A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production

Summary Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 p...

Full description

Saved in:
Bibliographic Details
Published inPlant biotechnology journal Vol. 10; no. 1; pp. 54 - 66
Main Authors Blomstedt, Cecilia K., Gleadow, Roslyn M., O'Donnell, Natalie, Naur, Peter, Jensen, Kenneth, Laursen, Tomas, Olsen, Carl Erik, Stuart, Peter, Hamill, John D., Møller, Birger Lindberg, Neale, Alan D.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.01.2012
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild‐type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.
AbstractList Summary Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild‐type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild‐type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.
Author Stuart, Peter
Blomstedt, Cecilia K.
O'Donnell, Natalie
Møller, Birger Lindberg
Gleadow, Roslyn M.
Laursen, Tomas
Jensen, Kenneth
Neale, Alan D.
Naur, Peter
Olsen, Carl Erik
Hamill, John D.
Author_xml – sequence: 1
  givenname: Cecilia K.
  surname: Blomstedt
  fullname: Blomstedt, Cecilia K.
  email: Cecilia.Blomstedt@monash.edu
  organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia
– sequence: 2
  givenname: Roslyn M.
  surname: Gleadow
  fullname: Gleadow, Roslyn M.
  organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia
– sequence: 3
  givenname: Natalie
  surname: O'Donnell
  fullname: O'Donnell, Natalie
  organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia
– sequence: 4
  givenname: Peter
  surname: Naur
  fullname: Naur, Peter
  organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 5
  givenname: Kenneth
  surname: Jensen
  fullname: Jensen, Kenneth
  organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 6
  givenname: Tomas
  surname: Laursen
  fullname: Laursen, Tomas
  organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 7
  givenname: Carl Erik
  surname: Olsen
  fullname: Olsen, Carl Erik
  organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 8
  givenname: Peter
  surname: Stuart
  fullname: Stuart, Peter
  organization: Pacific Seeds, Toowoomba, Qld, Australia
– sequence: 9
  givenname: John D.
  surname: Hamill
  fullname: Hamill, John D.
  organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia
– sequence: 10
  givenname: Birger Lindberg
  surname: Møller
  fullname: Møller, Birger Lindberg
  organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark
– sequence: 11
  givenname: Alan D.
  surname: Neale
  fullname: Neale, Alan D.
  organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25462406$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21880107$$D View this record in MEDLINE/PubMed
BookMark eNqNks2O0zAUhSM0iPmBV0DeIGaTYCeOnUgIaaaCUikMCIafneU4N61LYhc7Ee1T8Mo4tFMkFmi88ZX8nXOk43senRhrIIoQwQkJ58U6IZTxmLM8TVJMSIIxoyzZPojOjg8nx5nS0-jc-zXGKWE5exSdpqQoMMH8LPp1hZTta22gQbW2agW9VrJDXjkAg6Rp0O2iqhY3cyQ3G2elWiHdgBl0q8GjfhzkoK3xSBv0ybrlauyDj7KddahK0DsLJigc-LEbtFlOmFQ7aewSjFaotU4uAQXjZlST0ePoYSs7D08O90X0-c3r29nbuHo_X8yuqljlGWVxTnBZZ0XOcZ3xhhAGRV4ylZKalC0jssmyWqUty6AlVGIiW14XtClBlQS4hOwier73DdE_RvCD6LVX0HXSgB29KHGZliwlNJCX_yVDyWWKc8JwQJ8e0LHuoREbp3vpduKu7gA8OwDSh5ZbJ43S_i-XU5ZSzAL3as8pZ7130Aql90UPTupOECymPRDrKZ2L6bvFtAfizx6IbTAo_jG4y7iH9OVe-lN3sLu3Tny4XoQhyOO9XPsBtke5dN8F4xnPxdebuSjn_Prbl49UzLLfzXjZKg
CitedBy_id crossref_primary_10_1093_jxb_erw302
crossref_primary_10_1186_s12864_015_2079_y
crossref_primary_10_1534_genetics_113_149567
crossref_primary_10_1093_jxb_eraa034
crossref_primary_10_1016_j_jplph_2021_153393
crossref_primary_10_1371_journal_pbio_1001878
crossref_primary_10_18697_ajfand_109_19785
crossref_primary_10_1111_pce_12209
crossref_primary_10_1186_s40066_021_00287_9
crossref_primary_10_1016_j_tplants_2022_03_001
crossref_primary_10_1002_pld3_38
crossref_primary_10_1016_j_fcr_2015_10_010
crossref_primary_10_1007_s11032_017_0620_1
crossref_primary_10_1111_ppl_14449
crossref_primary_10_1186_1754_6834_5_80
crossref_primary_10_1534_g3_116_029660
crossref_primary_10_1038_s41598_018_20928_7
crossref_primary_10_1007_s00253_017_8559_z
crossref_primary_10_3390_plants13162291
crossref_primary_10_1111_tpj_13012
crossref_primary_10_1016_j_phytochem_2016_11_013
crossref_primary_10_1007_s00122_023_04262_9
crossref_primary_10_1016_j_envexpbot_2019_103884
crossref_primary_10_1007_s00122_021_04017_4
crossref_primary_10_1111_tpj_15071
crossref_primary_10_3390_agronomy10030405
crossref_primary_10_1080_02571862_2019_1706003
crossref_primary_10_3390_agronomy12040800
crossref_primary_10_1146_annurev_arplant_050213_040027
crossref_primary_10_1007_s00425_023_04176_2
crossref_primary_10_1016_j_plaphy_2023_02_031
crossref_primary_10_3389_fnut_2019_00122
crossref_primary_10_2135_cropsci2016_04_0284
crossref_primary_10_1080_15427528_2018_1544954
crossref_primary_10_1534_g3_117_300301
crossref_primary_10_1007_s10725_019_00489_z
crossref_primary_10_1080_01140671_2013_793730
crossref_primary_10_1016_j_fcr_2022_108764
crossref_primary_10_1038_s41598_019_41884_w
crossref_primary_10_1111_jipb_12192
crossref_primary_10_1186_s12864_016_3360_4
crossref_primary_10_1016_j_indcrop_2012_03_031
crossref_primary_10_3389_fpls_2017_01461
crossref_primary_10_1111_tpj_13023
crossref_primary_10_1016_j_molp_2017_12_014
crossref_primary_10_1371_journal_pone_0152907
crossref_primary_10_1093_pcp_pcv153
crossref_primary_10_1111_gcb_13380
crossref_primary_10_1071_FP17227
crossref_primary_10_1111_nph_14702
crossref_primary_10_1111_ppl_70029
crossref_primary_10_1016_j_phytochem_2019_112214
crossref_primary_10_1111_plb_70009
crossref_primary_10_1016_j_phytochem_2022_113483
crossref_primary_10_1007_s00425_022_03844_z
crossref_primary_10_3390_plants9121791
crossref_primary_10_1093_jxb_erac031
crossref_primary_10_1007_s11816_024_00886_5
crossref_primary_10_1080_02571862_2018_1469794
crossref_primary_10_3390_life14040470
crossref_primary_10_1111_pbr_12691
crossref_primary_10_2135_cropsci2015_06_0379
crossref_primary_10_1007_s00425_022_03831_4
crossref_primary_10_1002_jsfa_5752
crossref_primary_10_2135_cropsci2012_12_0693
crossref_primary_10_3390_genes13010140
crossref_primary_10_1021_jf205030b
crossref_primary_10_1080_23311932_2024_2324528
crossref_primary_10_3390_agronomy8080146
crossref_primary_10_1007_s11103_015_0348_4
crossref_primary_10_1111_tpj_13923
crossref_primary_10_1016_j_plaphy_2013_09_001
crossref_primary_10_3390_plants10112319
crossref_primary_10_1270_jsbbs_63_42
crossref_primary_10_1111_tpj_13247
crossref_primary_10_1007_s11101_017_9532_2
crossref_primary_10_1016_j_phytochem_2020_112645
crossref_primary_10_3389_fpls_2019_01458
crossref_primary_10_1088_1755_1315_128_1_012169
crossref_primary_10_1111_j_1467_7652_2012_00708_x
Cites_doi 10.1016/S0021-9258(19)85850-7
10.1073/pnas.181342398
10.1016/0031-9422(94)00878-W
10.1104/pp.115.4.1661
10.1126/science.1062249
10.1093/treephys/20.9.591
10.1006/abbi.1995.0024
10.1093/nar/gkh599
10.1111/j.1439-0523.2009.01640.x
10.1104/pp.104.041061
10.1023/A:1016298100201
10.1111/j.1365-2435.2010.01803.x
10.1071/AR9901093
10.1023/A:1005915507497
10.1016/S0969-2126(01)00134-4
10.1126/science.1194971
10.1093/treephys/22.13.939
10.1093/nar/26.20.4597
10.1104/pp.000687
10.1016/S0031-9422(03)00245-0
10.1104/pp.105.065904
10.1016/S0065-2113(08)60924-4
10.2135/cropsci1984.0011183X002400060036x
10.1016/j.phytochem.2008.03.006
10.1007/s11306-007-0079-x
10.1016/j.phytochem.2009.08.024
10.1039/an9669100282
10.1016/j.pbi.2005.03.014
10.1104/pp.86.3.711
10.1186/1471-2229-8-103
10.1105/tpc.109.073502
10.1038/nprot.2009.121
10.1073/pnas.91.21.9740
10.1111/j.1399-3054.1965.tb06902.x
10.2134/agronj1970.00021962006200030025x
10.1104/pp.90.4.1552
10.1093/aob/mcm133
10.1016/j.phytochem.2007.06.033
10.1093/nar/gki580
10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D
10.1111/j.1365-294X.2007.03506.x
10.1104/pp.103.038059
10.1016/S0031-9422(97)00425-1
10.1007/BF00292324
10.1073/pnas.0409233102
10.1016/j.phytochem.2009.03.020
10.1104/pp.110.164053
10.1104/pp.35.4.535
10.1104/pp.110.162412
10.1093/aob/mcn093
10.1007/s11101-006-9033-1
10.1534/genetics.107.080366
10.1016/S0021-9258(19)86931-4
10.1016/j.ibmb.2007.07.008
10.1098/rstb.2005.1745
10.1016/j.phytochem.2011.05.001
10.1074/jbc.274.50.35483
10.1111/j.1467-7652.2008.00341.x
10.1093/aob/mcl048
10.1016/j.phytochem.2009.10.017
10.1073/pnas.0709315104
10.1016/j.pbi.2010.01.009
10.1007/BF00273709
ContentType Journal Article
Copyright 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd
2015 INIST-CNRS
2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd
– notice: 2015 INIST-CNRS
– notice: 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
DOI 10.1111/j.1467-7652.2011.00646.x
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList
MEDLINE
AGRICOLA
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1467-7652
EndPage 66
ExternalDocumentID 21880107
25462406
10_1111_j_1467_7652_2011_00646_x
PBI646
ark_67375_WNG_9G7BXVR4_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29O
31~
33P
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8FH
8UM
930
A03
A8Z
AAEVG
AAHBH
AAHHS
AAONW
AAZKR
ABCQN
ABDBF
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCFJ
ACIWK
ACPRK
ACSCC
ACXQS
ADBBV
ADIZJ
ADKYN
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFKRA
AFRAH
AFZJQ
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AVUZU
AVWKF
AZBYB
AZFZN
BAFTC
BBNVY
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHPHI
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
ECGQY
EDH
EJD
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HOLLA
HVGLF
HZ~
IAO
IEP
IGS
IHE
ITC
IX1
J0M
KQ8
L6V
LC2
LC3
LH4
LK8
LP6
LP7
LW6
M7P
M7S
MK4
ML0
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2X
P4D
PIMPY
PROAC
PTHSS
Q.N
Q11
QB0
QM4
QO4
R.K
ROL
RX1
SUPJJ
SV3
TUS
UB1
W8V
W99
WIH
WIN
WQJ
WRC
XG1
~IA
~KM
~WT
AANHP
ACCMX
ACRPL
ACUHS
ACYXJ
ADNMO
AEUYN
RPM
AAYXX
AGQPQ
CITATION
PHGZM
PHGZT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
IQODW
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
ID FETCH-LOGICAL-c5346-5109b38570b37d116e8596c21b19f61ad33bc2f63ef14a01af7b84d9ec91e7ae3
IEDL.DBID DR2
ISSN 1467-7644
1467-7652
IngestDate Fri Jul 11 02:13:39 EDT 2025
Fri Jul 11 18:17:06 EDT 2025
Thu Apr 03 07:07:31 EDT 2025
Mon Jul 21 09:14:58 EDT 2025
Tue Jul 01 02:41:21 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Jan 22 16:22:44 EST 2025
Wed Oct 30 09:50:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Plant production
Monocotyledones
Toxicity
nitrogen metabolism
Biochemistry
Cyanides
Nitrogen
Gene expression
Metabolism
CYP79A1
Regulation(control)
Sorghum bicolor
mutations
Gene
Gramineae
gene regulation
cyanide toxicity
Angiospermae
Spermatophyta
Mutation
Fodder crop
Language English
License CC BY 4.0
2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5346-5109b38570b37d116e8596c21b19f61ad33bc2f63ef14a01af7b84d9ec91e7ae3
Notes istex:2142EB37444A7F7833993F9390F6F3F7C3F60B1B
ArticleID:PBI646
ark:/67375/WNG-9G7BXVR4-C
Present address: School of Agriculture and Food Science, University of Queensland, Brisbane, Qld 4072, Australia.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21880107
PQID 1469205160
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_909296214
proquest_miscellaneous_1469205160
pubmed_primary_21880107
pascalfrancis_primary_25462406
crossref_citationtrail_10_1111_j_1467_7652_2011_00646_x
crossref_primary_10_1111_j_1467_7652_2011_00646_x
wiley_primary_10_1111_j_1467_7652_2011_00646_x_PBI646
istex_primary_ark_67375_WNG_9G7BXVR4_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2012
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: January 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
PublicationTitle Plant biotechnology journal
PublicationTitleAlternate Plant Biotechnol J
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Paquette, S.M., Jensen, K. and Bak, S. (2009) A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases ( http://www.P450.kvl.dk ). Phytochemistry, 70, 1940-1947.
Baker, N.A., Sept, D., Joseph, S., Holst, M.J. and McCammon, J.A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA, 98, 10037-10041.
Kahn, R.A., Bak, S., Svendsen, I., Halkier, B.A. and Møller, B.L. (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol. 115, 1661-1670.
Jones, P.R., Møller, B.L. and Hoj, P.B. (1999) The UDP-glucose: p-hydroxymandelonitrile-o-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J. Biol. Chem. 274, 35483-35491.
Talame, V., Bovina, R., Sanguineti, M.C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6, 477-485.
Duncan, R.R. (1996) Breeding and improvement of forage sorghums for the tropics. Adv. Agron. 57, 161-185.
Møller, B.L. (2010b) Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 13, 337-346.
Jørgensen, K., Bak, S., Busk, P.K., Sorensen, C., Olsen, C.E., Puonti-Kaerlas, J. and Møller, B.L. (2005a) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139, 363-374.
Wheeler, J.L., Mulcahy, A.C., Walcott, J.J. and Rapp, G.G. (1990) Factors affecting the hydrogen cyanide potential of forage sorghum. Aust. J. Agric. Res. 41, 1093-1100.
Seo, S., Mitsuhara, I., Feng, J., Iwai, T., Hasegawa, M. and Ohashi, Y. (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol. 155, 502-514.
Møller, B.L. (2010a) Dynamic metabolons. Science, 330, 1328.
Xin, Z., Wang, M.L., Barkley, N.A., Burow, G., Franks, C., Pederson, G. and Burke, J. (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 8, 103.
Jørgensen, K., Morant, A.V., Morant, M., Jensen, N.B., Olsen, C.E., Kannangara, R., Motawia, M.S., Møller, B.L. and Bak, S. (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol. 155, 282-292.
Halkier, B.A. and Møller, B.L. (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 90, 1552-1559.
Morant, A.V., Jørgensen, K., Kristensen, C., Paquette, S.M., Sanchez-Perez, R., Moller, B.L. and Bak, S. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 69, 1795-1813.
Haskins, F.A., Gorz, H.J., Hill, R.M. and Youngquist, J.B. (1984) Influence of sample treatment on apparent hydrocyanic acid potential of sorghum leaf tissue. Crop Sci. 24, 1158-1163.
Jenrich, R., Trompetter, I., Bak, S., Olsen, C.E., Møller, B.L. and Piotrowski, M. (2007) Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proc. Natl Acad. Sci. USA, 104, 18848-18853.
Koch, B.M., Sibbesen, O., Halkier, B.A., Svendsen, I. and Møller, B.L. (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 323, 177-186.
Bak, S., Paquette, S.M., Morant, M., Morant, A.V., Saito, S., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Osmani, S., Simonsen, H.T., Pérez, R.S., Heeswijck, T.B.v., Jørgensen, B. and Møller, B.L. (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5, 309-329.
Jensen, K. and Møller, B.L. (2010) Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 71, 132-141.
Wheeler, J. and Mulcahy, C. (1989) Consequences for animal production of cyanogenesis in sorghum forage and hay - a review. Trop. Grassl. 23, 193-202.
Endara, M.-J. and Coley, P.D. (2011) The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389-398.
Olsen, K.M., Sutherland, B.L. and Small, L.L. (2007) Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol. Ecol. 16, 4180-4193.
Gleadow, R. and Woodrow, I. (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol. 20, 591-598.
Nielsen, K.A., Tattersall, D.B., Jones, P.R. and Møller, B.L. (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry, 69, 88-98.
Du, L., Bokanga, M., Møller, B.L. and Halkier, B.A. (1995) The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry, 39, 323-326.
Haskins, F.A. and Gorz, H.J. (1986) Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves. Theor. Appl. Genet. 73, 2-3.
Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl Acad. Sci. USA, 102, 1779-1784.
Møller, B.L. and Conn, E.E. (1979) The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench. J. Biol. Chem. 254, 8575-8583.
Till, B.J., Burtner, C., Comai, L. and Henikoff, S. (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 2632-2641.
Busk, P.K. and Møller, B.L. (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129, 1222-1231.
Gleadow, R. and Woodrow, I. (2002a) Constraints on the effectiveness of cyanogenic glycosides in herbivore defence [mini review]. J. Chem. Ecol. 28, 1301-1313.
Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S. and Chrestin, H. (2009) The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70, 730-739.
Olsen, K.M., Hsu, S.-C. and Small, L.L. (2008) Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in White Clover (Trifolium repens L.). Genetics, 179, 517-526.
Lee, T.T. and Skoog, F. (1965) Effects of substituted phenols on bud formation and growth of tobacco tissue cultures. Physiol. Plant. 18, 386-402.
Feigl, F. and Anger, V. (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst, 91, 282-284.
Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. (1994) Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc. Natl Acad. Sci. USA, 91, 9740-9744.
Zerr, T. and Henikoff, S. (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res. 33, 2806-2812.
Henikoff, S., Till, B.J. and Comai, L. (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630-636.
Jones, D.A. (1998) Why are so many food plants cyanogenic? Phytochemistry, 47, 155-162.
Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005b) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280-291.
Gregory, P.J., Ingram, J.S. and Brklacich, M. (2005) Climate and Food Security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2139-2148.
Lieberei, R. (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann. Bot. 100, 1125-1142.
Akazawa, T., Miljanich, P. and Conn, E.E. (1960) Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol. 35, 535-538.
Ghannoum, O. (2009) C4 photosynthesis and water stress. Ann. Bot. 103, 635-644.
Selmar, D., Lieberei, R. and Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 86, 711-716.
Lababidi, S., Mejlhede, N., Rasmussen, S.K., Backes, G., Al-Said, W., Baum, M. and Jahoor, A. (2009) Identification of barley mutants in the cultivar Lux at the Dhn loci through TILLING. Plant Breed. 128, 332-336.
Kakes, P. (1989) An analysis of the costs and benefits of the cyanogenic system in Trifolium repens L. Theor. Appl. Genet. 77, 111-118.
Zagrobelny, M., Bak, S., Olsen, C.E. and Møller, B.L. (2007) Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem. Mol. Biol. 37, 1189-1197.
Gleadow, R.M., Vecchies, A.C. and Woodrow, I.E. (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific ß-glucosidases. Phytochemistry, 63, 699-704.
Bak, S., Kahn, R.A., Nielsen, H.L., Møller, B.L. and Halkier, B.A. (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol. Biol. 36, 393-405.
2007; 104
2010a; 330
1997; 115
1986; 73
1995; 39
1960; 35
2007; 100
1984; 24
2005b; 8
1966; 91
2008; 8
2008; 6
1965; 18
2011; 155
1980; 255
1998; 47
2007; 37
2004; 32
2010; 22
1990; 41
1989; 77
2001; 293
2004; 135
2005; 102
2008; 69
2007; 7
1995; 323
1970; 62
2011; 25
2007; 3
1988; 86
2005; 33
2001; 98
2010; 71
2009; 128
1998; 26
2006; 97
1989; 23
2011
2010
2000; 20
2005a; 139
2006; 5
2002
1996; 57
1995; 3
2010b; 13
2007; 16
2005; 360
1979; 254
2009; 70
2002a; 28
1989; 90
1999; 274
2002; 129
2002b; 22
2009; 4
2008; 179
1994; 91
2003; 63
2009; 103
1998; 36
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_62_1
Gupta V.K. (e_1_2_7_20_1) 2002
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_11_1
e_1_2_7_45_1
Gleadow R. (e_1_2_7_17_1) 2010
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Wheeler J. (e_1_2_7_63_1) 1989; 23
Møller B.L. (e_1_2_7_46_1) 1979; 254
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – reference: Busk, P.K. and Møller, B.L. (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129, 1222-1231.
– reference: Lieberei, R. (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann. Bot. 100, 1125-1142.
– reference: Nielsen, K.A., Tattersall, D.B., Jones, P.R. and Møller, B.L. (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry, 69, 88-98.
– reference: Hasemann, C.A., Kurumbail, R.G., Boddupalli, S.S., Peterson, J.A. and Deisenhofer, J. (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure, 3, 41-62.
– reference: Oleykowski, C.A., Bronson Mullins, C.R., Godwin, A.K. and Yeung, A.T. (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597-4602.
– reference: Miller, R., Jensen, R. and Woodrow, I. (2006) Frequency of cyanogenesis in tropical rainforests of Far North Queensland, Australia. Ann. Bot. 97, 1017-1044.
– reference: Zerr, T. and Henikoff, S. (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res. 33, 2806-2812.
– reference: Halkier, B.A. and Møller, B.L. (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 90, 1552-1559.
– reference: Haskins, F.A. and Gorz, H.J. (1986) Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves. Theor. Appl. Genet. 73, 2-3.
– reference: Jenrich, R., Trompetter, I., Bak, S., Olsen, C.E., Møller, B.L. and Piotrowski, M. (2007) Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proc. Natl Acad. Sci. USA, 104, 18848-18853.
– reference: Bak, S., Kahn, R.A., Nielsen, H.L., Møller, B.L. and Halkier, B.A. (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol. Biol. 36, 393-405.
– reference: Henikoff, S., Till, B.J. and Comai, L. (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630-636.
– reference: Gregory, P.J., Ingram, J.S. and Brklacich, M. (2005) Climate and Food Security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2139-2148.
– reference: Paquette, S.M., Jensen, K. and Bak, S. (2009) A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases ( http://www.P450.kvl.dk ). Phytochemistry, 70, 1940-1947.
– reference: Till, B.J., Cooper, J., Tai, T.H., Colowit, P., Greene, E.A., Henikoff, S. and Comai, L. (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 7, 19.
– reference: Loyd, R.C. and Gray, E. (1970) Amount and distribution of hydrocyanic acid potential during the life cycle of plants of three sorghum cultivars. Agron. J. 62, 394-397.
– reference: Endara, M.-J. and Coley, P.D. (2011) The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389-398.
– reference: Akazawa, T., Miljanich, P. and Conn, E.E. (1960) Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol. 35, 535-538.
– reference: Ghannoum, O. (2009) C4 photosynthesis and water stress. Ann. Bot. 103, 635-644.
– reference: Lababidi, S., Mejlhede, N., Rasmussen, S.K., Backes, G., Al-Said, W., Baum, M. and Jahoor, A. (2009) Identification of barley mutants in the cultivar Lux at the Dhn loci through TILLING. Plant Breed. 128, 332-336.
– reference: Olsen, K.M., Sutherland, B.L. and Small, L.L. (2007) Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol. Ecol. 16, 4180-4193.
– reference: Forslund, K., Morant, M., Jorgensen, B., Olsen, C.E., Asamizu, E., Sato, S., Tabata, S. and Bak, S. (2004) Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiol. 135, 71-84.
– reference: Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. (1994) Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc. Natl Acad. Sci. USA, 91, 9740-9744.
– reference: Talame, V., Bovina, R., Sanguineti, M.C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6, 477-485.
– reference: Møller, B.L. (2010a) Dynamic metabolons. Science, 330, 1328.
– reference: Gleadow, R. and Woodrow, I. (2002a) Constraints on the effectiveness of cyanogenic glycosides in herbivore defence [mini review]. J. Chem. Ecol. 28, 1301-1313.
– reference: Wheeler, J.L., Mulcahy, A.C., Walcott, J.J. and Rapp, G.G. (1990) Factors affecting the hydrogen cyanide potential of forage sorghum. Aust. J. Agric. Res. 41, 1093-1100.
– reference: Haskins, F.A., Gorz, H.J., Hill, R.M. and Youngquist, J.B. (1984) Influence of sample treatment on apparent hydrocyanic acid potential of sorghum leaf tissue. Crop Sci. 24, 1158-1163.
– reference: Till, B.J., Burtner, C., Comai, L. and Henikoff, S. (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 2632-2641.
– reference: Duncan, R.R. (1996) Breeding and improvement of forage sorghums for the tropics. Adv. Agron. 57, 161-185.
– reference: Xin, Z., Wang, M.L., Barkley, N.A., Burow, G., Franks, C., Pederson, G. and Burke, J. (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 8, 103.
– reference: Jensen, K. and Møller, B.L. (2010) Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 71, 132-141.
– reference: Møller, B.L. and Conn, E.E. (1980) The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. J. Biol. Chem. 255, 3049-3056.
– reference: Morant, A.V., Jørgensen, K., Jørgensen, B., Dam, W., Olsen, C.E., Møller, B.L. and Bak, S. (2007) Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics, 3, 383-398.
– reference: Jones, P.R., Møller, B.L. and Hoj, P.B. (1999) The UDP-glucose: p-hydroxymandelonitrile-o-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J. Biol. Chem. 274, 35483-35491.
– reference: Seo, S., Mitsuhara, I., Feng, J., Iwai, T., Hasegawa, M. and Ohashi, Y. (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol. 155, 502-514.
– reference: Zagrobelny, M., Bak, S., Olsen, C.E. and Møller, B.L. (2007) Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem. Mol. Biol. 37, 1189-1197.
– reference: Kahn, R.A., Bak, S., Svendsen, I., Halkier, B.A. and Møller, B.L. (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol. 115, 1661-1670.
– reference: Du, L., Bokanga, M., Møller, B.L. and Halkier, B.A. (1995) The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry, 39, 323-326.
– reference: Gleadow, R.M., Vecchies, A.C. and Woodrow, I.E. (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific ß-glucosidases. Phytochemistry, 63, 699-704.
– reference: Bak, S., Paquette, S.M., Morant, M., Morant, A.V., Saito, S., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Osmani, S., Simonsen, H.T., Pérez, R.S., Heeswijck, T.B.v., Jørgensen, B. and Møller, B.L. (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5, 309-329.
– reference: Jørgensen, K., Bak, S., Busk, P.K., Sorensen, C., Olsen, C.E., Puonti-Kaerlas, J. and Møller, B.L. (2005a) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139, 363-374.
– reference: Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S. and Chrestin, H. (2009) The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70, 730-739.
– reference: Jensen, K., Osmani, S.A., Hamann, T., Naur, P. and Møller, B.L. (2011) Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein-protein interactions. Phytochemistry, doi:10.1016/j.phytochem.2011.05.001.
– reference: Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl Acad. Sci. USA, 102, 1779-1784.
– reference: Kakes, P. (1989) An analysis of the costs and benefits of the cyanogenic system in Trifolium repens L. Theor. Appl. Genet. 77, 111-118.
– reference: Lee, T.T. and Skoog, F. (1965) Effects of substituted phenols on bud formation and growth of tobacco tissue cultures. Physiol. Plant. 18, 386-402.
– reference: Olsen, K.M., Hsu, S.-C. and Small, L.L. (2008) Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in White Clover (Trifolium repens L.). Genetics, 179, 517-526.
– reference: Møller, B.L. and Conn, E.E. (1979) The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench. J. Biol. Chem. 254, 8575-8583.
– reference: Koch, B.M., Sibbesen, O., Halkier, B.A., Svendsen, I. and Møller, B.L. (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 323, 177-186.
– reference: Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005b) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280-291.
– reference: Jørgensen, K., Morant, A.V., Morant, M., Jensen, N.B., Olsen, C.E., Kannangara, R., Motawia, M.S., Møller, B.L. and Bak, S. (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol. 155, 282-292.
– reference: Gleadow, R. and Woodrow, I. (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol. 20, 591-598.
– reference: Baker, N.A., Sept, D., Joseph, S., Holst, M.J. and McCammon, J.A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA, 98, 10037-10041.
– reference: Guengerich, F.P., Martin, M.V., Sohl, C.D. and Cheng, Q. (2009) Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 1245-1251.
– reference: Morant, A.V., Jørgensen, K., Kristensen, C., Paquette, S.M., Sanchez-Perez, R., Moller, B.L. and Bak, S. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 69, 1795-1813.
– reference: Selmar, D., Lieberei, R. and Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 86, 711-716.
– reference: Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Høj, P.B. and Møller, B.L. (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science, 293, 1826-1828.
– reference: Takos, A., Lai, D., Mikkelsen, L., Abou Hachem, M., Shelton, D., Motawia, M.S., Olsen, C.E., Wang, T.L., Martin, C. and Rook, F. (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell, 22, 1605-1619.
– reference: Jones, D.A. (1998) Why are so many food plants cyanogenic? Phytochemistry, 47, 155-162.
– reference: Feigl, F. and Anger, V. (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst, 91, 282-284.
– reference: Gleadow, R. and Woodrow, I. (2002b) Defence chemistry of Eucalyptus cladocalyx seedlings is affected by water supply. Tree Physiol. 22, 939-945.
– reference: Wheeler, J. and Mulcahy, C. (1989) Consequences for animal production of cyanogenesis in sorghum forage and hay - a review. Trop. Grassl. 23, 193-202.
– reference: Møller, B.L. (2010b) Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 13, 337-346.
– volume: 69
  start-page: 88
  year: 2008
  end-page: 98
  article-title: Metabolon formation in dhurrin biosynthesis
  publication-title: Phytochemistry
– volume: 86
  start-page: 711
  year: 1988
  end-page: 716
  article-title: Mobilization and utilization of cyanogenic glycosides: the linustatin pathway
  publication-title: Plant Physiol.
– volume: 129
  start-page: 1222
  year: 2002
  end-page: 1231
  article-title: Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants
  publication-title: Plant Physiol.
– volume: 20
  start-page: 591
  year: 2000
  end-page: 598
  article-title: Temporal and spatial variation in cyanogenic glycosides in
  publication-title: Tree Physiol.
– volume: 360
  start-page: 2139
  year: 2005
  end-page: 2148
  article-title: Climate and Food Security
  publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci.
– volume: 6
  start-page: 477
  year: 2008
  end-page: 485
  article-title: TILLMore, a resource for the discovery of chemically induced mutants in barley
  publication-title: Plant Biotechnol. J.
– volume: 128
  start-page: 332
  year: 2009
  end-page: 336
  article-title: Identification of barley mutants in the cultivar Lux at the Dhn loci through TILLING
  publication-title: Plant Breed.
– volume: 70
  start-page: 1940
  year: 2009
  end-page: 1947
  article-title: A web‐based resource for the P450, cytochromes b5, NADPH‐cytochrome P450 reductases, and family 1 glycosyltransferases
  publication-title: Phytochemistry
– volume: 8
  start-page: 280
  year: 2005b
  end-page: 291
  article-title: Metabolon formation and metabolic channeling in the biosynthesis of plant natural products
  publication-title: Curr. Opin. Plant Biol.
– start-page: 283
  year: 2010
  end-page: 310
– volume: 73
  start-page: 2
  year: 1986
  end-page: 3
  article-title: Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves
  publication-title: Theor. Appl. Genet.
– volume: 323
  start-page: 177
  year: 1995
  end-page: 186
  article-title: The primary sequence of cytochrome P450tyr, the multifunctional ‐hydroxylase catalyzing the conversion of L‐tyrosine to ‐hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in (L.) Moench
  publication-title: Arch. Biochem. Biophys.
– volume: 16
  start-page: 4180
  year: 2007
  end-page: 4193
  article-title: Molecular evolution of the Li/li chemical defence polymorphism in white clover ( L.)
  publication-title: Mol. Ecol.
– volume: 104
  start-page: 18848
  year: 2007
  end-page: 18853
  article-title: Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 102
  start-page: 1779
  year: 2005
  end-page: 1784
  article-title: Metabolic engineering of dhurrin in transgenic plants with marginal inadvertent effects on the metabolome and transcriptome
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 39
  start-page: 323
  year: 1995
  end-page: 326
  article-title: The biosynthesis of cyanogenic glucosides in roots of cassava
  publication-title: Phytochemistry
– volume: 7
  start-page: 19
  year: 2007
  article-title: Discovery of chemically induced mutations in rice by TILLING
  publication-title: BMC Plant Biol.
– volume: 22
  start-page: 1605
  year: 2010
  end-page: 1619
  article-title: Genetic screening identifies cyanogenesis‐deficient mutants of and reveals enzymatic specificity in hydroxynitrile glucoside metabolism
  publication-title: Plant Cell
– volume: 63
  start-page: 699
  year: 2003
  end-page: 704
  article-title: Cyanogenic is polymorphic for both prunasin and specific ß‐glucosidases
  publication-title: Phytochemistry
– year: 2011
  article-title: Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein–protein interactions
  publication-title: Phytochemistry
– volume: 115
  start-page: 1661
  year: 1997
  end-page: 1670
  article-title: Isolation and reconstitution of cytochrome P450ox and reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum
  publication-title: Plant Physiol.
– volume: 135
  start-page: 630
  year: 2004
  end-page: 636
  article-title: TILLING. Traditional mutagenesis meets functional genomics
  publication-title: Plant Physiol.
– volume: 91
  start-page: 9740
  year: 1994
  end-page: 9744
  article-title: Isolation of the heme‐thiolate enzyme cytochrome P‐450 , which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in (L.) Moench
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 25
  start-page: 389
  year: 2011
  end-page: 398
  article-title: The resource availability hypothesis revisited: a meta‐analysis
  publication-title: Funct. Ecol.
– volume: 155
  start-page: 282
  year: 2011
  end-page: 292
  article-title: Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime‐metabolizing cytochrome P450 enzyme
  publication-title: Plant Physiol.
– volume: 179
  start-page: 517
  year: 2008
  end-page: 526
  article-title: Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in White Clover ( L.)
  publication-title: Genetics
– volume: 5
  start-page: 309
  year: 2006
  end-page: 329
  article-title: Cyanogenic glycosides: a case study for evolution and application of cytochromes P450
  publication-title: Phytochem. Rev.
– volume: 28
  start-page: 1301
  year: 2002a
  end-page: 1313
  article-title: Constraints on the effectiveness of cyanogenic glycosides in herbivore defence [mini review]
  publication-title: J. Chem. Ecol.
– volume: 57
  start-page: 161
  year: 1996
  end-page: 185
  article-title: Breeding and improvement of forage sorghums for the tropics
  publication-title: Adv. Agron.
– volume: 71
  start-page: 132
  year: 2010
  end-page: 141
  article-title: Plant NADPH‐cytochrome P450 oxidoreductases
  publication-title: Phytochemistry
– volume: 91
  start-page: 282
  year: 1966
  end-page: 284
  article-title: Replacement of benzidine by copper ethylacetoacetate and tetra base as spot‐test reagent for hydrogen cyanide and cyanogen
  publication-title: Analyst
– volume: 3
  start-page: 41
  year: 1995
  end-page: 62
  article-title: Structure and function of cytochromes P450: a comparative analysis of three crystal structures
  publication-title: Structure
– volume: 77
  start-page: 111
  year: 1989
  end-page: 118
  article-title: An analysis of the costs and benefits of the cyanogenic system in L
  publication-title: Theor. Appl. Genet.
– volume: 135
  start-page: 71
  year: 2004
  end-page: 84
  article-title: Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in
  publication-title: Plant Physiol.
– volume: 32
  start-page: 2632
  year: 2004
  end-page: 2641
  article-title: Mismatch cleavage by single‐strand specific nucleases
  publication-title: Nucleic Acids Res.
– volume: 4
  start-page: 1245
  year: 2009
  end-page: 1251
  article-title: Measurement of cytochrome P450 and NADPH‐cytochrome P450 reductase
  publication-title: Nat. Protoc.
– volume: 26
  start-page: 4597
  year: 1998
  end-page: 4602
  article-title: Mutation detection using a novel plant endonuclease
  publication-title: Nucleic Acids Res.
– volume: 24
  start-page: 1158
  year: 1984
  end-page: 1163
  article-title: Influence of sample treatment on apparent hydrocyanic acid potential of sorghum leaf tissue
  publication-title: Crop Sci.
– volume: 13
  start-page: 337
  year: 2010b
  end-page: 346
  article-title: Functional diversifications of cyanogenic glucosides
  publication-title: Curr. Opin. Plant Biol.
– volume: 103
  start-page: 635
  year: 2009
  end-page: 644
  article-title: C4 photosynthesis and water stress
  publication-title: Ann. Bot.
– volume: 330
  start-page: 1328
  year: 2010a
  article-title: Dynamic metabolons
  publication-title: Science
– volume: 97
  start-page: 1017
  year: 2006
  end-page: 1044
  article-title: Frequency of cyanogenesis in tropical rainforests of Far North Queensland, Australia
  publication-title: Ann. Bot.
– volume: 37
  start-page: 1189
  year: 2007
  end-page: 1197
  article-title: Intimate roles for cyanogenic glucosides in the life cycle of (Lepidoptera, Zygaenidae)
  publication-title: Insect Biochem. Mol. Biol.
– volume: 98
  start-page: 10037
  year: 2001
  end-page: 10041
  article-title: Electrostatics of nanosystems: application to microtubules and the ribosome
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 70
  start-page: 730
  year: 2009
  end-page: 739
  article-title: The leaf, inner bark and latex cyanide potential of : evidence for involvement of cyanogenic glucosides in rubber yield
  publication-title: Phytochemistry
– volume: 293
  start-page: 1826
  year: 2001
  end-page: 1828
  article-title: Resistance to an herbivore through engineered cyanogenic glucoside synthesis
  publication-title: Science
– volume: 69
  start-page: 1795
  year: 2008
  end-page: 1813
  article-title: ‐Glucosidases as detonators of plant chemical defense
  publication-title: Phytochemistry
– volume: 18
  start-page: 386
  year: 1965
  end-page: 402
  article-title: Effects of substituted phenols on bud formation and growth of tobacco tissue cultures
  publication-title: Physiol. Plant.
– volume: 35
  start-page: 535
  year: 1960
  end-page: 538
  article-title: Studies on cyanogenic glycoside of
  publication-title: Plant Physiol.
– volume: 36
  start-page: 393
  year: 1998
  end-page: 405
  article-title: Cloning of three A‐type cytochromes P450, CYP71E1, CYP98, and CYP99 from (L.) Moench by a PCR approach and identification by expression in of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin
  publication-title: Plant Mol. Biol.
– volume: 62
  start-page: 394
  year: 1970
  end-page: 397
  article-title: Amount and distribution of hydrocyanic acid potential during the life cycle of plants of three sorghum cultivars
  publication-title: Agron. J.
– volume: 254
  start-page: 8575
  year: 1979
  end-page: 8583
  article-title: The biosynthesis of cyanogenic glucosides in higher plants. N‐Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by (L.) Moench
  publication-title: J. Biol. Chem.
– volume: 90
  start-page: 1552
  year: 1989
  end-page: 1559
  article-title: Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of (L.) Moench and partial purification of the enzyme system involved
  publication-title: Plant Physiol.
– volume: 274
  start-page: 35483
  year: 1999
  end-page: 35491
  article-title: The UDP‐glucose: p‐hydroxymandelonitrile‐o‐glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Isolation, cloning, heterologous expression, and substrate specificity
  publication-title: J. Biol. Chem.
– volume: 255
  start-page: 3049
  year: 1980
  end-page: 3056
  article-title: The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from (linn) Moench
  publication-title: J. Biol. Chem.
– start-page: 128
  year: 2002
  end-page: 154
– volume: 100
  start-page: 1125
  year: 2007
  end-page: 1142
  article-title: South American leaf blight of the rubber tree ( spp.): new steps in plant domestication using physiological features and molecular markers
  publication-title: Ann. Bot.
– volume: 23
  start-page: 193
  year: 1989
  end-page: 202
  article-title: Consequences for animal production of cyanogenesis in sorghum forage and hay – a review
  publication-title: Trop. Grassl.
– volume: 41
  start-page: 1093
  year: 1990
  end-page: 1100
  article-title: Factors affecting the hydrogen cyanide potential of forage sorghum
  publication-title: Aust. J. Agric. Res.
– volume: 139
  start-page: 363
  year: 2005a
  end-page: 374
  article-title: Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology
  publication-title: Plant Physiol.
– volume: 8
  start-page: 103
  year: 2008
  article-title: Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population
  publication-title: BMC Plant Biol.
– volume: 33
  start-page: 2806
  year: 2005
  end-page: 2812
  article-title: Automated band mapping in electrophoretic gel images using background information
  publication-title: Nucleic Acids Res.
– volume: 3
  start-page: 383
  year: 2007
  end-page: 398
  article-title: Lessons learned from metabolic engineering of cyanogenic glucosides
  publication-title: Metabolomics
– volume: 22
  start-page: 939
  year: 2002b
  end-page: 945
  article-title: Defence chemistry of seedlings is affected by water supply
  publication-title: Tree Physiol.
– volume: 155
  start-page: 502
  year: 2011
  end-page: 514
  article-title: Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus
  publication-title: Plant Physiol.
– volume: 47
  start-page: 155
  year: 1998
  end-page: 162
  article-title: Why are so many food plants cyanogenic?
  publication-title: Phytochemistry
– ident: e_1_2_7_47_1
  doi: 10.1016/S0021-9258(19)85850-7
– ident: e_1_2_7_5_1
  doi: 10.1073/pnas.181342398
– ident: e_1_2_7_7_1
  doi: 10.1016/0031-9422(94)00878-W
– ident: e_1_2_7_34_1
  doi: 10.1104/pp.115.4.1661
– ident: e_1_2_7_60_1
  doi: 10.1126/science.1062249
– ident: e_1_2_7_13_1
  doi: 10.1093/treephys/20.9.591
– ident: e_1_2_7_36_1
  doi: 10.1006/abbi.1995.0024
– start-page: 128
  volume-title: Diseases of Field Crops
  year: 2002
  ident: e_1_2_7_20_1
– start-page: 283
  volume-title: Research Methods in Plant Science: Soil Allelochemicals
  year: 2010
  ident: e_1_2_7_17_1
– ident: e_1_2_7_61_1
  doi: 10.1093/nar/gkh599
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1439-0523.2009.01640.x
– ident: e_1_2_7_25_1
  doi: 10.1104/pp.104.041061
– ident: e_1_2_7_14_1
  doi: 10.1023/A:1016298100201
– ident: e_1_2_7_9_1
  doi: 10.1111/j.1365-2435.2010.01803.x
– ident: e_1_2_7_64_1
  doi: 10.1071/AR9901093
– ident: e_1_2_7_3_1
  doi: 10.1023/A:1005915507497
– ident: e_1_2_7_22_1
  doi: 10.1016/S0969-2126(01)00134-4
– ident: e_1_2_7_44_1
  doi: 10.1126/science.1194971
– ident: e_1_2_7_15_1
  doi: 10.1093/treephys/22.13.939
– ident: e_1_2_7_51_1
  doi: 10.1093/nar/26.20.4597
– ident: e_1_2_7_6_1
  doi: 10.1104/pp.000687
– ident: e_1_2_7_16_1
  doi: 10.1016/S0031-9422(03)00245-0
– ident: e_1_2_7_31_1
  doi: 10.1104/pp.105.065904
– ident: e_1_2_7_8_1
  doi: 10.1016/S0065-2113(08)60924-4
– ident: e_1_2_7_24_1
  doi: 10.2135/cropsci1984.0011183X002400060036x
– ident: e_1_2_7_49_1
  doi: 10.1016/j.phytochem.2008.03.006
– ident: e_1_2_7_48_1
  doi: 10.1007/s11306-007-0079-x
– ident: e_1_2_7_54_1
  doi: 10.1016/j.phytochem.2009.08.024
– ident: e_1_2_7_10_1
  doi: 10.1039/an9669100282
– ident: e_1_2_7_32_1
  doi: 10.1016/j.pbi.2005.03.014
– ident: e_1_2_7_55_1
  doi: 10.1104/pp.86.3.711
– ident: e_1_2_7_65_1
  doi: 10.1186/1471-2229-8-103
– ident: e_1_2_7_58_1
  doi: 10.1105/tpc.109.073502
– ident: e_1_2_7_19_1
  doi: 10.1038/nprot.2009.121
– ident: e_1_2_7_57_1
  doi: 10.1073/pnas.91.21.9740
– ident: e_1_2_7_40_1
  doi: 10.1111/j.1399-3054.1965.tb06902.x
– ident: e_1_2_7_42_1
  doi: 10.2134/agronj1970.00021962006200030025x
– ident: e_1_2_7_21_1
  doi: 10.1104/pp.90.4.1552
– ident: e_1_2_7_41_1
  doi: 10.1093/aob/mcm133
– ident: e_1_2_7_50_1
  doi: 10.1016/j.phytochem.2007.06.033
– ident: e_1_2_7_67_1
  doi: 10.1093/nar/gki580
– ident: e_1_2_7_62_1
  doi: 10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D
– ident: e_1_2_7_52_1
  doi: 10.1111/j.1365-294X.2007.03506.x
– ident: e_1_2_7_11_1
  doi: 10.1104/pp.103.038059
– ident: e_1_2_7_29_1
  doi: 10.1016/S0031-9422(97)00425-1
– ident: e_1_2_7_35_1
  doi: 10.1007/BF00292324
– ident: e_1_2_7_38_1
  doi: 10.1073/pnas.0409233102
– ident: e_1_2_7_37_1
  doi: 10.1016/j.phytochem.2009.03.020
– ident: e_1_2_7_33_1
  doi: 10.1104/pp.110.164053
– volume: 23
  start-page: 193
  year: 1989
  ident: e_1_2_7_63_1
  article-title: Consequences for animal production of cyanogenesis in sorghum forage and hay – a review
  publication-title: Trop. Grassl.
– ident: e_1_2_7_2_1
  doi: 10.1104/pp.35.4.535
– ident: e_1_2_7_56_1
  doi: 10.1104/pp.110.162412
– ident: e_1_2_7_12_1
  doi: 10.1093/aob/mcn093
– ident: e_1_2_7_4_1
  doi: 10.1007/s11101-006-9033-1
– ident: e_1_2_7_53_1
  doi: 10.1534/genetics.107.080366
– volume: 254
  start-page: 8575
  year: 1979
  ident: e_1_2_7_46_1
  article-title: The biosynthesis of cyanogenic glucosides in higher plants. N‐Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(19)86931-4
– ident: e_1_2_7_66_1
  doi: 10.1016/j.ibmb.2007.07.008
– ident: e_1_2_7_18_1
  doi: 10.1098/rstb.2005.1745
– ident: e_1_2_7_28_1
  doi: 10.1016/j.phytochem.2011.05.001
– ident: e_1_2_7_30_1
  doi: 10.1074/jbc.274.50.35483
– ident: e_1_2_7_59_1
  doi: 10.1111/j.1467-7652.2008.00341.x
– ident: e_1_2_7_43_1
  doi: 10.1093/aob/mcl048
– ident: e_1_2_7_27_1
  doi: 10.1016/j.phytochem.2009.10.017
– ident: e_1_2_7_26_1
  doi: 10.1073/pnas.0709315104
– ident: e_1_2_7_45_1
  doi: 10.1016/j.pbi.2010.01.009
– ident: e_1_2_7_23_1
  doi: 10.1007/BF00273709
SSID ssj0021656
Score 2.3526156
Snippet Summary Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability...
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 54
SubjectTerms Animal Feed
Animals
Biological and medical sciences
biosynthesis
Biosynthetic Pathways
Biotechnology
Biotechnology - methods
Blotting, Western
Crosses, Genetic
cyanide toxicity
CYP79A1
cytochrome P-450
Cytochrome P-450 Enzyme System
Cytochrome P-450 Enzyme System - genetics
enzymes
enzymology
Ethyl Methanesulfonate
forage production
Fundamental and applied biological sciences. Psychology
gene regulation
genes
genetic techniques and protocols
genetics
Genome, Plant
Genome, Plant - genetics
glucosides
Glycosides
Glycosides - metabolism
Humans
hydrogen cyanide
Hydrogen Cyanide - metabolism
leaves
mature plants
metabolism
methods
Microsomes
Microsomes - enzymology
Models, Molecular
molecular models
Mutagenesis
Mutagenesis - genetics
mutants
mutation
Mutation - genetics
mutations
NADP
NADP - metabolism
Nitriles
Nitriles - metabolism
nitrogen metabolism
Phenotype
screening
seedlings
seeds
Sorghum
Sorghum - enzymology
Sorghum - genetics
Sorghum bicolor
Structural Homology, Protein
Title A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production
URI https://api.istex.fr/ark:/67375/WNG-9G7BXVR4-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-7652.2011.00646.x
https://www.ncbi.nlm.nih.gov/pubmed/21880107
https://www.proquest.com/docview/1469205160
https://www.proquest.com/docview/909296214
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BucCB98M8okVC3Bx5vet1fEwrmoJoVJUWclvty2kU6lR2IhX-BH-ZGa8TFChShbhZlmdXHs_MfrOe_YaQN7Dml4U0g9gywyFBEUmsnbCx4ZxbQLC2bE_IHY7lwan4MMkmXf0TnoUJ_BCbDTf0jDZeo4Nr0_zp5LnM0o6JE1ZX2Uc8iaVbiI-ON0xSKZLMhINGKCLEdlHPlQNtrVS3UOmXWDmpG1BeGbpeXAVLt1Fuu0zt3yPz9QuG6pR5f7U0ffv9N-7H_6OB--Ruh2bpMJjfA3LDVw_JneG07hg9_CPyY0hhXMi_vaNmhv25WoICCuEKUmiqK0dPcEdhPKJrfnM6c6GGyTf0fBVqBRo6q-inRT09W53DOMi1XdOPfXq4ADc7o7VvsDKymuJj2n7T1QI8Y2YpYHKImPQiENvCQI_J6f67k72DuOsCEduMCxlD0CgMRx5-w3PHmPSDrJA2ZYYVpWTacW5sWkruSyZ0wnSZm4FwhbcF87n2_AnZqRaVf0aozpx3pTd4XFekSF3mksINihzSNG5EHpF8_cWV7SjSsVPHV7WVKuUKVa5Q5apVubqMCNtIXgSakGvIvG2NaiOg6zmW2eWZ-jIeqWKU704-Hwu1F5HeltVtBLCXASKyiLxem6GC6IC_fHTlF6sGZy5SiLsyiQj9yzNFAhBZpkxE5Gkw4V8TIFsfS0AxWWuI1343dbT7Hi6e_6PcC3Ib7qZhq-sl2VnWK_8KwN_S9MjNVBz1Wuf-CZIuSmE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6h9gAceD_MoywS4ubI613b2WNa0QRoIlRS6G21L6dRW6dyEqnwJ_jLzHidoECRKsTNh51deTwz-8169htC3sCeX8rcdGPLDIcERSSxdsLGhnNuAcHasrkhNxzlgyPx4Tg7btsB4V2YwA-xPnBDz2jiNTo4Hkj_6eVFnqUtFSdsr3kHAOU2Nvhu8qvDNZdUijQz4aoRygixWdZz5Uwbe9U2qv0Sayf1HNRXhr4XVwHTTZzbbFT7d8nZ6hVDfcppZ7kwHfv9N_bH_6SDe-ROC2hpL1jgfXLDVw_I7d6kbkk9_EPyo0dhYkjBvaNmii26Go4CChELsmiqK0fHeKgw6tMVxTmdulDG5Of0fBnKBeZ0WtHPs3pysjyHeZBuu6YHHTqcgaed0NrPsTiymuAwbb_pagbOMbUUYDkETXoRuG1hokfkaP_deG8Qt40gYptxkccQN6ThSMVveOEYy303k7lNmWGyzJl2nBubljn3JRM6YbosTFc46a1kvtCePyZb1azyTwnVmfOu9AZv7IoU2ctcIl1XFpCpcSOKiBSrT65sy5KOzTrO1Ea2VChUuUKVq0bl6jIibC15EZhCriHztrGqtYCuT7HSrsjU11FfyX6xe_zlUKi9iOxsmN1aANsZICiLyOuVHSoIEPjXR1d-tpzjyjKF0JsnEaF_GSMTQMl5ykREngQb_rUAEvaxBBSTNZZ47XdTn3bfw8Ozf5R7RW4OxsMDBcb38Tm5BSPScPL1gmwt6qV_CVhwYXYaH_8JYXNNpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6hRkJwQLwxj7JIiJsrr3e9zh7TQlIejSpoSsRltS-nEdSJnEYqv4K_zIztGEUUqeLmw85a9szsfp89-w0hr2HPL5S0_dgxy4GgiCQ2XrjYcs4dIFhX1CfkjsbycCI-TLNpW_-EZ2EafYjugxtmRr1eY4IvffF3kucyS1slTthd5R7gyR6K5kGE9wank2-Tjn6hzkxz1githNiu67lyrq3Nqofv_RKLJ80K3l_RNL64CpluA916pxreJXdaiEkHTUzcIzdCeZ_cHsyqVmYjPCC_BhQeF0hx8NTOsWlWrRpAYQ0BXktN6ekJ0vzxiG5Ex-ncN4VFYUXP180P_BWdl_TLopqdrc9hHhTAruinPXq0gNg_o8DksVyxnOEw436acgHhOncUgDIsY3TZqM3CRA_JZPju5OAwblszxC7jQsaQycpyFMe3PPeMydDPlHQps0wVkhnPuXVpIXkomDAJM0Vu-8Kr4BQLuQn8EdkpF2V4QqjJfPBFsHiGVqSoJ-YT5fsqB-7Ercgjkm98oF2rW47tM37oLf6Sa_SeRu_p2nv6MiKss1w22h3XsHlTu7kzMNV3rH3LM_11PNJqlO9PTz8LfRCR3a046AywwQDCpIi82gSGhpTF_zCmDIv1Cu-sUlgMZRIR-o8xKgHcKlMmIvK4Cao_N0AJPWDtEcnqKLv2s-nj_fdw8fQ_7V6Sm8dvhxpi7-MzcgsGpM2nqOdk56JahxcAzi7sbpt1vwHO1SsW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+biochemical+screen+and+TILLING+approach+identifies+mutations+in+Sorghum+bicolor+L.+Moench+resulting+in+acyanogenic+forage+production&rft.jtitle=Plant+biotechnology+journal&rft.au=Blomstedt%2C+Cecilia+K.&rft.au=Gleadow%2C+Roslyn+M.&rft.au=O%E2%80%99Donnell%2C+Natalie&rft.au=Naur%2C+Peter&rft.date=2012-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=10&rft.issue=1&rft.spage=54&rft.epage=66&rft_id=info:doi/10.1111%2Fj.1467-7652.2011.00646.x&rft.externalDBID=10.1111%252Fj.1467-7652.2011.00646.x&rft.externalDocID=PBI646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon