9P4na6h2riR1udCO8nAUxtHmufeqbj4ZpGTq69qip8FjdDVExdvYoPvD_YfXpR9g82fM5Fcs6xejkxnQ1TBCDMrzXq-r94r3bwyP_xrnLEwPoCo5CO_WHIzYch4mQvHK_gLwEKmMSx9B4Etu-y9vnu6fhJL2TuHkqSQIMMmp9cnP5LijFuH25PjuqBUPijDEBWeJiJXMdNZkhplUN5pGZBwBYIPJzDSKRBUIF4RR6HMwqi2Cn4QrUfBUuLLqwrbZEoyVr6VdASJ0ileUTcvbJpFMSyZ1s-0qBAorsWkEu5UC8rfAtJEHTmWauynI6ymIYL3STz6wOJSicjlLJUXxdi1GW3E_QFRpX3u-TcYydOJYBMtBnfWtGAIdjt5jBGJI0XUDx8M9LCmfHj0fd4YQDJF0BNTr8Zenzw8R59dHq3_ptAWTrbury_zy7PpiDabc-RBBvA5j3U7PbiBO6upNbwkfGeoHKg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB1RUKteKIXSpkBrJKSeArseO46PFNjSD6EKWolbZMeOQKhhhXYP8Os7tncDCwckOCZjJ7HHE79JZt4AbCGnTYh7k_OQ1iPQ1Ll1UuRolCgLh8o1Mcr3qDj8K36cytM7WfyJH6L74BYsI76vg4EPXbNzSxpqgyfJQyp0YDx8AQuiQB7W9f7xLYGULmJZW3I0ZE6ehprSNvb4zmz_2W3pAdZ8GDJ5F8rGvWjwBsx0FCkE5WJ7PLLb9c09gsfnDHMJFidAle2mlfUW5ny7DC9T6crrFZApTpk2Pkawl51c_xtGsn-WCtoHdbPzlhG8ZN98TH1mB1fmHZwMDv7sHeaTEgx5LVGo3OjSln106Arb6ztVSoJ_PdSl69XC1AQWlDPkcSC3nqCPkEbVslChqLryDa7CfHvZ-g_AlC3oirrvZeOERqtR234T6gMqr6lpBl-m818NE89GlRiVeRWmoOqmIIP1qXqqib2RlHQrsdCcxJudmCwl_P4wrb8cxzYlluTCYQbvkza7WyHBHEm-YwZqRs9dg8DCPStpz88iG3dJAIxwdAY8qvGRp6--Esrvjj4-pdNnePV7f1D9-n70cw1eh9MpfHgd5kdXY79BIGlkP0U7-A_3pQXZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Searching+for+Sympatric+Speciation+in+the+Genomic+Era&rft.jtitle=BioEssays&rft.au=Richards%2C+Emilie+J&rft.au=Servedio%2C+Maria+R&rft.au=Martin%2C+Christopher+H&rft.date=2019-07-01&rft.eissn=1521-1878&rft.volume=41&rft.issue=7&rft.spage=e1900047&rft_id=info:doi/10.1002%2Fbies.201900047&rft_id=info%3Apmid%2F31245871&rft.externalDocID=31245871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0265-9247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0265-9247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0265-9247&client=summon