Use of CRISPR‐Cas tools to engineer Trichoderma species
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Neverthele...
Saved in:
Published in | Microbial biotechnology Vol. 15; no. 10; pp. 2521 - 2532 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
John Wiley & Sons, Inc
01.10.2022
John Wiley and Sons Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.
The recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. |
---|---|
AbstractList | Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma . Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma . Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. The recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma . Abstract Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. The recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. |
Author | Gong, Ming Ma, Liang Wu, Yingying Wang, Ying Bao, Dapeng Zou, Gen Chen, Hongyu |
AuthorAffiliation | 1 Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi Shanghai Academy of Agricultural Sciences Shanghai China 2 Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences Zhejiang A&F University Lin'an Hangzhou China |
AuthorAffiliation_xml | – name: 2 Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences Zhejiang A&F University Lin'an Hangzhou China – name: 1 Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi Shanghai Academy of Agricultural Sciences Shanghai China |
Author_xml | – sequence: 1 givenname: Ying surname: Wang fullname: Wang, Ying organization: Shanghai Academy of Agricultural Sciences – sequence: 2 givenname: Hongyu surname: Chen fullname: Chen, Hongyu organization: Shanghai Academy of Agricultural Sciences – sequence: 3 givenname: Liang surname: Ma fullname: Ma, Liang organization: Zhejiang A&F University – sequence: 4 givenname: Ming surname: Gong fullname: Gong, Ming organization: Shanghai Academy of Agricultural Sciences – sequence: 5 givenname: Yingying surname: Wu fullname: Wu, Yingying organization: Shanghai Academy of Agricultural Sciences – sequence: 6 givenname: Dapeng surname: Bao fullname: Bao, Dapeng organization: Shanghai Academy of Agricultural Sciences – sequence: 7 givenname: Gen orcidid: 0000-0001-5574-1824 surname: Zou fullname: Zou, Gen email: zougen@sibs.ac.cn organization: Shanghai Academy of Agricultural Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35908288$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEQxy1URB9w5oZW4sIlrd-PCxKNeEQqApX0bHlnJ6mjzTrYG1BvfAQ-I5-E3aat2koIH-zR-P__aTQzh2SvSx0S8pLRYzacE2YUmxjH1DGTjOsn5OAus3cv3ieHpawo1ZQq_ozsC-Wo5dYeEHdRsEqLano--_b1_M-v39NQqj6ldrwr7JaxQ8zVPEe4TA3mdajKBiFieU6eLkJb8MXNe0QuPryfTz9Nzr58nE3fnU1ACaknzQIMAKPgkBtlguSNkAEVdRLrGrXlTgTHobZBDJFsODgFtha1UFRCI47IbMdtUlj5TY7rkK98CtFfJ1Je-pD7CC16bUEHSR00VMiaGycdmDpoiqJuRA0D6-2OtdnWa2wAuz6H9gH04U8XL_0y_fBOMessHwBvbgA5fd9i6f06FsC2DR2mbfFcO201p3SUvn4kXaVt7oZWeW6Y1YYJIwfVq_sV3ZVyO6FBoHYCyKmUjAsPsQ99TGOBsfWM-nET_DhrP87aX2_C4Dt55LtF_9uhd46fscWr_8n959M53xn_Ah8swto |
CitedBy_id | crossref_primary_10_1186_s12934_023_02149_4 crossref_primary_10_3389_fmicb_2023_1169884 crossref_primary_10_1016_j_jafr_2024_101324 crossref_primary_10_1021_acs_chemrev_4c00567 crossref_primary_10_3390_jof8101000 crossref_primary_10_1016_j_biortech_2023_128888 crossref_primary_10_1016_j_biortech_2023_129449 crossref_primary_10_3389_fmicb_2023_1160551 crossref_primary_10_1016_j_funbio_2025_101549 crossref_primary_10_3390_biology12020299 crossref_primary_10_1016_j_micres_2023_127443 crossref_primary_10_1007_s12223_024_01153_4 crossref_primary_10_3390_jof9080834 crossref_primary_10_1016_j_biocontrol_2023_105281 crossref_primary_10_3389_fmicb_2023_1141869 crossref_primary_10_3390_horticulturae10080805 |
Cites_doi | 10.1038/srep26871 10.3390/md20030177 10.1007/s11103-014-0188-7 10.1186/s13068-020-01732-w 10.1186/1471-2164-15-204 10.1016/j.procbio.2017.02.012 10.1038/s41586-019-1711-4 10.1371/journal.pgen.1007322 10.1186/s12934-020-01411-3 10.1186/s12896-018-0498-y 10.1016/0378-1119(87)90110-7 10.1038/s41598-019-41573-8 10.1016/S0167-7012(02)00126-4 10.1007/978-1-0716-1048-0_8 10.1111/1751-7915.13652 10.1007/978-1-0716-1323-8_12 10.1038/nbt.2652 10.1016/j.meteno.2015.03.001 10.1016/j.jip.2021.107626 10.1016/j.cels.2015.02.001 10.1016/j.plaphy.2015.12.017 10.1021/jacs.1c03988 10.1038/s41598-018-32702-w 10.1021/acs.jcim.1c01562 10.1128/JB.186.7.2038-2045.2004 10.1016/j.micpath.2020.104714 10.1186/1471-2164-9-430 10.1038/nbt1403 10.1038/sj.emboj.7600385 10.1038/s41598-017-10052-3 10.1002/jobm.202000749 10.3389/fmicb.2021.723828 10.1111/jam.14457 10.1186/s13068-017-0878-x 10.1186/s40694-021-00119-2 10.1038/nbt0998-839 10.1186/s12934-017-0785-7 10.1007/BF00309596 10.1038/nrg3409 10.1186/gb-2011-12-4-r40 10.1007/BF00312863 10.1038/s41598-020-80186-4 10.1016/j.meegid.2016.09.026 10.1126/sciadv.abl5166 10.1007/s00299-016-1982-2 10.1080/15476286.2015.1132139 10.1007/s00253-006-0603-3 10.1002/jobm.201500758 10.1007/BF00336788 10.1093/jimb/kuab014 10.1007/s10295-017-1963-7 10.1007/BF00939033 10.3390/bioengineering3020013 10.3390/md18010009 10.1128/mSphere.00002-19 10.1007/s00294-003-0454-8 10.1016/j.riam.2016.06.004 10.1038/ncomms15179 10.1186/s13068-019-1637-y 10.2323/jgam.2019.02.001 10.1021/acssynbio.1c00570 10.1016/j.synbio.2022.02.002 10.1007/s10529-020-02887-0 10.1007/s10529-020-03024-7 10.1146/annurev-phyto-082712-102353 10.1016/j.biortech.2020.124119 10.1126/science.1231143 10.1016/j.biotechadv.2013.08.005 10.1016/j.bj.2019.10.005 10.1111/j.1365-2958.1990.tb00654.x 10.1186/s13068-022-02161-7 10.1186/s12864-019-5680-7 10.1038/srep45763 10.1128/AEM.01408-16 10.1146/annurev.micro.112408.134123 10.1046/j.1472-765x.2000.00715.x 10.1099/mic.0.054031-0 10.1093/nar/gkt135 10.1101/gr.171322.113 10.1139/cjm-2020-0438 10.3390/md19120689 10.1128/spectrum.02321-21 10.1128/Spectrum.00663-21 10.1039/D1GC03594K 10.1038/srep35766 10.1038/celldisc.2015.7 10.1186/s12934-016-0507-6 10.1016/j.fgb.2019.04.016 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7T7 7X7 7XB 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S P64 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS RC3 7X8 5PM DOA |
DOI | 10.1111/1751-7915.14126 |
DatabaseName | Wiley Online Library Open Access (Activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts ProQuest Engineering Collection Health Research Premium Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | CRISPR‐Cas tools in Trichoderma |
EISSN | 1751-7915 |
EndPage | 2532 |
ExternalDocumentID | oai_doaj_org_article_68c6a409cd034b27949c7ba60e3bd3bc PMC9518982 35908288 10_1111_1751_7915_14126 MBT214126 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: The “Belt and Road” International Cooperation Project of Science and Technology Innovation, Shanghai funderid: 20310741900; 18390741000 – fundername: National Natural Science Foundation of China funderid: 31741003; 31902089 – fundername: Shanghai Agriculture Applied Technology Development Program, China funderid: G2018‐02‐08‐00‐12‐F01555 – fundername: ; grantid: 31741003; 31902089 – fundername: The “Belt and Road” International Cooperation Project of Science and Technology Innovation, Shanghai grantid: 20310741900; 18390741000 – fundername: Shanghai Agriculture Applied Technology Development Program, China grantid: G2018‐02‐08‐00‐12‐F01555 |
GroupedDBID | --- 0R~ 123 1OC 24P 29M 31~ 4.4 53G 5DZ 5VS 7X7 8-1 8FE 8FG 8FH 8FI 8FJ A8Z AAMMB AANHP AAZKR ABDBF ABJCF ABUWG ACBWZ ACCMX ACGFO ACIWK ACPRK ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADPDF ADRAZ ADZMN AEFGJ AEGXH AENEX AEUYN AFKRA AFRAH AGQPQ AGXDD AHMBA AIAGR AIDQK AIDYY ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS ASPBG AVUZU AVWKF AZFZN BAWUL BBNVY BCNDV BDRZF BENPR BGLVJ BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 D-9 DIK EBD EBS EJD EMOBN ESX F5P FEDTE FYUFA GODZA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HYE IAO IHR ITC KQ8 L6V LH4 LK8 LW6 M48 M7P M7S ML0 MM. O9- OIG OK1 OVD OVEED P2P PHGZM PHGZT PIMPY PQQKQ PROAC PTHSS RNS RPM SV3 TEORI TUS UKHRP AAHHS AAYXX ACCFJ AEEZP AEQDE AIWBW AJBDE CITATION CGR CUY CVF ECM EIF NPM PQGLB 3V. 7QO 7T7 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 WIN 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c5346-dfc7cc10c9e2757a42d34ae5094ebbe68293a92cb8a393a4d2c95c8b3b3504cd3 |
IEDL.DBID | M48 |
ISSN | 1751-7915 |
IngestDate | Wed Aug 27 01:26:17 EDT 2025 Thu Aug 21 18:39:57 EDT 2025 Tue Aug 05 09:42:20 EDT 2025 Wed Aug 13 11:03:13 EDT 2025 Mon Jul 21 05:57:36 EDT 2025 Tue Jul 01 03:38:03 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Sun Jul 06 04:45:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | Attribution 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5346-dfc7cc10c9e2757a42d34ae5094ebbe68293a92cb8a393a4d2c95c8b3b3504cd3 |
Notes | Ying Wang, Hongyu Chen and Liang Ma contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-5574-1824 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.14126 |
PMID | 35908288 |
PQID | 2718671374 |
PQPubID | 1016378 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_68c6a409cd034b27949c7ba60e3bd3bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9518982 proquest_miscellaneous_2696862002 proquest_journals_2718671374 pubmed_primary_35908288 crossref_citationtrail_10_1111_1751_7915_14126 crossref_primary_10_1111_1751_7915_14126 wiley_primary_10_1111_1751_7915_14126_MBT214126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2022 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: October 2022 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bedford – name: Hoboken |
PublicationTitle | Microbial biotechnology |
PublicationTitleAlternate | Microb Biotechnol |
PublicationYear | 2022 |
Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc – name: Wiley |
References | 1993; 24 2017; 7 1991; 19 2017; 8 2021; 67 2021; 23 1990; 17 2002; 51 2017; 44 2004; 7 2019; 12 2004; 23 2008; 9 2019; 19 2020; 128 2016; 100 2014; 24 2019; 18 2020; 13 2011; 12 2022; 20 2007; 73 2021; 2290 2016; 35 2020; 19 1998; 16 2021; 319 2010; 64 2018; 8 2013; 14 2019; 20 2013; 51 2017; 34 2008; 26 2014; 15 2021; 150 2016; 82 2021; 2, 716511 2020; 43 2016; 45 2021; 9 2015; 2 2015; 1 2021; 8 2021; 48 2004; 186 2019; 9 2021; 43 2020; 42 2004; 45 2013; 41 2019; 4(1), e00002‐19 2021; 183 2021; 143 2014; 85 2016; 15 1994; 41 2016; 13 2022; 20(3), 213 2016; 56 2021; 14 2016; 6 2021; 2234 2021; 12 2021; 11 2016; 3 2022 2013; 339 1987; 61 2021 2006; 44 2022; 62 2017; 16 2022; 7 2017; 10 2022; 8 2000; 30 2013; 31 2021; 19 2017; 56 2019; 576 2022; 15 2022; 10 2013 2020; 65 2021; 61 2012; 158 2019; 130 2018; 14 1990; 4 e_1_2_8_28_1 Primerano P. (e_1_2_8_59_1) 2021 Cardoza R.E. (e_1_2_8_10_1) 2006; 44 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_81_1 Benitez T. (e_1_2_8_3_1) 2004; 7 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_85_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_91_1 e_1_2_8_95_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 Rush T.A. (e_1_2_8_62_1) 2021; 2 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_93_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_44_1 Liu S.Z. (e_1_2_8_50_1) 2022; 20 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 Wensing L. (e_1_2_8_77_1) 2019; 4 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_92_1 e_1_2_8_94_1 e_1_2_8_90_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_71_1 |
References_xml | – volume: 23 start-page: 4051 year: 2004 end-page: 4060 article-title: MicroRNA genes are transcribed by RNA polymerase II publication-title: The EMBO Journal – volume: 128 start-page: 255 year: 2020 end-page: 264 article-title: Molecular tagging of biocontrol fungus and its colonization in soil publication-title: Journal of Applied Microbiology – volume: 130 start-page: 43 year: 2019 end-page: 53 article-title: CRISPR‐Cas9 genome editing approaches in filamentous fungi and oomycetes publication-title: Fungal Genetics and Biology – volume: 15 start-page: 204 year: 2014 article-title: Identification of mycoparasitism‐related genes against the phytopathogen through transcriptome and expression profile analysis in publication-title: BMC Genomics – volume: 16 start-page: 839 year: 1998 end-page: 842 article-title: ‐mediated transformation of filamentous fungi publication-title: Nature Biotechnology – year: 2021 – volume: 7 start-page: 9250 year: 2017 article-title: Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR‐Cas9 technology publication-title: Scientific Reports – year: 2022 article-title: Building a Versatile Protein Production Platform Using Engineered publication-title: ACS Synthetic Biology – volume: 44 start-page: 383 year: 2006 end-page: 395 article-title: A comparison of the phenotypic and genetic stability of recombinant spp. generated by protoplast‐ and ‐mediated transformation publication-title: Journal of Microbiology – volume: 41 start-page: 4336 year: 2013 end-page: 4343 article-title: Genome engineering in using CRISPR‐Cas systems publication-title: Nucleic Acids Research – volume: 2234 start-page: 87 year: 2021 end-page: 98 article-title: CRISPR/Cas9‐mediated genome editing of publication-title: Methods in Molecular Biology (Clifton, N.J.) – volume: 14 year: 2018 article-title: Massive lateral transfer of genes encoding plant cell wall‐degrading enzymes to the mycoparasitic fungus from its plant‐associated hosts publication-title: PLoS Genetics – volume: 2290 start-page: 171 year: 2021 end-page: 185 article-title: Genetic transformation of spp publication-title: Methods in Molecular Biology – volume: 183 year: 2021 article-title: Role of as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer publication-title: Journal of Invertebrate Pathology – volume: 2 start-page: 13 year: 2015 end-page: 22 article-title: CRISPR‐Cas system enables fast and simple genome editing of industrial strains publication-title: Metabolic Engineering Communications – volume: 48 year: 2021 article-title: Reduced viscosity mutants of with improved industrial fermentation characteristics publication-title: Journal of Industrial Microbiology & Biotechnology – volume: 19 start-page: 689 year: 2021 article-title: Novel harziane diterpenes from deep‐sea sediment fungus sp SCSIOW21 and their potential anti‐inflammatory effects publication-title: Marine Drugs – volume: 56 start-page: 57 year: 2017 end-page: 61 article-title: CRISPR‐Cas9 assisted gene disruption in the higher fungus species publication-title: Process Biochemistry – volume: 20 start-page: 177 year: 2022 article-title: Sesquiterpene and Sorbicillinoid glycosides from the endophytic fungus EN‐586 derived from the marine Red Alga Laurencia obtusa publication-title: Marine Drugs – volume: 45 start-page: 54 year: 2004 end-page: 60 article-title: Gene disruption in via ‐mediated transformation publication-title: Current Genetics – volume: 6 year: 2016 article-title: Genome engineering in the yeast pathogen using the CRISPR‐Cas9 system publication-title: Scientific Reports – volume: 13 start-page: 119 year: 2016 end-page: 127 article-title: U6 snRNA intron insertion occurred multiple times during fungi evolution publication-title: RNA Biology – volume: 26 start-page: 553 year: 2008 end-page: 560 article-title: Genome sequencing and analysis of the biomass‐degrading fungus (syn. ) publication-title: Nature Biotechnology – volume: 19 start-page: 359 year: 1991 end-page: 365 article-title: Isolation of uridine auxotrophs from and efficient transformation with the cloned and genes publication-title: Current Genetics – volume: 67 start-page: 406 year: 2021 end-page: 414 article-title: Strain improvement of spp. through two‐step protoplast fusion for cellulase production enhancement publication-title: Canadian Journal of Microbiology – volume: 82 start-page: 6247 year: 2016 end-page: 6257 article-title: Identification of the main regulator responsible for synthesis of the typical yellow pigment produced by publication-title: Applied and Environmental Microbiology – volume: 6 start-page: 26871 year: 2016 article-title: Highly specific targeted mutagenesis in plants using Cas9 publication-title: Scientific Reports – volume: 10 year: 2022 article-title: Development of an efficient C‐to‐T base‐editing system and its application to cellulase transcription factor precise engineering in thermophilic fungus publication-title: Microbiology Spectrum – volume: 14 start-page: 80 year: 2013 article-title: Technology: a CRISPR genome‐editing tool publication-title: Nature Reviews. Genetics – volume: 24 start-page: 349 year: 1993 end-page: 356 article-title: Biolistic transformation of and using plasmid and genomic DNA publication-title: Current Genetics – volume: 19 start-page: 156 year: 2020 article-title: Engineering marine fungi for conversion of D‐galacturonic acid to mucic acid publication-title: Microbial Cell Factories – volume: 12 year: 2021 article-title: : a treasure house of structurally diverse secondary metabolites with medicinal importance publication-title: Frontiers in Microbiology – volume: 34 start-page: 32 year: 2017 end-page: 35 article-title: as a biocontrol of : evaluation publication-title: Revista iberoamericana de micologia – volume: 42 start-page: 1203 year: 2020 end-page: 1210 article-title: A simple approach to mediate genome editing in the filamentous fungus by CRISPR/Cas9‐coupled gRNA transcription publication-title: Biotechnology Letters – volume: 51 start-page: 105 year: 2013 end-page: 129 article-title: research in the genome era publication-title: Annual Review of Phytopathology – volume: 339 start-page: 819 year: 2013 end-page: 823 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science – volume: 143 start-page: 9575 year: 2021 end-page: 9584 article-title: Harzianic acid from is a natural product inhibitor of acetohydroxyacid synthase publication-title: Journal of the American Chemical Society. – volume: 73 start-page: 1348 year: 2007 end-page: 1354 article-title: ‐mediated transformation (AMT) of as an efficient tool for random insertional mutagenesis publication-title: Applied Microbiology and Biotechnology – volume: 45 start-page: 383 year: 2016 end-page: 392 article-title: Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic inhibiting phytopathogen Kuhn publication-title: Infection, Genetics and Evolution – volume: 12 start-page: R40 year: 2011 article-title: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma publication-title: Genome Biology – volume: 1 start-page: 88 year: 2015 end-page: 96 article-title: Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR‐Cas publication-title: Cell Systems – volume: 35 start-page: 1469 year: 2016 end-page: 1474 article-title: DNA‐free genome editing methods for targeted crop improvement publication-title: Plant Cell Reports – volume: 17 start-page: 169 year: 1990 end-page: 174 article-title: Transformation of by high‐voltage electric pulse publication-title: Current Genetics – volume: 158 start-page: 58 year: 2012 end-page: 68 article-title: RUT‐C30‐‐thirty years of strain improvement publication-title: Microbiology – volume: 20(3), 213 year: 2022 article-title: New sorbicillinoids with tea pathogenic fungus inhibitory effect from marine‐derived fungus H8 publication-title: Marine Drugs – volume: 9 start-page: 430 year: 2008 article-title: The information highways of a biotechnological workhorse – signal transduction in publication-title: BMC Genomics – volume: 23 start-page: 10030 year: 2021 end-page: 10038 article-title: Efficient conversion of spent mushroom substrate into a high value‐added anticancer drug pentostatin with engineered publication-title: Green Chemistry – volume: 31 start-page: 1562 year: 2013 end-page: 1574 article-title: Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies publication-title: Biotechnology Advances – volume: 2, 716511 year: 2021 article-title: Bioprospecting Trichoderma: a systematic roadmap to screen genomes and natural products for biocontrol applications publication-title: Frontiers in Fungal Biology – volume: 85 start-page: 209 year: 2014 end-page: 218 article-title: CRISPR‐Cas system: a powerful tool for genome engineering publication-title: Plant Molecular Biology – volume: 18 start-page: 9 year: 2019 article-title: Deep‐sea fungi could be the new arsenal for bioactive molecules publication-title: Marine Drugs – volume: 20 start-page: 485 year: 2019 article-title: Evolution and comparative genomics of the most common species publication-title: BMC Genomics – volume: 8 start-page: 15179 year: 2017 article-title: CRISPR‐Cpf1 assisted genome editing of publication-title: Nature Communications – volume: 64 start-page: 475 year: 2010 end-page: 493 article-title: CRISPR/Cas system and its role in phage‐bacteria interactions publication-title: Annual Review of Microbiology – volume: 150 year: 2021 article-title: Metabolites of EF5 inhibits soil borne pathogen, a by triggering amino sugar metabolism publication-title: Microbial Pathogenesis – volume: 576 start-page: 149 year: 2019 end-page: 157 article-title: Search‐and‐replace genome editing without double‐strand breaks or donor DNA publication-title: Nature – volume: 61 start-page: 910 year: 2021 end-page: 922 article-title: Activation of defense response in common bean against stem rot disease triggered by and publication-title: Journal of Basic Microbiology – volume: 186 start-page: 2038 year: 2004 end-page: 2045 article-title: ‐mediated transformation of in the absence of full‐length VirD2, VirC2, or VirE2 leads to insertion of aberrant T‐DNA structures publication-title: Journal of Bacteriology – volume: 4(1), e00002‐19 year: 2019 article-title: A CRISPR interference platform for efficient genetic repression in publication-title: mSphere – volume: 44 start-page: 1367 year: 2017 end-page: 1373 article-title: Use of transcription activator‐like effector for efficient gene modification and transcription in the filamentous fungus publication-title: Journal of Industrial Microbiology & Biotechnology – volume: 8 start-page: 11 year: 2021 article-title: An overview on current molecular tools for heterologous gene expression in publication-title: Fungal Biology and Biotechnology – volume: 3 start-page: 13 year: 2016 article-title: A novel cellulase produced by a newly isolated publication-title: Bioengineering (Basel, Switzerland) – volume: 14 start-page: 2343 year: 2021 end-page: 2355 article-title: Efficient genome editing in filamentous fungi via an improved CRISPR‐Cas9 ribonucleoprotein method facilitated by chemical reagents publication-title: Microbial Biotechnology – volume: 319 year: 2021 article-title: Alleviating product inhibition of cellulase complex with a product‐activated mushroom endoglucanase publication-title: Bioresource Technology – volume: 8 start-page: 45763 year: 2017 article-title: CRISPR/Cas9‐mediated efficient genome editing via blastospore‐based transformation in entomopathogenic fungus publication-title: Scientific Reports – volume: 8 start-page: eabl5166 year: 2022 article-title: A programmable high‐expression yeast platform responsive to user‐defined signals publication-title: Science Advances – volume: 62 start-page: 3057 year: 2022 end-page: 3066 article-title: Molecular mechanism of D1135E‐induced discriminated CRISPR‐Cas9 PAM recognition publication-title: Journal of Chemical Information and Modeling – volume: 30 start-page: 282 year: 2000 end-page: 286 article-title: Rapid transformation of high cellulase‐producing mutant strains of by microprojectile bombardment publication-title: Letters in Applied Microbiology – volume: 24 start-page: 1012 year: 2014 end-page: 1019 article-title: Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins publication-title: Genome Research – volume: 15 start-page: 63 year: 2022 article-title: Integrative transcriptome and proteome analyses of LC and its cellulase hyper‐producing mutants generated by heavy ion mutagenesis reveal the key genes involved in cellulolytic enzymes regulation publication-title: Biotechnology for Biofuels and Bioproducts – volume: 19 start-page: 2 year: 2019 article-title: Fast gene disruption in using assembled Cas9/gRNA complex publication-title: BMC Biotechnology – volume: 43 start-page: 495 year: 2021 end-page: 502 article-title: CRISPR/Cas9‐mediated genome editing in and using 5S rRNA promoter‐driven guide RNAs publication-title: Biotechnology Letters – volume: 56 start-page: 792 year: 2016 end-page: 800 article-title: Tolerance to chitosan by species is associated with low membrane fluidity publication-title: Journal of Basic Microbiology – volume: 4 start-page: 839 year: 1990 end-page: 843 article-title: High‐efficiency transformation system for the biocontrol agents, spp publication-title: Molecular Microbiology – volume: 10 start-page: 194 year: 2017 article-title: A novel transcription factor specifically regulates GH11 xylanase genes in publication-title: Biotechnology for Biofuels – volume: 31 start-page: 684 year: 2013 end-page: 686 article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR‐Cas systems publication-title: Nature Biotechnology – volume: 13 start-page: 93 year: 2020 article-title: Rational engineering of the RUT‐C30 strain into an industrially relevant platform for cellulase production publication-title: Biotechnology for Biofuels – volume: 15 start-page: 106 year: 2016 article-title: Cellulases and beyond: the first 70 years of the enzyme producer publication-title: Microbial Cell Factories – volume: 41 start-page: 440 year: 1994 end-page: 446 article-title: Development of a transformation system for and its use for constructing multicopsy transformants for the gene publication-title: Applied Microbiology and Biotechnology – volume: 9 year: 2021 article-title: Complete genome sequences and genome‐wide characterization of biocontrol agents provide new insights into their evolution and variation in genome organization, sexual development, and fungal‐plant interactions publication-title: Microbiology Spectrum – volume: 8 start-page: 14355 year: 2018 article-title: CRISPR‐Cas9 ribonucleoprotein‐mediated co‐editing and counterselection in the rice blast fungus publication-title: Scientific Reports – volume: 1 start-page: 15007 year: 2015 article-title: Efficient genome editing in filamentous fungus using the CRISPR/Cas9 system publication-title: Cell Discovery – volume: 100 start-page: 64 year: 2016 end-page: 74 article-title: Biocontrol potential of isolate T‐aloe against in soybean publication-title: Plant Physiology and Biochemistry – volume: 9 start-page: 5032 year: 2019 article-title: Novel genetic tools that enable highly pure protein production in publication-title: Scientific Reports – volume: 7 start-page: 249 year: 2004 end-page: 260 article-title: Biocontrol mechanisms of strains publication-title: International Microbiology – volume: 16 start-page: 168 year: 2017 article-title: Methods for genetic transformation of filamentous fungi publication-title: Microbial Cell Factories – volume: 61 start-page: 155 year: 1987 end-page: 164 article-title: A versatile transformation system for the cellulolytic filamentous fungus publication-title: Gene – volume: 12 start-page: 293 year: 2019 article-title: Upgrading of efficient and scalable CRISPR‐Cas‐mediated technology for genetic engineering in thermophilic fungus publication-title: Biotechnology for Biofuels – volume: 11 start-page: 1085 year: 2021 article-title: Generation of with auxotrophic marker by using the CRISPR/Cas9 system publication-title: Scientific Reports – volume: 65 start-page: 301 year: 2020 end-page: 307 article-title: An efficient shortened genetic transformation strategy for filamentous fungus publication-title: The Journal of General and Applied Microbiology – volume: 7 start-page: 664 year: 2022 end-page: 670 article-title: Efficient genome editing in using a CRISPR/Cas9 ribonucleoprotein method publication-title: Synthetic and Systems Biotechnology – volume: 43 start-page: 8 year: 2020 end-page: 17 article-title: CRISPR‐Cas12a: Functional overview and applications publication-title: Biomed J – volume: 51 start-page: 393 year: 2002 end-page: 399 article-title: Biolistic transformation of using the Bio‐Rad seven barrels Hepta Adaptor system publication-title: Journal of Microbiological Methods – year: 2013 – ident: e_1_2_8_33_1 doi: 10.1038/srep26871 – ident: e_1_2_8_76_1 doi: 10.3390/md20030177 – ident: e_1_2_8_44_1 doi: 10.1007/s11103-014-0188-7 – ident: e_1_2_8_20_1 doi: 10.1186/s13068-020-01732-w – ident: e_1_2_8_68_1 doi: 10.1186/1471-2164-15-204 – ident: e_1_2_8_60_1 doi: 10.1016/j.procbio.2017.02.012 – ident: e_1_2_8_2_1 doi: 10.1038/s41586-019-1711-4 – ident: e_1_2_8_18_1 doi: 10.1371/journal.pgen.1007322 – ident: e_1_2_8_73_1 doi: 10.1186/s12934-020-01411-3 – ident: e_1_2_8_25_1 doi: 10.1186/s12896-018-0498-y – ident: e_1_2_8_57_1 doi: 10.1016/0378-1119(87)90110-7 – ident: e_1_2_8_61_1 doi: 10.1038/s41598-019-41573-8 – ident: e_1_2_8_71_1 doi: 10.1016/S0167-7012(02)00126-4 – ident: e_1_2_8_92_1 doi: 10.1007/978-1-0716-1048-0_8 – ident: e_1_2_8_95_1 doi: 10.1111/1751-7915.13652 – ident: e_1_2_8_8_1 doi: 10.1007/978-1-0716-1323-8_12 – ident: e_1_2_8_40_1 doi: 10.1038/nbt.2652 – ident: e_1_2_8_69_1 doi: 10.1016/j.meteno.2015.03.001 – ident: e_1_2_8_70_1 doi: 10.1016/j.jip.2021.107626 – ident: e_1_2_8_28_1 doi: 10.1016/j.cels.2015.02.001 – volume: 2 year: 2021 ident: e_1_2_8_62_1 article-title: Bioprospecting Trichoderma: a systematic roadmap to screen genomes and natural products for biocontrol applications publication-title: Frontiers in Fungal Biology – ident: e_1_2_8_87_1 doi: 10.1016/j.plaphy.2015.12.017 – ident: e_1_2_8_81_1 doi: 10.1021/jacs.1c03988 – ident: e_1_2_8_21_1 doi: 10.1038/s41598-018-32702-w – ident: e_1_2_8_32_1 doi: 10.1021/acs.jcim.1c01562 – ident: e_1_2_8_53_1 doi: 10.1128/JB.186.7.2038-2045.2004 – ident: e_1_2_8_67_1 doi: 10.1016/j.micpath.2020.104714 – ident: e_1_2_8_64_1 doi: 10.1186/1471-2164-9-430 – ident: e_1_2_8_52_1 doi: 10.1038/nbt1403 – ident: e_1_2_8_39_1 doi: 10.1038/sj.emboj.7600385 – ident: e_1_2_8_90_1 doi: 10.1038/s41598-017-10052-3 – ident: e_1_2_8_38_1 doi: 10.1002/jobm.202000749 – ident: e_1_2_8_88_1 doi: 10.3389/fmicb.2021.723828 – ident: e_1_2_8_80_1 doi: 10.1111/jam.14457 – ident: e_1_2_8_46_1 doi: 10.1186/s13068-017-0878-x – ident: e_1_2_8_72_1 doi: 10.1186/s40694-021-00119-2 – ident: e_1_2_8_24_1 doi: 10.1038/nbt0998-839 – ident: e_1_2_8_41_1 doi: 10.1186/s12934-017-0785-7 – ident: e_1_2_8_34_1 – ident: e_1_2_8_4_1 doi: 10.1007/BF00309596 – ident: e_1_2_8_7_1 doi: 10.1038/nrg3409 – ident: e_1_2_8_36_1 doi: 10.1186/gb-2011-12-4-r40 – ident: e_1_2_8_23_1 doi: 10.1007/BF00312863 – ident: e_1_2_8_74_1 doi: 10.1038/s41598-020-80186-4 – ident: e_1_2_8_22_1 doi: 10.1016/j.meegid.2016.09.026 – ident: e_1_2_8_49_1 doi: 10.1126/sciadv.abl5166 – ident: e_1_2_8_31_1 doi: 10.1007/s00299-016-1982-2 – ident: e_1_2_8_9_1 doi: 10.1080/15476286.2015.1132139 – ident: e_1_2_8_91_1 doi: 10.1007/s00253-006-0603-3 – ident: e_1_2_8_84_1 doi: 10.1002/jobm.201500758 – ident: e_1_2_8_51_1 doi: 10.1007/BF00336788 – ident: e_1_2_8_6_1 doi: 10.1093/jimb/kuab014 – ident: e_1_2_8_47_1 doi: 10.1007/s10295-017-1963-7 – ident: e_1_2_8_63_1 doi: 10.1007/BF00939033 – ident: e_1_2_8_86_1 doi: 10.3390/bioengineering3020013 – ident: e_1_2_8_83_1 doi: 10.3390/md18010009 – volume: 4 year: 2019 ident: e_1_2_8_77_1 article-title: A CRISPR interference platform for efficient genetic repression in Candida albicans publication-title: mSphere doi: 10.1128/mSphere.00002-19 – ident: e_1_2_8_85_1 doi: 10.1007/s00294-003-0454-8 – ident: e_1_2_8_66_1 doi: 10.1016/j.riam.2016.06.004 – ident: e_1_2_8_30_1 doi: 10.1038/ncomms15179 – ident: e_1_2_8_48_1 doi: 10.1186/s13068-019-1637-y – ident: e_1_2_8_78_1 doi: 10.2323/jgam.2019.02.001 – ident: e_1_2_8_11_1 doi: 10.1021/acssynbio.1c00570 – ident: e_1_2_8_82_1 doi: 10.1016/j.synbio.2022.02.002 – volume: 44 start-page: 383 year: 2006 ident: e_1_2_8_10_1 article-title: A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast‐ and Agrobacterium‐mediated transformation publication-title: Journal of Microbiology – ident: e_1_2_8_79_1 doi: 10.1007/s10529-020-02887-0 – ident: e_1_2_8_75_1 doi: 10.1007/s10529-020-03024-7 – ident: e_1_2_8_54_1 doi: 10.1146/annurev-phyto-082712-102353 – ident: e_1_2_8_93_1 doi: 10.1016/j.biortech.2020.124119 – ident: e_1_2_8_13_1 doi: 10.1126/science.1231143 – ident: e_1_2_8_29_1 doi: 10.1016/j.biotechadv.2013.08.005 – ident: e_1_2_8_56_1 doi: 10.1016/j.bj.2019.10.005 – ident: e_1_2_8_27_1 doi: 10.1111/j.1365-2958.1990.tb00654.x – ident: e_1_2_8_17_1 doi: 10.1186/s13068-022-02161-7 – ident: e_1_2_8_37_1 doi: 10.1186/s12864-019-5680-7 – volume: 20 year: 2022 ident: e_1_2_8_50_1 article-title: New sorbicillinoids with tea pathogenic fungus inhibitory effect from marine‐derived fungus Hypocrea jecorina H8 publication-title: Marine Drugs – ident: e_1_2_8_12_1 doi: 10.1038/srep45763 – ident: e_1_2_8_14_1 doi: 10.1128/AEM.01408-16 – ident: e_1_2_8_15_1 doi: 10.1146/annurev.micro.112408.134123 – ident: e_1_2_8_26_1 doi: 10.1046/j.1472-765x.2000.00715.x – ident: e_1_2_8_58_1 doi: 10.1099/mic.0.054031-0 – ident: e_1_2_8_16_1 doi: 10.1093/nar/gkt135 – ident: e_1_2_8_35_1 doi: 10.1101/gr.171322.113 – ident: e_1_2_8_55_1 doi: 10.1139/cjm-2020-0438 – ident: e_1_2_8_43_1 doi: 10.3390/md19120689 – ident: e_1_2_8_89_1 doi: 10.1128/spectrum.02321-21 – ident: e_1_2_8_42_1 doi: 10.1128/Spectrum.00663-21 – volume: 7 start-page: 249 year: 2004 ident: e_1_2_8_3_1 article-title: Biocontrol mechanisms of Trichoderma strains publication-title: International Microbiology – ident: e_1_2_8_94_1 doi: 10.1039/D1GC03594K – ident: e_1_2_8_19_1 doi: 10.1038/srep35766 – ident: e_1_2_8_45_1 doi: 10.1038/celldisc.2015.7 – ident: e_1_2_8_5_1 doi: 10.1186/s12934-016-0507-6 – volume-title: Genetic manipulations in Trichoderma reesei and Trichoderma atroviride–Auxotrophic selection markers and the CRISPR/Cas9 system year: 2021 ident: e_1_2_8_59_1 – ident: e_1_2_8_65_1 doi: 10.1016/j.fgb.2019.04.016 |
SSID | ssj0060052 |
Score | 2.425138 |
SecondaryResourceType | review_article |
Snippet | Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and... Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and... Abstract Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial... |
SourceID | doaj pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2521 |
SubjectTerms | Biological control Biopesticides Biotechnology CRISPR CRISPR-Cas Systems Degradability Editing Enzymes Fungi Gene Editing Genes Genetic engineering Genetic modification Genome editing Genomes Lignocellulose Mini Review Minireview Plasmids Polyethylene glycol Proteins Trichoderma Trichoderma - genetics |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hnuCAKL-BgoLEgUtoEjuOfaQrqoJUhMqu1Jtljx0VqU0Qu733EXhGnoQZJ7vaFaBeuERWPIms8Xh-7PE3AG-62HEpE1mYMopCevSFl50nZViGxsg2OOQT3dPP6mQhP50351ulvjgnbIQHHhl3qDQqR0EIhlJIX5P4GGy9U_RrH4RH1r5k89bB1KiDFe92TkA-nLdDNrJiYMaGFEPFOApbNihB9f_Nv_wzTXLbfU325_gB3J8cx_z9OOB9uBP7h3BvC07wEZjFMuZDl8_OPn79cvbr5ufMLfPVMFzyM48TaT4n1XfBJdCuXM4XLSlWfgyL4w_z2UkxlUYosBFSFaHDFrEq0cS6bVon6yCki4yGF72PSpMVd6ZGr52glgw1mga1F140pcQgnsBeP_TxGeQRAwVZOpLpr2TnKi8bXXW8I2RU1ZUxg3drZlmccMO5fMWlXccPzF3L3LWJuxm83XzwfYTM-DfpEXN_Q8ZY1-kFSYCdJMDeJgEZHKznzk4LcGnrNiH3iVZm8HrTTUuHz0NcH4dromFgIMVZKhk8Had6MxKRasFrnUG7IwQ7Q93t6b9dJHhu8lm10fTPwyQut_HAnh7N69R6_j-48QLu1nxDI-UbHsDe6sd1fEl-08q_SkvkN9qyEU0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB5BucAB8U-goCBx4BKaxI5jnyq6oipIRajsSnuz7LFDkUpSuts7j8Az8iT1eL1hV_xdIiueRM54PJ4ZT74BeNn5jkqZ8EKVnhXcoi0s72xQhqVrFG-dQTrRPf4gjmb8_byZp4DbIqVVrnViVNRuQIqR79VthGJjLd8__1ZQ1Sg6XU0lNK7DDYIuo5Sudj46XIJingnOh7J3wk5ZETxjE9RDRWgKGztRBOz_k5X5e7LkphEbd6HDO3A7mY_5m9V834Vrvr8HtzZABe-Dmi18PnT55OTdp48nP7__mJhFvhyGM7rmPpHm06AAT6kQ2leT0--WwWN-ALPDt9PJUZEKJBTYMC4K12GLWJWofN02reG1Y9x4wsTz1nohw15uVI1WGhZa3NWoGpSWWdaUHB17CDv90PvHkHt0wdWSPhgAFe9MZXkjq47iQkpUXekzeL1mlsaEHk5FLM702osg7mriro7czeDV-MD5Cjjj76QHxP2RjBCv443h4rNOC0gLicIEZxRdybitgxpR2FojgohZxyxmsLueO52W4UL_EpoMXozdYQHRqYjp_XAZaAgeSFCuSgaPVlM9joTFivBSZtBuCcHWULd7-i-nEaQ7WK5SyfDOvSgu_-OBPj6Y1rH15N8f8hRu1vQHRswn3IWd5cWlfxbsoqV9HoX_Cp9BCGo priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access (Activated by CARLI) dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucAB8SZQUJA4cAkktuPYx3bVqiAVVWVX4mb5FYpUEtTd3vkJ_Mb-ks54k2iXhxCXyIrHljX2jMf2zDcAr9vYUioTUegy8kI47wonWofKsAy1Fk2wnl50jz_Ko4X48LkevQkpFmaNDzFduJFkJH1NAm7dckPIcd-rCGyxRmGvmLwJtyjAluDzmTgZlbGka88UEzkQD-g-5MzzSwdbG1PC7_-T0fm77-SmTZs2pcN7cHewJvO99fTfhxuxewB3NjAGH4JeLGPet_ns9P2nk9OrHz9ndpmv-v6cvnkcSPM56sMzyov2zeYUfYkH6EewODyYz46KIV9C4WsuZBFa33hflV5H1tSNFSxwYSNB5EXnolS4tVvNvFOWY0kE5nXtleOO16XwgT-Gna7v4lPIow948lIR7YFKtLZyolZVS9dEWlZtGTN4OzLL-AFMnHJanJvxUEHcNcRdk7ibwZupwfc1jsbfSfeJ-xMZAWCnH_3FFzPIk5HKS4tnUx9KLhxDraJ946zEFecCdz6D3XHuzCCVS8OaBOfHG5HBq6ka5YkeSWwX-0ukIbQgSa4rGTxZT_U0Ep4SxCuVQbO1CLaGul3TfT1LmN1oyCqtsM93abn8iwfmeH_OUunZf7d4DrcZxWgkj8Nd2FldXMYXaDmt3MskG9ffEwvY priority: 102 providerName: Wiley-Blackwell |
Title | Use of CRISPR‐Cas tools to engineer Trichoderma species |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.14126 https://www.ncbi.nlm.nih.gov/pubmed/35908288 https://www.proquest.com/docview/2718671374 https://www.proquest.com/docview/2696862002 https://pubmed.ncbi.nlm.nih.gov/PMC9518982 https://doaj.org/article/68c6a409cd034b27949c7ba60e3bd3bc |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x7QUeEN8ERhUkHnjJSGLHdh4QotXKQOpUlVbqW2Q7zoZUkq3tJPjvuXOTsooieLGs-GJZ5zvfnT9-B_CmchWlMuFRHjsWcWNNZHhlcDGMyyznstSWTnRH5-Jsxr_Ms_nvdEAtA1d7QzvKJzVbLk5-XP_8gAr_vruVgxYwIdjFDNU-ScUBHKFZkqSlI749UhC0AepfR7bELc7Png52TJRH8t_nfv55i_K2d-vN0_AB3G_9yvDjRhAewh1XP4J7t9AGH4OcrVzYVOFg8vnreBIN9CpcN82CytC1hOEU18VLyo_2XYf0ChMD6ScwG55OB2dRmzchshnjIiorK61NYpu7VGZS87RkXDuCynPGOKHQxOs8tUZphjVepjbPrDLMsCzmtmRP4bBuavccQmdLjMCUQ78g4ZVODM9UUtF2US6SKnYBnHSsKmwLKk65LRZFF1wQbwvibeF5G8Db7Q9XGzyNv5P2ifdbMgLC9h-a5UXR6lUhlBUaY1RbxoybFFeX3EqjBUqeKZmxARx3M1d0wlWk0sP6MckDeL1tRr2iwxJdu-YGaQg1SNAVlgCebSZ6OxLmE8UrFYDcEYGdoe621N8uPXY3OrQqV9jnOy8s_-JBMepPU1978R8jfQl3U3qd4e8aHsPhennjXqHPtDY9OEj5GEs5l1iq4aceHPVPz8eTnt-F6Hld-QXRXBIG |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiH8CBYIEEpfQxHYS54AQXah2abdCZVfam7Edp61UktLdCnHjEXgSHoonYcabLLvi79RLZCWOlYzn1x5_A_CkchWVMhFRETseCWNNZERlUBnGZVqIvNSWdnSHe1l_LN5O0skafO_OwlBaZacTvaIuG0tr5Jss91BsPBcvTz5FVDWKdle7EhpztthxXz5jyDZ9MXiN8_uUse03o14_aqsKRDblIovKyubWJrEtHMvTXAtWcqEdAck5Y1wm0QDqglkjNceWKJktUisNNzyNhS05jnsBLqLhjUmi8skiwMtojbWFD6JsIbTMCcFBpqiOEkJvWLJ8vkDAn7za35Mzl51mb_W2r8HV1l0NX8356zqsufoGXFkCMbwJxXjqwqYKe_uD9-_2f3z91tPTcNY0x3QNXds1HKHCPaTCax91SMc7MUK_BeNzId1tWK-b2t2F0NkSQzvp0OFIRKUTI1KZVLQOVWRJFbsAnnfEUrZFK6eiGceqi1qIuoqoqzx1A3i2eOFkDtTx965bRP1FN0LY9jea0wPVCqzKpM00Br-2jLkwDNVWYXOjM2RpU3JjA9jo5k61Yj9Vv5g0gMeLxyiwtAuja9ecYR-CI8ooNyaAO_OpXnwJ9xXopQwgX2GClU9dfVIfHXpQcPSUZSFxzE3PLv-jgRpujZhv3fv3jzyCS_3RcFftDvZ27sNlRqc_fC7jBqzPTs_cA_TJZuahF4QQPpy35P0ElVRFoQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQJJC5hE9t5HRCiW1ZdSquq7Ep7c_0KRSpJ6W6FuPET-D38HH4JM95k2RWvUy-RFTuWM54Zz9jjbwCeVK6iVCYiKmPHI6GNjrSoNCrD2KalyK0ydKK7u5dtj8WbSTpZg-_dXRgKq-x0olfUtjG0R95juYdi47noVW1YxP7W4OXJp4gySNFJa5dOY84iO-7LZ3Tfpi-GWzjXTxkbvB71t6M2w0BkUi6yyFYmNyaJTelYnuZKMMuFcgQq57R2WYGLoSqZ0YXiWBKWmTI1heaap7EwlmO_F-BiztOEZCyfLJy9jPZbWyghihzCVTohaMgUVVNCSA5Lq6BPFvAnC_f3QM1lA9qvgINrcLU1XcNXc167DmuuvgFXlgANb0I5nrqwqcL-wfDd_sGPr9_6ahrOmuaYnqFrm4YjVL5HlITtowrpqid667dgfC6kuw3rdVO7uxA6Y9HNKxwaH4moVKJFWiQV7UmVWVLFLoDnHbGkaZHLKYHGsew8GKKuJOpKT90Ani0-OJmDdvy96SZRf9GM0Lb9i-b0vWyFV2aFyRQ6wsbGXGiGKqw0uVYZsre2XJsANrq5k60KmMpfDBvA40U1Ci-dyKjaNWfYhqCJMoqTCeDOfKoXI-E-G31RBJCvMMHKUFdr6g9HHiAcreaiLLDPnmeX_9FA7m6OmC_d-_ePPIJLKHPy7XBv5z5cZnQRxIc1bsD67PTMPUDzbKYfejkI4fC8Be8n5_VJ1w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+CRISPR-Cas+tools+to+engineer+Trichoderma+species&rft.jtitle=Microbial+biotechnology&rft.au=Wang%2C+Ying&rft.au=Chen%2C+Hongyu&rft.au=Ma%2C+Liang&rft.au=Gong%2C+Ming&rft.date=2022-10-01&rft.issn=1751-7915&rft.eissn=1751-7915&rft.volume=15&rft.issue=10&rft.spage=2521&rft_id=info:doi/10.1111%2F1751-7915.14126&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon |