Triggering mechanisms in microsaccade and saccade generation: a novel proposal

Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small rapid eye movements called microsaccades interrupt fixation one or two times each second. Although the neural pathway controlling saccade gener...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the New York Academy of Sciences Vol. 1233; no. 1; pp. 107 - 116
Main Authors Otero-Millan, Jorge, Macknik, Stephen L., Serra, Alessandro, Leigh, R. John, Martinez-Conde, Susana
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.09.2011
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small rapid eye movements called microsaccades interrupt fixation one or two times each second. Although the neural pathway controlling saccade generation is well understood, the specific mechanism for triggering microsaccades is unknown. Here, we review the evidence suggesting that microsaccades and saccades are generated by the same neural pathway. We also discuss current models of how the saccadic system produces microsaccades. Finally, we propose a new mechanism for triggering both microsaccades and saccades, based on a circuit formed by omnipause and long‐lead burst neurons and driven by activity in the superior colliculus. Our model differs from previous proposals in that it does not require superior colliculus activity to surpass a particular threshold to trigger microsaccades and saccades. Rather, we propose that the reciprocal inhibition between omnipause and long‐lead burst neurons gates each microsaccadic or saccadic event, triggering the eye movement whenever the activity in the long‐lead burst neurons overcomes the inhibition from the omnipause neurons.
AbstractList Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small rapid eye movements called microsaccades interrupt fixation one or two times each second. Although the neural pathway controlling saccade generation is well understood, the specific mechanism for triggering microsaccades is unknown. Here, we review the evidence suggesting that microsaccades and saccades are generated by the same neural pathway. We also discuss current models of how the saccadic system produces microsaccades. Finally, we propose a new mechanism for triggering both microsaccades and saccades, based on a circuit formed by omnipause and long-lead burst neurons and driven by activity in the superior colliculus. Our model differs from previous proposals in that it does not require superior colliculus activity to surpass a particular threshold to trigger microsaccades and saccades. Rather, we propose that the reciprocal inhibition between omnipause and long-lead burst neurons gates each microsaccadic or saccadic event, triggering the eye movement whenever the activity in the long-lead burst neurons overcomes the inhibition from the omnipause neurons.
Author Serra, Alessandro
Macknik, Stephen L.
Otero-Millan, Jorge
Leigh, R. John
Martinez-Conde, Susana
Author_xml – sequence: 1
  givenname: Jorge
  surname: Otero-Millan
  fullname: Otero-Millan, Jorge
  organization: Barrow Neurological Institute, Phoenix, Arizona
– sequence: 2
  givenname: Stephen L.
  surname: Macknik
  fullname: Macknik, Stephen L.
  organization: Barrow Neurological Institute, Phoenix, Arizona
– sequence: 3
  givenname: Alessandro
  surname: Serra
  fullname: Serra, Alessandro
  organization: Veterans Affairs Medical Center, Cleveland, Ohio
– sequence: 4
  givenname: R. John
  surname: Leigh
  fullname: Leigh, R. John
  organization: Veterans Affairs Medical Center, Cleveland, Ohio
– sequence: 5
  givenname: Susana
  surname: Martinez-Conde
  fullname: Martinez-Conde, Susana
  organization: Barrow Neurological Institute, Phoenix, Arizona
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21950983$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFv0zAUxy00xLrBV0CROLBLMvs5jm0OSNsE26RRDhQQJ8tNXopL4nR2C923n7NuPXBA-GJb_r3_k9_viBz4wSMhGaMFS-t0WTBZ6ryqOBRAGStoxaQsts_IZP9wQCaUSpkrDfyQHMW4pJSBKuULcghMC6oVn5DpLLjFAoPzi6zH-qf1LvYxcz7rXR2GaOvaNphZ32RP5wV6DHbtBv8us5kffmOXrcKwSnD3kjxvbRfx1eN-TL5-_DC7uMpvPl9eX5zd5LXgpcyhbZmsGZ9DiwwaARq1FtDoks5LibXiAmiDQpScMctpurQiMRVQbARv-TF5u8tNjW83GNemd7HGrrMeh000SpeKgRA0kSf_JBkHlWbB1Yi--QtdDpvg0z8Mk5WUggJAotSOGscTA7ZmFVxvw51h1Ix2zNKMEswowYx2zIMds02lrx8bbOY9NvvCJx0JeL8D_rgO7_472Ex_nH0Zjykg3wW4uMbtPsCGX6aSXArzfXppPmmQ57Mrbr7xe4WSrOk
