Use of CRISPR‐Cas tools to engineer Trichoderma species

Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Neverthele...

Full description

Saved in:
Bibliographic Details
Published inMicrobial biotechnology Vol. 15; no. 10; pp. 2521 - 2532
Main Authors Wang, Ying, Chen, Hongyu, Ma, Liang, Gong, Ming, Wu, Yingying, Bao, Dapeng, Zou, Gen
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.10.2022
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. The recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma.
AbstractList Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma . Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma . Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. The recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma .
Abstract Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time‐consuming and tedious. However, the recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR‐Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology. The recent development of the CRISPR‐Cas system for gene editing has enabled researchers to achieve genome‐wide gene disruptions, gene replacements and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma.
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and agricultural applications. Genetic manipulation plays a valuable role in tailoring novel engineered strains with enhanced target traits. Nevertheless, as applied to fungi, the classic tools of genetic manipulation tend to be time-consuming and tedious. However, the recent development of the CRISPR-Cas system for gene editing has enabled researchers to achieve genome-wide gene disruptions, gene replacements, and precise editing, and this technology has emerged as a primary focus for novel developments in engineered strains of Trichoderma. Here, we provide a brief overview of the traditional approaches to genetic manipulation, the different strategies employed in establishing CRSIPR-Cas systems, the utilization of these systems to develop engineered strains of Trichoderma for desired applications, and the future trends in biotechnology.
Author Gong, Ming
Ma, Liang
Wu, Yingying
Wang, Ying
Bao, Dapeng
Zou, Gen
Chen, Hongyu
AuthorAffiliation 1 Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi Shanghai Academy of Agricultural Sciences Shanghai China
2 Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences Zhejiang A&F University Lin'an Hangzhou China
AuthorAffiliation_xml – name: 2 Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences Zhejiang A&F University Lin'an Hangzhou China
– name: 1 Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi Shanghai Academy of Agricultural Sciences Shanghai China
Author_xml – sequence: 1
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 2
  givenname: Hongyu
  surname: Chen
  fullname: Chen, Hongyu
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 3
  givenname: Liang
  surname: Ma
  fullname: Ma, Liang
  organization: Zhejiang A&F University
– sequence: 4
  givenname: Ming
  surname: Gong
  fullname: Gong, Ming
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 5
  givenname: Yingying
  surname: Wu
  fullname: Wu, Yingying
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 6
  givenname: Dapeng
  surname: Bao
  fullname: Bao, Dapeng
  organization: Shanghai Academy of Agricultural Sciences
– sequence: 7
  givenname: Gen
  orcidid: 0000-0001-5574-1824
  surname: Zou
  fullname: Zou, Gen
  email: zougen@sibs.ac.cn
  organization: Shanghai Academy of Agricultural Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35908288$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEQxy1URB9w5oZW4sIlrd-PCxKNeEQqApX0bHlnJ6mjzTrYG1BvfAQ-I5-E3aat2koIH-zR-P__aTQzh2SvSx0S8pLRYzacE2YUmxjH1DGTjOsn5OAus3cv3ieHpawo1ZQq_ozsC-Wo5dYeEHdRsEqLano--_b1_M-v39NQqj6ldrwr7JaxQ8zVPEe4TA3mdajKBiFieU6eLkJb8MXNe0QuPryfTz9Nzr58nE3fnU1ACaknzQIMAKPgkBtlguSNkAEVdRLrGrXlTgTHobZBDJFsODgFtha1UFRCI47IbMdtUlj5TY7rkK98CtFfJ1Je-pD7CC16bUEHSR00VMiaGycdmDpoiqJuRA0D6-2OtdnWa2wAuz6H9gH04U8XL_0y_fBOMessHwBvbgA5fd9i6f06FsC2DR2mbfFcO201p3SUvn4kXaVt7oZWeW6Y1YYJIwfVq_sV3ZVyO6FBoHYCyKmUjAsPsQ99TGOBsfWM-nET_DhrP87aX2_C4Dt55LtF_9uhd46fscWr_8n959M53xn_Ah8swto
CitedBy_id crossref_primary_10_1186_s12934_023_02149_4
crossref_primary_10_3389_fmicb_2023_1169884
crossref_primary_10_1016_j_jafr_2024_101324
crossref_primary_10_1021_acs_chemrev_4c00567
crossref_primary_10_3390_jof8101000
crossref_primary_10_1016_j_biortech_2023_128888
crossref_primary_10_1016_j_biortech_2023_129449
crossref_primary_10_3389_fmicb_2023_1160551
crossref_primary_10_1016_j_funbio_2025_101549
crossref_primary_10_3390_biology12020299
crossref_primary_10_1016_j_micres_2023_127443
crossref_primary_10_1007_s12223_024_01153_4
crossref_primary_10_3390_jof9080834
crossref_primary_10_1016_j_biocontrol_2023_105281
crossref_primary_10_3389_fmicb_2023_1141869
crossref_primary_10_3390_horticulturae10080805
Cites_doi 10.1038/srep26871
10.3390/md20030177
10.1007/s11103-014-0188-7
10.1186/s13068-020-01732-w
10.1186/1471-2164-15-204
10.1016/j.procbio.2017.02.012
10.1038/s41586-019-1711-4
10.1371/journal.pgen.1007322
10.1186/s12934-020-01411-3
10.1186/s12896-018-0498-y
10.1016/0378-1119(87)90110-7
10.1038/s41598-019-41573-8
10.1016/S0167-7012(02)00126-4
10.1007/978-1-0716-1048-0_8
10.1111/1751-7915.13652
10.1007/978-1-0716-1323-8_12
10.1038/nbt.2652
10.1016/j.meteno.2015.03.001
10.1016/j.jip.2021.107626
10.1016/j.cels.2015.02.001
10.1016/j.plaphy.2015.12.017
10.1021/jacs.1c03988
10.1038/s41598-018-32702-w
10.1021/acs.jcim.1c01562
10.1128/JB.186.7.2038-2045.2004
10.1016/j.micpath.2020.104714
10.1186/1471-2164-9-430
10.1038/nbt1403
10.1038/sj.emboj.7600385
10.1038/s41598-017-10052-3
10.1002/jobm.202000749
10.3389/fmicb.2021.723828
10.1111/jam.14457
10.1186/s13068-017-0878-x
10.1186/s40694-021-00119-2
10.1038/nbt0998-839
10.1186/s12934-017-0785-7
10.1007/BF00309596
10.1038/nrg3409
10.1186/gb-2011-12-4-r40
10.1007/BF00312863
10.1038/s41598-020-80186-4
10.1016/j.meegid.2016.09.026
10.1126/sciadv.abl5166
10.1007/s00299-016-1982-2
10.1080/15476286.2015.1132139
10.1007/s00253-006-0603-3
10.1002/jobm.201500758
10.1007/BF00336788
10.1093/jimb/kuab014
10.1007/s10295-017-1963-7
10.1007/BF00939033
10.3390/bioengineering3020013
10.3390/md18010009
10.1128/mSphere.00002-19
10.1007/s00294-003-0454-8
10.1016/j.riam.2016.06.004
10.1038/ncomms15179
10.1186/s13068-019-1637-y
10.2323/jgam.2019.02.001
10.1021/acssynbio.1c00570
10.1016/j.synbio.2022.02.002
10.1007/s10529-020-02887-0
10.1007/s10529-020-03024-7
10.1146/annurev-phyto-082712-102353
10.1016/j.biortech.2020.124119
10.1126/science.1231143
10.1016/j.biotechadv.2013.08.005
10.1016/j.bj.2019.10.005
10.1111/j.1365-2958.1990.tb00654.x
10.1186/s13068-022-02161-7
10.1186/s12864-019-5680-7
10.1038/srep45763
10.1128/AEM.01408-16
10.1146/annurev.micro.112408.134123
10.1046/j.1472-765x.2000.00715.x
10.1099/mic.0.054031-0
10.1093/nar/gkt135
10.1101/gr.171322.113
10.1139/cjm-2020-0438
10.3390/md19120689
10.1128/spectrum.02321-21
10.1128/Spectrum.00663-21
10.1039/D1GC03594K
10.1038/srep35766
10.1038/celldisc.2015.7
10.1186/s12934-016-0507-6
10.1016/j.fgb.2019.04.016
ContentType Journal Article
Copyright 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7T7
7X7
7XB
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
RC3
7X8
5PM
DOA
DOI 10.1111/1751-7915.14126
DatabaseName Wiley Online Library Open Access (Activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Genetics Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef



Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate CRISPR‐Cas tools in Trichoderma
EISSN 1751-7915
EndPage 2532
ExternalDocumentID oai_doaj_org_article_68c6a409cd034b27949c7ba60e3bd3bc
PMC9518982
35908288
10_1111_1751_7915_14126
MBT214126
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: The “Belt and Road” International Cooperation Project of Science and Technology Innovation, Shanghai
  funderid: 20310741900; 18390741000
– fundername: National Natural Science Foundation of China
  funderid: 31741003; 31902089
– fundername: Shanghai Agriculture Applied Technology Development Program, China
  funderid: G2018‐02‐08‐00‐12‐F01555
– fundername: ;
  grantid: 31741003; 31902089
– fundername: The “Belt and Road” International Cooperation Project of Science and Technology Innovation, Shanghai
  grantid: 20310741900; 18390741000
– fundername: Shanghai Agriculture Applied Technology Development Program, China
  grantid: G2018‐02‐08‐00‐12‐F01555
GroupedDBID ---
0R~
123
1OC
24P
29M
31~
4.4
53G
5DZ
5VS
7X7
8-1
8FE
8FG
8FH
8FI
8FJ
A8Z
AAMMB
AANHP
AAZKR
ABDBF
ABJCF
ABUWG
ACBWZ
ACCMX
ACGFO
ACIWK
ACPRK
ACRPL
ACUHS
ACXQS
ACYXJ
ADBBV
ADKYN
ADNMO
ADPDF
ADRAZ
ADZMN
AEFGJ
AEGXH
AENEX
AEUYN
AFKRA
AFRAH
AGQPQ
AGXDD
AHMBA
AIAGR
AIDQK
AIDYY
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
ASPBG
AVUZU
AVWKF
AZFZN
BAWUL
BBNVY
BCNDV
BDRZF
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-9
DIK
EBD
EBS
EJD
EMOBN
ESX
F5P
FEDTE
FYUFA
GODZA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HYE
IAO
IHR
ITC
KQ8
L6V
LH4
LK8
LW6
M48
M7P
M7S
ML0
MM.
O9-
OIG
OK1
OVD
OVEED
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PTHSS
RNS
RPM
SV3
TEORI
TUS
UKHRP
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PQGLB
3V.
7QO
7T7
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
WIN
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c5346-dfc7cc10c9e2757a42d34ae5094ebbe68293a92cb8a393a4d2c95c8b3b3504cd3
IEDL.DBID M48
ISSN 1751-7915
IngestDate Wed Aug 27 01:26:17 EDT 2025
Thu Aug 21 18:39:57 EDT 2025
Tue Aug 05 09:42:20 EDT 2025
Wed Aug 13 11:03:13 EDT 2025
Mon Jul 21 05:57:36 EDT 2025
Tue Jul 01 03:38:03 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Sun Jul 06 04:45:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Attribution
2022 The Authors. Microbial Biotechnology published by Society for Applied Microbiology and John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5346-dfc7cc10c9e2757a42d34ae5094ebbe68293a92cb8a393a4d2c95c8b3b3504cd3
Notes Ying Wang, Hongyu Chen and Liang Ma contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-5574-1824
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1111/1751-7915.14126
PMID 35908288
PQID 2718671374
PQPubID 1016378
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_68c6a409cd034b27949c7ba60e3bd3bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9518982
proquest_miscellaneous_2696862002
proquest_journals_2718671374
pubmed_primary_35908288
crossref_citationtrail_10_1111_1751_7915_14126
crossref_primary_10_1111_1751_7915_14126
wiley_primary_10_1111_1751_7915_14126_MBT214126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2022
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bedford
– name: Hoboken
PublicationTitle Microbial biotechnology
PublicationTitleAlternate Microb Biotechnol
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 1993; 24
2017; 7
1991; 19
2017; 8
2021; 67
2021; 23
1990; 17
2002; 51
2017; 44
2004; 7
2019; 12
2004; 23
2008; 9
2019; 19
2020; 128
2016; 100
2014; 24
2019; 18
2020; 13
2011; 12
2022; 20
2007; 73
2021; 2290
2016; 35
2020; 19
1998; 16
2021; 319
2010; 64
2018; 8
2013; 14
2019; 20
2013; 51
2017; 34
2008; 26
2014; 15
2021; 150
2016; 82
2021; 2, 716511
2020; 43
2016; 45
2021; 9
2015; 2
2015; 1
2021; 8
2021; 48
2004; 186
2019; 9
2021; 43
2020; 42
2004; 45
2013; 41
2019; 4(1), e00002‐19
2021; 183
2021; 143
2014; 85
2016; 15
1994; 41
2016; 13
2022; 20(3), 213
2016; 56
2021; 14
2016; 6
2021; 2234
2021; 12
2021; 11
2016; 3
2022
2013; 339
1987; 61
2021
2006; 44
2022; 62
2017; 16
2022; 7
2017; 10
2022; 8
2000; 30
2013; 31
2021; 19
2017; 56
2019; 576
2022; 15
2022; 10
2013
2020; 65
2021; 61
2012; 158
2019; 130
2018; 14
1990; 4
e_1_2_8_28_1
Primerano P. (e_1_2_8_59_1) 2021
Cardoza R.E. (e_1_2_8_10_1) 2006; 44
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_81_1
Benitez T. (e_1_2_8_3_1) 2004; 7
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_85_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_70_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
Rush T.A. (e_1_2_8_62_1) 2021; 2
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_93_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_44_1
Liu S.Z. (e_1_2_8_50_1) 2022; 20
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
Wensing L. (e_1_2_8_77_1) 2019; 4
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_92_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_71_1
References_xml – volume: 23
  start-page: 4051
  year: 2004
  end-page: 4060
  article-title: MicroRNA genes are transcribed by RNA polymerase II
  publication-title: The EMBO Journal
– volume: 128
  start-page: 255
  year: 2020
  end-page: 264
  article-title: Molecular tagging of biocontrol fungus and its colonization in soil
  publication-title: Journal of Applied Microbiology
– volume: 130
  start-page: 43
  year: 2019
  end-page: 53
  article-title: CRISPR‐Cas9 genome editing approaches in filamentous fungi and oomycetes
  publication-title: Fungal Genetics and Biology
– volume: 15
  start-page: 204
  year: 2014
  article-title: Identification of mycoparasitism‐related genes against the phytopathogen through transcriptome and expression profile analysis in
  publication-title: BMC Genomics
– volume: 16
  start-page: 839
  year: 1998
  end-page: 842
  article-title: ‐mediated transformation of filamentous fungi
  publication-title: Nature Biotechnology
– year: 2021
– volume: 7
  start-page: 9250
  year: 2017
  article-title: Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR‐Cas9 technology
  publication-title: Scientific Reports
– year: 2022
  article-title: Building a Versatile Protein Production Platform Using Engineered
  publication-title: ACS Synthetic Biology
– volume: 44
  start-page: 383
  year: 2006
  end-page: 395
  article-title: A comparison of the phenotypic and genetic stability of recombinant spp. generated by protoplast‐ and ‐mediated transformation
  publication-title: Journal of Microbiology
– volume: 41
  start-page: 4336
  year: 2013
  end-page: 4343
  article-title: Genome engineering in using CRISPR‐Cas systems
  publication-title: Nucleic Acids Research
– volume: 2234
  start-page: 87
  year: 2021
  end-page: 98
  article-title: CRISPR/Cas9‐mediated genome editing of
  publication-title: Methods in Molecular Biology (Clifton, N.J.)
– volume: 14
  year: 2018
  article-title: Massive lateral transfer of genes encoding plant cell wall‐degrading enzymes to the mycoparasitic fungus from its plant‐associated hosts
  publication-title: PLoS Genetics
– volume: 2290
  start-page: 171
  year: 2021
  end-page: 185
  article-title: Genetic transformation of spp
  publication-title: Methods in Molecular Biology
– volume: 183
  year: 2021
  article-title: Role of as a biocontrol agent (BCA) of phytoparasitic nematodes and plant growth inducer
  publication-title: Journal of Invertebrate Pathology
– volume: 2
  start-page: 13
  year: 2015
  end-page: 22
  article-title: CRISPR‐Cas system enables fast and simple genome editing of industrial strains
  publication-title: Metabolic Engineering Communications
– volume: 48
  year: 2021
  article-title: Reduced viscosity mutants of with improved industrial fermentation characteristics
  publication-title: Journal of Industrial Microbiology & Biotechnology
– volume: 19
  start-page: 689
  year: 2021
  article-title: Novel harziane diterpenes from deep‐sea sediment fungus sp SCSIOW21 and their potential anti‐inflammatory effects
  publication-title: Marine Drugs
– volume: 56
  start-page: 57
  year: 2017
  end-page: 61
  article-title: CRISPR‐Cas9 assisted gene disruption in the higher fungus species
  publication-title: Process Biochemistry
– volume: 20
  start-page: 177
  year: 2022
  article-title: Sesquiterpene and Sorbicillinoid glycosides from the endophytic fungus EN‐586 derived from the marine Red Alga Laurencia obtusa
  publication-title: Marine Drugs
– volume: 45
  start-page: 54
  year: 2004
  end-page: 60
  article-title: Gene disruption in via ‐mediated transformation
  publication-title: Current Genetics
– volume: 6
  year: 2016
  article-title: Genome engineering in the yeast pathogen using the CRISPR‐Cas9 system
  publication-title: Scientific Reports
– volume: 13
  start-page: 119
  year: 2016
  end-page: 127
  article-title: U6 snRNA intron insertion occurred multiple times during fungi evolution
  publication-title: RNA Biology
– volume: 26
  start-page: 553
  year: 2008
  end-page: 560
  article-title: Genome sequencing and analysis of the biomass‐degrading fungus (syn. )
  publication-title: Nature Biotechnology
– volume: 19
  start-page: 359
  year: 1991
  end-page: 365
  article-title: Isolation of uridine auxotrophs from and efficient transformation with the cloned and genes
  publication-title: Current Genetics
– volume: 67
  start-page: 406
  year: 2021
  end-page: 414
  article-title: Strain improvement of spp. through two‐step protoplast fusion for cellulase production enhancement
  publication-title: Canadian Journal of Microbiology
– volume: 82
  start-page: 6247
  year: 2016
  end-page: 6257
  article-title: Identification of the main regulator responsible for synthesis of the typical yellow pigment produced by
  publication-title: Applied and Environmental Microbiology
– volume: 6
  start-page: 26871
  year: 2016
  article-title: Highly specific targeted mutagenesis in plants using Cas9
  publication-title: Scientific Reports
– volume: 10
  year: 2022
  article-title: Development of an efficient C‐to‐T base‐editing system and its application to cellulase transcription factor precise engineering in thermophilic fungus
  publication-title: Microbiology Spectrum
– volume: 14
  start-page: 80
  year: 2013
  article-title: Technology: a CRISPR genome‐editing tool
  publication-title: Nature Reviews. Genetics
– volume: 24
  start-page: 349
  year: 1993
  end-page: 356
  article-title: Biolistic transformation of and using plasmid and genomic DNA
  publication-title: Current Genetics
– volume: 19
  start-page: 156
  year: 2020
  article-title: Engineering marine fungi for conversion of D‐galacturonic acid to mucic acid
  publication-title: Microbial Cell Factories
– volume: 12
  year: 2021
  article-title: : a treasure house of structurally diverse secondary metabolites with medicinal importance
  publication-title: Frontiers in Microbiology
– volume: 34
  start-page: 32
  year: 2017
  end-page: 35
  article-title: as a biocontrol of : evaluation
  publication-title: Revista iberoamericana de micologia
– volume: 42
  start-page: 1203
  year: 2020
  end-page: 1210
  article-title: A simple approach to mediate genome editing in the filamentous fungus by CRISPR/Cas9‐coupled gRNA transcription
  publication-title: Biotechnology Letters
– volume: 51
  start-page: 105
  year: 2013
  end-page: 129
  article-title: research in the genome era
  publication-title: Annual Review of Phytopathology
– volume: 339
  start-page: 819
  year: 2013
  end-page: 823
  article-title: Multiplex genome engineering using CRISPR/Cas systems
  publication-title: Science
– volume: 143
  start-page: 9575
  year: 2021
  end-page: 9584
  article-title: Harzianic acid from is a natural product inhibitor of acetohydroxyacid synthase
  publication-title: Journal of the American Chemical Society.
– volume: 73
  start-page: 1348
  year: 2007
  end-page: 1354
  article-title: ‐mediated transformation (AMT) of as an efficient tool for random insertional mutagenesis
  publication-title: Applied Microbiology and Biotechnology
– volume: 45
  start-page: 383
  year: 2016
  end-page: 392
  article-title: Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic inhibiting phytopathogen Kuhn
  publication-title: Infection, Genetics and Evolution
– volume: 12
  start-page: R40
  year: 2011
  article-title: Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma
  publication-title: Genome Biology
– volume: 1
  start-page: 88
  year: 2015
  end-page: 96
  article-title: Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR‐Cas
  publication-title: Cell Systems
– volume: 35
  start-page: 1469
  year: 2016
  end-page: 1474
  article-title: DNA‐free genome editing methods for targeted crop improvement
  publication-title: Plant Cell Reports
– volume: 17
  start-page: 169
  year: 1990
  end-page: 174
  article-title: Transformation of by high‐voltage electric pulse
  publication-title: Current Genetics
– volume: 158
  start-page: 58
  year: 2012
  end-page: 68
  article-title: RUT‐C30‐‐thirty years of strain improvement
  publication-title: Microbiology
– volume: 20(3), 213
  year: 2022
  article-title: New sorbicillinoids with tea pathogenic fungus inhibitory effect from marine‐derived fungus H8
  publication-title: Marine Drugs
– volume: 9
  start-page: 430
  year: 2008
  article-title: The information highways of a biotechnological workhorse – signal transduction in
  publication-title: BMC Genomics
– volume: 23
  start-page: 10030
  year: 2021
  end-page: 10038
  article-title: Efficient conversion of spent mushroom substrate into a high value‐added anticancer drug pentostatin with engineered
  publication-title: Green Chemistry
– volume: 31
  start-page: 1562
  year: 2013
  end-page: 1574
  article-title: Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies
  publication-title: Biotechnology Advances
– volume: 2, 716511
  year: 2021
  article-title: Bioprospecting Trichoderma: a systematic roadmap to screen genomes and natural products for biocontrol applications
  publication-title: Frontiers in Fungal Biology
– volume: 85
  start-page: 209
  year: 2014
  end-page: 218
  article-title: CRISPR‐Cas system: a powerful tool for genome engineering
  publication-title: Plant Molecular Biology
– volume: 18
  start-page: 9
  year: 2019
  article-title: Deep‐sea fungi could be the new arsenal for bioactive molecules
  publication-title: Marine Drugs
– volume: 20
  start-page: 485
  year: 2019
  article-title: Evolution and comparative genomics of the most common species
  publication-title: BMC Genomics
– volume: 8
  start-page: 15179
  year: 2017
  article-title: CRISPR‐Cpf1 assisted genome editing of
  publication-title: Nature Communications
– volume: 64
  start-page: 475
  year: 2010
  end-page: 493
  article-title: CRISPR/Cas system and its role in phage‐bacteria interactions
  publication-title: Annual Review of Microbiology
– volume: 150
  year: 2021
  article-title: Metabolites of EF5 inhibits soil borne pathogen, a by triggering amino sugar metabolism
  publication-title: Microbial Pathogenesis
– volume: 576
  start-page: 149
  year: 2019
  end-page: 157
  article-title: Search‐and‐replace genome editing without double‐strand breaks or donor DNA
  publication-title: Nature
– volume: 61
  start-page: 910
  year: 2021
  end-page: 922
  article-title: Activation of defense response in common bean against stem rot disease triggered by and
  publication-title: Journal of Basic Microbiology
– volume: 186
  start-page: 2038
  year: 2004
  end-page: 2045
  article-title: ‐mediated transformation of in the absence of full‐length VirD2, VirC2, or VirE2 leads to insertion of aberrant T‐DNA structures
  publication-title: Journal of Bacteriology
– volume: 4(1), e00002‐19
  year: 2019
  article-title: A CRISPR interference platform for efficient genetic repression in
  publication-title: mSphere
– volume: 44
  start-page: 1367
  year: 2017
  end-page: 1373
  article-title: Use of transcription activator‐like effector for efficient gene modification and transcription in the filamentous fungus
  publication-title: Journal of Industrial Microbiology & Biotechnology
– volume: 8
  start-page: 11
  year: 2021
  article-title: An overview on current molecular tools for heterologous gene expression in
  publication-title: Fungal Biology and Biotechnology
– volume: 3
  start-page: 13
  year: 2016
  article-title: A novel cellulase produced by a newly isolated
  publication-title: Bioengineering (Basel, Switzerland)
– volume: 14
  start-page: 2343
  year: 2021
  end-page: 2355
  article-title: Efficient genome editing in filamentous fungi via an improved CRISPR‐Cas9 ribonucleoprotein method facilitated by chemical reagents
  publication-title: Microbial Biotechnology
– volume: 319
  year: 2021
  article-title: Alleviating product inhibition of cellulase complex with a product‐activated mushroom endoglucanase
  publication-title: Bioresource Technology
– volume: 8
  start-page: 45763
  year: 2017
  article-title: CRISPR/Cas9‐mediated efficient genome editing via blastospore‐based transformation in entomopathogenic fungus
  publication-title: Scientific Reports
– volume: 8
  start-page: eabl5166
  year: 2022
  article-title: A programmable high‐expression yeast platform responsive to user‐defined signals
  publication-title: Science Advances
– volume: 62
  start-page: 3057
  year: 2022
  end-page: 3066
  article-title: Molecular mechanism of D1135E‐induced discriminated CRISPR‐Cas9 PAM recognition
  publication-title: Journal of Chemical Information and Modeling
– volume: 30
  start-page: 282
  year: 2000
  end-page: 286
  article-title: Rapid transformation of high cellulase‐producing mutant strains of by microprojectile bombardment
  publication-title: Letters in Applied Microbiology
– volume: 24
  start-page: 1012
  year: 2014
  end-page: 1019
  article-title: Highly efficient RNA‐guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
  publication-title: Genome Research
– volume: 15
  start-page: 63
  year: 2022
  article-title: Integrative transcriptome and proteome analyses of LC and its cellulase hyper‐producing mutants generated by heavy ion mutagenesis reveal the key genes involved in cellulolytic enzymes regulation
  publication-title: Biotechnology for Biofuels and Bioproducts
– volume: 19
  start-page: 2
  year: 2019
  article-title: Fast gene disruption in using assembled Cas9/gRNA complex
  publication-title: BMC Biotechnology
– volume: 43
  start-page: 495
  year: 2021
  end-page: 502
  article-title: CRISPR/Cas9‐mediated genome editing in and using 5S rRNA promoter‐driven guide RNAs
  publication-title: Biotechnology Letters
– volume: 56
  start-page: 792
  year: 2016
  end-page: 800
  article-title: Tolerance to chitosan by species is associated with low membrane fluidity
  publication-title: Journal of Basic Microbiology
– volume: 4
  start-page: 839
  year: 1990
  end-page: 843
  article-title: High‐efficiency transformation system for the biocontrol agents, spp
  publication-title: Molecular Microbiology
– volume: 10
  start-page: 194
  year: 2017
  article-title: A novel transcription factor specifically regulates GH11 xylanase genes in
  publication-title: Biotechnology for Biofuels
– volume: 31
  start-page: 684
  year: 2013
  end-page: 686
  article-title: Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR‐Cas systems
  publication-title: Nature Biotechnology
– volume: 13
  start-page: 93
  year: 2020
  article-title: Rational engineering of the RUT‐C30 strain into an industrially relevant platform for cellulase production
  publication-title: Biotechnology for Biofuels
– volume: 15
  start-page: 106
  year: 2016
  article-title: Cellulases and beyond: the first 70 years of the enzyme producer
  publication-title: Microbial Cell Factories
– volume: 41
  start-page: 440
  year: 1994
  end-page: 446
  article-title: Development of a transformation system for and its use for constructing multicopsy transformants for the gene
  publication-title: Applied Microbiology and Biotechnology
– volume: 9
  year: 2021
  article-title: Complete genome sequences and genome‐wide characterization of biocontrol agents provide new insights into their evolution and variation in genome organization, sexual development, and fungal‐plant interactions
  publication-title: Microbiology Spectrum
– volume: 8
  start-page: 14355
  year: 2018
  article-title: CRISPR‐Cas9 ribonucleoprotein‐mediated co‐editing and counterselection in the rice blast fungus
  publication-title: Scientific Reports
– volume: 1
  start-page: 15007
  year: 2015
  article-title: Efficient genome editing in filamentous fungus using the CRISPR/Cas9 system
  publication-title: Cell Discovery
– volume: 100
  start-page: 64
  year: 2016
  end-page: 74
  article-title: Biocontrol potential of isolate T‐aloe against in soybean
  publication-title: Plant Physiology and Biochemistry
– volume: 9
  start-page: 5032
  year: 2019
  article-title: Novel genetic tools that enable highly pure protein production in
  publication-title: Scientific Reports
– volume: 7
  start-page: 249
  year: 2004
  end-page: 260
  article-title: Biocontrol mechanisms of strains
  publication-title: International Microbiology
– volume: 16
  start-page: 168
  year: 2017
  article-title: Methods for genetic transformation of filamentous fungi
  publication-title: Microbial Cell Factories
– volume: 61
  start-page: 155
  year: 1987
  end-page: 164
  article-title: A versatile transformation system for the cellulolytic filamentous fungus
  publication-title: Gene
– volume: 12
  start-page: 293
  year: 2019
  article-title: Upgrading of efficient and scalable CRISPR‐Cas‐mediated technology for genetic engineering in thermophilic fungus
  publication-title: Biotechnology for Biofuels
– volume: 11
  start-page: 1085
  year: 2021
  article-title: Generation of with auxotrophic marker by using the CRISPR/Cas9 system
  publication-title: Scientific Reports
– volume: 65
  start-page: 301
  year: 2020
  end-page: 307
  article-title: An efficient shortened genetic transformation strategy for filamentous fungus
  publication-title: The Journal of General and Applied Microbiology
– volume: 7
  start-page: 664
  year: 2022
  end-page: 670
  article-title: Efficient genome editing in using a CRISPR/Cas9 ribonucleoprotein method
  publication-title: Synthetic and Systems Biotechnology
– volume: 43
  start-page: 8
  year: 2020
  end-page: 17
  article-title: CRISPR‐Cas12a: Functional overview and applications
  publication-title: Biomed J
– volume: 51
  start-page: 393
  year: 2002
  end-page: 399
  article-title: Biolistic transformation of using the Bio‐Rad seven barrels Hepta Adaptor system
  publication-title: Journal of Microbiological Methods
– year: 2013
– ident: e_1_2_8_33_1
  doi: 10.1038/srep26871
– ident: e_1_2_8_76_1
  doi: 10.3390/md20030177
– ident: e_1_2_8_44_1
  doi: 10.1007/s11103-014-0188-7
– ident: e_1_2_8_20_1
  doi: 10.1186/s13068-020-01732-w
– ident: e_1_2_8_68_1
  doi: 10.1186/1471-2164-15-204
– ident: e_1_2_8_60_1
  doi: 10.1016/j.procbio.2017.02.012
– ident: e_1_2_8_2_1
  doi: 10.1038/s41586-019-1711-4
– ident: e_1_2_8_18_1
  doi: 10.1371/journal.pgen.1007322
– ident: e_1_2_8_73_1
  doi: 10.1186/s12934-020-01411-3
– ident: e_1_2_8_25_1
  doi: 10.1186/s12896-018-0498-y
– ident: e_1_2_8_57_1
  doi: 10.1016/0378-1119(87)90110-7
– ident: e_1_2_8_61_1
  doi: 10.1038/s41598-019-41573-8
– ident: e_1_2_8_71_1
  doi: 10.1016/S0167-7012(02)00126-4
– ident: e_1_2_8_92_1
  doi: 10.1007/978-1-0716-1048-0_8
– ident: e_1_2_8_95_1
  doi: 10.1111/1751-7915.13652
– ident: e_1_2_8_8_1
  doi: 10.1007/978-1-0716-1323-8_12
– ident: e_1_2_8_40_1
  doi: 10.1038/nbt.2652
– ident: e_1_2_8_69_1
  doi: 10.1016/j.meteno.2015.03.001
– ident: e_1_2_8_70_1
  doi: 10.1016/j.jip.2021.107626
– ident: e_1_2_8_28_1
  doi: 10.1016/j.cels.2015.02.001
– volume: 2
  year: 2021
  ident: e_1_2_8_62_1
  article-title: Bioprospecting Trichoderma: a systematic roadmap to screen genomes and natural products for biocontrol applications
  publication-title: Frontiers in Fungal Biology
– ident: e_1_2_8_87_1
  doi: 10.1016/j.plaphy.2015.12.017
– ident: e_1_2_8_81_1
  doi: 10.1021/jacs.1c03988
– ident: e_1_2_8_21_1
  doi: 10.1038/s41598-018-32702-w
– ident: e_1_2_8_32_1
  doi: 10.1021/acs.jcim.1c01562
– ident: e_1_2_8_53_1
  doi: 10.1128/JB.186.7.2038-2045.2004
– ident: e_1_2_8_67_1
  doi: 10.1016/j.micpath.2020.104714
– ident: e_1_2_8_64_1
  doi: 10.1186/1471-2164-9-430
– ident: e_1_2_8_52_1
  doi: 10.1038/nbt1403
– ident: e_1_2_8_39_1
  doi: 10.1038/sj.emboj.7600385
– ident: e_1_2_8_90_1
  doi: 10.1038/s41598-017-10052-3
– ident: e_1_2_8_38_1
  doi: 10.1002/jobm.202000749
– ident: e_1_2_8_88_1
  doi: 10.3389/fmicb.2021.723828
– ident: e_1_2_8_80_1
  doi: 10.1111/jam.14457
– ident: e_1_2_8_46_1
  doi: 10.1186/s13068-017-0878-x
– ident: e_1_2_8_72_1
  doi: 10.1186/s40694-021-00119-2
– ident: e_1_2_8_24_1
  doi: 10.1038/nbt0998-839
– ident: e_1_2_8_41_1
  doi: 10.1186/s12934-017-0785-7
– ident: e_1_2_8_34_1
– ident: e_1_2_8_4_1
  doi: 10.1007/BF00309596
– ident: e_1_2_8_7_1
  doi: 10.1038/nrg3409
– ident: e_1_2_8_36_1
  doi: 10.1186/gb-2011-12-4-r40
– ident: e_1_2_8_23_1
  doi: 10.1007/BF00312863
– ident: e_1_2_8_74_1
  doi: 10.1038/s41598-020-80186-4
– ident: e_1_2_8_22_1
  doi: 10.1016/j.meegid.2016.09.026
– ident: e_1_2_8_49_1
  doi: 10.1126/sciadv.abl5166
– ident: e_1_2_8_31_1
  doi: 10.1007/s00299-016-1982-2
– ident: e_1_2_8_9_1
  doi: 10.1080/15476286.2015.1132139
– ident: e_1_2_8_91_1
  doi: 10.1007/s00253-006-0603-3
– ident: e_1_2_8_84_1
  doi: 10.1002/jobm.201500758
– ident: e_1_2_8_51_1
  doi: 10.1007/BF00336788
– ident: e_1_2_8_6_1
  doi: 10.1093/jimb/kuab014
– ident: e_1_2_8_47_1
  doi: 10.1007/s10295-017-1963-7
– ident: e_1_2_8_63_1
  doi: 10.1007/BF00939033
– ident: e_1_2_8_86_1
  doi: 10.3390/bioengineering3020013
– ident: e_1_2_8_83_1
  doi: 10.3390/md18010009
– volume: 4
  year: 2019
  ident: e_1_2_8_77_1
  article-title: A CRISPR interference platform for efficient genetic repression in Candida albicans
  publication-title: mSphere
  doi: 10.1128/mSphere.00002-19
– ident: e_1_2_8_85_1
  doi: 10.1007/s00294-003-0454-8
– ident: e_1_2_8_66_1
  doi: 10.1016/j.riam.2016.06.004
– ident: e_1_2_8_30_1
  doi: 10.1038/ncomms15179
– ident: e_1_2_8_48_1
  doi: 10.1186/s13068-019-1637-y
– ident: e_1_2_8_78_1
  doi: 10.2323/jgam.2019.02.001
– ident: e_1_2_8_11_1
  doi: 10.1021/acssynbio.1c00570
– ident: e_1_2_8_82_1
  doi: 10.1016/j.synbio.2022.02.002
– volume: 44
  start-page: 383
  year: 2006
  ident: e_1_2_8_10_1
  article-title: A comparison of the phenotypic and genetic stability of recombinant Trichoderma spp. generated by protoplast‐ and Agrobacterium‐mediated transformation
  publication-title: Journal of Microbiology
– ident: e_1_2_8_79_1
  doi: 10.1007/s10529-020-02887-0
– ident: e_1_2_8_75_1
  doi: 10.1007/s10529-020-03024-7
– ident: e_1_2_8_54_1
  doi: 10.1146/annurev-phyto-082712-102353
– ident: e_1_2_8_93_1
  doi: 10.1016/j.biortech.2020.124119
– ident: e_1_2_8_13_1
  doi: 10.1126/science.1231143
– ident: e_1_2_8_29_1
  doi: 10.1016/j.biotechadv.2013.08.005
– ident: e_1_2_8_56_1
  doi: 10.1016/j.bj.2019.10.005
– ident: e_1_2_8_27_1
  doi: 10.1111/j.1365-2958.1990.tb00654.x
– ident: e_1_2_8_17_1
  doi: 10.1186/s13068-022-02161-7
– ident: e_1_2_8_37_1
  doi: 10.1186/s12864-019-5680-7
– volume: 20
  year: 2022
  ident: e_1_2_8_50_1
  article-title: New sorbicillinoids with tea pathogenic fungus inhibitory effect from marine‐derived fungus Hypocrea jecorina H8
  publication-title: Marine Drugs
– ident: e_1_2_8_12_1
  doi: 10.1038/srep45763
– ident: e_1_2_8_14_1
  doi: 10.1128/AEM.01408-16
– ident: e_1_2_8_15_1
  doi: 10.1146/annurev.micro.112408.134123
– ident: e_1_2_8_26_1
  doi: 10.1046/j.1472-765x.2000.00715.x
– ident: e_1_2_8_58_1
  doi: 10.1099/mic.0.054031-0
– ident: e_1_2_8_16_1
  doi: 10.1093/nar/gkt135
– ident: e_1_2_8_35_1
  doi: 10.1101/gr.171322.113
– ident: e_1_2_8_55_1
  doi: 10.1139/cjm-2020-0438
– ident: e_1_2_8_43_1
  doi: 10.3390/md19120689
– ident: e_1_2_8_89_1
  doi: 10.1128/spectrum.02321-21
– ident: e_1_2_8_42_1
  doi: 10.1128/Spectrum.00663-21
– volume: 7
  start-page: 249
  year: 2004
  ident: e_1_2_8_3_1
  article-title: Biocontrol mechanisms of Trichoderma strains
  publication-title: International Microbiology
– ident: e_1_2_8_94_1
  doi: 10.1039/D1GC03594K
– ident: e_1_2_8_19_1
  doi: 10.1038/srep35766
– ident: e_1_2_8_45_1
  doi: 10.1038/celldisc.2015.7
– ident: e_1_2_8_5_1
  doi: 10.1186/s12934-016-0507-6
– volume-title: Genetic manipulations in Trichoderma reesei and Trichoderma atroviride–Auxotrophic selection markers and the CRISPR/Cas9 system
  year: 2021
  ident: e_1_2_8_59_1
– ident: e_1_2_8_65_1
  doi: 10.1016/j.fgb.2019.04.016
SSID ssj0060052
Score 2.425138
SecondaryResourceType review_article
Snippet Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and...
Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial and...
Abstract Given their lignocellulose degradability and biocontrol activities, fungi of the ubiquitously distributed genus Trichoderma have multiple industrial...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2521
SubjectTerms Biological control
Biopesticides
Biotechnology
CRISPR
CRISPR-Cas Systems
Degradability
Editing
Enzymes
Fungi
Gene Editing
Genes
Genetic engineering
Genetic modification
Genome editing
Genomes
Lignocellulose
Mini Review
Minireview
Plasmids
Polyethylene glycol
Proteins
Trichoderma
Trichoderma - genetics
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB6hnuCAKL-BgoLEgUtoEjuOfaQrqoJUhMqu1Jtljx0VqU0Qu733EXhGnoQZJ7vaFaBeuERWPIms8Xh-7PE3AG-62HEpE1mYMopCevSFl50nZViGxsg2OOQT3dPP6mQhP50351ulvjgnbIQHHhl3qDQqR0EIhlJIX5P4GGy9U_RrH4RH1r5k89bB1KiDFe92TkA-nLdDNrJiYMaGFEPFOApbNihB9f_Nv_wzTXLbfU325_gB3J8cx_z9OOB9uBP7h3BvC07wEZjFMuZDl8_OPn79cvbr5ufMLfPVMFzyM48TaT4n1XfBJdCuXM4XLSlWfgyL4w_z2UkxlUYosBFSFaHDFrEq0cS6bVon6yCki4yGF72PSpMVd6ZGr52glgw1mga1F140pcQgnsBeP_TxGeQRAwVZOpLpr2TnKi8bXXW8I2RU1ZUxg3drZlmccMO5fMWlXccPzF3L3LWJuxm83XzwfYTM-DfpEXN_Q8ZY1-kFSYCdJMDeJgEZHKznzk4LcGnrNiH3iVZm8HrTTUuHz0NcH4dromFgIMVZKhk8Had6MxKRasFrnUG7IwQ7Q93t6b9dJHhu8lm10fTPwyQut_HAnh7N69R6_j-48QLu1nxDI-UbHsDe6sd1fEl-08q_SkvkN9qyEU0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB5BucAB8U-goCBx4BKaxI5jnyq6oipIRajsSnuz7LFDkUpSuts7j8Az8iT1eL1hV_xdIiueRM54PJ4ZT74BeNn5jkqZ8EKVnhXcoi0s72xQhqVrFG-dQTrRPf4gjmb8_byZp4DbIqVVrnViVNRuQIqR79VthGJjLd8__1ZQ1Sg6XU0lNK7DDYIuo5Sudj46XIJingnOh7J3wk5ZETxjE9RDRWgKGztRBOz_k5X5e7LkphEbd6HDO3A7mY_5m9V834Vrvr8HtzZABe-Dmi18PnT55OTdp48nP7__mJhFvhyGM7rmPpHm06AAT6kQ2leT0--WwWN-ALPDt9PJUZEKJBTYMC4K12GLWJWofN02reG1Y9x4wsTz1nohw15uVI1WGhZa3NWoGpSWWdaUHB17CDv90PvHkHt0wdWSPhgAFe9MZXkjq47iQkpUXekzeL1mlsaEHk5FLM702osg7mriro7czeDV-MD5Cjjj76QHxP2RjBCv443h4rNOC0gLicIEZxRdybitgxpR2FojgohZxyxmsLueO52W4UL_EpoMXozdYQHRqYjp_XAZaAgeSFCuSgaPVlM9joTFivBSZtBuCcHWULd7-i-nEaQ7WK5SyfDOvSgu_-OBPj6Y1rH15N8f8hRu1vQHRswn3IWd5cWlfxbsoqV9HoX_Cp9BCGo
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access (Activated by CARLI)
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BucAB8SZQUJA4cAkktuPYx3bVqiAVVWVX4mb5FYpUEtTd3vkJ_Mb-ks54k2iXhxCXyIrHljX2jMf2zDcAr9vYUioTUegy8kI47wonWofKsAy1Fk2wnl50jz_Ko4X48LkevQkpFmaNDzFduJFkJH1NAm7dckPIcd-rCGyxRmGvmLwJtyjAluDzmTgZlbGka88UEzkQD-g-5MzzSwdbG1PC7_-T0fm77-SmTZs2pcN7cHewJvO99fTfhxuxewB3NjAGH4JeLGPet_ns9P2nk9OrHz9ndpmv-v6cvnkcSPM56sMzyov2zeYUfYkH6EewODyYz46KIV9C4WsuZBFa33hflV5H1tSNFSxwYSNB5EXnolS4tVvNvFOWY0kE5nXtleOO16XwgT-Gna7v4lPIow948lIR7YFKtLZyolZVS9dEWlZtGTN4OzLL-AFMnHJanJvxUEHcNcRdk7ibwZupwfc1jsbfSfeJ-xMZAWCnH_3FFzPIk5HKS4tnUx9KLhxDraJ946zEFecCdz6D3XHuzCCVS8OaBOfHG5HBq6ka5YkeSWwX-0ukIbQgSa4rGTxZT_U0Ep4SxCuVQbO1CLaGul3TfT1LmN1oyCqtsM93abn8iwfmeH_OUunZf7d4DrcZxWgkj8Nd2FldXMYXaDmt3MskG9ffEwvY
  priority: 102
  providerName: Wiley-Blackwell
Title Use of CRISPR‐Cas tools to engineer Trichoderma species
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1751-7915.14126
https://www.ncbi.nlm.nih.gov/pubmed/35908288
https://www.proquest.com/docview/2718671374
https://www.proquest.com/docview/2696862002
https://pubmed.ncbi.nlm.nih.gov/PMC9518982
https://doaj.org/article/68c6a409cd034b27949c7ba60e3bd3bc
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-x7QUeEN8ERhUkHnjJSGLHdh4QotXKQOpUlVbqW2Q7zoZUkq3tJPjvuXOTsooieLGs-GJZ5zvfnT9-B_CmchWlMuFRHjsWcWNNZHhlcDGMyyznstSWTnRH5-Jsxr_Ms_nvdEAtA1d7QzvKJzVbLk5-XP_8gAr_vruVgxYwIdjFDNU-ScUBHKFZkqSlI749UhC0AepfR7bELc7Png52TJRH8t_nfv55i_K2d-vN0_AB3G_9yvDjRhAewh1XP4J7t9AGH4OcrVzYVOFg8vnreBIN9CpcN82CytC1hOEU18VLyo_2XYf0ChMD6ScwG55OB2dRmzchshnjIiorK61NYpu7VGZS87RkXDuCynPGOKHQxOs8tUZphjVepjbPrDLMsCzmtmRP4bBuavccQmdLjMCUQ78g4ZVODM9UUtF2US6SKnYBnHSsKmwLKk65LRZFF1wQbwvibeF5G8Db7Q9XGzyNv5P2ifdbMgLC9h-a5UXR6lUhlBUaY1RbxoybFFeX3EqjBUqeKZmxARx3M1d0wlWk0sP6MckDeL1tRr2iwxJdu-YGaQg1SNAVlgCebSZ6OxLmE8UrFYDcEYGdoe621N8uPXY3OrQqV9jnOy8s_-JBMepPU1978R8jfQl3U3qd4e8aHsPhennjXqHPtDY9OEj5GEs5l1iq4aceHPVPz8eTnt-F6Hld-QXRXBIG
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOiH8CBYIEEpfQxHYS54AQXah2abdCZVfam7Edp61UktLdCnHjEXgSHoonYcabLLvi79RLZCWOlYzn1x5_A_CkchWVMhFRETseCWNNZERlUBnGZVqIvNSWdnSHe1l_LN5O0skafO_OwlBaZacTvaIuG0tr5Jss91BsPBcvTz5FVDWKdle7EhpztthxXz5jyDZ9MXiN8_uUse03o14_aqsKRDblIovKyubWJrEtHMvTXAtWcqEdAck5Y1wm0QDqglkjNceWKJktUisNNzyNhS05jnsBLqLhjUmi8skiwMtojbWFD6JsIbTMCcFBpqiOEkJvWLJ8vkDAn7za35Mzl51mb_W2r8HV1l0NX8356zqsufoGXFkCMbwJxXjqwqYKe_uD9-_2f3z91tPTcNY0x3QNXds1HKHCPaTCax91SMc7MUK_BeNzId1tWK-b2t2F0NkSQzvp0OFIRKUTI1KZVLQOVWRJFbsAnnfEUrZFK6eiGceqi1qIuoqoqzx1A3i2eOFkDtTx965bRP1FN0LY9jea0wPVCqzKpM00Br-2jLkwDNVWYXOjM2RpU3JjA9jo5k61Yj9Vv5g0gMeLxyiwtAuja9ecYR-CI8ooNyaAO_OpXnwJ9xXopQwgX2GClU9dfVIfHXpQcPSUZSFxzE3PLv-jgRpujZhv3fv3jzyCS_3RcFftDvZ27sNlRqc_fC7jBqzPTs_cA_TJZuahF4QQPpy35P0ElVRFoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IN4ECgQJJC5hE9t5HRCiW1ZdSquq7Ep7c_0KRSpJ6W6FuPET-D38HH4JM95k2RWvUy-RFTuWM54Zz9jjbwCeVK6iVCYiKmPHI6GNjrSoNCrD2KalyK0ydKK7u5dtj8WbSTpZg-_dXRgKq-x0olfUtjG0R95juYdi47noVW1YxP7W4OXJp4gySNFJa5dOY84iO-7LZ3Tfpi-GWzjXTxkbvB71t6M2w0BkUi6yyFYmNyaJTelYnuZKMMuFcgQq57R2WYGLoSqZ0YXiWBKWmTI1heaap7EwlmO_F-BiztOEZCyfLJy9jPZbWyghihzCVTohaMgUVVNCSA5Lq6BPFvAnC_f3QM1lA9qvgINrcLU1XcNXc167DmuuvgFXlgANb0I5nrqwqcL-wfDd_sGPr9_6ahrOmuaYnqFrm4YjVL5HlITtowrpqid667dgfC6kuw3rdVO7uxA6Y9HNKxwaH4moVKJFWiQV7UmVWVLFLoDnHbGkaZHLKYHGsew8GKKuJOpKT90Ani0-OJmDdvy96SZRf9GM0Lb9i-b0vWyFV2aFyRQ6wsbGXGiGKqw0uVYZsre2XJsANrq5k60KmMpfDBvA40U1Ci-dyKjaNWfYhqCJMoqTCeDOfKoXI-E-G31RBJCvMMHKUFdr6g9HHiAcreaiLLDPnmeX_9FA7m6OmC_d-_ePPIJLKHPy7XBv5z5cZnQRxIc1bsD67PTMPUDzbKYfejkI4fC8Be8n5_VJ1w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Use+of+CRISPR-Cas+tools+to+engineer+Trichoderma+species&rft.jtitle=Microbial+biotechnology&rft.au=Wang%2C+Ying&rft.au=Chen%2C+Hongyu&rft.au=Ma%2C+Liang&rft.au=Gong%2C+Ming&rft.date=2022-10-01&rft.issn=1751-7915&rft.eissn=1751-7915&rft.volume=15&rft.issue=10&rft.spage=2521&rft_id=info:doi/10.1111%2F1751-7915.14126&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7915&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7915&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7915&client=summon