A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production
Summary Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 p...
Saved in:
Published in | Plant biotechnology journal Vol. 10; no. 1; pp. 54 - 66 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.01.2012
Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild‐type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production. |
---|---|
AbstractList | Summary
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild‐type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production. Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production. Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production.Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild-type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production. Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to release toxic hydrogen cyanide. Sorghum bicolor L. contains the cyanogenic glucoside dhurrin. A qualitative biochemical screen of the M2 population derived from EMS treatment of sorghum seeds, followed by the reverse genetic technique of Targeted Induced Local Lesions in Genomes (TILLING), was employed to identify mutants with altered hydrogen cyanide potential (HCNp). Characterization of these plants identified mutations affecting the function or expression of dhurrin biosynthesis enzymes, and the ability of plants to catabolise dhurrin. The main focus in this study is on acyanogenic or low cyanide releasing lines that contain mutations in CYP79A1, the cytochrome P450 enzyme catalysing the first committed step in dhurrin synthesis. Molecular modelling supports the measured effects on CYP79A1 activity in the mutant lines. Plants harbouring a P414L mutation in CYP79A1 are acyanogenic when homozygous for this mutation and are phenotypically normal, except for slightly slower growth at early seedling stage. Detailed biochemical analyses demonstrate that the enzyme is present in wild‐type amounts but is catalytically inactive. Additional mutants capable of producing dhurrin at normal levels in young seedlings but with negligible leaf dhurrin levels in mature plants were also identified. No mutations were detected in the coding sequence of dhurrin biosynthetic genes in this second group of mutants, which are as tall or taller, and leafier than nonmutated lines. These sorghum mutants with reduced or negligible dhurrin content may be ideally suited for forage production. |
Author | Stuart, Peter Blomstedt, Cecilia K. O'Donnell, Natalie Møller, Birger Lindberg Gleadow, Roslyn M. Laursen, Tomas Jensen, Kenneth Neale, Alan D. Naur, Peter Olsen, Carl Erik Hamill, John D. |
Author_xml | – sequence: 1 givenname: Cecilia K. surname: Blomstedt fullname: Blomstedt, Cecilia K. email: Cecilia.Blomstedt@monash.edu organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia – sequence: 2 givenname: Roslyn M. surname: Gleadow fullname: Gleadow, Roslyn M. organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia – sequence: 3 givenname: Natalie surname: O'Donnell fullname: O'Donnell, Natalie organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia – sequence: 4 givenname: Peter surname: Naur fullname: Naur, Peter organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark – sequence: 5 givenname: Kenneth surname: Jensen fullname: Jensen, Kenneth organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark – sequence: 6 givenname: Tomas surname: Laursen fullname: Laursen, Tomas organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark – sequence: 7 givenname: Carl Erik surname: Olsen fullname: Olsen, Carl Erik organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark – sequence: 8 givenname: Peter surname: Stuart fullname: Stuart, Peter organization: Pacific Seeds, Toowoomba, Qld, Australia – sequence: 9 givenname: John D. surname: Hamill fullname: Hamill, John D. organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia – sequence: 10 givenname: Birger Lindberg surname: Møller fullname: Møller, Birger Lindberg organization: Plant Biochemistry Laboratory, Department of Plant Biology and Biotechnology, University of Copenhagen, Frederiksberg C, Denmark – sequence: 11 givenname: Alan D. surname: Neale fullname: Neale, Alan D. organization: School of Biological Sciences, Monash University, Clayton, Vic., Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25462406$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21880107$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks2O0zAUhSM0iPmBV0DeIGaTYCeOnUgIaaaCUikMCIafneU4N61LYhc7Ee1T8Mo4tFMkFmi88ZX8nXOk43senRhrIIoQwQkJ58U6IZTxmLM8TVJMSIIxoyzZPojOjg8nx5nS0-jc-zXGKWE5exSdpqQoMMH8LPp1hZTta22gQbW2agW9VrJDXjkAg6Rp0O2iqhY3cyQ3G2elWiHdgBl0q8GjfhzkoK3xSBv0ybrlauyDj7KddahK0DsLJigc-LEbtFlOmFQ7aewSjFaotU4uAQXjZlST0ePoYSs7D08O90X0-c3r29nbuHo_X8yuqljlGWVxTnBZZ0XOcZ3xhhAGRV4ylZKalC0jssmyWqUty6AlVGIiW14XtClBlQS4hOwier73DdE_RvCD6LVX0HXSgB29KHGZliwlNJCX_yVDyWWKc8JwQJ8e0LHuoREbp3vpduKu7gA8OwDSh5ZbJ43S_i-XU5ZSzAL3as8pZ7130Aql90UPTupOECymPRDrKZ2L6bvFtAfizx6IbTAo_jG4y7iH9OVe-lN3sLu3Tny4XoQhyOO9XPsBtke5dN8F4xnPxdebuSjn_Prbl49UzLLfzXjZKg |
CitedBy_id | crossref_primary_10_1093_jxb_erw302 crossref_primary_10_1186_s12864_015_2079_y crossref_primary_10_1534_genetics_113_149567 crossref_primary_10_1093_jxb_eraa034 crossref_primary_10_1016_j_jplph_2021_153393 crossref_primary_10_1371_journal_pbio_1001878 crossref_primary_10_18697_ajfand_109_19785 crossref_primary_10_1111_pce_12209 crossref_primary_10_1186_s40066_021_00287_9 crossref_primary_10_1016_j_tplants_2022_03_001 crossref_primary_10_1002_pld3_38 crossref_primary_10_1016_j_fcr_2015_10_010 crossref_primary_10_1007_s11032_017_0620_1 crossref_primary_10_1111_ppl_14449 crossref_primary_10_1186_1754_6834_5_80 crossref_primary_10_1534_g3_116_029660 crossref_primary_10_1038_s41598_018_20928_7 crossref_primary_10_1007_s00253_017_8559_z crossref_primary_10_3390_plants13162291 crossref_primary_10_1111_tpj_13012 crossref_primary_10_1016_j_phytochem_2016_11_013 crossref_primary_10_1007_s00122_023_04262_9 crossref_primary_10_1016_j_envexpbot_2019_103884 crossref_primary_10_1007_s00122_021_04017_4 crossref_primary_10_1111_tpj_15071 crossref_primary_10_3390_agronomy10030405 crossref_primary_10_1080_02571862_2019_1706003 crossref_primary_10_3390_agronomy12040800 crossref_primary_10_1146_annurev_arplant_050213_040027 crossref_primary_10_1007_s00425_023_04176_2 crossref_primary_10_1016_j_plaphy_2023_02_031 crossref_primary_10_3389_fnut_2019_00122 crossref_primary_10_2135_cropsci2016_04_0284 crossref_primary_10_1080_15427528_2018_1544954 crossref_primary_10_1534_g3_117_300301 crossref_primary_10_1007_s10725_019_00489_z crossref_primary_10_1080_01140671_2013_793730 crossref_primary_10_1016_j_fcr_2022_108764 crossref_primary_10_1038_s41598_019_41884_w crossref_primary_10_1111_jipb_12192 crossref_primary_10_1186_s12864_016_3360_4 crossref_primary_10_1016_j_indcrop_2012_03_031 crossref_primary_10_3389_fpls_2017_01461 crossref_primary_10_1111_tpj_13023 crossref_primary_10_1016_j_molp_2017_12_014 crossref_primary_10_1371_journal_pone_0152907 crossref_primary_10_1093_pcp_pcv153 crossref_primary_10_1111_gcb_13380 crossref_primary_10_1071_FP17227 crossref_primary_10_1111_nph_14702 crossref_primary_10_1111_ppl_70029 crossref_primary_10_1016_j_phytochem_2019_112214 crossref_primary_10_1111_plb_70009 crossref_primary_10_1016_j_phytochem_2022_113483 crossref_primary_10_1007_s00425_022_03844_z crossref_primary_10_3390_plants9121791 crossref_primary_10_1093_jxb_erac031 crossref_primary_10_1007_s11816_024_00886_5 crossref_primary_10_1080_02571862_2018_1469794 crossref_primary_10_3390_life14040470 crossref_primary_10_1111_pbr_12691 crossref_primary_10_2135_cropsci2015_06_0379 crossref_primary_10_1007_s00425_022_03831_4 crossref_primary_10_1002_jsfa_5752 crossref_primary_10_2135_cropsci2012_12_0693 crossref_primary_10_3390_genes13010140 crossref_primary_10_1021_jf205030b crossref_primary_10_1080_23311932_2024_2324528 crossref_primary_10_3390_agronomy8080146 crossref_primary_10_1007_s11103_015_0348_4 crossref_primary_10_1111_tpj_13923 crossref_primary_10_1016_j_plaphy_2013_09_001 crossref_primary_10_3390_plants10112319 crossref_primary_10_1270_jsbbs_63_42 crossref_primary_10_1111_tpj_13247 crossref_primary_10_1007_s11101_017_9532_2 crossref_primary_10_1016_j_phytochem_2020_112645 crossref_primary_10_3389_fpls_2019_01458 crossref_primary_10_1088_1755_1315_128_1_012169 crossref_primary_10_1111_j_1467_7652_2012_00708_x |
Cites_doi | 10.1016/S0021-9258(19)85850-7 10.1073/pnas.181342398 10.1016/0031-9422(94)00878-W 10.1104/pp.115.4.1661 10.1126/science.1062249 10.1093/treephys/20.9.591 10.1006/abbi.1995.0024 10.1093/nar/gkh599 10.1111/j.1439-0523.2009.01640.x 10.1104/pp.104.041061 10.1023/A:1016298100201 10.1111/j.1365-2435.2010.01803.x 10.1071/AR9901093 10.1023/A:1005915507497 10.1016/S0969-2126(01)00134-4 10.1126/science.1194971 10.1093/treephys/22.13.939 10.1093/nar/26.20.4597 10.1104/pp.000687 10.1016/S0031-9422(03)00245-0 10.1104/pp.105.065904 10.1016/S0065-2113(08)60924-4 10.2135/cropsci1984.0011183X002400060036x 10.1016/j.phytochem.2008.03.006 10.1007/s11306-007-0079-x 10.1016/j.phytochem.2009.08.024 10.1039/an9669100282 10.1016/j.pbi.2005.03.014 10.1104/pp.86.3.711 10.1186/1471-2229-8-103 10.1105/tpc.109.073502 10.1038/nprot.2009.121 10.1073/pnas.91.21.9740 10.1111/j.1399-3054.1965.tb06902.x 10.2134/agronj1970.00021962006200030025x 10.1104/pp.90.4.1552 10.1093/aob/mcm133 10.1016/j.phytochem.2007.06.033 10.1093/nar/gki580 10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D 10.1111/j.1365-294X.2007.03506.x 10.1104/pp.103.038059 10.1016/S0031-9422(97)00425-1 10.1007/BF00292324 10.1073/pnas.0409233102 10.1016/j.phytochem.2009.03.020 10.1104/pp.110.164053 10.1104/pp.35.4.535 10.1104/pp.110.162412 10.1093/aob/mcn093 10.1007/s11101-006-9033-1 10.1534/genetics.107.080366 10.1016/S0021-9258(19)86931-4 10.1016/j.ibmb.2007.07.008 10.1098/rstb.2005.1745 10.1016/j.phytochem.2011.05.001 10.1074/jbc.274.50.35483 10.1111/j.1467-7652.2008.00341.x 10.1093/aob/mcl048 10.1016/j.phytochem.2009.10.017 10.1073/pnas.0709315104 10.1016/j.pbi.2010.01.009 10.1007/BF00273709 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd 2015 INIST-CNRS 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd – notice: 2015 INIST-CNRS – notice: 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1111/j.1467-7652.2011.00646.x |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1467-7652 |
EndPage | 66 |
ExternalDocumentID | 21880107 25462406 10_1111_j_1467_7652_2011_00646_x PBI646 ark_67375_WNG_9G7BXVR4_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 31~ 33P 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8FH 8UM 930 A03 A8Z AAEVG AAHBH AAHHS AAONW AAZKR ABCQN ABDBF ABEML ABIJN ABJCF ABPVW ACBWZ ACCFJ ACIWK ACPRK ACSCC ACXQS ADBBV ADIZJ ADKYN ADZMN AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFEBI AFKRA AFRAH AFZJQ AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AVUZU AVWKF AZBYB AZFZN BAFTC BBNVY BCNDV BDRZF BENPR BFHJK BGLVJ BHPHI BNHUX BROTX BRXPI BSCLL BY8 CAG CCPQU COF CS3 D-E D-F DPXWK DR2 DU5 EAD EAP EBD EBS ECGQY EDH EJD EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HOLLA HVGLF HZ~ IAO IEP IGS IHE ITC IX1 J0M KQ8 L6V LC2 LC3 LH4 LK8 LP6 LP7 LW6 M7P M7S MK4 ML0 N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2X P4D PIMPY PROAC PTHSS Q.N Q11 QB0 QM4 QO4 R.K ROL RX1 SUPJJ SV3 TUS UB1 W8V W99 WIH WIN WQJ WRC XG1 ~IA ~KM ~WT AANHP ACCMX ACRPL ACUHS ACYXJ ADNMO AEUYN RPM AAYXX AGQPQ CITATION PHGZM PHGZT AAMMB AEFGJ AGXDD AIDQK AIDYY IQODW PQGLB CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c5346-5109b38570b37d116e8596c21b19f61ad33bc2f63ef14a01af7b84d9ec91e7ae3 |
IEDL.DBID | DR2 |
ISSN | 1467-7644 1467-7652 |
IngestDate | Fri Jul 11 02:13:39 EDT 2025 Fri Jul 11 18:17:06 EDT 2025 Thu Apr 03 07:07:31 EDT 2025 Mon Jul 21 09:14:58 EDT 2025 Tue Jul 01 02:41:21 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Jan 22 16:22:44 EST 2025 Wed Oct 30 09:50:40 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Plant production Monocotyledones Toxicity nitrogen metabolism Biochemistry Cyanides Nitrogen Gene expression Metabolism CYP79A1 Regulation(control) Sorghum bicolor mutations Gene Gramineae gene regulation cyanide toxicity Angiospermae Spermatophyta Mutation Fodder crop |
Language | English |
License | CC BY 4.0 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5346-5109b38570b37d116e8596c21b19f61ad33bc2f63ef14a01af7b84d9ec91e7ae3 |
Notes | istex:2142EB37444A7F7833993F9390F6F3F7C3F60B1B ArticleID:PBI646 ark:/67375/WNG-9G7BXVR4-C Present address: School of Agriculture and Food Science, University of Queensland, Brisbane, Qld 4072, Australia. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21880107 |
PQID | 1469205160 |
PQPubID | 24069 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_909296214 proquest_miscellaneous_1469205160 pubmed_primary_21880107 pascalfrancis_primary_25462406 crossref_citationtrail_10_1111_j_1467_7652_2011_00646_x crossref_primary_10_1111_j_1467_7652_2011_00646_x wiley_primary_10_1111_j_1467_7652_2011_00646_x_PBI646 istex_primary_ark_67375_WNG_9G7BXVR4_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2012 |
PublicationDateYYYYMMDD | 2012-01-01 |
PublicationDate_xml | – month: 01 year: 2012 text: January 2012 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Plant biotechnology journal |
PublicationTitleAlternate | Plant Biotechnol J |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Ltd Blackwell |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Blackwell |
References | Paquette, S.M., Jensen, K. and Bak, S. (2009) A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases ( http://www.P450.kvl.dk ). Phytochemistry, 70, 1940-1947. Baker, N.A., Sept, D., Joseph, S., Holst, M.J. and McCammon, J.A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA, 98, 10037-10041. Kahn, R.A., Bak, S., Svendsen, I., Halkier, B.A. and Møller, B.L. (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol. 115, 1661-1670. Jones, P.R., Møller, B.L. and Hoj, P.B. (1999) The UDP-glucose: p-hydroxymandelonitrile-o-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J. Biol. Chem. 274, 35483-35491. Talame, V., Bovina, R., Sanguineti, M.C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6, 477-485. Duncan, R.R. (1996) Breeding and improvement of forage sorghums for the tropics. Adv. Agron. 57, 161-185. Møller, B.L. (2010b) Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 13, 337-346. Jørgensen, K., Bak, S., Busk, P.K., Sorensen, C., Olsen, C.E., Puonti-Kaerlas, J. and Møller, B.L. (2005a) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139, 363-374. Wheeler, J.L., Mulcahy, A.C., Walcott, J.J. and Rapp, G.G. (1990) Factors affecting the hydrogen cyanide potential of forage sorghum. Aust. J. Agric. Res. 41, 1093-1100. Seo, S., Mitsuhara, I., Feng, J., Iwai, T., Hasegawa, M. and Ohashi, Y. (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol. 155, 502-514. Møller, B.L. (2010a) Dynamic metabolons. Science, 330, 1328. Xin, Z., Wang, M.L., Barkley, N.A., Burow, G., Franks, C., Pederson, G. and Burke, J. (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 8, 103. Jørgensen, K., Morant, A.V., Morant, M., Jensen, N.B., Olsen, C.E., Kannangara, R., Motawia, M.S., Møller, B.L. and Bak, S. (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol. 155, 282-292. Halkier, B.A. and Møller, B.L. (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 90, 1552-1559. Morant, A.V., Jørgensen, K., Kristensen, C., Paquette, S.M., Sanchez-Perez, R., Moller, B.L. and Bak, S. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 69, 1795-1813. Haskins, F.A., Gorz, H.J., Hill, R.M. and Youngquist, J.B. (1984) Influence of sample treatment on apparent hydrocyanic acid potential of sorghum leaf tissue. Crop Sci. 24, 1158-1163. Jenrich, R., Trompetter, I., Bak, S., Olsen, C.E., Møller, B.L. and Piotrowski, M. (2007) Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proc. Natl Acad. Sci. USA, 104, 18848-18853. Koch, B.M., Sibbesen, O., Halkier, B.A., Svendsen, I. and Møller, B.L. (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 323, 177-186. Bak, S., Paquette, S.M., Morant, M., Morant, A.V., Saito, S., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Osmani, S., Simonsen, H.T., Pérez, R.S., Heeswijck, T.B.v., Jørgensen, B. and Møller, B.L. (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5, 309-329. Jensen, K. and Møller, B.L. (2010) Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 71, 132-141. Wheeler, J. and Mulcahy, C. (1989) Consequences for animal production of cyanogenesis in sorghum forage and hay - a review. Trop. Grassl. 23, 193-202. Endara, M.-J. and Coley, P.D. (2011) The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389-398. Olsen, K.M., Sutherland, B.L. and Small, L.L. (2007) Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol. Ecol. 16, 4180-4193. Gleadow, R. and Woodrow, I. (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol. 20, 591-598. Nielsen, K.A., Tattersall, D.B., Jones, P.R. and Møller, B.L. (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry, 69, 88-98. Du, L., Bokanga, M., Møller, B.L. and Halkier, B.A. (1995) The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry, 39, 323-326. Haskins, F.A. and Gorz, H.J. (1986) Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves. Theor. Appl. Genet. 73, 2-3. Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl Acad. Sci. USA, 102, 1779-1784. Møller, B.L. and Conn, E.E. (1979) The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench. J. Biol. Chem. 254, 8575-8583. Till, B.J., Burtner, C., Comai, L. and Henikoff, S. (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 2632-2641. Busk, P.K. and Møller, B.L. (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129, 1222-1231. Gleadow, R. and Woodrow, I. (2002a) Constraints on the effectiveness of cyanogenic glycosides in herbivore defence [mini review]. J. Chem. Ecol. 28, 1301-1313. Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S. and Chrestin, H. (2009) The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70, 730-739. Olsen, K.M., Hsu, S.-C. and Small, L.L. (2008) Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in White Clover (Trifolium repens L.). Genetics, 179, 517-526. Lee, T.T. and Skoog, F. (1965) Effects of substituted phenols on bud formation and growth of tobacco tissue cultures. Physiol. Plant. 18, 386-402. Feigl, F. and Anger, V. (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst, 91, 282-284. Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. (1994) Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc. Natl Acad. Sci. USA, 91, 9740-9744. Zerr, T. and Henikoff, S. (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res. 33, 2806-2812. Henikoff, S., Till, B.J. and Comai, L. (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630-636. Jones, D.A. (1998) Why are so many food plants cyanogenic? Phytochemistry, 47, 155-162. Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005b) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280-291. Gregory, P.J., Ingram, J.S. and Brklacich, M. (2005) Climate and Food Security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2139-2148. Lieberei, R. (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann. Bot. 100, 1125-1142. Akazawa, T., Miljanich, P. and Conn, E.E. (1960) Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol. 35, 535-538. Ghannoum, O. (2009) C4 photosynthesis and water stress. Ann. Bot. 103, 635-644. Selmar, D., Lieberei, R. and Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 86, 711-716. Lababidi, S., Mejlhede, N., Rasmussen, S.K., Backes, G., Al-Said, W., Baum, M. and Jahoor, A. (2009) Identification of barley mutants in the cultivar Lux at the Dhn loci through TILLING. Plant Breed. 128, 332-336. Kakes, P. (1989) An analysis of the costs and benefits of the cyanogenic system in Trifolium repens L. Theor. Appl. Genet. 77, 111-118. Zagrobelny, M., Bak, S., Olsen, C.E. and Møller, B.L. (2007) Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem. Mol. Biol. 37, 1189-1197. Gleadow, R.M., Vecchies, A.C. and Woodrow, I.E. (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific ß-glucosidases. Phytochemistry, 63, 699-704. Bak, S., Kahn, R.A., Nielsen, H.L., Møller, B.L. and Halkier, B.A. (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol. Biol. 36, 393-405. 2007; 104 2010a; 330 1997; 115 1986; 73 1995; 39 1960; 35 2007; 100 1984; 24 2005b; 8 1966; 91 2008; 8 2008; 6 1965; 18 2011; 155 1980; 255 1998; 47 2007; 37 2004; 32 2010; 22 1990; 41 1989; 77 2001; 293 2004; 135 2005; 102 2008; 69 2007; 7 1995; 323 1970; 62 2011; 25 2007; 3 1988; 86 2005; 33 2001; 98 2010; 71 2009; 128 1998; 26 2006; 97 1989; 23 2011 2010 2000; 20 2005a; 139 2006; 5 2002 1996; 57 1995; 3 2010b; 13 2007; 16 2005; 360 1979; 254 2009; 70 2002a; 28 1989; 90 1999; 274 2002; 129 2002b; 22 2009; 4 2008; 179 1994; 91 2003; 63 2009; 103 1998; 36 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_62_1 Gupta V.K. (e_1_2_7_20_1) 2002 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_11_1 e_1_2_7_45_1 Gleadow R. (e_1_2_7_17_1) 2010 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Wheeler J. (e_1_2_7_63_1) 1989; 23 Møller B.L. (e_1_2_7_46_1) 1979; 254 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_38_1 |
References_xml | – reference: Busk, P.K. and Møller, B.L. (2002) Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants. Plant Physiol. 129, 1222-1231. – reference: Lieberei, R. (2007) South American leaf blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann. Bot. 100, 1125-1142. – reference: Nielsen, K.A., Tattersall, D.B., Jones, P.R. and Møller, B.L. (2008) Metabolon formation in dhurrin biosynthesis. Phytochemistry, 69, 88-98. – reference: Hasemann, C.A., Kurumbail, R.G., Boddupalli, S.S., Peterson, J.A. and Deisenhofer, J. (1995) Structure and function of cytochromes P450: a comparative analysis of three crystal structures. Structure, 3, 41-62. – reference: Oleykowski, C.A., Bronson Mullins, C.R., Godwin, A.K. and Yeung, A.T. (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res. 26, 4597-4602. – reference: Miller, R., Jensen, R. and Woodrow, I. (2006) Frequency of cyanogenesis in tropical rainforests of Far North Queensland, Australia. Ann. Bot. 97, 1017-1044. – reference: Zerr, T. and Henikoff, S. (2005) Automated band mapping in electrophoretic gel images using background information. Nucleic Acids Res. 33, 2806-2812. – reference: Halkier, B.A. and Møller, B.L. (1989) Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) Moench and partial purification of the enzyme system involved. Plant Physiol. 90, 1552-1559. – reference: Haskins, F.A. and Gorz, H.J. (1986) Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves. Theor. Appl. Genet. 73, 2-3. – reference: Jenrich, R., Trompetter, I., Bak, S., Olsen, C.E., Møller, B.L. and Piotrowski, M. (2007) Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism. Proc. Natl Acad. Sci. USA, 104, 18848-18853. – reference: Bak, S., Kahn, R.A., Nielsen, H.L., Møller, B.L. and Halkier, B.A. (1998) Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 from Sorghum bicolor (L.) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol. Biol. 36, 393-405. – reference: Henikoff, S., Till, B.J. and Comai, L. (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol. 135, 630-636. – reference: Gregory, P.J., Ingram, J.S. and Brklacich, M. (2005) Climate and Food Security. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 2139-2148. – reference: Paquette, S.M., Jensen, K. and Bak, S. (2009) A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases ( http://www.P450.kvl.dk ). Phytochemistry, 70, 1940-1947. – reference: Till, B.J., Cooper, J., Tai, T.H., Colowit, P., Greene, E.A., Henikoff, S. and Comai, L. (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 7, 19. – reference: Loyd, R.C. and Gray, E. (1970) Amount and distribution of hydrocyanic acid potential during the life cycle of plants of three sorghum cultivars. Agron. J. 62, 394-397. – reference: Endara, M.-J. and Coley, P.D. (2011) The resource availability hypothesis revisited: a meta-analysis. Funct. Ecol. 25, 389-398. – reference: Akazawa, T., Miljanich, P. and Conn, E.E. (1960) Studies on cyanogenic glycoside of Sorghum vulgare. Plant Physiol. 35, 535-538. – reference: Ghannoum, O. (2009) C4 photosynthesis and water stress. Ann. Bot. 103, 635-644. – reference: Lababidi, S., Mejlhede, N., Rasmussen, S.K., Backes, G., Al-Said, W., Baum, M. and Jahoor, A. (2009) Identification of barley mutants in the cultivar Lux at the Dhn loci through TILLING. Plant Breed. 128, 332-336. – reference: Olsen, K.M., Sutherland, B.L. and Small, L.L. (2007) Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.). Mol. Ecol. 16, 4180-4193. – reference: Forslund, K., Morant, M., Jorgensen, B., Olsen, C.E., Asamizu, E., Sato, S., Tabata, S. and Bak, S. (2004) Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Plant Physiol. 135, 71-84. – reference: Sibbesen, O., Koch, B., Halkier, B.A. and Møller, B.L. (1994) Isolation of the heme-thiolate enzyme cytochrome P-450TYR, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Proc. Natl Acad. Sci. USA, 91, 9740-9744. – reference: Talame, V., Bovina, R., Sanguineti, M.C., Tuberosa, R., Lundqvist, U. and Salvi, S. (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol. J. 6, 477-485. – reference: Møller, B.L. (2010a) Dynamic metabolons. Science, 330, 1328. – reference: Gleadow, R. and Woodrow, I. (2002a) Constraints on the effectiveness of cyanogenic glycosides in herbivore defence [mini review]. J. Chem. Ecol. 28, 1301-1313. – reference: Wheeler, J.L., Mulcahy, A.C., Walcott, J.J. and Rapp, G.G. (1990) Factors affecting the hydrogen cyanide potential of forage sorghum. Aust. J. Agric. Res. 41, 1093-1100. – reference: Haskins, F.A., Gorz, H.J., Hill, R.M. and Youngquist, J.B. (1984) Influence of sample treatment on apparent hydrocyanic acid potential of sorghum leaf tissue. Crop Sci. 24, 1158-1163. – reference: Till, B.J., Burtner, C., Comai, L. and Henikoff, S. (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32, 2632-2641. – reference: Duncan, R.R. (1996) Breeding and improvement of forage sorghums for the tropics. Adv. Agron. 57, 161-185. – reference: Xin, Z., Wang, M.L., Barkley, N.A., Burow, G., Franks, C., Pederson, G. and Burke, J. (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol. 8, 103. – reference: Jensen, K. and Møller, B.L. (2010) Plant NADPH-cytochrome P450 oxidoreductases. Phytochemistry, 71, 132-141. – reference: Møller, B.L. and Conn, E.E. (1980) The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. J. Biol. Chem. 255, 3049-3056. – reference: Morant, A.V., Jørgensen, K., Jørgensen, B., Dam, W., Olsen, C.E., Møller, B.L. and Bak, S. (2007) Lessons learned from metabolic engineering of cyanogenic glucosides. Metabolomics, 3, 383-398. – reference: Jones, P.R., Møller, B.L. and Hoj, P.B. (1999) The UDP-glucose: p-hydroxymandelonitrile-o-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor. Isolation, cloning, heterologous expression, and substrate specificity. J. Biol. Chem. 274, 35483-35491. – reference: Seo, S., Mitsuhara, I., Feng, J., Iwai, T., Hasegawa, M. and Ohashi, Y. (2011) Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus. Plant Physiol. 155, 502-514. – reference: Zagrobelny, M., Bak, S., Olsen, C.E. and Møller, B.L. (2007) Intimate roles for cyanogenic glucosides in the life cycle of Zygaena filipendulae (Lepidoptera, Zygaenidae). Insect Biochem. Mol. Biol. 37, 1189-1197. – reference: Kahn, R.A., Bak, S., Svendsen, I., Halkier, B.A. and Møller, B.L. (1997) Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol. 115, 1661-1670. – reference: Du, L., Bokanga, M., Møller, B.L. and Halkier, B.A. (1995) The biosynthesis of cyanogenic glucosides in roots of cassava. Phytochemistry, 39, 323-326. – reference: Gleadow, R.M., Vecchies, A.C. and Woodrow, I.E. (2003) Cyanogenic Eucalyptus nobilis is polymorphic for both prunasin and specific ß-glucosidases. Phytochemistry, 63, 699-704. – reference: Bak, S., Paquette, S.M., Morant, M., Morant, A.V., Saito, S., Bjarnholt, N., Zagrobelny, M., Jørgensen, K., Osmani, S., Simonsen, H.T., Pérez, R.S., Heeswijck, T.B.v., Jørgensen, B. and Møller, B.L. (2006) Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochem. Rev. 5, 309-329. – reference: Jørgensen, K., Bak, S., Busk, P.K., Sorensen, C., Olsen, C.E., Puonti-Kaerlas, J. and Møller, B.L. (2005a) Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology. Plant Physiol. 139, 363-374. – reference: Kongsawadworakul, P., Viboonjun, U., Romruensukharom, P., Chantuma, P., Ruderman, S. and Chrestin, H. (2009) The leaf, inner bark and latex cyanide potential of Hevea brasiliensis: evidence for involvement of cyanogenic glucosides in rubber yield. Phytochemistry, 70, 730-739. – reference: Jensen, K., Osmani, S.A., Hamann, T., Naur, P. and Møller, B.L. (2011) Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein-protein interactions. Phytochemistry, doi:10.1016/j.phytochem.2011.05.001. – reference: Kristensen, C., Morant, M., Olsen, C.E., Ekstrøm, C.T., Galbraith, D.W., Møller, B.L. and Bak, S. (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc. Natl Acad. Sci. USA, 102, 1779-1784. – reference: Kakes, P. (1989) An analysis of the costs and benefits of the cyanogenic system in Trifolium repens L. Theor. Appl. Genet. 77, 111-118. – reference: Lee, T.T. and Skoog, F. (1965) Effects of substituted phenols on bud formation and growth of tobacco tissue cultures. Physiol. Plant. 18, 386-402. – reference: Olsen, K.M., Hsu, S.-C. and Small, L.L. (2008) Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in White Clover (Trifolium repens L.). Genetics, 179, 517-526. – reference: Møller, B.L. and Conn, E.E. (1979) The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench. J. Biol. Chem. 254, 8575-8583. – reference: Koch, B.M., Sibbesen, O., Halkier, B.A., Svendsen, I. and Møller, B.L. (1995) The primary sequence of cytochrome P450tyr, the multifunctional N-hydroxylase catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L.) Moench. Arch. Biochem. Biophys. 323, 177-186. – reference: Jørgensen, K., Rasmussen, A.V., Morant, M., Nielsen, A.H., Bjarnholt, N., Zagrobelny, M., Bak, S. and Møller, B.L. (2005b) Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8, 280-291. – reference: Jørgensen, K., Morant, A.V., Morant, M., Jensen, N.B., Olsen, C.E., Kannangara, R., Motawia, M.S., Møller, B.L. and Bak, S. (2011) Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Plant Physiol. 155, 282-292. – reference: Gleadow, R. and Woodrow, I. (2000) Temporal and spatial variation in cyanogenic glycosides in Eucalyptus cladocalyx. Tree Physiol. 20, 591-598. – reference: Baker, N.A., Sept, D., Joseph, S., Holst, M.J. and McCammon, J.A. (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl Acad. Sci. USA, 98, 10037-10041. – reference: Guengerich, F.P., Martin, M.V., Sohl, C.D. and Cheng, Q. (2009) Measurement of cytochrome P450 and NADPH-cytochrome P450 reductase. Nat. Protoc. 4, 1245-1251. – reference: Morant, A.V., Jørgensen, K., Kristensen, C., Paquette, S.M., Sanchez-Perez, R., Moller, B.L. and Bak, S. (2008) β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 69, 1795-1813. – reference: Selmar, D., Lieberei, R. and Biehl, B. (1988) Mobilization and utilization of cyanogenic glycosides: the linustatin pathway. Plant Physiol. 86, 711-716. – reference: Tattersall, D.B., Bak, S., Jones, P.R., Olsen, C.E., Nielsen, J.K., Hansen, M.L., Høj, P.B. and Møller, B.L. (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science, 293, 1826-1828. – reference: Takos, A., Lai, D., Mikkelsen, L., Abou Hachem, M., Shelton, D., Motawia, M.S., Olsen, C.E., Wang, T.L., Martin, C. and Rook, F. (2010) Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Plant Cell, 22, 1605-1619. – reference: Jones, D.A. (1998) Why are so many food plants cyanogenic? Phytochemistry, 47, 155-162. – reference: Feigl, F. and Anger, V. (1966) Replacement of benzidine by copper ethylacetoacetate and tetra base as spot-test reagent for hydrogen cyanide and cyanogen. Analyst, 91, 282-284. – reference: Gleadow, R. and Woodrow, I. (2002b) Defence chemistry of Eucalyptus cladocalyx seedlings is affected by water supply. Tree Physiol. 22, 939-945. – reference: Wheeler, J. and Mulcahy, C. (1989) Consequences for animal production of cyanogenesis in sorghum forage and hay - a review. Trop. Grassl. 23, 193-202. – reference: Møller, B.L. (2010b) Functional diversifications of cyanogenic glucosides. Curr. Opin. Plant Biol. 13, 337-346. – volume: 69 start-page: 88 year: 2008 end-page: 98 article-title: Metabolon formation in dhurrin biosynthesis publication-title: Phytochemistry – volume: 86 start-page: 711 year: 1988 end-page: 716 article-title: Mobilization and utilization of cyanogenic glycosides: the linustatin pathway publication-title: Plant Physiol. – volume: 129 start-page: 1222 year: 2002 end-page: 1231 article-title: Dhurrin synthesis in sorghum is regulated at the transcriptional level and induced by nitrogen fertilization in older plants publication-title: Plant Physiol. – volume: 20 start-page: 591 year: 2000 end-page: 598 article-title: Temporal and spatial variation in cyanogenic glycosides in publication-title: Tree Physiol. – volume: 360 start-page: 2139 year: 2005 end-page: 2148 article-title: Climate and Food Security publication-title: Philos. Trans. R. Soc. Lond. B Biol. Sci. – volume: 6 start-page: 477 year: 2008 end-page: 485 article-title: TILLMore, a resource for the discovery of chemically induced mutants in barley publication-title: Plant Biotechnol. J. – volume: 128 start-page: 332 year: 2009 end-page: 336 article-title: Identification of barley mutants in the cultivar Lux at the Dhn loci through TILLING publication-title: Plant Breed. – volume: 70 start-page: 1940 year: 2009 end-page: 1947 article-title: A web‐based resource for the P450, cytochromes b5, NADPH‐cytochrome P450 reductases, and family 1 glycosyltransferases publication-title: Phytochemistry – volume: 8 start-page: 280 year: 2005b end-page: 291 article-title: Metabolon formation and metabolic channeling in the biosynthesis of plant natural products publication-title: Curr. Opin. Plant Biol. – start-page: 283 year: 2010 end-page: 310 – volume: 73 start-page: 2 year: 1986 end-page: 3 article-title: Relationship between contents of leucoanthocyanidin and dhurrin in sorghum leaves publication-title: Theor. Appl. Genet. – volume: 323 start-page: 177 year: 1995 end-page: 186 article-title: The primary sequence of cytochrome P450tyr, the multifunctional ‐hydroxylase catalyzing the conversion of L‐tyrosine to ‐hydroxyphenylacetaldehyde oxime in the biosynthesis of the cyanogenic glucoside dhurrin in (L.) Moench publication-title: Arch. Biochem. Biophys. – volume: 16 start-page: 4180 year: 2007 end-page: 4193 article-title: Molecular evolution of the Li/li chemical defence polymorphism in white clover ( L.) publication-title: Mol. Ecol. – volume: 104 start-page: 18848 year: 2007 end-page: 18853 article-title: Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism publication-title: Proc. Natl Acad. Sci. USA – volume: 102 start-page: 1779 year: 2005 end-page: 1784 article-title: Metabolic engineering of dhurrin in transgenic plants with marginal inadvertent effects on the metabolome and transcriptome publication-title: Proc. Natl Acad. Sci. USA – volume: 39 start-page: 323 year: 1995 end-page: 326 article-title: The biosynthesis of cyanogenic glucosides in roots of cassava publication-title: Phytochemistry – volume: 7 start-page: 19 year: 2007 article-title: Discovery of chemically induced mutations in rice by TILLING publication-title: BMC Plant Biol. – volume: 22 start-page: 1605 year: 2010 end-page: 1619 article-title: Genetic screening identifies cyanogenesis‐deficient mutants of and reveals enzymatic specificity in hydroxynitrile glucoside metabolism publication-title: Plant Cell – volume: 63 start-page: 699 year: 2003 end-page: 704 article-title: Cyanogenic is polymorphic for both prunasin and specific ß‐glucosidases publication-title: Phytochemistry – year: 2011 article-title: Homology modeling of the three membrane proteins of the dhurrin metabolon: catalytic sites, membrane surface association and protein–protein interactions publication-title: Phytochemistry – volume: 115 start-page: 1661 year: 1997 end-page: 1670 article-title: Isolation and reconstitution of cytochrome P450ox and reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum publication-title: Plant Physiol. – volume: 135 start-page: 630 year: 2004 end-page: 636 article-title: TILLING. Traditional mutagenesis meets functional genomics publication-title: Plant Physiol. – volume: 91 start-page: 9740 year: 1994 end-page: 9744 article-title: Isolation of the heme‐thiolate enzyme cytochrome P‐450 , which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in (L.) Moench publication-title: Proc. Natl Acad. Sci. USA – volume: 25 start-page: 389 year: 2011 end-page: 398 article-title: The resource availability hypothesis revisited: a meta‐analysis publication-title: Funct. Ecol. – volume: 155 start-page: 282 year: 2011 end-page: 292 article-title: Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime‐metabolizing cytochrome P450 enzyme publication-title: Plant Physiol. – volume: 179 start-page: 517 year: 2008 end-page: 526 article-title: Evidence on the molecular basis of the Ac/ac adaptive cyanogenesis polymorphism in White Clover ( L.) publication-title: Genetics – volume: 5 start-page: 309 year: 2006 end-page: 329 article-title: Cyanogenic glycosides: a case study for evolution and application of cytochromes P450 publication-title: Phytochem. Rev. – volume: 28 start-page: 1301 year: 2002a end-page: 1313 article-title: Constraints on the effectiveness of cyanogenic glycosides in herbivore defence [mini review] publication-title: J. Chem. Ecol. – volume: 57 start-page: 161 year: 1996 end-page: 185 article-title: Breeding and improvement of forage sorghums for the tropics publication-title: Adv. Agron. – volume: 71 start-page: 132 year: 2010 end-page: 141 article-title: Plant NADPH‐cytochrome P450 oxidoreductases publication-title: Phytochemistry – volume: 91 start-page: 282 year: 1966 end-page: 284 article-title: Replacement of benzidine by copper ethylacetoacetate and tetra base as spot‐test reagent for hydrogen cyanide and cyanogen publication-title: Analyst – volume: 3 start-page: 41 year: 1995 end-page: 62 article-title: Structure and function of cytochromes P450: a comparative analysis of three crystal structures publication-title: Structure – volume: 77 start-page: 111 year: 1989 end-page: 118 article-title: An analysis of the costs and benefits of the cyanogenic system in L publication-title: Theor. Appl. Genet. – volume: 135 start-page: 71 year: 2004 end-page: 84 article-title: Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in publication-title: Plant Physiol. – volume: 32 start-page: 2632 year: 2004 end-page: 2641 article-title: Mismatch cleavage by single‐strand specific nucleases publication-title: Nucleic Acids Res. – volume: 4 start-page: 1245 year: 2009 end-page: 1251 article-title: Measurement of cytochrome P450 and NADPH‐cytochrome P450 reductase publication-title: Nat. Protoc. – volume: 26 start-page: 4597 year: 1998 end-page: 4602 article-title: Mutation detection using a novel plant endonuclease publication-title: Nucleic Acids Res. – volume: 24 start-page: 1158 year: 1984 end-page: 1163 article-title: Influence of sample treatment on apparent hydrocyanic acid potential of sorghum leaf tissue publication-title: Crop Sci. – volume: 13 start-page: 337 year: 2010b end-page: 346 article-title: Functional diversifications of cyanogenic glucosides publication-title: Curr. Opin. Plant Biol. – volume: 103 start-page: 635 year: 2009 end-page: 644 article-title: C4 photosynthesis and water stress publication-title: Ann. Bot. – volume: 330 start-page: 1328 year: 2010a article-title: Dynamic metabolons publication-title: Science – volume: 97 start-page: 1017 year: 2006 end-page: 1044 article-title: Frequency of cyanogenesis in tropical rainforests of Far North Queensland, Australia publication-title: Ann. Bot. – volume: 37 start-page: 1189 year: 2007 end-page: 1197 article-title: Intimate roles for cyanogenic glucosides in the life cycle of (Lepidoptera, Zygaenidae) publication-title: Insect Biochem. Mol. Biol. – volume: 98 start-page: 10037 year: 2001 end-page: 10041 article-title: Electrostatics of nanosystems: application to microtubules and the ribosome publication-title: Proc. Natl Acad. Sci. USA – volume: 70 start-page: 730 year: 2009 end-page: 739 article-title: The leaf, inner bark and latex cyanide potential of : evidence for involvement of cyanogenic glucosides in rubber yield publication-title: Phytochemistry – volume: 293 start-page: 1826 year: 2001 end-page: 1828 article-title: Resistance to an herbivore through engineered cyanogenic glucoside synthesis publication-title: Science – volume: 69 start-page: 1795 year: 2008 end-page: 1813 article-title: ‐Glucosidases as detonators of plant chemical defense publication-title: Phytochemistry – volume: 18 start-page: 386 year: 1965 end-page: 402 article-title: Effects of substituted phenols on bud formation and growth of tobacco tissue cultures publication-title: Physiol. Plant. – volume: 35 start-page: 535 year: 1960 end-page: 538 article-title: Studies on cyanogenic glycoside of publication-title: Plant Physiol. – volume: 36 start-page: 393 year: 1998 end-page: 405 article-title: Cloning of three A‐type cytochromes P450, CYP71E1, CYP98, and CYP99 from (L.) Moench by a PCR approach and identification by expression in of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin publication-title: Plant Mol. Biol. – volume: 62 start-page: 394 year: 1970 end-page: 397 article-title: Amount and distribution of hydrocyanic acid potential during the life cycle of plants of three sorghum cultivars publication-title: Agron. J. – volume: 254 start-page: 8575 year: 1979 end-page: 8583 article-title: The biosynthesis of cyanogenic glucosides in higher plants. N‐Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by (L.) Moench publication-title: J. Biol. Chem. – volume: 90 start-page: 1552 year: 1989 end-page: 1559 article-title: Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of (L.) Moench and partial purification of the enzyme system involved publication-title: Plant Physiol. – volume: 274 start-page: 35483 year: 1999 end-page: 35491 article-title: The UDP‐glucose: p‐hydroxymandelonitrile‐o‐glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Isolation, cloning, heterologous expression, and substrate specificity publication-title: J. Biol. Chem. – volume: 255 start-page: 3049 year: 1980 end-page: 3056 article-title: The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from (linn) Moench publication-title: J. Biol. Chem. – start-page: 128 year: 2002 end-page: 154 – volume: 100 start-page: 1125 year: 2007 end-page: 1142 article-title: South American leaf blight of the rubber tree ( spp.): new steps in plant domestication using physiological features and molecular markers publication-title: Ann. Bot. – volume: 23 start-page: 193 year: 1989 end-page: 202 article-title: Consequences for animal production of cyanogenesis in sorghum forage and hay – a review publication-title: Trop. Grassl. – volume: 41 start-page: 1093 year: 1990 end-page: 1100 article-title: Factors affecting the hydrogen cyanide potential of forage sorghum publication-title: Aust. J. Agric. Res. – volume: 139 start-page: 363 year: 2005a end-page: 374 article-title: Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology publication-title: Plant Physiol. – volume: 8 start-page: 103 year: 2008 article-title: Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population publication-title: BMC Plant Biol. – volume: 33 start-page: 2806 year: 2005 end-page: 2812 article-title: Automated band mapping in electrophoretic gel images using background information publication-title: Nucleic Acids Res. – volume: 3 start-page: 383 year: 2007 end-page: 398 article-title: Lessons learned from metabolic engineering of cyanogenic glucosides publication-title: Metabolomics – volume: 22 start-page: 939 year: 2002b end-page: 945 article-title: Defence chemistry of seedlings is affected by water supply publication-title: Tree Physiol. – volume: 155 start-page: 502 year: 2011 end-page: 514 article-title: Cyanide, a coproduct of plant hormone ethylene biosynthesis, contributes to the resistance of rice to blast fungus publication-title: Plant Physiol. – volume: 47 start-page: 155 year: 1998 end-page: 162 article-title: Why are so many food plants cyanogenic? publication-title: Phytochemistry – ident: e_1_2_7_47_1 doi: 10.1016/S0021-9258(19)85850-7 – ident: e_1_2_7_5_1 doi: 10.1073/pnas.181342398 – ident: e_1_2_7_7_1 doi: 10.1016/0031-9422(94)00878-W – ident: e_1_2_7_34_1 doi: 10.1104/pp.115.4.1661 – ident: e_1_2_7_60_1 doi: 10.1126/science.1062249 – ident: e_1_2_7_13_1 doi: 10.1093/treephys/20.9.591 – ident: e_1_2_7_36_1 doi: 10.1006/abbi.1995.0024 – start-page: 128 volume-title: Diseases of Field Crops year: 2002 ident: e_1_2_7_20_1 – start-page: 283 volume-title: Research Methods in Plant Science: Soil Allelochemicals year: 2010 ident: e_1_2_7_17_1 – ident: e_1_2_7_61_1 doi: 10.1093/nar/gkh599 – ident: e_1_2_7_39_1 doi: 10.1111/j.1439-0523.2009.01640.x – ident: e_1_2_7_25_1 doi: 10.1104/pp.104.041061 – ident: e_1_2_7_14_1 doi: 10.1023/A:1016298100201 – ident: e_1_2_7_9_1 doi: 10.1111/j.1365-2435.2010.01803.x – ident: e_1_2_7_64_1 doi: 10.1071/AR9901093 – ident: e_1_2_7_3_1 doi: 10.1023/A:1005915507497 – ident: e_1_2_7_22_1 doi: 10.1016/S0969-2126(01)00134-4 – ident: e_1_2_7_44_1 doi: 10.1126/science.1194971 – ident: e_1_2_7_15_1 doi: 10.1093/treephys/22.13.939 – ident: e_1_2_7_51_1 doi: 10.1093/nar/26.20.4597 – ident: e_1_2_7_6_1 doi: 10.1104/pp.000687 – ident: e_1_2_7_16_1 doi: 10.1016/S0031-9422(03)00245-0 – ident: e_1_2_7_31_1 doi: 10.1104/pp.105.065904 – ident: e_1_2_7_8_1 doi: 10.1016/S0065-2113(08)60924-4 – ident: e_1_2_7_24_1 doi: 10.2135/cropsci1984.0011183X002400060036x – ident: e_1_2_7_49_1 doi: 10.1016/j.phytochem.2008.03.006 – ident: e_1_2_7_48_1 doi: 10.1007/s11306-007-0079-x – ident: e_1_2_7_54_1 doi: 10.1016/j.phytochem.2009.08.024 – ident: e_1_2_7_10_1 doi: 10.1039/an9669100282 – ident: e_1_2_7_32_1 doi: 10.1016/j.pbi.2005.03.014 – ident: e_1_2_7_55_1 doi: 10.1104/pp.86.3.711 – ident: e_1_2_7_65_1 doi: 10.1186/1471-2229-8-103 – ident: e_1_2_7_58_1 doi: 10.1105/tpc.109.073502 – ident: e_1_2_7_19_1 doi: 10.1038/nprot.2009.121 – ident: e_1_2_7_57_1 doi: 10.1073/pnas.91.21.9740 – ident: e_1_2_7_40_1 doi: 10.1111/j.1399-3054.1965.tb06902.x – ident: e_1_2_7_42_1 doi: 10.2134/agronj1970.00021962006200030025x – ident: e_1_2_7_21_1 doi: 10.1104/pp.90.4.1552 – ident: e_1_2_7_41_1 doi: 10.1093/aob/mcm133 – ident: e_1_2_7_50_1 doi: 10.1016/j.phytochem.2007.06.033 – ident: e_1_2_7_67_1 doi: 10.1093/nar/gki580 – ident: e_1_2_7_62_1 doi: 10.1002/(SICI)1097-0010(199807)77:3<289::AID-JSFA38>3.0.CO;2-D – ident: e_1_2_7_52_1 doi: 10.1111/j.1365-294X.2007.03506.x – ident: e_1_2_7_11_1 doi: 10.1104/pp.103.038059 – ident: e_1_2_7_29_1 doi: 10.1016/S0031-9422(97)00425-1 – ident: e_1_2_7_35_1 doi: 10.1007/BF00292324 – ident: e_1_2_7_38_1 doi: 10.1073/pnas.0409233102 – ident: e_1_2_7_37_1 doi: 10.1016/j.phytochem.2009.03.020 – ident: e_1_2_7_33_1 doi: 10.1104/pp.110.164053 – volume: 23 start-page: 193 year: 1989 ident: e_1_2_7_63_1 article-title: Consequences for animal production of cyanogenesis in sorghum forage and hay – a review publication-title: Trop. Grassl. – ident: e_1_2_7_2_1 doi: 10.1104/pp.35.4.535 – ident: e_1_2_7_56_1 doi: 10.1104/pp.110.162412 – ident: e_1_2_7_12_1 doi: 10.1093/aob/mcn093 – ident: e_1_2_7_4_1 doi: 10.1007/s11101-006-9033-1 – ident: e_1_2_7_53_1 doi: 10.1534/genetics.107.080366 – volume: 254 start-page: 8575 year: 1979 ident: e_1_2_7_46_1 article-title: The biosynthesis of cyanogenic glucosides in higher plants. N‐Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (L.) Moench publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(19)86931-4 – ident: e_1_2_7_66_1 doi: 10.1016/j.ibmb.2007.07.008 – ident: e_1_2_7_18_1 doi: 10.1098/rstb.2005.1745 – ident: e_1_2_7_28_1 doi: 10.1016/j.phytochem.2011.05.001 – ident: e_1_2_7_30_1 doi: 10.1074/jbc.274.50.35483 – ident: e_1_2_7_59_1 doi: 10.1111/j.1467-7652.2008.00341.x – ident: e_1_2_7_43_1 doi: 10.1093/aob/mcl048 – ident: e_1_2_7_27_1 doi: 10.1016/j.phytochem.2009.10.017 – ident: e_1_2_7_26_1 doi: 10.1073/pnas.0709315104 – ident: e_1_2_7_45_1 doi: 10.1016/j.pbi.2010.01.009 – ident: e_1_2_7_23_1 doi: 10.1007/BF00273709 |
SSID | ssj0021656 |
Score | 2.3526156 |
Snippet | Summary
Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability... Cyanogenic glucosides are present in several crop plants and can pose a significant problem for human and animal consumption, because of their ability to... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 54 |
SubjectTerms | Animal Feed Animals Biological and medical sciences biosynthesis Biosynthetic Pathways Biotechnology Biotechnology - methods Blotting, Western Crosses, Genetic cyanide toxicity CYP79A1 cytochrome P-450 Cytochrome P-450 Enzyme System Cytochrome P-450 Enzyme System - genetics enzymes enzymology Ethyl Methanesulfonate forage production Fundamental and applied biological sciences. Psychology gene regulation genes genetic techniques and protocols genetics Genome, Plant Genome, Plant - genetics glucosides Glycosides Glycosides - metabolism Humans hydrogen cyanide Hydrogen Cyanide - metabolism leaves mature plants metabolism methods Microsomes Microsomes - enzymology Models, Molecular molecular models Mutagenesis Mutagenesis - genetics mutants mutation Mutation - genetics mutations NADP NADP - metabolism Nitriles Nitriles - metabolism nitrogen metabolism Phenotype screening seedlings seeds Sorghum Sorghum - enzymology Sorghum - genetics Sorghum bicolor Structural Homology, Protein |
Title | A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production |
URI | https://api.istex.fr/ark:/67375/WNG-9G7BXVR4-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1467-7652.2011.00646.x https://www.ncbi.nlm.nih.gov/pubmed/21880107 https://www.proquest.com/docview/1469205160 https://www.proquest.com/docview/909296214 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BucCB98M8okVC3Bx5vet1fEwrmoJoVJUWclvty2kU6lR2IhX-BH-ZGa8TFChShbhZlmdXHs_MfrOe_YaQN7Dml4U0g9gywyFBEUmsnbCx4ZxbQLC2bE_IHY7lwan4MMkmXf0TnoUJ_BCbDTf0jDZeo4Nr0_zp5LnM0o6JE1ZX2Uc8iaVbiI-ON0xSKZLMhINGKCLEdlHPlQNtrVS3UOmXWDmpG1BeGbpeXAVLt1Fuu0zt3yPz9QuG6pR5f7U0ffv9N-7H_6OB--Ruh2bpMJjfA3LDVw_JneG07hg9_CPyY0hhXMi_vaNmhv25WoICCuEKUmiqK0dPcEdhPKJrfnM6c6GGyTf0fBVqBRo6q-inRT09W53DOMi1XdOPfXq4ADc7o7VvsDKymuJj2n7T1QI8Y2YpYHKImPQiENvCQI_J6f67k72DuOsCEduMCxlD0CgMRx5-w3PHmPSDrJA2ZYYVpWTacW5sWkruSyZ0wnSZm4FwhbcF87n2_AnZqRaVf0aozpx3pTd4XFekSF3mksINihzSNG5EHpF8_cWV7SjSsVPHV7WVKuUKVa5Q5apVubqMCNtIXgSakGvIvG2NaiOg6zmW2eWZ-jIeqWKU704-Hwu1F5HeltVtBLCXASKyiLxem6GC6IC_fHTlF6sGZy5SiLsyiQj9yzNFAhBZpkxE5Gkw4V8TIFsfS0AxWWuI1343dbT7Hi6e_6PcC3Ib7qZhq-sl2VnWK_8KwN_S9MjNVBz1Wuf-CZIuSmE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6h9gAceD_MoywS4ubI613b2WNa0QRoIlRS6G21L6dRW6dyEqnwJ_jLzHidoECRKsTNh51deTwz-8169htC3sCeX8rcdGPLDIcERSSxdsLGhnNuAcHasrkhNxzlgyPx4Tg7btsB4V2YwA-xPnBDz2jiNTo4Hkj_6eVFnqUtFSdsr3kHAOU2Nvhu8qvDNZdUijQz4aoRygixWdZz5Uwbe9U2qv0Sayf1HNRXhr4XVwHTTZzbbFT7d8nZ6hVDfcppZ7kwHfv9N_bH_6SDe-ROC2hpL1jgfXLDVw_I7d6kbkk9_EPyo0dhYkjBvaNmii26Go4CChELsmiqK0fHeKgw6tMVxTmdulDG5Of0fBnKBeZ0WtHPs3pysjyHeZBuu6YHHTqcgaed0NrPsTiymuAwbb_pagbOMbUUYDkETXoRuG1hokfkaP_deG8Qt40gYptxkccQN6ThSMVveOEYy303k7lNmWGyzJl2nBubljn3JRM6YbosTFc46a1kvtCePyZb1azyTwnVmfOu9AZv7IoU2ctcIl1XFpCpcSOKiBSrT65sy5KOzTrO1Ea2VChUuUKVq0bl6jIibC15EZhCriHztrGqtYCuT7HSrsjU11FfyX6xe_zlUKi9iOxsmN1aANsZICiLyOuVHSoIEPjXR1d-tpzjyjKF0JsnEaF_GSMTQMl5ykREngQb_rUAEvaxBBSTNZZ47XdTn3bfw8Ozf5R7RW4OxsMDBcb38Tm5BSPScPL1gmwt6qV_CVhwYXYaH_8JYXNNpQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6hRkJwQLwxj7JIiJsrr3e9zh7TQlIejSpoSsRltS-nEdSJnEYqv4K_zIztGEUUqeLmw85a9szsfp89-w0hr2HPL5S0_dgxy4GgiCQ2XrjYcs4dIFhX1CfkjsbycCI-TLNpW_-EZ2EafYjugxtmRr1eY4IvffF3kucyS1slTthd5R7gyR6K5kGE9wank2-Tjn6hzkxz1githNiu67lyrq3Nqofv_RKLJ80K3l_RNL64CpluA916pxreJXdaiEkHTUzcIzdCeZ_cHsyqVmYjPCC_BhQeF0hx8NTOsWlWrRpAYQ0BXktN6ekJ0vzxiG5Ex-ncN4VFYUXP180P_BWdl_TLopqdrc9hHhTAruinPXq0gNg_o8DksVyxnOEw436acgHhOncUgDIsY3TZqM3CRA_JZPju5OAwblszxC7jQsaQycpyFMe3PPeMydDPlHQps0wVkhnPuXVpIXkomDAJM0Vu-8Kr4BQLuQn8EdkpF2V4QqjJfPBFsHiGVqSoJ-YT5fsqB-7Ercgjkm98oF2rW47tM37oLf6Sa_SeRu_p2nv6MiKss1w22h3XsHlTu7kzMNV3rH3LM_11PNJqlO9PTz8LfRCR3a046AywwQDCpIi82gSGhpTF_zCmDIv1Cu-sUlgMZRIR-o8xKgHcKlMmIvK4Cao_N0AJPWDtEcnqKLv2s-nj_fdw8fQ_7V6Sm8dvhxpi7-MzcgsGpM2nqOdk56JahxcAzi7sbpt1vwHO1SsW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+combined+biochemical+screen+and+TILLING+approach+identifies+mutations+in+Sorghum+bicolor+L.+Moench+resulting+in+acyanogenic+forage+production&rft.jtitle=Plant+biotechnology+journal&rft.au=Blomstedt%2C+Cecilia+K.&rft.au=Gleadow%2C+Roslyn+M.&rft.au=O%E2%80%99Donnell%2C+Natalie&rft.au=Naur%2C+Peter&rft.date=2012-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1467-7644&rft.eissn=1467-7652&rft.volume=10&rft.issue=1&rft.spage=54&rft.epage=66&rft_id=info:doi/10.1111%2Fj.1467-7652.2011.00646.x&rft.externalDBID=10.1111%252Fj.1467-7652.2011.00646.x&rft.externalDocID=PBI646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-7644&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-7644&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-7644&client=summon |