CODEN ANYAA9
CitedBy_id crossref_primary_10_1007_s10162_012_0368_6
crossref_primary_10_1038_eye_2014_276
crossref_primary_10_1016_j_parkreldis_2021_01_003
crossref_primary_10_1111_ejn_12248
crossref_primary_10_7554_eLife_22431
crossref_primary_10_1016_j_concog_2022_103411
crossref_primary_10_3988_jcn_2020_16_1_37
crossref_primary_10_1523_JNEUROSCI_4448_13_2014
crossref_primary_10_1097_WNO_0000000000000275
crossref_primary_10_1002_cav_1745
crossref_primary_10_1007_s10827_021_00784_7
crossref_primary_10_1016_j_ajo_2024_06_021
crossref_primary_10_1038_nrn3405
crossref_primary_10_3389_fneur_2018_00144
crossref_primary_10_3389_fneur_2018_00346
crossref_primary_10_3389_fopht_2022_938088
crossref_primary_10_1016_j_jns_2022_120373
crossref_primary_10_3757_jser_83_23
crossref_primary_10_1167_iovs_18_24794
crossref_primary_10_3389_fnint_2018_00047
crossref_primary_10_1007_s11357_013_9582_3
crossref_primary_10_1038_ncomms9110
crossref_primary_10_1140_epjb_e2016_70472_0
crossref_primary_10_3389_fnhum_2022_842883
crossref_primary_10_1016_j_yaoo_2023_03_006
crossref_primary_10_3389_fneur_2017_00372
crossref_primary_10_1371_journal_pone_0175295
crossref_primary_10_1371_journal_pone_0069522
crossref_primary_10_1523_JNEUROSCI_5054_11_2012
crossref_primary_10_1167_jov_24_6_11
crossref_primary_10_1371_journal_pbio_2004132
crossref_primary_10_1097_WNO_0000000000001452
crossref_primary_10_1152_jn_00198_2019
crossref_primary_10_1371_journal_pone_0126485
crossref_primary_10_3758_s13423_022_02151_8
crossref_primary_10_3389_fopht_2023_1302651
crossref_primary_10_1007_s00415_023_11972_z
crossref_primary_10_1016_j_visres_2015_01_009
crossref_primary_10_1007_s10072_023_06719_7
crossref_primary_10_1038_s41467_020_17160_1
crossref_primary_10_2147_EB_S384763
crossref_primary_10_1177_1550059420932752
crossref_primary_10_1016_j_cortex_2020_07_013
crossref_primary_10_2139_ssrn_3075751
crossref_primary_10_1016_j_neuron_2018_05_041
crossref_primary_10_1007_s00221_014_4188_2
crossref_primary_10_3902_jnns_19_135
crossref_primary_10_1097_WCO_0b013e32835c5e1d
crossref_primary_10_3390_brainsci12040489
crossref_primary_10_1152_jn_01096_2012
crossref_primary_10_1016_j_neuron_2015_11_032
crossref_primary_10_3389_fnhum_2021_716670
crossref_primary_10_1007_s00221_019_05636_6
crossref_primary_10_1038_s41598_021_93919_w
crossref_primary_10_7717_peerj_9
crossref_primary_10_1007_s10827_020_00773_2
crossref_primary_10_1209_0295_5075_100_40003
crossref_primary_10_1007_s00426_018_01141_7
crossref_primary_10_1523_JNEUROSCI_1286_23_2024
crossref_primary_10_1111_ejn_13289
crossref_primary_10_1111_ejn_12395
crossref_primary_10_3169_itej_66_287
crossref_primary_10_1098_rstb_2016_0204
crossref_primary_10_1167_iovs_63_2_33
crossref_primary_10_1136_bjophthalmol_2017_310346
crossref_primary_10_1152_jn_00268_2016
crossref_primary_10_1038_s41598_023_42768_w
crossref_primary_10_1016_j_visres_2017_06_003
crossref_primary_10_1371_journal_pone_0110889
crossref_primary_10_1073_pnas_1222715110
crossref_primary_10_1371_journal_pone_0058535
crossref_primary_10_1155_2014_658243
crossref_primary_10_1007_s11910_015_0543_3
Cites_doi 10.1126/science.181.4102.810
10.1073/pnas.0509557103
10.1126/science.276.5319.1693
10.1152/jn.1999.82.6.3254
10.1152/jn.1993.70.2.559
10.1007/s00221-005-0148-1
10.1007/BF00336734
10.1002/(SICI)1096-9861(19991011)413:1<55::AID-CNE3>3.0.CO;2-K
10.1016/S0893-6080(98)00096-3
10.1162/089892901564306
10.1016/j.neuron.2005.11.033
10.1126/science.1166112
10.1152/jn.1997.78.2.1108
10.1212/01.wnl.0000286952.01476.eb
10.1523/JNEUROSCI.2600-10.2011
10.1016/j.tins.2009.05.006
10.1113/jphysiol.1953.sp004824
10.1016/S0893-6080(05)80084-X
10.1038/nrn1345
10.1016/S0893-6080(98)00071-9
10.1126/science.150.3702.1459
10.1111/j.1460-9568.2011.07694.x
10.1167/8.14.13
10.1167/8.14.21
10.1016/S0893-6080(05)80162-5
10.1167/8.14.15
10.1016/S0042-6989(02)00263-8
10.1016/S0893-6080(99)00077-5
10.1038/nn.2663
10.1016/0042-6989(69)90125-4
10.1016/S0042-6989(03)00084-1
10.1364/JOSA.46.000987
10.1126/science.155.3769.1577
10.1523/JNEUROSCI.3901-10.2010
10.1007/s00221-001-0912-9
10.1152/jn.1999.82.2.999
10.1016/0042-6989(72)90070-3
10.1093/cercor/2.2.153
10.1523/JNEUROSCI.17-24-09706.1997
10.1016/j.visres.2006.05.014
10.1007/s002210050214
10.1016/0925-2312(95)00068-2
10.1038/nrn986
10.1016/j.pneurobio.2005.11.001
10.1152/jn.00234.2009
10.1371/journal.pone.0005163
10.1152/jn.1988.59.5.1455
10.1016/0042-6989(73)90145-4
10.1152/jn.1981.45.3.417
10.1007/BF00227637
10.1007/s004220050472
10.1152/jn.1999.82.3.1198
10.1167/8.11.5
ContentType Journal Article
Copyright 2011 New York Academy of Sciences
2011 New York Academy of Sciences.
Copyright_xml – notice: 2011 New York Academy of Sciences
– notice: 2011 New York Academy of Sciences.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7SP
7U5
L7M
7X8
DOI 10.1111/j.1749-6632.2011.06177.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts

Solid State and Superconductivity Abstracts
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1749-6632
EndPage 116
ExternalDocumentID 3961991851
10_1111_j_1749_6632_2011_06177_x
21950983
NYAS6177
ark_67375_WNG_M927BTH3_V
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: EY06717
GroupedDBID ---
--Z
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1OB
1OC
23M
31~
33P
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
692
6J9
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAMDK
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOJD
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFSWV
AFZJQ
AHBTC
AHEFC
AHMBA
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BIYOS
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CAG
CO8
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IH2
IX1
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RAG
RIWAO
RJQFR
ROL
RX1
S10
SAMSI
SJN
SUPJJ
SV3
TEORI
TUS
UB1
UPT
V8K
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIH
WIK
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
X7M
XG1
YBU
YOC
YSK
ZGI
ZKB
ZXP
ZZTAW
~02
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7ST
7T5
7T7
7TK
7TM
7TO
7U7
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
SOI
7SP
7U5
L7M
7X8
ID FETCH-LOGICAL-c5347-2ff17c13b2fe12d529e9952d940b47ec83520de554311a3020df59e9620ed53f3
IEDL.DBID DR2
ISSN 0077-8923
IngestDate Fri Aug 16 08:59:54 EDT 2024
Fri Aug 16 08:00:54 EDT 2024
Thu Oct 10 16:21:37 EDT 2024
Fri Aug 23 10:42:29 EDT 2024
Sat Sep 28 08:02:14 EDT 2024
Sat Aug 24 00:55:22 EDT 2024
Wed Oct 30 09:55:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2011 New York Academy of Sciences.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5347-2ff17c13b2fe12d529e9952d940b47ec83520de554311a3020df59e9620ed53f3
Notes istex:996377BD1C4EE3F9581AF5C974AE2A2DDBDA8491
ark:/67375/WNG-M927BTH3-V
ArticleID:NYAS6177
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-3
ObjectType-Review-2
PMID 21950983
PQID 1767750222
PQPubID 946344
PageCount 10
ParticipantIDs proquest_miscellaneous_894812550
proquest_miscellaneous_1328509380
proquest_journals_1767750222
crossref_primary_10_1111_j_1749_6632_2011_06177_x
pubmed_primary_21950983
wiley_primary_10_1111_j_1749_6632_2011_06177_x_NYAS6177
istex_primary_ark_67375_WNG_M927BTH3_V
PublicationCentury 2000
PublicationDate September 2011
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: September 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: New York
PublicationTitle Annals of the New York Academy of Sciences
PublicationTitleAlternate Ann N Y Acad Sci
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley Subscription Services, Inc
References Hafed, Z.M., L. Goffart & R.J. Krauzlis. 2009. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323: 940-943.
Yoshida, K., Y. Iwamoto, S. Chimoto & H. Shimazu. 1999. Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats. J. Neurophysiol. 82: 1198-1208.
Engbert, R. & R. Kliegl. 2003. Microsaccades uncover the orientation of covert attention. Vis. Res. 43: 1035-1045.
Ditchburn, R.W. & B.L. Ginsborg. 1953. Involuntary eye movements during fixation. J. Physiol. 119: 1-17.
Robinson, D.A. 1972. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12: 1795-1808.
Munoz, D.P. & S. Everling. 2004. Look away: the anti-saccade task and the voluntary control of eye movement. Nat. Rev. Neurosci. 5: 218-228.
Jürgens, R., W. Becker & H.H. Kornhuber. 1981. Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol. Cybern. 39: 87-96.
Engbert, R. & K. Mergenthaler. 2006. Microsaccades are triggered by low retinal image slip. Proc. Natl. Acad. Sci. U.S.A. 103: 7192-7197.
Breznen, B. & J.W. Gnadt. 1997. Analysis of the step response of the saccadic feedback: computational models. Exp. Brain Res. 117: 181-191.
Brien, D.C., B.D. Corneil, J.H. Fecteau, et al . 2009. The behavioural and neurophysiological modulation of microsaccades in monkeys. J. Eye Mov. Res. 3: 1-12.
Grossberg, S. & M. Kuperstein. 1986. Neural Dynamics of Adaptive Sensory-Motor Control: Ballistic Eye Movements. North Holland. Amsterdam.
Haddad, G.M. & R.M. Steinman. 1973. The smallest voluntary saccade: implications for fixation. Vis. Res. 13: 1075-1086.
Scudder, C.A. 1988. A new local feedback model of the saccadic burst generator. J. Neurophysiol. 59: 1455-1475.
Bozis, A. & A.K. Moschovakis. 1998. Neural network simulations of the primate oculomotor system III. A one-dimensional, one-directional model of the superior colliculus. Biol. Cybern. 79: 215-230.
Arai, K., E.L. Keller & J.A. Edelman. 1994. Two-dimensional neural network model of the primate saccadic system. Neural Netw. 7: 1115-1135.
Miyashita, N. & O. Hikosaka. 1996. Minimal synaptic latency delay in the saccadic output pathway of the superior colliculus studied in the awake monkey. Exp. Brain Res. 112: 187-196.
Izawa, Y., H. Suzuki & Y. Shinoda. 2009. Response properties of fixation neurons and their location in the frontal eye field in the monkey. J. Neurophysiol. 102: 2410-2422.
Van Horn, M.R. & K.E. Cullen. 2009. Dynamic characterization of microsaccades during near versus far viewing. Program No. 405.2.2009 Neuroscience Meeting Planner. Chicago, IL:Soc. Neurosci. Online.
Hafed, Z.M. & J.J. Clark. 2002. Microsaccades as an overt measure of covert attention shifts. Vis. Res. 42: 2533-2545.
Steinman, R.M., G.M. Haddad, A.A. Skavenski & D. Wyman. 1973. Miniature eye movement. Science 181: 810-819.
Das, S., E.L. Keller & K. Arai. 1996. A distributed model of the saccadic system: the effects of internal noise. Neurocomputing 11: 245-269.
Cunitz, R.J. & R.M. Steinman. 1969. Comparison of saccadic eye movements during fixation and reading. Vis. Res. 9: 683-693.
Walker, R., H. Deubel, W.X. Schneider & J.M. Findlay. 1997. Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J. Neurophysiol. 78: 1108-1119.
Gandhi, N.J. & E.L. Keller. 1999. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. J. Neurophysiol. 82: 3254-3267.
Lefèvre, P. & H.L. Galiana. 1992. Dynamic feedback to the superior colliculus in a neural network model of the gaze control system. Neural Netw. 5: 871-890.
Dominey, P.F. & M.A. Arbib. 1992. A cortico-subcortical model for generation of spatially accurate sequential saccades. Cereb. Cortex 2: 153-175.
Steinman, R.M., R.J. Cunitz, G.T. Timberlake & M. Herman. 1967. Voluntary control of microsaccades during maintained monocular fixation. Science 155: 1577-1579.
Munoz, D.P. & R.H. Wurtz. 1993. Fixation cells in monkey superior colliculus: I. Characteristics of cell discharge. J. Neurophysiol. 70: 559-575.
Ko, H.-kyoung, M. Poletti & M. Rucci. 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13: 1549-1553.
Leigh, R.J. & D.S. Zee. 2006. The Neurology of Eye Movements. Oxford University Press. Oxford.
Guerrasio, L., J. Quinet, U. Buttner & L. Goffart. 2010. The fastigial oculomotor region and the control of foveation during fixation. J. Neurophysiol. 105: 883-895.
Martinez-Conde, S., S.L. Macknik, X.G. Troncoso & D.H. Hubel. 2009. Microsaccades: a neurophysiological analysis. Trends Neurosci. 32: 463-475.
Quaia, C., P. Lefèvre & L.M. Optican. 1999. Model of the control of saccades by superior colliculus and cerebellum. J. Neurophysiol. 82: 999-1018.
Otero-Millan, J., X.G. Troncoso, S.L. Macknik, et al . 2008. Saccades and microsaccades during visual fixation, exploration and search: foundations for a common saccadic generator. J. Vis. 8: 14-21.
Scudder, C., C. Kaneko & A. Fuchs. 2002. The brainstem burst generator for saccadic eye movements. Exp. Brain Res. 142: 439-462.
Otero-Millan, J., A. Serra, R.J. Leigh, et al . 2011. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J. Neurosci. 31: 4379-4387.
Laubrock, J., R. Engbert & R. Kliegl. 2008. Fixational eye movements predict the perceived direction of ambiguous apparent motion. J. Vis. 8: 13.1-17.
Prsa, M., P.W. Dicke & P. Thier. 2010. The absence of eye muscle fatigue indicates that the nervous system compensates for non-motor disturbances of oculomotor function. J. Neurosci. 30: 15834 -15842.
Troncoso, X.G., S.L. Macknik & S. Martinez-Conde. 2008. Microsaccades counteract perceptual filling-in. J. Vis. 8: 1-9.
Arai, K., S. Das, E.L. Keller & E. Aiyoshi. 1999. A distributed model of the saccade system: simulations of temporally perturbed saccades using position and velocity feedback. Neural Netw. 12: 1359-1375.
Grossberg, S., K. Roberts, M. Aguilar & D. Bullock. 1997. A neural model of multimodal adaptive saccadic eye movement control by superior colliculus. J. Neurosci. 17: 9706-9725.
Büttner-Ennever, J.A., A.K.E. Horn, V. Henn & B. Cohen. 1999. Projections from the superior colliculus motor map to omnipause neurons in monkey. J. Comp. Neurol. 413: 55-67.
Girard, B. & A. Berthoz. 2005. From brainstem to cortex: computational models of saccade generation circuitry. Prog. Neurobiol. 77:215-251.
Cornsweet, T.N. 1956. Determination of the stimuli for involuntary drifts and saccadic eye movements. J. Opt. Soc. Am. 46: 987-988.
Gancarz, G. & S. Grossberg. 1998. A neural model of the saccade generator in the reticular formation. Neural Netw. 11: 1159-1174.
Serra, A., K. Liao, S. Martinez-Conde, et al . 2008. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology 70: 810-812.
Krauzlis, R.J., M.A. Basso & R.H. Wurtz. 1997. Shared motor error for multiple eye movements. Science 276: 1693-1695.
Van Gisbergen, J.A.M., D.A. Robinson & S. Gielen. 1981. A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 45: 417-442.
Paul, K. & J.W. Gnadt. 2006. Activity of omnipause neurons during "staircase saccades" elicited by persistent microstimulation of the superior colliculus. Vis. Res. 46: 3430-3442.
Sparks, D.L. 2002. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 3: 952-64.
Trappenberg, T.P., M.C. Dorris, D.P. Munoz & R.M. Klein. 2001. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J. Cogn. Neurosci. 13: 256-271.
Hafed, Z.M. 2011. Mechanisms for generating and compensating for the smallest possible saccades. Eur. J. Neurosci. 33:2101-2113.
Lefèvre, P., C. Quaia & L.M. Optican. 1998. Distributed model of control of saccades by superior colliculus and cerebellum. Neural Netw. 11: 1175-1190.
Rolfs, M., R. Kliegl & R. Engbert. 2008. Toward a model of microsaccade generation: the case of microsaccadic inhibition. J. Vis. 8: 1-23.
Martinez-Conde, S., S.L. Macknik, X.G. Troncoso & T.A. Dyar. 2006. Microsaccades counteract visual fading during fixation. Neuron 49: 297-305.
Hsieh, P.-J. & P.U. Tse. 2009. Microsaccade rate varies with subjective visibility during motion-induced blindness. PLoS ONE 4: e5163.
Zuber, B.L., L. Stark & G. Cook. 1965. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science 150: 1459-1460.
Rolfs, M., J. Laubrock & R. Kliegl. 2006. Shortening and prolongation of saccade latencies following microsaccades. Exp. Brain Res. 169: 369-376.
1997; 117
2010; 13
1973; 181
1973; 13
2010; 105
1997; 276
1975
1953; 119
2008; 8
2004; 5
1967; 155
1999; 82
2008; 70
1981; 45
1977
1969; 9
2002; 142
2000
2002; 42
1993; 70
1965; 150
1956; 46
1986
1999; 12
1997; 17
1981; 39
1972; 12
2001; 13
1999; 413
2005; 77
2009; 323
2010; 30
1992; 2
2003; 43
1998; 11
2006; 169
1992; 5
1988; 59
2011; 31
2009
2011; 33
2002; 3
2006
1994
1996; 11
2009; 32
2006; 46
2006; 49
1997; 78
2009; 102
2009; 4
2009; 3
1996; 112
2006; 103
1994; 7
1998; 79
e_1_2_7_5_2
e_1_2_7_3_2
Van Horn M.R. (e_1_2_7_42_2) 2009
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_15_2
Van Gisbergen J.A.M. (e_1_2_7_39_2) 1977
e_1_2_7_60_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_45_2
e_1_2_7_26_2
e_1_2_7_28_2
Reingold E.M. (e_1_2_7_23_2) 2000
e_1_2_7_50_2
Optican L.M. (e_1_2_7_61_2) 1994
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_16_2
e_1_2_7_14_2
e_1_2_7_40_2
Grossberg S. (e_1_2_7_57_2) 1997; 17
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_10_2
e_1_2_7_44_2
Guerrasio L. (e_1_2_7_13_2) 2010; 105
Brien D.C. (e_1_2_7_41_2) 2009; 3
e_1_2_7_46_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Leigh R.J. (e_1_2_7_2_2) 2006
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
Grossberg S. (e_1_2_7_49_2) 1986
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_38_2
e_1_2_7_59_2
Robinson D.A. (e_1_2_7_47_2) 1975
References_xml – volume: 276
  start-page: 1693
  year: 1997
  end-page: 1695
  article-title: Shared motor error for multiple eye movements
  publication-title: Science
– volume: 323
  start-page: 940
  year: 2009
  end-page: 943
  article-title: A neural mechanism for microsaccade generation in the primate superior colliculus
  publication-title: Science
– volume: 112
  start-page: 187
  year: 1996
  end-page: 196
  article-title: Minimal synaptic latency delay in the saccadic output pathway of the superior colliculus studied in the awake monkey
  publication-title: Exp. Brain Res.
– volume: 8
  start-page: 1
  year: 2008
  end-page: 9
  article-title: Microsaccades counteract perceptual filling‐in
  publication-title: J. Vis.
– volume: 3
  start-page: 952
  year: 2002
  end-page: 64
  article-title: The brainstem control of saccadic eye movements
  publication-title: Nat. Rev. Neurosci.
– volume: 82
  start-page: 999
  year: 1999
  end-page: 1018
  article-title: Model of the control of saccades by superior colliculus and cerebellum
  publication-title: J. Neurophysiol.
– volume: 169
  start-page: 369
  year: 2006
  end-page: 376
  article-title: Shortening and prolongation of saccade latencies following microsaccades
  publication-title: Exp. Brain Res.
– volume: 82
  start-page: 3254
  year: 1999
  end-page: 3267
  article-title: Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus
  publication-title: J. Neurophysiol.
– volume: 102
  start-page: 2410
  year: 2009
  end-page: 2422
  article-title: Response properties of fixation neurons and their location in the frontal eye field in the monkey
  publication-title: J. Neurophysiol.
– volume: 13
  start-page: 256
  year: 2001
  end-page: 271
  article-title: A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus
  publication-title: J. Cogn. Neurosci.
– volume: 12
  start-page: 1359
  year: 1999
  end-page: 1375
  article-title: A distributed model of the saccade system: simulations of temporally perturbed saccades using position and velocity feedback
  publication-title: Neural Netw.
– volume: 42
  start-page: 2533
  year: 2002
  end-page: 2545
  article-title: Microsaccades as an overt measure of covert attention shifts
  publication-title: Vis. Res.
– volume: 5
  start-page: 218
  year: 2004
  end-page: 228
  article-title: Look away: the anti‐saccade task and the voluntary control of eye movement
  publication-title: Nat. Rev. Neurosci.
– volume: 17
  start-page: 9706
  year: 1997
  end-page: 9725
  article-title: A neural model of multimodal adaptive saccadic eye movement control by superior colliculus
  publication-title: J. Neurosci.
– volume: 43
  start-page: 1035
  year: 2003
  end-page: 1045
  article-title: Microsaccades uncover the orientation of covert attention
  publication-title: Vis. Res.
– year: 1994
– volume: 13
  start-page: 1549
  year: 2010
  end-page: 1553
  article-title: Microsaccades precisely relocate gaze in a high visual acuity task
  publication-title: Nat. Neurosci.
– volume: 78
  start-page: 1108
  year: 1997
  end-page: 1119
  article-title: Effect of remote distractors on saccade programming: evidence for an extended fixation zone
  publication-title: J. Neurophysiol.
– year: 1986
– volume: 77
  start-page: 215
  year: 2005
  end-page: 251
  article-title: From brainstem to cortex: computational models of saccade generation circuitry
  publication-title: Prog. Neurobiol.
– volume: 142
  start-page: 439
  year: 2002
  end-page: 462
  article-title: The brainstem burst generator for saccadic eye movements
  publication-title: Exp. Brain Res.
– volume: 413
  start-page: 55
  year: 1999
  end-page: 67
  article-title: Projections from the superior colliculus motor map to omnipause neurons in monkey
  publication-title: J. Comp. Neurol.
– volume: 45
  start-page: 417
  year: 1981
  end-page: 442
  article-title: A quantitative analysis of generation of saccadic eye movements by burst neurons
  publication-title: J. Neurophysiol.
– volume: 39
  start-page: 87
  year: 1981
  end-page: 96
  article-title: Natural and drug‐induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback
  publication-title: Biol. Cybern.
– volume: 49
  start-page: 297
  year: 2006
  end-page: 305
  article-title: Microsaccades counteract visual fading during fixation
  publication-title: Neuron
– start-page: 337
  year: 1975
  end-page: 374
– volume: 31
  start-page: 4379
  year: 2011
  end-page: 4387
  article-title: Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy
  publication-title: J. Neurosci.
– volume: 8
  start-page: 1
  year: 2008
  end-page: 23
  article-title: Toward a model of microsaccade generation: the case of microsaccadic inhibition
  publication-title: J. Vis.
– volume: 13
  start-page: 1075
  year: 1973
  end-page: 1086
  article-title: The smallest voluntary saccade: implications for fixation
  publication-title: Vis. Res.
– volume: 79
  start-page: 215
  year: 1998
  end-page: 230
  article-title: Neural network simulations of the primate oculomotor system III. A one‐dimensional, one‐directional model of the superior colliculus
  publication-title: Biol. Cybern.
– volume: 46
  start-page: 3430
  year: 2006
  end-page: 3442
  article-title: Activity of omnipause neurons during “staircase saccades” elicited by persistent microstimulation of the superior colliculus
  publication-title: Vis. Res.
– volume: 30
  start-page: 15834 –15842
  year: 2010
  article-title: The absence of eye muscle fatigue indicates that the nervous system compensates for non‐motor disturbances of oculomotor function
  publication-title: J. Neurosci.
– volume: 8
  start-page: 14
  year: 2008
  end-page: 21
  article-title: Saccades and microsaccades during visual fixation, exploration and search: foundations for a common saccadic generator
  publication-title: J. Vis.
– volume: 3
  start-page: 1
  year: 2009
  end-page: 12
  article-title: The behavioural and neurophysiological modulation of microsaccades in monkeys
  publication-title: J. Eye Mov. Res.
– year: 2000
– volume: 46
  start-page: 987
  year: 1956
  end-page: 988
  article-title: Determination of the stimuli for involuntary drifts and saccadic eye movements
  publication-title: J. Opt. Soc. Am.
– volume: 4
  start-page: e5163
  year: 2009
  article-title: Microsaccade rate varies with subjective visibility during motion‐induced blindness
  publication-title: PLoS ONE
– year: 1977
– volume: 82
  start-page: 1198
  year: 1999
  end-page: 1208
  article-title: Saccade‐related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats
  publication-title: J. Neurophysiol.
– volume: 70
  start-page: 559
  year: 1993
  end-page: 575
  article-title: Fixation cells in monkey superior colliculus: I. Characteristics of cell discharge
  publication-title: J. Neurophysiol.
– volume: 59
  start-page: 1455
  year: 1988
  end-page: 1475
  article-title: A new local feedback model of the saccadic burst generator
  publication-title: J. Neurophysiol.
– volume: 32
  start-page: 463
  year: 2009
  end-page: 475
  article-title: Microsaccades: a neurophysiological analysis
  publication-title: Trends Neurosci.
– volume: 12
  start-page: 1795
  year: 1972
  end-page: 1808
  article-title: Eye movements evoked by collicular stimulation in the alert monkey
  publication-title: Vis. Res.
– volume: 150
  start-page: 1459
  year: 1965
  end-page: 1460
  article-title: Microsaccades and the velocity–amplitude relationship for saccadic eye movements
  publication-title: Science
– volume: 11
  start-page: 1159
  year: 1998
  end-page: 1174
  article-title: A neural model of the saccade generator in the reticular formation
  publication-title: Neural Netw.
– volume: 9
  start-page: 683
  year: 1969
  end-page: 693
  article-title: Comparison of saccadic eye movements during fixation and reading
  publication-title: Vis. Res.
– volume: 8
  start-page: 13.1–17
  year: 2008
  article-title: Fixational eye movements predict the perceived direction of ambiguous apparent motion
  publication-title: J. Vis.
– volume: 103
  start-page: 7192
  year: 2006
  end-page: 7197
  article-title: Microsaccades are triggered by low retinal image slip
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 119
  start-page: 1
  year: 1953
  end-page: 17
  article-title: Involuntary eye movements during fixation
  publication-title: J. Physiol.
– volume: 70
  start-page: 810
  year: 2008
  end-page: 812
  article-title: Suppression of saccadic intrusions in hereditary ataxia by memantine
  publication-title: Neurology
– volume: 7
  start-page: 1115
  year: 1994
  end-page: 1135
  article-title: Two‐dimensional neural network model of the primate saccadic system
  publication-title: Neural Netw.
– year: 2006
– year: 2009
  article-title: Dynamic characterization of microsaccades during near versus far viewing. Program No. 405.2.2009 Neuroscience Meeting Planner. Chicago, IL
  publication-title: Soc. Neurosci
– volume: 11
  start-page: 245
  year: 1996
  end-page: 269
  article-title: A distributed model of the saccadic system: the effects of internal noise
  publication-title: Neurocomputing
– volume: 5
  start-page: 871
  year: 1992
  end-page: 890
  article-title: Dynamic feedback to the superior colliculus in a neural network model of the gaze control system
  publication-title: Neural Netw.
– volume: 33
  start-page: 2101
  year: 2011
  end-page: 2113
  article-title: Mechanisms for generating and compensating for the smallest possible saccades
  publication-title: Eur. J. Neurosci.
– volume: 105
  start-page: 883
  year: 2010
  end-page: 895
  article-title: The fastigial oculomotor region and the control of foveation during fixation
  publication-title: J. Neurophysiol.
– volume: 155
  start-page: 1577
  year: 1967
  end-page: 1579
  article-title: Voluntary control of microsaccades during maintained monocular fixation
  publication-title: Science
– volume: 11
  start-page: 1175
  year: 1998
  end-page: 1190
  article-title: Distributed model of control of saccades by superior colliculus and cerebellum
  publication-title: Neural Netw.
– volume: 181
  start-page: 810
  year: 1973
  end-page: 819
  article-title: Miniature eye movement
  publication-title: Science
– volume: 2
  start-page: 153
  year: 1992
  end-page: 175
  article-title: A cortico‐subcortical model for generation of spatially accurate sequential saccades
  publication-title: Cereb. Cortex
– volume: 117
  start-page: 181
  year: 1997
  end-page: 191
  article-title: Analysis of the step response of the saccadic feedback: computational models
  publication-title: Exp. Brain Res.
– ident: e_1_2_7_19_2
  doi: 10.1126/science.181.4102.810
– ident: e_1_2_7_12_2
  doi: 10.1073/pnas.0509557103
– ident: e_1_2_7_35_2
  doi: 10.1126/science.276.5319.1693
– ident: e_1_2_7_45_2
  doi: 10.1152/jn.1999.82.6.3254
– ident: e_1_2_7_43_2
  doi: 10.1152/jn.1993.70.2.559
– ident: e_1_2_7_28_2
  doi: 10.1007/s00221-005-0148-1
– ident: e_1_2_7_48_2
  doi: 10.1007/BF00336734
– ident: e_1_2_7_36_2
  doi: 10.1002/(SICI)1096-9861(19991011)413:1<55::AID-CNE3>3.0.CO;2-K
– ident: e_1_2_7_52_2
  doi: 10.1016/S0893-6080(98)00096-3
– ident: e_1_2_7_53_2
  doi: 10.1162/089892901564306
– ident: e_1_2_7_3_2
  doi: 10.1016/j.neuron.2005.11.033
– ident: e_1_2_7_17_2
  doi: 10.1126/science.1166112
– ident: e_1_2_7_26_2
  doi: 10.1152/jn.1997.78.2.1108
– ident: e_1_2_7_33_2
  doi: 10.1212/01.wnl.0000286952.01476.eb
– ident: e_1_2_7_6_2
  doi: 10.1523/JNEUROSCI.2600-10.2011
– ident: e_1_2_7_7_2
  doi: 10.1016/j.tins.2009.05.006
– ident: e_1_2_7_20_2
  doi: 10.1113/jphysiol.1953.sp004824
– ident: e_1_2_7_63_2
  doi: 10.1016/S0893-6080(05)80084-X
– year: 2009
  ident: e_1_2_7_42_2
  article-title: Dynamic characterization of microsaccades during near versus far viewing. Program No. 405.2.2009 Neuroscience Meeting Planner. Chicago, IL
  publication-title: Soc. Neurosci
  contributor:
    fullname: Van Horn M.R.
– ident: e_1_2_7_31_2
  doi: 10.1038/nrn1345
– ident: e_1_2_7_55_2
  doi: 10.1016/S0893-6080(98)00071-9
– ident: e_1_2_7_21_2
  doi: 10.1126/science.150.3702.1459
– ident: e_1_2_7_11_2
  doi: 10.1111/j.1460-9568.2011.07694.x
– ident: e_1_2_7_27_2
  doi: 10.1167/8.14.13
– ident: e_1_2_7_9_2
  doi: 10.1167/8.14.21
– ident: e_1_2_7_58_2
  doi: 10.1016/S0893-6080(05)80162-5
– ident: e_1_2_7_4_2
  doi: 10.1167/8.14.15
– ident: e_1_2_7_25_2
  doi: 10.1016/S0042-6989(02)00263-8
– ident: e_1_2_7_60_2
  doi: 10.1016/S0893-6080(99)00077-5
– volume-title: Contemporary ocular motor and vestibular research: A tribute to David A. Robinson
  year: 1994
  ident: e_1_2_7_61_2
  contributor:
    fullname: Optican L.M.
– ident: e_1_2_7_15_2
  doi: 10.1038/nn.2663
– ident: e_1_2_7_22_2
  doi: 10.1016/0042-6989(69)90125-4
– ident: e_1_2_7_24_2
  doi: 10.1016/S0042-6989(03)00084-1
– ident: e_1_2_7_5_2
  doi: 10.1364/JOSA.46.000987
– ident: e_1_2_7_18_2
  doi: 10.1126/science.155.3769.1577
– volume-title: Control of Gaze by Brain Stem Neurons
  year: 1977
  ident: e_1_2_7_39_2
  contributor:
    fullname: Van Gisbergen J.A.M.
– ident: e_1_2_7_32_2
  doi: 10.1523/JNEUROSCI.3901-10.2010
– ident: e_1_2_7_30_2
  doi: 10.1007/s00221-001-0912-9
– ident: e_1_2_7_56_2
  doi: 10.1152/jn.1999.82.2.999
– ident: e_1_2_7_34_2
  doi: 10.1016/0042-6989(72)90070-3
– ident: e_1_2_7_62_2
  doi: 10.1093/cercor/2.2.153
– volume: 17
  start-page: 9706
  year: 1997
  ident: e_1_2_7_57_2
  article-title: A neural model of multimodal adaptive saccadic eye movement control by superior colliculus
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.17-24-09706.1997
  contributor:
    fullname: Grossberg S.
– ident: e_1_2_7_46_2
  doi: 10.1016/j.visres.2006.05.014
– ident: e_1_2_7_51_2
  doi: 10.1007/s002210050214
– ident: e_1_2_7_59_2
  doi: 10.1016/0925-2312(95)00068-2
– volume: 3
  start-page: 1
  year: 2009
  ident: e_1_2_7_41_2
  article-title: The behavioural and neurophysiological modulation of microsaccades in monkeys
  publication-title: J. Eye Mov. Res.
  contributor:
    fullname: Brien D.C.
– ident: e_1_2_7_29_2
  doi: 10.1038/nrn986
– ident: e_1_2_7_16_2
  doi: 10.1016/j.pneurobio.2005.11.001
– ident: e_1_2_7_44_2
  doi: 10.1152/jn.00234.2009
– ident: e_1_2_7_14_2
  doi: 10.1371/journal.pone.0005163
– ident: e_1_2_7_50_2
  doi: 10.1152/jn.1988.59.5.1455
– volume-title: Neural Dynamics of Adaptive Sensory‐Motor Control: Ballistic Eye Movements
  year: 1986
  ident: e_1_2_7_49_2
  contributor:
    fullname: Grossberg S.
– ident: e_1_2_7_8_2
  doi: 10.1016/0042-6989(73)90145-4
– ident: e_1_2_7_40_2
  doi: 10.1152/jn.1981.45.3.417
– volume: 105
  start-page: 883
  year: 2010
  ident: e_1_2_7_13_2
  article-title: The fastigial oculomotor region and the control of foveation during fixation
  publication-title: J. Neurophysiol.
  contributor:
    fullname: Guerrasio L.
– volume-title: The Neurology of Eye Movements
  year: 2006
  ident: e_1_2_7_2_2
  contributor:
    fullname: Leigh R.J.
– ident: e_1_2_7_37_2
  doi: 10.1007/BF00227637
– ident: e_1_2_7_54_2
  doi: 10.1007/s004220050472
– ident: e_1_2_7_38_2
  doi: 10.1152/jn.1999.82.3.1198
– volume-title: Reading as Perceptual Process
  year: 2000
  ident: e_1_2_7_23_2
  contributor:
    fullname: Reingold E.M.
– ident: e_1_2_7_10_2
  doi: 10.1167/8.11.5
– start-page: 337
  volume-title: Basic Mechanisms of Ocular Motility and Their Clinical Implications
  year: 1975
  ident: e_1_2_7_47_2
  contributor:
    fullname: Robinson D.A.
SSID ssj0012847
Score 2.3933926
SecondaryResourceType review_article
Snippet Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 107
SubjectTerms Animals
burst generator
burst neurons
Bursting
Electrophysiological Phenomena
Eye movements
Fixation
Fixation, Ocular - physiology
fixational eye movements
Humans
Inhibition
Line of sight
Models, Neurological
Neurons
Neurons - physiology
omnipause
Pathways
Proposals
Raphe Nuclei - physiology
Saccades - physiology
Sensory perception
Superior Colliculi - physiology
superior colliculus
Visual Pathways - physiology
Title Triggering mechanisms in microsaccade and saccade generation: a novel proposal
URI https://api.istex.fr/ark:/67375/WNG-M927BTH3-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2011.06177.x
https://www.ncbi.nlm.nih.gov/pubmed/21950983
https://www.proquest.com/docview/1767750222
https://search.proquest.com/docview/1328509380
https://search.proquest.com/docview/894812550
Volume 1233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTUi8wDa-AgMZCSF4SJXYcRzzNj5GhbQ-QAfjyXISp6q6plPTosFfz52TRnQaEkK8RYptxef7-Nk5_w7geWazHKOwCwl7h1TSOMxsJENZqDQX1qrUn-mejNLhafLxTJ51-U90F6blh-gP3MgyvL8mA7d5s23kKtEhRkzeMXFiMFYDwpOxUJTd9e5TzyTlvbB3ygqdMoKaq0k91wy0Fal2SeiX18HQbVTrw9LxHZhtJtRmo8wG61U-KH5e4Xr8PzPeg9sdemVHrbrtww1XH8DNtp7ljwPY7zxFw152dNav7sJovJxOJp7xkM0dXTSeNvOGTWs2p2TAxhaUos9sXbLN88R3JpV5zSyrF9_dObugcg6NPb8Hp8fvx2-HYVfFISykIBqIqopVEYucVy7mpeTaaS15qZMoT5QrCAJGpZN0KT-2AuFrWUlsk_LIlVJU4j7s1IvaPQRWFRg8c55Z4sTXTurEIpqJHe75nMvKNIB4s2LmoiXrML9tclB4hoRnSHjGC89cBvDCL23fwS5nlOympPk6-mBONFdvxkNhvgRwuFl709l5g2OmCjEXgqwAnvWv0ULpt4ut3WKNbQTPEJaJLAqA_aFNRqQ5uLvDJg9ateq_h1OhXp2JAJRXjr-emRl9O_pMj4_-uedjuNWeoVNO3SHsrJZr9wRB2Cp_6s3rF5uOHpI
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTQhegI2vwAAjIQQPqRI7jhPexscosPYBOtieLCdxqmptOjUtGvz13DlpRKchIcRbpNhWfPbd_Xw5_w7gWWKSDL2w9Ql7-1TS2E9MIH2ZqzgTxqjYxXQHw7h_FH08lsdtOSC6C9PwQ3QBN9IMZ69JwSkgvanlKkp9dJm8peJEb6x6CCi3UfsF1XF4-7njknJ22JllhWYZYc3FtJ5LRtrwVdsk9vPLgOgmrnWO6eAmTNdTavJRTnurZdbLf15ge_xPc74FN1oAy_abHbcDV2y1C1ebkpY_dmGnNRY1e9EyWr-8DcPRYjIeO9JDNrN013hSz2o2qdiM8gFrk1OWPjNVwdbPY9eZds0rZlg1_26n7IwqOtRmegeODt6N3vT9tpCDn0tBTBBlGao8FBkvbcgLyVObppIXaRRkkbI5ocCgsJLu5YdGIIItSoltYh7YQopS3IWtal7Z-8DKHP1nxhNDtPiplWlkENCEFo991iZF7EG4XjJ91vB16N_OOSg8TcLTJDzthKfPPXju1rbrYBanlO-mpP42fK8HKVevR32hv3qwt1583ap6jWPGCmEX4iwPnnavUUnpz4up7HyFbQRPEJmJJPCA_aFNQrw5eMDDJveafdV9D6davWkiPFBud_z1zPTwZP8LPT74555P4Fp_NDjUhx-Gnx7C9SakTil2e7C1XKzsI8Rky-yx07VfiTsiqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5Cm0C8MDZuGQOMhBA8pEqcOE54G5dSLosQdGw8WU7iVFXXtGpaNPj1nOOkEZ2GhBBvkWJb8fG5fHaOvwPwJNZxhlHYuIS9XSpp7MbaE67IZZQFWsvInukepdHgOHx_Kk7b_Ce6C9PwQ3QHbmQZ1l-Tgc-LctPIZZi4GDF5y8SJwVj2EE9uhxECYQJInzsqKeuGrVeW6JUR1VzM6rlkpI1QtU1SP78Mh27CWhuX-jswWc-oSUeZ9FbLrJf_vED2-H-mfBNutPCVHTb6tgtXTLUHV5uClj_2YLd1FTV71vJZP78F6XAxHo0s5SGbGrppPK6nNRtXbErZgLXOKUef6apg6-eR7Uw684JpVs2-mzM2p3oOtT67Dcf9N8NXA7ct4-DmIiAeiLL0Ze4HGS-NzwvBE5MkghdJ6GWhNDlhQK8wgm7l-zpA_FqUAttE3DOFCMrgDmxVs8rcA1bmGD0zHmsixU-MSEKNcMY3uOkzJi4iB_z1iql5w9ahftvloPAUCU-R8JQVnjp34Kld2q6DXkwo200KdZK-VUcJly-Hg0B9deBgvfaqNfQax4wkgi5EWQ487l6jidJ_F12Z2QrbBDxGXBbEngPsD21iYs3B7R02uduoVfc9nCr1JnHggLTK8dczU-m3wy_0uP_PPR_BtU-v--rju_TDfbjenKdTft0BbC0XK_MAAdkye2gt7RfqYiFZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triggering+mechanisms+in+microsaccade+and+saccade+generation%3A+a+novel+proposal&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Otero-Millan%2C+Jorge&rft.au=Macknik%2C+Stephen+L&rft.au=Serra%2C+Alessandro&rft.au=Leigh%2C+R+John&rft.date=2011-09-01&rft.eissn=1749-6632&rft.volume=1233&rft.spage=107&rft.epage=116&rft_id=info:doi/10.1111%2Fj.1749-6632.2011.06177.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon