Triggering mechanisms in microsaccade and saccade generation: a novel proposal
Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small rapid eye movements called microsaccades interrupt fixation one or two times each second. Although the neural pathway controlling saccade gener...
Saved in:
Published in | Annals of the New York Academy of Sciences Vol. 1233; no. 1; pp. 107 - 116 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.09.2011
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small rapid eye movements called microsaccades interrupt fixation one or two times each second. Although the neural pathway controlling saccade generation is well understood, the specific mechanism for triggering microsaccades is unknown. Here, we review the evidence suggesting that microsaccades and saccades are generated by the same neural pathway. We also discuss current models of how the saccadic system produces microsaccades. Finally, we propose a new mechanism for triggering both microsaccades and saccades, based on a circuit formed by omnipause and long‐lead burst neurons and driven by activity in the superior colliculus. Our model differs from previous proposals in that it does not require superior colliculus activity to surpass a particular threshold to trigger microsaccades and saccades. Rather, we propose that the reciprocal inhibition between omnipause and long‐lead burst neurons gates each microsaccadic or saccadic event, triggering the eye movement whenever the activity in the long‐lead burst neurons overcomes the inhibition from the omnipause neurons. |
---|---|
AbstractList | Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small rapid eye movements called microsaccades interrupt fixation one or two times each second. Although the neural pathway controlling saccade generation is well understood, the specific mechanism for triggering microsaccades is unknown. Here, we review the evidence suggesting that microsaccades and saccades are generated by the same neural pathway. We also discuss current models of how the saccadic system produces microsaccades. Finally, we propose a new mechanism for triggering both microsaccades and saccades, based on a circuit formed by omnipause and long-lead burst neurons and driven by activity in the superior colliculus. Our model differs from previous proposals in that it does not require superior colliculus activity to surpass a particular threshold to trigger microsaccades and saccades. Rather, we propose that the reciprocal inhibition between omnipause and long-lead burst neurons gates each microsaccadic or saccadic event, triggering the eye movement whenever the activity in the long-lead burst neurons overcomes the inhibition from the omnipause neurons. |
Author | Serra, Alessandro Macknik, Stephen L. Otero-Millan, Jorge Leigh, R. John Martinez-Conde, Susana |
Author_xml | – sequence: 1 givenname: Jorge surname: Otero-Millan fullname: Otero-Millan, Jorge organization: Barrow Neurological Institute, Phoenix, Arizona – sequence: 2 givenname: Stephen L. surname: Macknik fullname: Macknik, Stephen L. organization: Barrow Neurological Institute, Phoenix, Arizona – sequence: 3 givenname: Alessandro surname: Serra fullname: Serra, Alessandro organization: Veterans Affairs Medical Center, Cleveland, Ohio – sequence: 4 givenname: R. John surname: Leigh fullname: Leigh, R. John organization: Veterans Affairs Medical Center, Cleveland, Ohio – sequence: 5 givenname: Susana surname: Martinez-Conde fullname: Martinez-Conde, Susana organization: Barrow Neurological Institute, Phoenix, Arizona |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21950983$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv0zAUxy00xLrBV0CROLBLMvs5jm0OSNsE26RRDhQQJ8tNXopL4nR2C923n7NuPXBA-GJb_r3_k9_viBz4wSMhGaMFS-t0WTBZ6ryqOBRAGStoxaQsts_IZP9wQCaUSpkrDfyQHMW4pJSBKuULcghMC6oVn5DpLLjFAoPzi6zH-qf1LvYxcz7rXR2GaOvaNphZ32RP5wV6DHbtBv8us5kffmOXrcKwSnD3kjxvbRfx1eN-TL5-_DC7uMpvPl9eX5zd5LXgpcyhbZmsGZ9DiwwaARq1FtDoks5LibXiAmiDQpScMctpurQiMRVQbARv-TF5u8tNjW83GNemd7HGrrMeh000SpeKgRA0kSf_JBkHlWbB1Yi--QtdDpvg0z8Mk5WUggJAotSOGscTA7ZmFVxvw51h1Ix2zNKMEswowYx2zIMds02lrx8bbOY9NvvCJx0JeL8D_rgO7_472Ex_nH0Zjykg3wW4uMbtPsCGX6aSXArzfXppPmmQ57Mrbr7xe4WSrOk |
CODEN | ANYAA9 |
CitedBy_id | crossref_primary_10_1007_s10162_012_0368_6 crossref_primary_10_1038_eye_2014_276 crossref_primary_10_1016_j_parkreldis_2021_01_003 crossref_primary_10_1111_ejn_12248 crossref_primary_10_7554_eLife_22431 crossref_primary_10_1016_j_concog_2022_103411 crossref_primary_10_3988_jcn_2020_16_1_37 crossref_primary_10_1523_JNEUROSCI_4448_13_2014 crossref_primary_10_1097_WNO_0000000000000275 crossref_primary_10_1002_cav_1745 crossref_primary_10_1007_s10827_021_00784_7 crossref_primary_10_1016_j_ajo_2024_06_021 crossref_primary_10_1038_nrn3405 crossref_primary_10_3389_fneur_2018_00144 crossref_primary_10_3389_fneur_2018_00346 crossref_primary_10_3389_fopht_2022_938088 crossref_primary_10_1016_j_jns_2022_120373 crossref_primary_10_3757_jser_83_23 crossref_primary_10_1167_iovs_18_24794 crossref_primary_10_3389_fnint_2018_00047 crossref_primary_10_1007_s11357_013_9582_3 crossref_primary_10_1038_ncomms9110 crossref_primary_10_1140_epjb_e2016_70472_0 crossref_primary_10_3389_fnhum_2022_842883 crossref_primary_10_1016_j_yaoo_2023_03_006 crossref_primary_10_3389_fneur_2017_00372 crossref_primary_10_1371_journal_pone_0175295 crossref_primary_10_1371_journal_pone_0069522 crossref_primary_10_1523_JNEUROSCI_5054_11_2012 crossref_primary_10_1167_jov_24_6_11 crossref_primary_10_1371_journal_pbio_2004132 crossref_primary_10_1097_WNO_0000000000001452 crossref_primary_10_1152_jn_00198_2019 crossref_primary_10_1371_journal_pone_0126485 crossref_primary_10_3758_s13423_022_02151_8 crossref_primary_10_3389_fopht_2023_1302651 crossref_primary_10_1007_s00415_023_11972_z crossref_primary_10_1016_j_visres_2015_01_009 crossref_primary_10_1007_s10072_023_06719_7 crossref_primary_10_1038_s41467_020_17160_1 crossref_primary_10_2147_EB_S384763 crossref_primary_10_1177_1550059420932752 crossref_primary_10_1016_j_cortex_2020_07_013 crossref_primary_10_2139_ssrn_3075751 crossref_primary_10_1016_j_neuron_2018_05_041 crossref_primary_10_1007_s00221_014_4188_2 crossref_primary_10_3902_jnns_19_135 crossref_primary_10_1097_WCO_0b013e32835c5e1d crossref_primary_10_3390_brainsci12040489 crossref_primary_10_1152_jn_01096_2012 crossref_primary_10_1016_j_neuron_2015_11_032 crossref_primary_10_3389_fnhum_2021_716670 crossref_primary_10_1007_s00221_019_05636_6 crossref_primary_10_1038_s41598_021_93919_w crossref_primary_10_7717_peerj_9 crossref_primary_10_1007_s10827_020_00773_2 crossref_primary_10_1209_0295_5075_100_40003 crossref_primary_10_1007_s00426_018_01141_7 crossref_primary_10_1523_JNEUROSCI_1286_23_2024 crossref_primary_10_1111_ejn_13289 crossref_primary_10_1111_ejn_12395 crossref_primary_10_3169_itej_66_287 crossref_primary_10_1098_rstb_2016_0204 crossref_primary_10_1167_iovs_63_2_33 crossref_primary_10_1136_bjophthalmol_2017_310346 crossref_primary_10_1152_jn_00268_2016 crossref_primary_10_1038_s41598_023_42768_w crossref_primary_10_1016_j_visres_2017_06_003 crossref_primary_10_1371_journal_pone_0110889 crossref_primary_10_1073_pnas_1222715110 crossref_primary_10_1371_journal_pone_0058535 crossref_primary_10_1155_2014_658243 crossref_primary_10_1007_s11910_015_0543_3 |
Cites_doi | 10.1126/science.181.4102.810 10.1073/pnas.0509557103 10.1126/science.276.5319.1693 10.1152/jn.1999.82.6.3254 10.1152/jn.1993.70.2.559 10.1007/s00221-005-0148-1 10.1007/BF00336734 10.1002/(SICI)1096-9861(19991011)413:1<55::AID-CNE3>3.0.CO;2-K 10.1016/S0893-6080(98)00096-3 10.1162/089892901564306 10.1016/j.neuron.2005.11.033 10.1126/science.1166112 10.1152/jn.1997.78.2.1108 10.1212/01.wnl.0000286952.01476.eb 10.1523/JNEUROSCI.2600-10.2011 10.1016/j.tins.2009.05.006 10.1113/jphysiol.1953.sp004824 10.1016/S0893-6080(05)80084-X 10.1038/nrn1345 10.1016/S0893-6080(98)00071-9 10.1126/science.150.3702.1459 10.1111/j.1460-9568.2011.07694.x 10.1167/8.14.13 10.1167/8.14.21 10.1016/S0893-6080(05)80162-5 10.1167/8.14.15 10.1016/S0042-6989(02)00263-8 10.1016/S0893-6080(99)00077-5 10.1038/nn.2663 10.1016/0042-6989(69)90125-4 10.1016/S0042-6989(03)00084-1 10.1364/JOSA.46.000987 10.1126/science.155.3769.1577 10.1523/JNEUROSCI.3901-10.2010 10.1007/s00221-001-0912-9 10.1152/jn.1999.82.2.999 10.1016/0042-6989(72)90070-3 10.1093/cercor/2.2.153 10.1523/JNEUROSCI.17-24-09706.1997 10.1016/j.visres.2006.05.014 10.1007/s002210050214 10.1016/0925-2312(95)00068-2 10.1038/nrn986 10.1016/j.pneurobio.2005.11.001 10.1152/jn.00234.2009 10.1371/journal.pone.0005163 10.1152/jn.1988.59.5.1455 10.1016/0042-6989(73)90145-4 10.1152/jn.1981.45.3.417 10.1007/BF00227637 10.1007/s004220050472 10.1152/jn.1999.82.3.1198 10.1167/8.11.5 |
ContentType | Journal Article |
Copyright | 2011 New York Academy of Sciences 2011 New York Academy of Sciences. |
Copyright_xml | – notice: 2011 New York Academy of Sciences – notice: 2011 New York Academy of Sciences. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7SP 7U5 L7M 7X8 |
DOI | 10.1111/j.1749-6632.2011.06177.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts Environment Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts Solid State and Superconductivity Abstracts CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1749-6632 |
EndPage | 116 |
ExternalDocumentID | 3961991851 10_1111_j_1749_6632_2011_06177_x 21950983 NYAS6177 ark_67375_WNG_M927BTH3_V |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NEI NIH HHS grantid: EY06717 |
GroupedDBID | --- --Z -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1OB 1OC 23M 31~ 33P 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 692 6J9 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAMDK AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOJD ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFSWV AFZJQ AHBTC AHEFC AHMBA AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BIYOS BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG CO8 COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IH2 IX1 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OHT OIG OK1 OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RAG RIWAO RJQFR ROL RX1 S10 SAMSI SJN SUPJJ SV3 TEORI TUS UB1 UPT V8K VH1 W8V W99 WBKPD WH7 WHWMO WIH WIK WOHZO WQJ WRC WUP WVDHM WXSBR X7M XG1 YBU YOC YSK ZGI ZKB ZXP ZZTAW ~02 ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7ST 7T5 7T7 7TK 7TM 7TO 7U7 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 SOI 7SP 7U5 L7M 7X8 |
ID | FETCH-LOGICAL-c5347-2ff17c13b2fe12d529e9952d940b47ec83520de554311a3020df59e9620ed53f3 |
IEDL.DBID | DR2 |
ISSN | 0077-8923 |
IngestDate | Fri Aug 16 08:59:54 EDT 2024 Fri Aug 16 08:00:54 EDT 2024 Thu Oct 10 16:21:37 EDT 2024 Fri Aug 23 10:42:29 EDT 2024 Sat Sep 28 08:02:14 EDT 2024 Sat Aug 24 00:55:22 EDT 2024 Wed Oct 30 09:55:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2011 New York Academy of Sciences. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5347-2ff17c13b2fe12d529e9952d940b47ec83520de554311a3020df59e9620ed53f3 |
Notes | istex:996377BD1C4EE3F9581AF5C974AE2A2DDBDA8491 ark:/67375/WNG-M927BTH3-V ArticleID:NYAS6177 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-3 ObjectType-Review-2 |
PMID | 21950983 |
PQID | 1767750222 |
PQPubID | 946344 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_894812550 proquest_miscellaneous_1328509380 proquest_journals_1767750222 crossref_primary_10_1111_j_1749_6632_2011_06177_x pubmed_primary_21950983 wiley_primary_10_1111_j_1749_6632_2011_06177_x_NYAS6177 istex_primary_ark_67375_WNG_M927BTH3_V |
PublicationCentury | 2000 |
PublicationDate | September 2011 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: September 2011 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: New York |
PublicationTitle | Annals of the New York Academy of Sciences |
PublicationTitleAlternate | Ann N Y Acad Sci |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley Subscription Services, Inc |
References | Hafed, Z.M., L. Goffart & R.J. Krauzlis. 2009. A neural mechanism for microsaccade generation in the primate superior colliculus. Science 323: 940-943. Yoshida, K., Y. Iwamoto, S. Chimoto & H. Shimazu. 1999. Saccade-related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats. J. Neurophysiol. 82: 1198-1208. Engbert, R. & R. Kliegl. 2003. Microsaccades uncover the orientation of covert attention. Vis. Res. 43: 1035-1045. Ditchburn, R.W. & B.L. Ginsborg. 1953. Involuntary eye movements during fixation. J. Physiol. 119: 1-17. Robinson, D.A. 1972. Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res. 12: 1795-1808. Munoz, D.P. & S. Everling. 2004. Look away: the anti-saccade task and the voluntary control of eye movement. Nat. Rev. Neurosci. 5: 218-228. Jürgens, R., W. Becker & H.H. Kornhuber. 1981. Natural and drug-induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback. Biol. Cybern. 39: 87-96. Engbert, R. & K. Mergenthaler. 2006. Microsaccades are triggered by low retinal image slip. Proc. Natl. Acad. Sci. U.S.A. 103: 7192-7197. Breznen, B. & J.W. Gnadt. 1997. Analysis of the step response of the saccadic feedback: computational models. Exp. Brain Res. 117: 181-191. Brien, D.C., B.D. Corneil, J.H. Fecteau, et al . 2009. The behavioural and neurophysiological modulation of microsaccades in monkeys. J. Eye Mov. Res. 3: 1-12. Grossberg, S. & M. Kuperstein. 1986. Neural Dynamics of Adaptive Sensory-Motor Control: Ballistic Eye Movements. North Holland. Amsterdam. Haddad, G.M. & R.M. Steinman. 1973. The smallest voluntary saccade: implications for fixation. Vis. Res. 13: 1075-1086. Scudder, C.A. 1988. A new local feedback model of the saccadic burst generator. J. Neurophysiol. 59: 1455-1475. Bozis, A. & A.K. Moschovakis. 1998. Neural network simulations of the primate oculomotor system III. A one-dimensional, one-directional model of the superior colliculus. Biol. Cybern. 79: 215-230. Arai, K., E.L. Keller & J.A. Edelman. 1994. Two-dimensional neural network model of the primate saccadic system. Neural Netw. 7: 1115-1135. Miyashita, N. & O. Hikosaka. 1996. Minimal synaptic latency delay in the saccadic output pathway of the superior colliculus studied in the awake monkey. Exp. Brain Res. 112: 187-196. Izawa, Y., H. Suzuki & Y. Shinoda. 2009. Response properties of fixation neurons and their location in the frontal eye field in the monkey. J. Neurophysiol. 102: 2410-2422. Van Horn, M.R. & K.E. Cullen. 2009. Dynamic characterization of microsaccades during near versus far viewing. Program No. 405.2.2009 Neuroscience Meeting Planner. Chicago, IL:Soc. Neurosci. Online. Hafed, Z.M. & J.J. Clark. 2002. Microsaccades as an overt measure of covert attention shifts. Vis. Res. 42: 2533-2545. Steinman, R.M., G.M. Haddad, A.A. Skavenski & D. Wyman. 1973. Miniature eye movement. Science 181: 810-819. Das, S., E.L. Keller & K. Arai. 1996. A distributed model of the saccadic system: the effects of internal noise. Neurocomputing 11: 245-269. Cunitz, R.J. & R.M. Steinman. 1969. Comparison of saccadic eye movements during fixation and reading. Vis. Res. 9: 683-693. Walker, R., H. Deubel, W.X. Schneider & J.M. Findlay. 1997. Effect of remote distractors on saccade programming: evidence for an extended fixation zone. J. Neurophysiol. 78: 1108-1119. Gandhi, N.J. & E.L. Keller. 1999. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. J. Neurophysiol. 82: 3254-3267. Lefèvre, P. & H.L. Galiana. 1992. Dynamic feedback to the superior colliculus in a neural network model of the gaze control system. Neural Netw. 5: 871-890. Dominey, P.F. & M.A. Arbib. 1992. A cortico-subcortical model for generation of spatially accurate sequential saccades. Cereb. Cortex 2: 153-175. Steinman, R.M., R.J. Cunitz, G.T. Timberlake & M. Herman. 1967. Voluntary control of microsaccades during maintained monocular fixation. Science 155: 1577-1579. Munoz, D.P. & R.H. Wurtz. 1993. Fixation cells in monkey superior colliculus: I. Characteristics of cell discharge. J. Neurophysiol. 70: 559-575. Ko, H.-kyoung, M. Poletti & M. Rucci. 2010. Microsaccades precisely relocate gaze in a high visual acuity task. Nat. Neurosci. 13: 1549-1553. Leigh, R.J. & D.S. Zee. 2006. The Neurology of Eye Movements. Oxford University Press. Oxford. Guerrasio, L., J. Quinet, U. Buttner & L. Goffart. 2010. The fastigial oculomotor region and the control of foveation during fixation. J. Neurophysiol. 105: 883-895. Martinez-Conde, S., S.L. Macknik, X.G. Troncoso & D.H. Hubel. 2009. Microsaccades: a neurophysiological analysis. Trends Neurosci. 32: 463-475. Quaia, C., P. Lefèvre & L.M. Optican. 1999. Model of the control of saccades by superior colliculus and cerebellum. J. Neurophysiol. 82: 999-1018. Otero-Millan, J., X.G. Troncoso, S.L. Macknik, et al . 2008. Saccades and microsaccades during visual fixation, exploration and search: foundations for a common saccadic generator. J. Vis. 8: 14-21. Scudder, C., C. Kaneko & A. Fuchs. 2002. The brainstem burst generator for saccadic eye movements. Exp. Brain Res. 142: 439-462. Otero-Millan, J., A. Serra, R.J. Leigh, et al . 2011. Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy. J. Neurosci. 31: 4379-4387. Laubrock, J., R. Engbert & R. Kliegl. 2008. Fixational eye movements predict the perceived direction of ambiguous apparent motion. J. Vis. 8: 13.1-17. Prsa, M., P.W. Dicke & P. Thier. 2010. The absence of eye muscle fatigue indicates that the nervous system compensates for non-motor disturbances of oculomotor function. J. Neurosci. 30: 15834 -15842. Troncoso, X.G., S.L. Macknik & S. Martinez-Conde. 2008. Microsaccades counteract perceptual filling-in. J. Vis. 8: 1-9. Arai, K., S. Das, E.L. Keller & E. Aiyoshi. 1999. A distributed model of the saccade system: simulations of temporally perturbed saccades using position and velocity feedback. Neural Netw. 12: 1359-1375. Grossberg, S., K. Roberts, M. Aguilar & D. Bullock. 1997. A neural model of multimodal adaptive saccadic eye movement control by superior colliculus. J. Neurosci. 17: 9706-9725. Büttner-Ennever, J.A., A.K.E. Horn, V. Henn & B. Cohen. 1999. Projections from the superior colliculus motor map to omnipause neurons in monkey. J. Comp. Neurol. 413: 55-67. Girard, B. & A. Berthoz. 2005. From brainstem to cortex: computational models of saccade generation circuitry. Prog. Neurobiol. 77:215-251. Cornsweet, T.N. 1956. Determination of the stimuli for involuntary drifts and saccadic eye movements. J. Opt. Soc. Am. 46: 987-988. Gancarz, G. & S. Grossberg. 1998. A neural model of the saccade generator in the reticular formation. Neural Netw. 11: 1159-1174. Serra, A., K. Liao, S. Martinez-Conde, et al . 2008. Suppression of saccadic intrusions in hereditary ataxia by memantine. Neurology 70: 810-812. Krauzlis, R.J., M.A. Basso & R.H. Wurtz. 1997. Shared motor error for multiple eye movements. Science 276: 1693-1695. Van Gisbergen, J.A.M., D.A. Robinson & S. Gielen. 1981. A quantitative analysis of generation of saccadic eye movements by burst neurons. J. Neurophysiol. 45: 417-442. Paul, K. & J.W. Gnadt. 2006. Activity of omnipause neurons during "staircase saccades" elicited by persistent microstimulation of the superior colliculus. Vis. Res. 46: 3430-3442. Sparks, D.L. 2002. The brainstem control of saccadic eye movements. Nat. Rev. Neurosci. 3: 952-64. Trappenberg, T.P., M.C. Dorris, D.P. Munoz & R.M. Klein. 2001. A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus. J. Cogn. Neurosci. 13: 256-271. Hafed, Z.M. 2011. Mechanisms for generating and compensating for the smallest possible saccades. Eur. J. Neurosci. 33:2101-2113. Lefèvre, P., C. Quaia & L.M. Optican. 1998. Distributed model of control of saccades by superior colliculus and cerebellum. Neural Netw. 11: 1175-1190. Rolfs, M., R. Kliegl & R. Engbert. 2008. Toward a model of microsaccade generation: the case of microsaccadic inhibition. J. Vis. 8: 1-23. Martinez-Conde, S., S.L. Macknik, X.G. Troncoso & T.A. Dyar. 2006. Microsaccades counteract visual fading during fixation. Neuron 49: 297-305. Hsieh, P.-J. & P.U. Tse. 2009. Microsaccade rate varies with subjective visibility during motion-induced blindness. PLoS ONE 4: e5163. Zuber, B.L., L. Stark & G. Cook. 1965. Microsaccades and the velocity-amplitude relationship for saccadic eye movements. Science 150: 1459-1460. Rolfs, M., J. Laubrock & R. Kliegl. 2006. Shortening and prolongation of saccade latencies following microsaccades. Exp. Brain Res. 169: 369-376. 1997; 117 2010; 13 1973; 181 1973; 13 2010; 105 1997; 276 1975 1953; 119 2008; 8 2004; 5 1967; 155 1999; 82 2008; 70 1981; 45 1977 1969; 9 2002; 142 2000 2002; 42 1993; 70 1965; 150 1956; 46 1986 1999; 12 1997; 17 1981; 39 1972; 12 2001; 13 1999; 413 2005; 77 2009; 323 2010; 30 1992; 2 2003; 43 1998; 11 2006; 169 1992; 5 1988; 59 2011; 31 2009 2011; 33 2002; 3 2006 1994 1996; 11 2009; 32 2006; 46 2006; 49 1997; 78 2009; 102 2009; 4 2009; 3 1996; 112 2006; 103 1994; 7 1998; 79 e_1_2_7_5_2 e_1_2_7_3_2 Van Horn M.R. (e_1_2_7_42_2) 2009 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_15_2 Van Gisbergen J.A.M. (e_1_2_7_39_2) 1977 e_1_2_7_60_2 e_1_2_7_62_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_45_2 e_1_2_7_26_2 e_1_2_7_28_2 Reingold E.M. (e_1_2_7_23_2) 2000 e_1_2_7_50_2 Optican L.M. (e_1_2_7_61_2) 1994 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_16_2 e_1_2_7_14_2 e_1_2_7_40_2 Grossberg S. (e_1_2_7_57_2) 1997; 17 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_10_2 e_1_2_7_44_2 Guerrasio L. (e_1_2_7_13_2) 2010; 105 Brien D.C. (e_1_2_7_41_2) 2009; 3 e_1_2_7_46_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 Leigh R.J. (e_1_2_7_2_2) 2006 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 Grossberg S. (e_1_2_7_49_2) 1986 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_38_2 e_1_2_7_59_2 Robinson D.A. (e_1_2_7_47_2) 1975 |
References_xml | – volume: 276 start-page: 1693 year: 1997 end-page: 1695 article-title: Shared motor error for multiple eye movements publication-title: Science – volume: 323 start-page: 940 year: 2009 end-page: 943 article-title: A neural mechanism for microsaccade generation in the primate superior colliculus publication-title: Science – volume: 112 start-page: 187 year: 1996 end-page: 196 article-title: Minimal synaptic latency delay in the saccadic output pathway of the superior colliculus studied in the awake monkey publication-title: Exp. Brain Res. – volume: 8 start-page: 1 year: 2008 end-page: 9 article-title: Microsaccades counteract perceptual filling‐in publication-title: J. Vis. – volume: 3 start-page: 952 year: 2002 end-page: 64 article-title: The brainstem control of saccadic eye movements publication-title: Nat. Rev. Neurosci. – volume: 82 start-page: 999 year: 1999 end-page: 1018 article-title: Model of the control of saccades by superior colliculus and cerebellum publication-title: J. Neurophysiol. – volume: 169 start-page: 369 year: 2006 end-page: 376 article-title: Shortening and prolongation of saccade latencies following microsaccades publication-title: Exp. Brain Res. – volume: 82 start-page: 3254 year: 1999 end-page: 3267 article-title: Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus publication-title: J. Neurophysiol. – volume: 102 start-page: 2410 year: 2009 end-page: 2422 article-title: Response properties of fixation neurons and their location in the frontal eye field in the monkey publication-title: J. Neurophysiol. – volume: 13 start-page: 256 year: 2001 end-page: 271 article-title: A model of saccade initiation based on the competitive integration of exogenous and endogenous signals in the superior colliculus publication-title: J. Cogn. Neurosci. – volume: 12 start-page: 1359 year: 1999 end-page: 1375 article-title: A distributed model of the saccade system: simulations of temporally perturbed saccades using position and velocity feedback publication-title: Neural Netw. – volume: 42 start-page: 2533 year: 2002 end-page: 2545 article-title: Microsaccades as an overt measure of covert attention shifts publication-title: Vis. Res. – volume: 5 start-page: 218 year: 2004 end-page: 228 article-title: Look away: the anti‐saccade task and the voluntary control of eye movement publication-title: Nat. Rev. Neurosci. – volume: 17 start-page: 9706 year: 1997 end-page: 9725 article-title: A neural model of multimodal adaptive saccadic eye movement control by superior colliculus publication-title: J. Neurosci. – volume: 43 start-page: 1035 year: 2003 end-page: 1045 article-title: Microsaccades uncover the orientation of covert attention publication-title: Vis. Res. – year: 1994 – volume: 13 start-page: 1549 year: 2010 end-page: 1553 article-title: Microsaccades precisely relocate gaze in a high visual acuity task publication-title: Nat. Neurosci. – volume: 78 start-page: 1108 year: 1997 end-page: 1119 article-title: Effect of remote distractors on saccade programming: evidence for an extended fixation zone publication-title: J. Neurophysiol. – year: 1986 – volume: 77 start-page: 215 year: 2005 end-page: 251 article-title: From brainstem to cortex: computational models of saccade generation circuitry publication-title: Prog. Neurobiol. – volume: 142 start-page: 439 year: 2002 end-page: 462 article-title: The brainstem burst generator for saccadic eye movements publication-title: Exp. Brain Res. – volume: 413 start-page: 55 year: 1999 end-page: 67 article-title: Projections from the superior colliculus motor map to omnipause neurons in monkey publication-title: J. Comp. Neurol. – volume: 45 start-page: 417 year: 1981 end-page: 442 article-title: A quantitative analysis of generation of saccadic eye movements by burst neurons publication-title: J. Neurophysiol. – volume: 39 start-page: 87 year: 1981 end-page: 96 article-title: Natural and drug‐induced variations of velocity and duration of human saccadic eye movements: evidence for a control of the neural pulse generator by local feedback publication-title: Biol. Cybern. – volume: 49 start-page: 297 year: 2006 end-page: 305 article-title: Microsaccades counteract visual fading during fixation publication-title: Neuron – start-page: 337 year: 1975 end-page: 374 – volume: 31 start-page: 4379 year: 2011 end-page: 4387 article-title: Distinctive features of saccadic intrusions and microsaccades in progressive supranuclear palsy publication-title: J. Neurosci. – volume: 8 start-page: 1 year: 2008 end-page: 23 article-title: Toward a model of microsaccade generation: the case of microsaccadic inhibition publication-title: J. Vis. – volume: 13 start-page: 1075 year: 1973 end-page: 1086 article-title: The smallest voluntary saccade: implications for fixation publication-title: Vis. Res. – volume: 79 start-page: 215 year: 1998 end-page: 230 article-title: Neural network simulations of the primate oculomotor system III. A one‐dimensional, one‐directional model of the superior colliculus publication-title: Biol. Cybern. – volume: 46 start-page: 3430 year: 2006 end-page: 3442 article-title: Activity of omnipause neurons during “staircase saccades” elicited by persistent microstimulation of the superior colliculus publication-title: Vis. Res. – volume: 30 start-page: 15834 –15842 year: 2010 article-title: The absence of eye muscle fatigue indicates that the nervous system compensates for non‐motor disturbances of oculomotor function publication-title: J. Neurosci. – volume: 8 start-page: 14 year: 2008 end-page: 21 article-title: Saccades and microsaccades during visual fixation, exploration and search: foundations for a common saccadic generator publication-title: J. Vis. – volume: 3 start-page: 1 year: 2009 end-page: 12 article-title: The behavioural and neurophysiological modulation of microsaccades in monkeys publication-title: J. Eye Mov. Res. – year: 2000 – volume: 46 start-page: 987 year: 1956 end-page: 988 article-title: Determination of the stimuli for involuntary drifts and saccadic eye movements publication-title: J. Opt. Soc. Am. – volume: 4 start-page: e5163 year: 2009 article-title: Microsaccade rate varies with subjective visibility during motion‐induced blindness publication-title: PLoS ONE – year: 1977 – volume: 82 start-page: 1198 year: 1999 end-page: 1208 article-title: Saccade‐related inhibitory input to pontine omnipause neurons: an intracellular study in alert cats publication-title: J. Neurophysiol. – volume: 70 start-page: 559 year: 1993 end-page: 575 article-title: Fixation cells in monkey superior colliculus: I. Characteristics of cell discharge publication-title: J. Neurophysiol. – volume: 59 start-page: 1455 year: 1988 end-page: 1475 article-title: A new local feedback model of the saccadic burst generator publication-title: J. Neurophysiol. – volume: 32 start-page: 463 year: 2009 end-page: 475 article-title: Microsaccades: a neurophysiological analysis publication-title: Trends Neurosci. – volume: 12 start-page: 1795 year: 1972 end-page: 1808 article-title: Eye movements evoked by collicular stimulation in the alert monkey publication-title: Vis. Res. – volume: 150 start-page: 1459 year: 1965 end-page: 1460 article-title: Microsaccades and the velocity–amplitude relationship for saccadic eye movements publication-title: Science – volume: 11 start-page: 1159 year: 1998 end-page: 1174 article-title: A neural model of the saccade generator in the reticular formation publication-title: Neural Netw. – volume: 9 start-page: 683 year: 1969 end-page: 693 article-title: Comparison of saccadic eye movements during fixation and reading publication-title: Vis. Res. – volume: 8 start-page: 13.1–17 year: 2008 article-title: Fixational eye movements predict the perceived direction of ambiguous apparent motion publication-title: J. Vis. – volume: 103 start-page: 7192 year: 2006 end-page: 7197 article-title: Microsaccades are triggered by low retinal image slip publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 119 start-page: 1 year: 1953 end-page: 17 article-title: Involuntary eye movements during fixation publication-title: J. Physiol. – volume: 70 start-page: 810 year: 2008 end-page: 812 article-title: Suppression of saccadic intrusions in hereditary ataxia by memantine publication-title: Neurology – volume: 7 start-page: 1115 year: 1994 end-page: 1135 article-title: Two‐dimensional neural network model of the primate saccadic system publication-title: Neural Netw. – year: 2006 – year: 2009 article-title: Dynamic characterization of microsaccades during near versus far viewing. Program No. 405.2.2009 Neuroscience Meeting Planner. Chicago, IL publication-title: Soc. Neurosci – volume: 11 start-page: 245 year: 1996 end-page: 269 article-title: A distributed model of the saccadic system: the effects of internal noise publication-title: Neurocomputing – volume: 5 start-page: 871 year: 1992 end-page: 890 article-title: Dynamic feedback to the superior colliculus in a neural network model of the gaze control system publication-title: Neural Netw. – volume: 33 start-page: 2101 year: 2011 end-page: 2113 article-title: Mechanisms for generating and compensating for the smallest possible saccades publication-title: Eur. J. Neurosci. – volume: 105 start-page: 883 year: 2010 end-page: 895 article-title: The fastigial oculomotor region and the control of foveation during fixation publication-title: J. Neurophysiol. – volume: 155 start-page: 1577 year: 1967 end-page: 1579 article-title: Voluntary control of microsaccades during maintained monocular fixation publication-title: Science – volume: 11 start-page: 1175 year: 1998 end-page: 1190 article-title: Distributed model of control of saccades by superior colliculus and cerebellum publication-title: Neural Netw. – volume: 181 start-page: 810 year: 1973 end-page: 819 article-title: Miniature eye movement publication-title: Science – volume: 2 start-page: 153 year: 1992 end-page: 175 article-title: A cortico‐subcortical model for generation of spatially accurate sequential saccades publication-title: Cereb. Cortex – volume: 117 start-page: 181 year: 1997 end-page: 191 article-title: Analysis of the step response of the saccadic feedback: computational models publication-title: Exp. Brain Res. – ident: e_1_2_7_19_2 doi: 10.1126/science.181.4102.810 – ident: e_1_2_7_12_2 doi: 10.1073/pnas.0509557103 – ident: e_1_2_7_35_2 doi: 10.1126/science.276.5319.1693 – ident: e_1_2_7_45_2 doi: 10.1152/jn.1999.82.6.3254 – ident: e_1_2_7_43_2 doi: 10.1152/jn.1993.70.2.559 – ident: e_1_2_7_28_2 doi: 10.1007/s00221-005-0148-1 – ident: e_1_2_7_48_2 doi: 10.1007/BF00336734 – ident: e_1_2_7_36_2 doi: 10.1002/(SICI)1096-9861(19991011)413:1<55::AID-CNE3>3.0.CO;2-K – ident: e_1_2_7_52_2 doi: 10.1016/S0893-6080(98)00096-3 – ident: e_1_2_7_53_2 doi: 10.1162/089892901564306 – ident: e_1_2_7_3_2 doi: 10.1016/j.neuron.2005.11.033 – ident: e_1_2_7_17_2 doi: 10.1126/science.1166112 – ident: e_1_2_7_26_2 doi: 10.1152/jn.1997.78.2.1108 – ident: e_1_2_7_33_2 doi: 10.1212/01.wnl.0000286952.01476.eb – ident: e_1_2_7_6_2 doi: 10.1523/JNEUROSCI.2600-10.2011 – ident: e_1_2_7_7_2 doi: 10.1016/j.tins.2009.05.006 – ident: e_1_2_7_20_2 doi: 10.1113/jphysiol.1953.sp004824 – ident: e_1_2_7_63_2 doi: 10.1016/S0893-6080(05)80084-X – year: 2009 ident: e_1_2_7_42_2 article-title: Dynamic characterization of microsaccades during near versus far viewing. Program No. 405.2.2009 Neuroscience Meeting Planner. Chicago, IL publication-title: Soc. Neurosci contributor: fullname: Van Horn M.R. – ident: e_1_2_7_31_2 doi: 10.1038/nrn1345 – ident: e_1_2_7_55_2 doi: 10.1016/S0893-6080(98)00071-9 – ident: e_1_2_7_21_2 doi: 10.1126/science.150.3702.1459 – ident: e_1_2_7_11_2 doi: 10.1111/j.1460-9568.2011.07694.x – ident: e_1_2_7_27_2 doi: 10.1167/8.14.13 – ident: e_1_2_7_9_2 doi: 10.1167/8.14.21 – ident: e_1_2_7_58_2 doi: 10.1016/S0893-6080(05)80162-5 – ident: e_1_2_7_4_2 doi: 10.1167/8.14.15 – ident: e_1_2_7_25_2 doi: 10.1016/S0042-6989(02)00263-8 – ident: e_1_2_7_60_2 doi: 10.1016/S0893-6080(99)00077-5 – volume-title: Contemporary ocular motor and vestibular research: A tribute to David A. Robinson year: 1994 ident: e_1_2_7_61_2 contributor: fullname: Optican L.M. – ident: e_1_2_7_15_2 doi: 10.1038/nn.2663 – ident: e_1_2_7_22_2 doi: 10.1016/0042-6989(69)90125-4 – ident: e_1_2_7_24_2 doi: 10.1016/S0042-6989(03)00084-1 – ident: e_1_2_7_5_2 doi: 10.1364/JOSA.46.000987 – ident: e_1_2_7_18_2 doi: 10.1126/science.155.3769.1577 – volume-title: Control of Gaze by Brain Stem Neurons year: 1977 ident: e_1_2_7_39_2 contributor: fullname: Van Gisbergen J.A.M. – ident: e_1_2_7_32_2 doi: 10.1523/JNEUROSCI.3901-10.2010 – ident: e_1_2_7_30_2 doi: 10.1007/s00221-001-0912-9 – ident: e_1_2_7_56_2 doi: 10.1152/jn.1999.82.2.999 – ident: e_1_2_7_34_2 doi: 10.1016/0042-6989(72)90070-3 – ident: e_1_2_7_62_2 doi: 10.1093/cercor/2.2.153 – volume: 17 start-page: 9706 year: 1997 ident: e_1_2_7_57_2 article-title: A neural model of multimodal adaptive saccadic eye movement control by superior colliculus publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.17-24-09706.1997 contributor: fullname: Grossberg S. – ident: e_1_2_7_46_2 doi: 10.1016/j.visres.2006.05.014 – ident: e_1_2_7_51_2 doi: 10.1007/s002210050214 – ident: e_1_2_7_59_2 doi: 10.1016/0925-2312(95)00068-2 – volume: 3 start-page: 1 year: 2009 ident: e_1_2_7_41_2 article-title: The behavioural and neurophysiological modulation of microsaccades in monkeys publication-title: J. Eye Mov. Res. contributor: fullname: Brien D.C. – ident: e_1_2_7_29_2 doi: 10.1038/nrn986 – ident: e_1_2_7_16_2 doi: 10.1016/j.pneurobio.2005.11.001 – ident: e_1_2_7_44_2 doi: 10.1152/jn.00234.2009 – ident: e_1_2_7_14_2 doi: 10.1371/journal.pone.0005163 – ident: e_1_2_7_50_2 doi: 10.1152/jn.1988.59.5.1455 – volume-title: Neural Dynamics of Adaptive Sensory‐Motor Control: Ballistic Eye Movements year: 1986 ident: e_1_2_7_49_2 contributor: fullname: Grossberg S. – ident: e_1_2_7_8_2 doi: 10.1016/0042-6989(73)90145-4 – ident: e_1_2_7_40_2 doi: 10.1152/jn.1981.45.3.417 – volume: 105 start-page: 883 year: 2010 ident: e_1_2_7_13_2 article-title: The fastigial oculomotor region and the control of foveation during fixation publication-title: J. Neurophysiol. contributor: fullname: Guerrasio L. – volume-title: The Neurology of Eye Movements year: 2006 ident: e_1_2_7_2_2 contributor: fullname: Leigh R.J. – ident: e_1_2_7_37_2 doi: 10.1007/BF00227637 – ident: e_1_2_7_54_2 doi: 10.1007/s004220050472 – ident: e_1_2_7_38_2 doi: 10.1152/jn.1999.82.3.1198 – volume-title: Reading as Perceptual Process year: 2000 ident: e_1_2_7_23_2 contributor: fullname: Reingold E.M. – ident: e_1_2_7_10_2 doi: 10.1167/8.11.5 – start-page: 337 volume-title: Basic Mechanisms of Ocular Motility and Their Clinical Implications year: 1975 ident: e_1_2_7_47_2 contributor: fullname: Robinson D.A. |
SSID | ssj0012847 |
Score | 2.3933926 |
SecondaryResourceType | review_article |
Snippet | Saccades are rapid eye movements that change the line of sight between successive points of fixation. Even as we attempt to fixate our gaze precisely, small... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 107 |
SubjectTerms | Animals burst generator burst neurons Bursting Electrophysiological Phenomena Eye movements Fixation Fixation, Ocular - physiology fixational eye movements Humans Inhibition Line of sight Models, Neurological Neurons Neurons - physiology omnipause Pathways Proposals Raphe Nuclei - physiology Saccades - physiology Sensory perception Superior Colliculi - physiology superior colliculus Visual Pathways - physiology |
Title | Triggering mechanisms in microsaccade and saccade generation: a novel proposal |
URI | https://api.istex.fr/ark:/67375/WNG-M927BTH3-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1749-6632.2011.06177.x https://www.ncbi.nlm.nih.gov/pubmed/21950983 https://www.proquest.com/docview/1767750222 https://search.proquest.com/docview/1328509380 https://search.proquest.com/docview/894812550 |
Volume | 1233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTUi8wDa-AgMZCSF4SJXYcRzzNj5GhbQ-QAfjyXISp6q6plPTosFfz52TRnQaEkK8RYptxef7-Nk5_w7geWazHKOwCwl7h1TSOMxsJENZqDQX1qrUn-mejNLhafLxTJ51-U90F6blh-gP3MgyvL8mA7d5s23kKtEhRkzeMXFiMFYDwpOxUJTd9e5TzyTlvbB3ygqdMoKaq0k91wy0Fal2SeiX18HQbVTrw9LxHZhtJtRmo8wG61U-KH5e4Xr8PzPeg9sdemVHrbrtww1XH8DNtp7ljwPY7zxFw152dNav7sJovJxOJp7xkM0dXTSeNvOGTWs2p2TAxhaUos9sXbLN88R3JpV5zSyrF9_dObugcg6NPb8Hp8fvx2-HYVfFISykIBqIqopVEYucVy7mpeTaaS15qZMoT5QrCAJGpZN0KT-2AuFrWUlsk_LIlVJU4j7s1IvaPQRWFRg8c55Z4sTXTurEIpqJHe75nMvKNIB4s2LmoiXrML9tclB4hoRnSHjGC89cBvDCL23fwS5nlOympPk6-mBONFdvxkNhvgRwuFl709l5g2OmCjEXgqwAnvWv0ULpt4ut3WKNbQTPEJaJLAqA_aFNRqQ5uLvDJg9ateq_h1OhXp2JAJRXjr-emRl9O_pMj4_-uedjuNWeoVNO3SHsrJZr9wRB2Cp_6s3rF5uOHpI |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-hTQhegI2vwAAjIQQPqRI7jhPexscosPYBOtieLCdxqmptOjUtGvz13DlpRKchIcRbpNhWfPbd_Xw5_w7gWWKSDL2w9Ql7-1TS2E9MIH2ZqzgTxqjYxXQHw7h_FH08lsdtOSC6C9PwQ3QBN9IMZ69JwSkgvanlKkp9dJm8peJEb6x6CCi3UfsF1XF4-7njknJ22JllhWYZYc3FtJ5LRtrwVdsk9vPLgOgmrnWO6eAmTNdTavJRTnurZdbLf15ge_xPc74FN1oAy_abHbcDV2y1C1ebkpY_dmGnNRY1e9EyWr-8DcPRYjIeO9JDNrN013hSz2o2qdiM8gFrk1OWPjNVwdbPY9eZds0rZlg1_26n7IwqOtRmegeODt6N3vT9tpCDn0tBTBBlGao8FBkvbcgLyVObppIXaRRkkbI5ocCgsJLu5YdGIIItSoltYh7YQopS3IWtal7Z-8DKHP1nxhNDtPiplWlkENCEFo991iZF7EG4XjJ91vB16N_OOSg8TcLTJDzthKfPPXju1rbrYBanlO-mpP42fK8HKVevR32hv3qwt1583ap6jWPGCmEX4iwPnnavUUnpz4up7HyFbQRPEJmJJPCA_aFNQrw5eMDDJveafdV9D6davWkiPFBud_z1zPTwZP8LPT74555P4Fp_NDjUhx-Gnx7C9SakTil2e7C1XKzsI8Rky-yx07VfiTsiqg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5Cm0C8MDZuGQOMhBA8pEqcOE54G5dSLosQdGw8WU7iVFXXtGpaNPj1nOOkEZ2GhBBvkWJb8fG5fHaOvwPwJNZxhlHYuIS9XSpp7MbaE67IZZQFWsvInukepdHgOHx_Kk7b_Ce6C9PwQ3QHbmQZ1l-Tgc-LctPIZZi4GDF5y8SJwVj2EE9uhxECYQJInzsqKeuGrVeW6JUR1VzM6rlkpI1QtU1SP78Mh27CWhuX-jswWc-oSUeZ9FbLrJf_vED2-H-mfBNutPCVHTb6tgtXTLUHV5uClj_2YLd1FTV71vJZP78F6XAxHo0s5SGbGrppPK6nNRtXbErZgLXOKUef6apg6-eR7Uw684JpVs2-mzM2p3oOtT67Dcf9N8NXA7ct4-DmIiAeiLL0Ze4HGS-NzwvBE5MkghdJ6GWhNDlhQK8wgm7l-zpA_FqUAttE3DOFCMrgDmxVs8rcA1bmGD0zHmsixU-MSEKNcMY3uOkzJi4iB_z1iql5w9ahftvloPAUCU-R8JQVnjp34Kld2q6DXkwo200KdZK-VUcJly-Hg0B9deBgvfaqNfQax4wkgi5EWQ487l6jidJ_F12Z2QrbBDxGXBbEngPsD21iYs3B7R02uduoVfc9nCr1JnHggLTK8dczU-m3wy_0uP_PPR_BtU-v--rju_TDfbjenKdTft0BbC0XK_MAAdkye2gt7RfqYiFZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triggering+mechanisms+in+microsaccade+and+saccade+generation%3A+a+novel+proposal&rft.jtitle=Annals+of+the+New+York+Academy+of+Sciences&rft.au=Otero-Millan%2C+Jorge&rft.au=Macknik%2C+Stephen+L&rft.au=Serra%2C+Alessandro&rft.au=Leigh%2C+R+John&rft.date=2011-09-01&rft.eissn=1749-6632&rft.volume=1233&rft.spage=107&rft.epage=116&rft_id=info:doi/10.1111%2Fj.1749-6632.2011.06177.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0077-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0077-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0077-8923&client=summon |