Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal
Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max , a Myc -binding partner, leads to meiotic induction. Howev...
Saved in:
Published in | Genes & development Vol. 30; no. 23; pp. 2637 - 2648 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0890-9369 1549-5477 |
DOI | 10.1101/gad.287045.116 |
Cover
Abstract | Myc
plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs),
Myc
controls SSC fate decisions because
Myc
overexpression induces enhanced self-renewal division, while depletion of
Max
, a
Myc
-binding partner, leads to meiotic induction. However, the mechanism by which
Myc
acts on SSC fate is unclear. Here we demonstrate a critical link between
Myc/Mycn
gene activity and glycolysis in SSC self-renewal. In SSCs,
Myc/Mycn
are regulated by
Foxo1
, whose deficiency impairs SSC self-renewal.
Myc/Mycn
-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active
Akt1
or
Pdpk1
(phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that
Myc
-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. |
---|---|
AbstractList | Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max , a Myc -binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1 , whose deficiency impairs SSC self-renewal. Myc/Mycn -deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc -mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. Here, Kanatsu-Shinohara et al. investigated the mechanisms underlying Myc regulation of spermatogonial stem cell (SSC) fate. Their findings suggest that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max , a Myc -binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1 , whose deficiency impairs SSC self-renewal. Myc/Mycn -deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc -mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. |
Author | Cheng, Pei Feng Ogonuki, Narumi Ogura, Atsuo Trumpp, Andreas Morimoto, Hiroko Shinohara, Takashi Kanatsu-Shinohara, Mito Eisenman, Robert N. Tanaka, Takashi |
AuthorAffiliation | 2 Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8501, Japan 4 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA 5 Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany 1 Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan 3 Bioresource Center, RIKEN, Tsukuba 305-0074, Japan |
AuthorAffiliation_xml | – name: 2 Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8501, Japan – name: 5 Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany – name: 1 Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan – name: 4 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA – name: 3 Bioresource Center, RIKEN, Tsukuba 305-0074, Japan |
Author_xml | – sequence: 1 givenname: Mito surname: Kanatsu-Shinohara fullname: Kanatsu-Shinohara, Mito – sequence: 2 givenname: Takashi surname: Tanaka fullname: Tanaka, Takashi – sequence: 3 givenname: Narumi surname: Ogonuki fullname: Ogonuki, Narumi – sequence: 4 givenname: Atsuo surname: Ogura fullname: Ogura, Atsuo – sequence: 5 givenname: Hiroko surname: Morimoto fullname: Morimoto, Hiroko – sequence: 6 givenname: Pei Feng surname: Cheng fullname: Cheng, Pei Feng – sequence: 7 givenname: Robert N. surname: Eisenman fullname: Eisenman, Robert N. – sequence: 8 givenname: Andreas surname: Trumpp fullname: Trumpp, Andreas – sequence: 9 givenname: Takashi surname: Shinohara fullname: Shinohara, Takashi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28007786$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUctqHDEQFMEhXtu55hjmmMus9ZbmEggmL7AJBt-FVmqtFTTSZjQbs38fDWuHJBDwQbQaVZWqu87QSS4ZEHpD8JoQTC631q-pVpiL1ssXaEUEH3rBlTpBK6wH3A9MDqforNbvGGOJpXyFTqnGWCktV-j25uAu28n9CD7aGXy3TQdX0qHG2kG-t9lB7cayr9DVHUyjncu25GhTV2cYOwep3SCFfoIMDzZdoJfBpgqvH-s5uvv08e7qS3_97fPXqw_XvROMzT0wIYFoxigJfIMlCK9BObHZeEdZYEQT54Fy7D3zMgyMQOA6UMElxUGyc_T-KLvbb5p1B3mebDK7KY52Ophio_n7Jcd7sy0_jaCYMyGawLtHgan82EOdzRjrMo3N0KY1RIuBK9q-ew6UKk0GtUDf_mnrt5-njTcAPwLcVGqdIBgXZzvHsriMyRBslmBNC9Ycg239Qlv_Q3tS_g_hF47VpnM |
CitedBy_id | crossref_primary_10_1093_biolre_ioz156 crossref_primary_10_1093_stmcls_sxac016 crossref_primary_10_1038_s41586_024_07700_w crossref_primary_10_1530_REP_17_0666 crossref_primary_10_3390_ijms22041998 crossref_primary_10_1111_jpi_12496 crossref_primary_10_4252_wjsc_v14_i12_822 crossref_primary_10_1242_dev_202553 crossref_primary_10_1111_andr_13427 crossref_primary_10_3390_insects12040361 crossref_primary_10_1016_j_aanat_2025_152391 crossref_primary_10_1093_humrep_deac157 crossref_primary_10_1093_biolre_ioac048 crossref_primary_10_1093_biolre_ioae109 crossref_primary_10_1093_biolre_ioy192 crossref_primary_10_1007_s00441_024_03910_w crossref_primary_10_1016_j_isci_2023_108424 crossref_primary_10_3390_ijms222413549 crossref_primary_10_1016_j_stemcr_2024_09_006 crossref_primary_10_1186_s40659_023_00413_w crossref_primary_10_1038_s41559_023_02014_y crossref_primary_10_1080_15384101_2019_1661174 crossref_primary_10_3390_cells10092265 crossref_primary_10_1172_JCI170140 crossref_primary_10_1242_dev_201157 crossref_primary_10_1007_s00018_024_05414_w crossref_primary_10_1111_andr_13397 crossref_primary_10_1101_gad_339903_120 crossref_primary_10_1155_2017_5091541 crossref_primary_10_1038_s41585_024_00969_6 crossref_primary_10_3390_jcm9030640 crossref_primary_10_1016_j_theriogenology_2023_10_021 crossref_primary_10_1016_j_ejcb_2017_11_001 crossref_primary_10_1073_pnas_1904980116 crossref_primary_10_1093_biolre_ioaa115 crossref_primary_10_3390_genes15121518 crossref_primary_10_1016_j_tice_2019_101315 crossref_primary_10_1242_dev_203142 crossref_primary_10_1002_mrd_23041 crossref_primary_10_1016_j_devcel_2020_01_014 crossref_primary_10_1016_j_stemcr_2017_08_012 crossref_primary_10_1038_s41421_020_0183_x crossref_primary_10_5939_sjws_19001 crossref_primary_10_1016_j_isci_2021_102762 crossref_primary_10_1016_j_stemcr_2021_05_013 crossref_primary_10_1371_journal_pbio_3001085 crossref_primary_10_1262_jrd_2018_093 crossref_primary_10_1262_jrd_2020_019 crossref_primary_10_1111_jcmm_17197 crossref_primary_10_1186_s13578_023_01134_z crossref_primary_10_3390_biom11060821 crossref_primary_10_1007_s00018_023_04872_y crossref_primary_10_1186_s12864_025_11266_w crossref_primary_10_1016_j_fct_2022_113556 crossref_primary_10_1016_j_stemcr_2023_02_008 crossref_primary_10_1007_s11684_018_0650_z crossref_primary_10_1096_fj_202002799R crossref_primary_10_1089_ars_2017_7241 crossref_primary_10_1262_jrd_2021_137 crossref_primary_10_3389_fcell_2023_1293068 crossref_primary_10_1002_mrd_23777 crossref_primary_10_1016_j_stemcr_2017_03_004 crossref_primary_10_3390_ani14132006 crossref_primary_10_1159_000515281 crossref_primary_10_15252_embr_202154321 crossref_primary_10_1016_j_isci_2020_101880 crossref_primary_10_1159_000520662 crossref_primary_10_3390_biom13101462 crossref_primary_10_1038_s41598_019_42578_z crossref_primary_10_3389_fcell_2022_782996 crossref_primary_10_1016_j_stemcr_2022_02_017 |
Cites_doi | 10.1093/oso/9780195062694.003.0012 10.1242/dev.112375 10.1073/pnas.0609282104 10.1073/pnas.0407063101 10.1038/emboj.2012.71 10.1242/dev.00392 10.1101/gad.1712408 10.1101/gad.220194.113 10.1038/8751 10.1016/j.cell.2015.12.033 10.1101/gad.1021202 10.1101/gad.313104 10.1096/fj.10-175802 10.1002/stem.2073 10.1016/j.semcdb.2015.08.003 10.1095/biolreprod.106.051193 10.1016/j.stem.2012.10.011 10.1016/j.cell.2010.03.030 10.1038/ncomms11056 10.1016/j.cell.2012.08.033 10.1146/annurev-cellbio-101512-122353 10.1095/biolreprod.110.088229 10.1016/j.neuron.2014.02.039 10.18632/oncotarget.116 10.1016/j.ceb.2009.09.006 10.1016/j.cell.2013.07.004 10.4049/jimmunol.169.7.3700 10.1016/j.cell.2012.08.026 10.1084/jem.183.3.1141 10.1016/j.cellsig.2006.08.015 10.1016/j.cell.2006.12.029 10.1038/nrurol.2012.77 10.1002/dvg.20310 10.1016/j.cell.2004.11.011 10.1242/jcs.024802 10.1038/ng1938 10.1262/jrd.09-153N 10.1371/journal.pone.0077715 10.1095/biolreprod.103.017012 10.1002/j.1939-4640.2000.tb03408.x 10.1182/blood-2011-01-331686 10.1073/pnas.91.24.11298 10.1146/annurev-cellbio-100913-013116 10.1016/j.cell.2008.10.048 10.1038/ncomms2780 10.1016/j.stem.2009.04.020 10.1073/pnas.1401837111 10.1095/biolreprod60.6.1429 10.1242/dev.003004 10.1172/JCI57984 10.1074/jbc.M703474200 10.4161/cc.6.24.5104 10.1242/dev.076539 10.1095/biolreprod.111.095307 10.1016/j.stem.2008.09.005 |
ContentType | Journal Article |
Copyright | 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press. 2016 |
Copyright_xml | – notice: 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press. – notice: 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 8FD FR3 P64 RC3 5PM |
DOI | 10.1101/gad.287045.116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Kanatsu-Shinohara et al |
EISSN | 1549-5477 |
EndPage | 2648 |
ExternalDocumentID | PMC5204355 28007786 10_1101_gad_287045_116 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: R01 CA057138 – fundername: Takeda Foundation – fundername: Uehara Memorial Foundation – fundername: Naito Foundation – fundername: Japan Society for the Promotion of Science grantid: KAKENHI JP25112003; JP15H01510 – fundername: Japan Science and Technology Agency – fundername: National Institutes of Health grantid: RO1 CA57138 – fundername: National Cancer Institute |
GroupedDBID | --- -DZ -~X .55 18M 29H 2WC 39C 4.4 53G 5RE 5VS 85S AAYXX ABCQX ABDIX ACGFO ACLKE ACNCT ADBBV ADIYS ADXHL AECCQ AENEX AETEA AFFNX AFOSN AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE H~9 IH2 KQ8 L7B MV1 N9A OK1 P2P R.V RCX RHI RPM SJN TAE TN5 TR2 UHB W8F WH7 WOQ X7M XSW YBU YHG YKV YSK CGR CUY CVF ECM EIF NPM RHF VQA 7X8 7TM 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c533t-e356e183321f4b06e5d8e7c5bbdc23f3181cde240dd3d6f931ef48f254620f63 |
ISSN | 0890-9369 |
IngestDate | Thu Aug 21 18:05:33 EDT 2025 Fri Sep 05 00:01:08 EDT 2025 Fri Sep 05 05:12:43 EDT 2025 Wed Feb 19 02:40:56 EST 2025 Tue Jul 01 01:12:07 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Keywords | spermatogenesis spermatogonial stem cells self-renewal Myc glycolysis |
Language | English |
License | 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press. This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c533t-e356e183321f4b06e5d8e7c5bbdc23f3181cde240dd3d6f931ef48f254620f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors equally contributed to this work. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5204355 |
PMID | 28007786 |
PQID | 1852781972 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5204355 proquest_miscellaneous_1859472462 proquest_miscellaneous_1852781972 pubmed_primary_28007786 crossref_citationtrail_10_1101_gad_287045_116 crossref_primary_10_1101_gad_287045_116 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 20161201 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Genes & development |
PublicationTitleAlternate | Genes Dev |
PublicationYear | 2016 |
Publisher | Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
References | 2021111619571020000_30.23.2637.52 2021111619571020000_30.23.2637.51 2021111619571020000_30.23.2637.1 (2021111619571020000_30.23.2637.12) 2015; 43 2021111619571020000_30.23.2637.19 2021111619571020000_30.23.2637.18 2021111619571020000_30.23.2637.17 2021111619571020000_30.23.2637.16 2021111619571020000_30.23.2637.15 2021111619571020000_30.23.2637.14 2021111619571020000_30.23.2637.13 2021111619571020000_30.23.2637.57 2021111619571020000_30.23.2637.56 2021111619571020000_30.23.2637.11 2021111619571020000_30.23.2637.55 2021111619571020000_30.23.2637.10 2021111619571020000_30.23.2637.53 2021111619571020000_30.23.2637.29 2021111619571020000_30.23.2637.28 2021111619571020000_30.23.2637.27 2021111619571020000_30.23.2637.26 2021111619571020000_30.23.2637.25 2021111619571020000_30.23.2637.24 (2021111619571020000_30.23.2637.49) 2002; 62 2021111619571020000_30.23.2637.23 2021111619571020000_30.23.2637.22 2021111619571020000_30.23.2637.21 2021111619571020000_30.23.2637.20 2021111619571020000_30.23.2637.30 (2021111619571020000_30.23.2637.54) 2010; 1 (2021111619571020000_30.23.2637.40) 1997; 41 2021111619571020000_30.23.2637.39 2021111619571020000_30.23.2637.38 2021111619571020000_30.23.2637.37 2021111619571020000_30.23.2637.36 2021111619571020000_30.23.2637.35 2021111619571020000_30.23.2637.34 2021111619571020000_30.23.2637.33 2021111619571020000_30.23.2637.32 2021111619571020000_30.23.2637.31 2021111619571020000_30.23.2637.41 2021111619571020000_30.23.2637.6 2021111619571020000_30.23.2637.7 2021111619571020000_30.23.2637.8 2021111619571020000_30.23.2637.9 2021111619571020000_30.23.2637.2 2021111619571020000_30.23.2637.3 2021111619571020000_30.23.2637.4 2021111619571020000_30.23.2637.5 2021111619571020000_30.23.2637.48 2021111619571020000_30.23.2637.47 2021111619571020000_30.23.2637.46 2021111619571020000_30.23.2637.45 2021111619571020000_30.23.2637.44 2021111619571020000_30.23.2637.43 2021111619571020000_30.23.2637.42 (2021111619571020000_30.23.2637.50) 2016; 7 12700182 - Biol Reprod. 2003 Aug;69(2):612-6 12381668 - Genes Dev. 2002 Oct 15;16(20):2699-712 21525489 - FASEB J. 2011 Aug;25(8):2604-14 24029916 - Genes Dev. 2013 Sep 15;27(18):1949-58 21865646 - J Clin Invest. 2011 Sep;121(9):3456-66 26059508 - Stem Cells. 2015 Sep;33(9):2699-711 19570516 - Cell Stem Cell. 2009 Jul 2;5(1):76-86 19062086 - Cell. 2008 Dec 12;135(6):1118-29 8642256 - J Exp Med. 1996 Mar 1;183(3):1141-50 24879440 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8826-31 16598026 - Biol Reprod. 2006 Jul;75(1):68-74 19926938 - J Reprod Dev. 2010 Feb;56(1):145-53 17551945 - Genesis. 2007 Jun;45(6):413-7 17299052 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2596-601 22549313 - Nat Rev Urol. 2012 May 01;9(6):330-8 19001505 - J Cell Sci. 2008 Dec 1;121(Pt 23):3941-50 20434984 - Cell. 2010 Apr 30;141(3):432-45 21191109 - Biol Reprod. 2011 Apr;84(4):698-706 12620992 - Development. 2003 Apr;130(8):1691-700 10330102 - Biol Reprod. 1999 Jun;60(6):1429-36 19041778 - Cell Stem Cell. 2008 Dec 4;3(6):611-24 17428826 - Development. 2007 May;134(10):1853-9 25288119 - Annu Rev Cell Dev Biol. 2014;30:647-75 25564647 - Development. 2015 Feb 1;142(3):431-7 17254969 - Cell. 2007 Jan 26;128(2):309-23 22446391 - EMBO J. 2012 May 2;31(9):2103-16 22491947 - Development. 2012 May;139(10 ):1734-43 7972053 - Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11298-302 19836223 - Curr Opin Cell Biol. 2009 Dec;21(6):844-54 10319860 - Nat Genet. 1999 May;22(1):44-52 23021216 - Cell. 2012 Sep 28;151(1):68-79 12067996 - Cancer Res. 2002 Jun 15;62(12):3507-10 9074943 - Int J Dev Biol. 1997 Feb;41(1):111-22 24099084 - Annu Rev Cell Dev Biol. 2013;29:163-87 23870119 - Cell. 2013 Jul 18;154(2):274-84 17597063 - J Biol Chem. 2007 Aug 31;282(35):25842-51 12244163 - J Immunol. 2002 Oct 1;169(7):3700-9 26871632 - Cell. 2016 Feb 11;164(4):668-80 18923074 - Genes Dev. 2008 Oct 15;22(20):2755-66 27025988 - Nat Commun. 2016 Mar 30;7:11056 22123844 - Blood. 2012 Jan 12;119(2):377-87 15520394 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16489-94 24811379 - Neuron. 2014 May 7;82(3):545-59 26277543 - Semin Cell Dev Biol. 2015 Jul;43:11-21 17220891 - Nat Genet. 2007 Feb;39(2):178-88 23612295 - Nat Commun. 2013;4:1754 23290136 - Cell Stem Cell. 2013 Jan 3;12(1):49-61 17113751 - Cell Signal. 2007 Mar;19(3):519-27 18073536 - Cell Cycle. 2007 Dec 15;6(24):3039-42 23021215 - Cell. 2012 Sep 28;151(1):56-67 11105904 - J Androl. 2000 Nov-Dec;21(6):776-98 15620358 - Cell. 2004 Dec 29;119(7):1001-12 20651942 - Oncotarget. 2010 Jun;1(2):120-30 22357549 - Biol Reprod. 2012 May 10;86(5):148, 1-11 15545632 - Genes Dev. 2004 Nov 15;18(22):2747-63 24204931 - PLoS One. 2013 Oct 28;8(10):e77715 |
References_xml | – ident: 2021111619571020000_30.23.2637.34 doi: 10.1093/oso/9780195062694.003.0012 – ident: 2021111619571020000_30.23.2637.41 doi: 10.1242/dev.112375 – ident: 2021111619571020000_30.23.2637.52 doi: 10.1073/pnas.0609282104 – ident: 2021111619571020000_30.23.2637.24 doi: 10.1073/pnas.0407063101 – ident: 2021111619571020000_30.23.2637.57 doi: 10.1038/emboj.2012.71 – ident: 2021111619571020000_30.23.2637.22 doi: 10.1242/dev.00392 – ident: 2021111619571020000_30.23.2637.8 doi: 10.1101/gad.1712408 – ident: 2021111619571020000_30.23.2637.51 doi: 10.1101/gad.220194.113 – ident: 2021111619571020000_30.23.2637.44 doi: 10.1038/8751 – ident: 2021111619571020000_30.23.2637.48 doi: 10.1016/j.cell.2015.12.033 – ident: 2021111619571020000_30.23.2637.23 doi: 10.1101/gad.1021202 – ident: 2021111619571020000_30.23.2637.55 doi: 10.1101/gad.313104 – ident: 2021111619571020000_30.23.2637.25 doi: 10.1096/fj.10-175802 – ident: 2021111619571020000_30.23.2637.21 doi: 10.1002/stem.2073 – volume: 43 start-page: 11 year: 2015 ident: 2021111619571020000_30.23.2637.12 article-title: MYC and metabolism on the path to cancer publication-title: Semin Cell Dev Biol doi: 10.1016/j.semcdb.2015.08.003 – ident: 2021111619571020000_30.23.2637.17 doi: 10.1095/biolreprod.106.051193 – volume: 62 start-page: 3507 year: 2002 ident: 2021111619571020000_30.23.2637.49 article-title: Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis publication-title: Cancer Res – ident: 2021111619571020000_30.23.2637.53 doi: 10.1016/j.stem.2012.10.011 – ident: 2021111619571020000_30.23.2637.43 doi: 10.1016/j.cell.2010.03.030 – volume: 7 start-page: 11056 year: 2016 ident: 2021111619571020000_30.23.2637.50 article-title: Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells publication-title: Nat Commun doi: 10.1038/ncomms11056 – ident: 2021111619571020000_30.23.2637.38 doi: 10.1016/j.cell.2012.08.033 – ident: 2021111619571020000_30.23.2637.14 doi: 10.1146/annurev-cellbio-101512-122353 – ident: 2021111619571020000_30.23.2637.47 doi: 10.1095/biolreprod.110.088229 – ident: 2021111619571020000_30.23.2637.6 doi: 10.1016/j.neuron.2014.02.039 – volume: 1 start-page: 120 year: 2010 ident: 2021111619571020000_30.23.2637.54 article-title: c-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain publication-title: Oncotarget doi: 10.18632/oncotarget.116 – ident: 2021111619571020000_30.23.2637.27 doi: 10.1016/j.ceb.2009.09.006 – ident: 2021111619571020000_30.23.2637.5 doi: 10.1016/j.cell.2013.07.004 – ident: 2021111619571020000_30.23.2637.4 doi: 10.4049/jimmunol.169.7.3700 – ident: 2021111619571020000_30.23.2637.31 doi: 10.1016/j.cell.2012.08.026 – ident: 2021111619571020000_30.23.2637.36 doi: 10.1084/jem.183.3.1141 – ident: 2021111619571020000_30.23.2637.2 doi: 10.1016/j.cellsig.2006.08.015 – ident: 2021111619571020000_30.23.2637.42 doi: 10.1016/j.cell.2006.12.029 – ident: 2021111619571020000_30.23.2637.45 doi: 10.1038/nrurol.2012.77 – ident: 2021111619571020000_30.23.2637.9 doi: 10.1002/dvg.20310 – ident: 2021111619571020000_30.23.2637.16 doi: 10.1016/j.cell.2004.11.011 – ident: 2021111619571020000_30.23.2637.20 doi: 10.1242/jcs.024802 – ident: 2021111619571020000_30.23.2637.30 doi: 10.1038/ng1938 – ident: 2021111619571020000_30.23.2637.18 doi: 10.1262/jrd.09-153N – ident: 2021111619571020000_30.23.2637.1 doi: 10.1371/journal.pone.0077715 – ident: 2021111619571020000_30.23.2637.15 doi: 10.1095/biolreprod.103.017012 – ident: 2021111619571020000_30.23.2637.7 doi: 10.1002/j.1939-4640.2000.tb03408.x – ident: 2021111619571020000_30.23.2637.10 doi: 10.1182/blood-2011-01-331686 – ident: 2021111619571020000_30.23.2637.3 doi: 10.1073/pnas.91.24.11298 – ident: 2021111619571020000_30.23.2637.33 doi: 10.1146/annurev-cellbio-100913-013116 – ident: 2021111619571020000_30.23.2637.56 doi: 10.1016/j.cell.2008.10.048 – ident: 2021111619571020000_30.23.2637.32 doi: 10.1038/ncomms2780 – volume: 41 start-page: 111 year: 1997 ident: 2021111619571020000_30.23.2637.40 article-title: Transplantation of testis germinal cells into mouse seminiferous tubules publication-title: Int J Dev Biol – ident: 2021111619571020000_30.23.2637.29 doi: 10.1016/j.stem.2009.04.020 – ident: 2021111619571020000_30.23.2637.19 doi: 10.1073/pnas.1401837111 – ident: 2021111619571020000_30.23.2637.37 doi: 10.1095/biolreprod60.6.1429 – ident: 2021111619571020000_30.23.2637.28 doi: 10.1242/dev.003004 – ident: 2021111619571020000_30.23.2637.11 doi: 10.1172/JCI57984 – ident: 2021111619571020000_30.23.2637.39 doi: 10.1074/jbc.M703474200 – ident: 2021111619571020000_30.23.2637.46 doi: 10.4161/cc.6.24.5104 – ident: 2021111619571020000_30.23.2637.13 doi: 10.1242/dev.076539 – ident: 2021111619571020000_30.23.2637.35 doi: 10.1095/biolreprod.111.095307 – ident: 2021111619571020000_30.23.2637.26 doi: 10.1016/j.stem.2008.09.005 – reference: 10330102 - Biol Reprod. 1999 Jun;60(6):1429-36 – reference: 26277543 - Semin Cell Dev Biol. 2015 Jul;43:11-21 – reference: 12381668 - Genes Dev. 2002 Oct 15;16(20):2699-712 – reference: 17551945 - Genesis. 2007 Jun;45(6):413-7 – reference: 19836223 - Curr Opin Cell Biol. 2009 Dec;21(6):844-54 – reference: 22123844 - Blood. 2012 Jan 12;119(2):377-87 – reference: 23021216 - Cell. 2012 Sep 28;151(1):68-79 – reference: 22491947 - Development. 2012 May;139(10 ):1734-43 – reference: 17113751 - Cell Signal. 2007 Mar;19(3):519-27 – reference: 12244163 - J Immunol. 2002 Oct 1;169(7):3700-9 – reference: 27025988 - Nat Commun. 2016 Mar 30;7:11056 – reference: 7972053 - Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11298-302 – reference: 19062086 - Cell. 2008 Dec 12;135(6):1118-29 – reference: 21525489 - FASEB J. 2011 Aug;25(8):2604-14 – reference: 12067996 - Cancer Res. 2002 Jun 15;62(12):3507-10 – reference: 24099084 - Annu Rev Cell Dev Biol. 2013;29:163-87 – reference: 19001505 - J Cell Sci. 2008 Dec 1;121(Pt 23):3941-50 – reference: 9074943 - Int J Dev Biol. 1997 Feb;41(1):111-22 – reference: 15520394 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16489-94 – reference: 24029916 - Genes Dev. 2013 Sep 15;27(18):1949-58 – reference: 16598026 - Biol Reprod. 2006 Jul;75(1):68-74 – reference: 18073536 - Cell Cycle. 2007 Dec 15;6(24):3039-42 – reference: 17428826 - Development. 2007 May;134(10):1853-9 – reference: 25288119 - Annu Rev Cell Dev Biol. 2014;30:647-75 – reference: 11105904 - J Androl. 2000 Nov-Dec;21(6):776-98 – reference: 8642256 - J Exp Med. 1996 Mar 1;183(3):1141-50 – reference: 15545632 - Genes Dev. 2004 Nov 15;18(22):2747-63 – reference: 24811379 - Neuron. 2014 May 7;82(3):545-59 – reference: 25564647 - Development. 2015 Feb 1;142(3):431-7 – reference: 19926938 - J Reprod Dev. 2010 Feb;56(1):145-53 – reference: 22549313 - Nat Rev Urol. 2012 May 01;9(6):330-8 – reference: 24879440 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8826-31 – reference: 12620992 - Development. 2003 Apr;130(8):1691-700 – reference: 17299052 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2596-601 – reference: 20651942 - Oncotarget. 2010 Jun;1(2):120-30 – reference: 23021215 - Cell. 2012 Sep 28;151(1):56-67 – reference: 23870119 - Cell. 2013 Jul 18;154(2):274-84 – reference: 17254969 - Cell. 2007 Jan 26;128(2):309-23 – reference: 19041778 - Cell Stem Cell. 2008 Dec 4;3(6):611-24 – reference: 26871632 - Cell. 2016 Feb 11;164(4):668-80 – reference: 21191109 - Biol Reprod. 2011 Apr;84(4):698-706 – reference: 20434984 - Cell. 2010 Apr 30;141(3):432-45 – reference: 24204931 - PLoS One. 2013 Oct 28;8(10):e77715 – reference: 23612295 - Nat Commun. 2013;4:1754 – reference: 19570516 - Cell Stem Cell. 2009 Jul 2;5(1):76-86 – reference: 22446391 - EMBO J. 2012 May 2;31(9):2103-16 – reference: 10319860 - Nat Genet. 1999 May;22(1):44-52 – reference: 18923074 - Genes Dev. 2008 Oct 15;22(20):2755-66 – reference: 23290136 - Cell Stem Cell. 2013 Jan 3;12(1):49-61 – reference: 21865646 - J Clin Invest. 2011 Sep;121(9):3456-66 – reference: 22357549 - Biol Reprod. 2012 May 10;86(5):148, 1-11 – reference: 17220891 - Nat Genet. 2007 Feb;39(2):178-88 – reference: 26059508 - Stem Cells. 2015 Sep;33(9):2699-711 – reference: 17597063 - J Biol Chem. 2007 Aug 31;282(35):25842-51 – reference: 12700182 - Biol Reprod. 2003 Aug;69(2):612-6 – reference: 15620358 - Cell. 2004 Dec 29;119(7):1001-12 |
SSID | ssj0006066 |
Score | 2.4879088 |
Snippet | Myc
plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs),
Myc
controls SSC fate decisions because... Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because... Here, Kanatsu-Shinohara et al. investigated the mechanisms underlying Myc regulation of spermatogonial stem cell (SSC) fate. Their findings suggest that... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2637 |
SubjectTerms | 3-Phosphoinositide-Dependent Protein Kinases - metabolism Animals Cell Division - genetics Cell Proliferation - genetics Cell Self Renewal - genetics Gene Expression Regulation, Developmental - genetics Gene Knockout Techniques Glycolysis - genetics Male Mice Mice, Inbred C57BL N-Myc Proto-Oncogene Protein - genetics N-Myc Proto-Oncogene Protein - metabolism Proto-Oncogene Proteins c-myc - genetics Proto-Oncogene Proteins c-myc - metabolism Research Paper RNA Splicing Factors - metabolism Spermatogonia - cytology Stem Cells - enzymology Stem Cells - metabolism |
Title | Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28007786 https://www.proquest.com/docview/1852781972 https://www.proquest.com/docview/1859472462 https://pubmed.ncbi.nlm.nih.gov/PMC5204355 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCIkXxJ2Oi4KExEPlrUnsXB4ntGmCrWgik_oWJbHTVnQOWhNN5ddzju3mAgUNXtzWce3E58vx8eV8h5D3PlhtfswlhbFhQlkGMAYjRFAYa-M8BPue62gN59Pg9JJ9mvFZ566ovUvq_KD4sdOv5H-kCnkgV_SS_QfJtpVCBnwH-UIKEob0VjI-3xTwZ0gV1R4gaD3OVxuQreYZkWqBMsVwN81ajpETHOzTag6vsfYSkVdjXLcfr-WqpEhteWMbtMYqUlKvNTZEd7So1dCZyup1Q78ulqpC1mdzCL-uurUAlX3TuQl8rhfLdj0XbqAx0bKn2XVz1bvQmGqOoOKqvx7hBr2zHdLqUBZTzmx0Fqtk7eaLAZPn91VmYFhf7PCLJ-52q3YdUmCeiQPcm2UccnZwaE-_pCeXZ2dpcjxL7pJ7XhjqzfvPFx2HPE7ZLH0n1Hk4rHFonvw25_j16GzPFkkekYd2EuEcGUQ8JnekekLum7Cim6fkAhBxOECF06HC2aLC0ahwhqhwEBUOosLpo-IZSU6Ok4-n1IbOoAXY7zWVPg8kaGvfc0uWTwLJRSTDgue5KDy_BEXuFkKCNSeEL4Iy9l1ZsqjE4AjepAz852RPVUq-JI7Ak7vS5QJsPRZnIi_josxZLKKAoZ_yiNBth6WFpZXH6CarVE8vJ24KHZyaDobfwYh8aMt_N4Qqfyz5btv_Keg8fPRMSeiaFB3-wwgD5v21TMxCD55nRF4YmbXteRGyWEXQQjiQZlsAOdeHV9RyobnXOfqSc75_i3t7RR5078drsldfN_INWLB1_lYD8icCaKCw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myc%2FMycn-mediated+glycolysis+enhances+mouse+spermatogonial+stem+cell+self-renewal&rft.jtitle=Genes+%26+development&rft.au=Kanatsu-Shinohara%2C+Mito&rft.au=Tanaka%2C+Takashi&rft.au=Ogonuki%2C+Narumi&rft.au=Ogura%2C+Atsuo&rft.date=2016-12-01&rft.eissn=1549-5477&rft.volume=30&rft.issue=23&rft.spage=2637&rft.epage=2648&rft_id=info:doi/10.1101%2Fgad.287045.116&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon |