Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal

Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max , a Myc -binding partner, leads to meiotic induction. Howev...

Full description

Saved in:
Bibliographic Details
Published inGenes & development Vol. 30; no. 23; pp. 2637 - 2648
Main Authors Kanatsu-Shinohara, Mito, Tanaka, Takashi, Ogonuki, Narumi, Ogura, Atsuo, Morimoto, Hiroko, Cheng, Pei Feng, Eisenman, Robert N., Trumpp, Andreas, Shinohara, Takashi
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.12.2016
Subjects
Online AccessGet full text
ISSN0890-9369
1549-5477
DOI10.1101/gad.287045.116

Cover

Abstract Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max , a Myc -binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1 , whose deficiency impairs SSC self-renewal. Myc/Mycn -deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc -mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.
AbstractList Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max, a Myc-binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1, whose deficiency impairs SSC self-renewal. Myc/Mycn-deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.
Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max , a Myc -binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1 , whose deficiency impairs SSC self-renewal. Myc/Mycn -deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc -mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.
Here, Kanatsu-Shinohara et al. investigated the mechanisms underlying Myc regulation of spermatogonial stem cell (SSC) fate. Their findings suggest that Myc-mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division. Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because Myc overexpression induces enhanced self-renewal division, while depletion of Max , a Myc -binding partner, leads to meiotic induction. However, the mechanism by which Myc acts on SSC fate is unclear. Here we demonstrate a critical link between Myc/Mycn gene activity and glycolysis in SSC self-renewal. In SSCs, Myc/Mycn are regulated by Foxo1 , whose deficiency impairs SSC self-renewal. Myc/Mycn -deficient SSCs not only undergo limited self-renewal division but also display diminished glycolytic activity. While inhibition of glycolysis decreased SSC activity, chemical stimulation of glycolysis or transfection of active Akt1 or Pdpk1 (phosphoinositide-dependent protein kinase 1 ) augmented self-renewal division, and long-term SSC cultures were derived from a nonpermissive strain that showed limited self-renewal division. These results suggested that Myc -mediated glycolysis is an important factor that increases the frequency of SSC self-renewal division.
Author Cheng, Pei Feng
Ogonuki, Narumi
Ogura, Atsuo
Trumpp, Andreas
Morimoto, Hiroko
Shinohara, Takashi
Kanatsu-Shinohara, Mito
Eisenman, Robert N.
Tanaka, Takashi
AuthorAffiliation 2 Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8501, Japan
4 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
5 Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany
1 Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
3 Bioresource Center, RIKEN, Tsukuba 305-0074, Japan
AuthorAffiliation_xml – name: 2 Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8501, Japan
– name: 5 Division of Stem Cells and Cancer, Deutsches Krebsforshungszentrum (DKFZ), 69120 Heidelberg, Germany
– name: 1 Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
– name: 4 Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
– name: 3 Bioresource Center, RIKEN, Tsukuba 305-0074, Japan
Author_xml – sequence: 1
  givenname: Mito
  surname: Kanatsu-Shinohara
  fullname: Kanatsu-Shinohara, Mito
– sequence: 2
  givenname: Takashi
  surname: Tanaka
  fullname: Tanaka, Takashi
– sequence: 3
  givenname: Narumi
  surname: Ogonuki
  fullname: Ogonuki, Narumi
– sequence: 4
  givenname: Atsuo
  surname: Ogura
  fullname: Ogura, Atsuo
– sequence: 5
  givenname: Hiroko
  surname: Morimoto
  fullname: Morimoto, Hiroko
– sequence: 6
  givenname: Pei Feng
  surname: Cheng
  fullname: Cheng, Pei Feng
– sequence: 7
  givenname: Robert N.
  surname: Eisenman
  fullname: Eisenman, Robert N.
– sequence: 8
  givenname: Andreas
  surname: Trumpp
  fullname: Trumpp, Andreas
– sequence: 9
  givenname: Takashi
  surname: Shinohara
  fullname: Shinohara, Takashi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28007786$$D View this record in MEDLINE/PubMed
BookMark eNqNUctqHDEQFMEhXtu55hjmmMus9ZbmEggmL7AJBt-FVmqtFTTSZjQbs38fDWuHJBDwQbQaVZWqu87QSS4ZEHpD8JoQTC631q-pVpiL1ssXaEUEH3rBlTpBK6wH3A9MDqforNbvGGOJpXyFTqnGWCktV-j25uAu28n9CD7aGXy3TQdX0qHG2kG-t9lB7cayr9DVHUyjncu25GhTV2cYOwep3SCFfoIMDzZdoJfBpgqvH-s5uvv08e7qS3_97fPXqw_XvROMzT0wIYFoxigJfIMlCK9BObHZeEdZYEQT54Fy7D3zMgyMQOA6UMElxUGyc_T-KLvbb5p1B3mebDK7KY52Ophio_n7Jcd7sy0_jaCYMyGawLtHgan82EOdzRjrMo3N0KY1RIuBK9q-ew6UKk0GtUDf_mnrt5-njTcAPwLcVGqdIBgXZzvHsriMyRBslmBNC9Ycg239Qlv_Q3tS_g_hF47VpnM
CitedBy_id crossref_primary_10_1093_biolre_ioz156
crossref_primary_10_1093_stmcls_sxac016
crossref_primary_10_1038_s41586_024_07700_w
crossref_primary_10_1530_REP_17_0666
crossref_primary_10_3390_ijms22041998
crossref_primary_10_1111_jpi_12496
crossref_primary_10_4252_wjsc_v14_i12_822
crossref_primary_10_1242_dev_202553
crossref_primary_10_1111_andr_13427
crossref_primary_10_3390_insects12040361
crossref_primary_10_1016_j_aanat_2025_152391
crossref_primary_10_1093_humrep_deac157
crossref_primary_10_1093_biolre_ioac048
crossref_primary_10_1093_biolre_ioae109
crossref_primary_10_1093_biolre_ioy192
crossref_primary_10_1007_s00441_024_03910_w
crossref_primary_10_1016_j_isci_2023_108424
crossref_primary_10_3390_ijms222413549
crossref_primary_10_1016_j_stemcr_2024_09_006
crossref_primary_10_1186_s40659_023_00413_w
crossref_primary_10_1038_s41559_023_02014_y
crossref_primary_10_1080_15384101_2019_1661174
crossref_primary_10_3390_cells10092265
crossref_primary_10_1172_JCI170140
crossref_primary_10_1242_dev_201157
crossref_primary_10_1007_s00018_024_05414_w
crossref_primary_10_1111_andr_13397
crossref_primary_10_1101_gad_339903_120
crossref_primary_10_1155_2017_5091541
crossref_primary_10_1038_s41585_024_00969_6
crossref_primary_10_3390_jcm9030640
crossref_primary_10_1016_j_theriogenology_2023_10_021
crossref_primary_10_1016_j_ejcb_2017_11_001
crossref_primary_10_1073_pnas_1904980116
crossref_primary_10_1093_biolre_ioaa115
crossref_primary_10_3390_genes15121518
crossref_primary_10_1016_j_tice_2019_101315
crossref_primary_10_1242_dev_203142
crossref_primary_10_1002_mrd_23041
crossref_primary_10_1016_j_devcel_2020_01_014
crossref_primary_10_1016_j_stemcr_2017_08_012
crossref_primary_10_1038_s41421_020_0183_x
crossref_primary_10_5939_sjws_19001
crossref_primary_10_1016_j_isci_2021_102762
crossref_primary_10_1016_j_stemcr_2021_05_013
crossref_primary_10_1371_journal_pbio_3001085
crossref_primary_10_1262_jrd_2018_093
crossref_primary_10_1262_jrd_2020_019
crossref_primary_10_1111_jcmm_17197
crossref_primary_10_1186_s13578_023_01134_z
crossref_primary_10_3390_biom11060821
crossref_primary_10_1007_s00018_023_04872_y
crossref_primary_10_1186_s12864_025_11266_w
crossref_primary_10_1016_j_fct_2022_113556
crossref_primary_10_1016_j_stemcr_2023_02_008
crossref_primary_10_1007_s11684_018_0650_z
crossref_primary_10_1096_fj_202002799R
crossref_primary_10_1089_ars_2017_7241
crossref_primary_10_1262_jrd_2021_137
crossref_primary_10_3389_fcell_2023_1293068
crossref_primary_10_1002_mrd_23777
crossref_primary_10_1016_j_stemcr_2017_03_004
crossref_primary_10_3390_ani14132006
crossref_primary_10_1159_000515281
crossref_primary_10_15252_embr_202154321
crossref_primary_10_1016_j_isci_2020_101880
crossref_primary_10_1159_000520662
crossref_primary_10_3390_biom13101462
crossref_primary_10_1038_s41598_019_42578_z
crossref_primary_10_3389_fcell_2022_782996
crossref_primary_10_1016_j_stemcr_2022_02_017
Cites_doi 10.1093/oso/9780195062694.003.0012
10.1242/dev.112375
10.1073/pnas.0609282104
10.1073/pnas.0407063101
10.1038/emboj.2012.71
10.1242/dev.00392
10.1101/gad.1712408
10.1101/gad.220194.113
10.1038/8751
10.1016/j.cell.2015.12.033
10.1101/gad.1021202
10.1101/gad.313104
10.1096/fj.10-175802
10.1002/stem.2073
10.1016/j.semcdb.2015.08.003
10.1095/biolreprod.106.051193
10.1016/j.stem.2012.10.011
10.1016/j.cell.2010.03.030
10.1038/ncomms11056
10.1016/j.cell.2012.08.033
10.1146/annurev-cellbio-101512-122353
10.1095/biolreprod.110.088229
10.1016/j.neuron.2014.02.039
10.18632/oncotarget.116
10.1016/j.ceb.2009.09.006
10.1016/j.cell.2013.07.004
10.4049/jimmunol.169.7.3700
10.1016/j.cell.2012.08.026
10.1084/jem.183.3.1141
10.1016/j.cellsig.2006.08.015
10.1016/j.cell.2006.12.029
10.1038/nrurol.2012.77
10.1002/dvg.20310
10.1016/j.cell.2004.11.011
10.1242/jcs.024802
10.1038/ng1938
10.1262/jrd.09-153N
10.1371/journal.pone.0077715
10.1095/biolreprod.103.017012
10.1002/j.1939-4640.2000.tb03408.x
10.1182/blood-2011-01-331686
10.1073/pnas.91.24.11298
10.1146/annurev-cellbio-100913-013116
10.1016/j.cell.2008.10.048
10.1038/ncomms2780
10.1016/j.stem.2009.04.020
10.1073/pnas.1401837111
10.1095/biolreprod60.6.1429
10.1242/dev.003004
10.1172/JCI57984
10.1074/jbc.M703474200
10.4161/cc.6.24.5104
10.1242/dev.076539
10.1095/biolreprod.111.095307
10.1016/j.stem.2008.09.005
ContentType Journal Article
Copyright 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.
2016
Copyright_xml – notice: 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.
– notice: 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
8FD
FR3
P64
RC3
5PM
DOI 10.1101/gad.287045.116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic
CrossRef

Genetics Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Kanatsu-Shinohara et al
EISSN 1549-5477
EndPage 2648
ExternalDocumentID PMC5204355
28007786
10_1101_gad_287045_116
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R01 CA057138
– fundername: Takeda Foundation
– fundername: Uehara Memorial Foundation
– fundername: Naito Foundation
– fundername: Japan Society for the Promotion of Science
  grantid: KAKENHI JP25112003; JP15H01510
– fundername: Japan Science and Technology Agency
– fundername: National Institutes of Health
  grantid: RO1 CA57138
– fundername: National Cancer Institute
GroupedDBID ---
-DZ
-~X
.55
18M
29H
2WC
39C
4.4
53G
5RE
5VS
85S
AAYXX
ABCQX
ABDIX
ACGFO
ACLKE
ACNCT
ADBBV
ADIYS
ADXHL
AECCQ
AENEX
AETEA
AFFNX
AFOSN
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
H~9
IH2
KQ8
L7B
MV1
N9A
OK1
P2P
R.V
RCX
RHI
RPM
SJN
TAE
TN5
TR2
UHB
W8F
WH7
WOQ
X7M
XSW
YBU
YHG
YKV
YSK
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
7X8
7TM
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c533t-e356e183321f4b06e5d8e7c5bbdc23f3181cde240dd3d6f931ef48f254620f63
ISSN 0890-9369
IngestDate Thu Aug 21 18:05:33 EDT 2025
Fri Sep 05 00:01:08 EDT 2025
Fri Sep 05 05:12:43 EDT 2025
Wed Feb 19 02:40:56 EST 2025
Tue Jul 01 01:12:07 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Keywords spermatogenesis
spermatogonial stem cells
self-renewal
Myc
glycolysis
Language English
License 2016 Kanatsu-Shinohara et al.; Published by Cold Spring Harbor Laboratory Press.
This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first six months after the full-issue publication date (see http://genesdev.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), as described at http://creativecommons.org/licenses/by-nc/4.0/.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c533t-e356e183321f4b06e5d8e7c5bbdc23f3181cde240dd3d6f931ef48f254620f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors equally contributed to this work.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5204355
PMID 28007786
PQID 1852781972
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5204355
proquest_miscellaneous_1859472462
proquest_miscellaneous_1852781972
pubmed_primary_28007786
crossref_citationtrail_10_1101_gad_287045_116
crossref_primary_10_1101_gad_287045_116
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
20161201
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Genes & development
PublicationTitleAlternate Genes Dev
PublicationYear 2016
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021111619571020000_30.23.2637.52
2021111619571020000_30.23.2637.51
2021111619571020000_30.23.2637.1
(2021111619571020000_30.23.2637.12) 2015; 43
2021111619571020000_30.23.2637.19
2021111619571020000_30.23.2637.18
2021111619571020000_30.23.2637.17
2021111619571020000_30.23.2637.16
2021111619571020000_30.23.2637.15
2021111619571020000_30.23.2637.14
2021111619571020000_30.23.2637.13
2021111619571020000_30.23.2637.57
2021111619571020000_30.23.2637.56
2021111619571020000_30.23.2637.11
2021111619571020000_30.23.2637.55
2021111619571020000_30.23.2637.10
2021111619571020000_30.23.2637.53
2021111619571020000_30.23.2637.29
2021111619571020000_30.23.2637.28
2021111619571020000_30.23.2637.27
2021111619571020000_30.23.2637.26
2021111619571020000_30.23.2637.25
2021111619571020000_30.23.2637.24
(2021111619571020000_30.23.2637.49) 2002; 62
2021111619571020000_30.23.2637.23
2021111619571020000_30.23.2637.22
2021111619571020000_30.23.2637.21
2021111619571020000_30.23.2637.20
2021111619571020000_30.23.2637.30
(2021111619571020000_30.23.2637.54) 2010; 1
(2021111619571020000_30.23.2637.40) 1997; 41
2021111619571020000_30.23.2637.39
2021111619571020000_30.23.2637.38
2021111619571020000_30.23.2637.37
2021111619571020000_30.23.2637.36
2021111619571020000_30.23.2637.35
2021111619571020000_30.23.2637.34
2021111619571020000_30.23.2637.33
2021111619571020000_30.23.2637.32
2021111619571020000_30.23.2637.31
2021111619571020000_30.23.2637.41
2021111619571020000_30.23.2637.6
2021111619571020000_30.23.2637.7
2021111619571020000_30.23.2637.8
2021111619571020000_30.23.2637.9
2021111619571020000_30.23.2637.2
2021111619571020000_30.23.2637.3
2021111619571020000_30.23.2637.4
2021111619571020000_30.23.2637.5
2021111619571020000_30.23.2637.48
2021111619571020000_30.23.2637.47
2021111619571020000_30.23.2637.46
2021111619571020000_30.23.2637.45
2021111619571020000_30.23.2637.44
2021111619571020000_30.23.2637.43
2021111619571020000_30.23.2637.42
(2021111619571020000_30.23.2637.50) 2016; 7
12700182 - Biol Reprod. 2003 Aug;69(2):612-6
12381668 - Genes Dev. 2002 Oct 15;16(20):2699-712
21525489 - FASEB J. 2011 Aug;25(8):2604-14
24029916 - Genes Dev. 2013 Sep 15;27(18):1949-58
21865646 - J Clin Invest. 2011 Sep;121(9):3456-66
26059508 - Stem Cells. 2015 Sep;33(9):2699-711
19570516 - Cell Stem Cell. 2009 Jul 2;5(1):76-86
19062086 - Cell. 2008 Dec 12;135(6):1118-29
8642256 - J Exp Med. 1996 Mar 1;183(3):1141-50
24879440 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8826-31
16598026 - Biol Reprod. 2006 Jul;75(1):68-74
19926938 - J Reprod Dev. 2010 Feb;56(1):145-53
17551945 - Genesis. 2007 Jun;45(6):413-7
17299052 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2596-601
22549313 - Nat Rev Urol. 2012 May 01;9(6):330-8
19001505 - J Cell Sci. 2008 Dec 1;121(Pt 23):3941-50
20434984 - Cell. 2010 Apr 30;141(3):432-45
21191109 - Biol Reprod. 2011 Apr;84(4):698-706
12620992 - Development. 2003 Apr;130(8):1691-700
10330102 - Biol Reprod. 1999 Jun;60(6):1429-36
19041778 - Cell Stem Cell. 2008 Dec 4;3(6):611-24
17428826 - Development. 2007 May;134(10):1853-9
25288119 - Annu Rev Cell Dev Biol. 2014;30:647-75
25564647 - Development. 2015 Feb 1;142(3):431-7
17254969 - Cell. 2007 Jan 26;128(2):309-23
22446391 - EMBO J. 2012 May 2;31(9):2103-16
22491947 - Development. 2012 May;139(10 ):1734-43
7972053 - Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11298-302
19836223 - Curr Opin Cell Biol. 2009 Dec;21(6):844-54
10319860 - Nat Genet. 1999 May;22(1):44-52
23021216 - Cell. 2012 Sep 28;151(1):68-79
12067996 - Cancer Res. 2002 Jun 15;62(12):3507-10
9074943 - Int J Dev Biol. 1997 Feb;41(1):111-22
24099084 - Annu Rev Cell Dev Biol. 2013;29:163-87
23870119 - Cell. 2013 Jul 18;154(2):274-84
17597063 - J Biol Chem. 2007 Aug 31;282(35):25842-51
12244163 - J Immunol. 2002 Oct 1;169(7):3700-9
26871632 - Cell. 2016 Feb 11;164(4):668-80
18923074 - Genes Dev. 2008 Oct 15;22(20):2755-66
27025988 - Nat Commun. 2016 Mar 30;7:11056
22123844 - Blood. 2012 Jan 12;119(2):377-87
15520394 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16489-94
24811379 - Neuron. 2014 May 7;82(3):545-59
26277543 - Semin Cell Dev Biol. 2015 Jul;43:11-21
17220891 - Nat Genet. 2007 Feb;39(2):178-88
23612295 - Nat Commun. 2013;4:1754
23290136 - Cell Stem Cell. 2013 Jan 3;12(1):49-61
17113751 - Cell Signal. 2007 Mar;19(3):519-27
18073536 - Cell Cycle. 2007 Dec 15;6(24):3039-42
23021215 - Cell. 2012 Sep 28;151(1):56-67
11105904 - J Androl. 2000 Nov-Dec;21(6):776-98
15620358 - Cell. 2004 Dec 29;119(7):1001-12
20651942 - Oncotarget. 2010 Jun;1(2):120-30
22357549 - Biol Reprod. 2012 May 10;86(5):148, 1-11
15545632 - Genes Dev. 2004 Nov 15;18(22):2747-63
24204931 - PLoS One. 2013 Oct 28;8(10):e77715
References_xml – ident: 2021111619571020000_30.23.2637.34
  doi: 10.1093/oso/9780195062694.003.0012
– ident: 2021111619571020000_30.23.2637.41
  doi: 10.1242/dev.112375
– ident: 2021111619571020000_30.23.2637.52
  doi: 10.1073/pnas.0609282104
– ident: 2021111619571020000_30.23.2637.24
  doi: 10.1073/pnas.0407063101
– ident: 2021111619571020000_30.23.2637.57
  doi: 10.1038/emboj.2012.71
– ident: 2021111619571020000_30.23.2637.22
  doi: 10.1242/dev.00392
– ident: 2021111619571020000_30.23.2637.8
  doi: 10.1101/gad.1712408
– ident: 2021111619571020000_30.23.2637.51
  doi: 10.1101/gad.220194.113
– ident: 2021111619571020000_30.23.2637.44
  doi: 10.1038/8751
– ident: 2021111619571020000_30.23.2637.48
  doi: 10.1016/j.cell.2015.12.033
– ident: 2021111619571020000_30.23.2637.23
  doi: 10.1101/gad.1021202
– ident: 2021111619571020000_30.23.2637.55
  doi: 10.1101/gad.313104
– ident: 2021111619571020000_30.23.2637.25
  doi: 10.1096/fj.10-175802
– ident: 2021111619571020000_30.23.2637.21
  doi: 10.1002/stem.2073
– volume: 43
  start-page: 11
  year: 2015
  ident: 2021111619571020000_30.23.2637.12
  article-title: MYC and metabolism on the path to cancer
  publication-title: Semin Cell Dev Biol
  doi: 10.1016/j.semcdb.2015.08.003
– ident: 2021111619571020000_30.23.2637.17
  doi: 10.1095/biolreprod.106.051193
– volume: 62
  start-page: 3507
  year: 2002
  ident: 2021111619571020000_30.23.2637.49
  article-title: Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis
  publication-title: Cancer Res
– ident: 2021111619571020000_30.23.2637.53
  doi: 10.1016/j.stem.2012.10.011
– ident: 2021111619571020000_30.23.2637.43
  doi: 10.1016/j.cell.2010.03.030
– volume: 7
  start-page: 11056
  year: 2016
  ident: 2021111619571020000_30.23.2637.50
  article-title: Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms11056
– ident: 2021111619571020000_30.23.2637.38
  doi: 10.1016/j.cell.2012.08.033
– ident: 2021111619571020000_30.23.2637.14
  doi: 10.1146/annurev-cellbio-101512-122353
– ident: 2021111619571020000_30.23.2637.47
  doi: 10.1095/biolreprod.110.088229
– ident: 2021111619571020000_30.23.2637.6
  doi: 10.1016/j.neuron.2014.02.039
– volume: 1
  start-page: 120
  year: 2010
  ident: 2021111619571020000_30.23.2637.54
  article-title: c-myc and N-myc promote active stem cell metabolism and cycling as architects of the developing brain
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.116
– ident: 2021111619571020000_30.23.2637.27
  doi: 10.1016/j.ceb.2009.09.006
– ident: 2021111619571020000_30.23.2637.5
  doi: 10.1016/j.cell.2013.07.004
– ident: 2021111619571020000_30.23.2637.4
  doi: 10.4049/jimmunol.169.7.3700
– ident: 2021111619571020000_30.23.2637.31
  doi: 10.1016/j.cell.2012.08.026
– ident: 2021111619571020000_30.23.2637.36
  doi: 10.1084/jem.183.3.1141
– ident: 2021111619571020000_30.23.2637.2
  doi: 10.1016/j.cellsig.2006.08.015
– ident: 2021111619571020000_30.23.2637.42
  doi: 10.1016/j.cell.2006.12.029
– ident: 2021111619571020000_30.23.2637.45
  doi: 10.1038/nrurol.2012.77
– ident: 2021111619571020000_30.23.2637.9
  doi: 10.1002/dvg.20310
– ident: 2021111619571020000_30.23.2637.16
  doi: 10.1016/j.cell.2004.11.011
– ident: 2021111619571020000_30.23.2637.20
  doi: 10.1242/jcs.024802
– ident: 2021111619571020000_30.23.2637.30
  doi: 10.1038/ng1938
– ident: 2021111619571020000_30.23.2637.18
  doi: 10.1262/jrd.09-153N
– ident: 2021111619571020000_30.23.2637.1
  doi: 10.1371/journal.pone.0077715
– ident: 2021111619571020000_30.23.2637.15
  doi: 10.1095/biolreprod.103.017012
– ident: 2021111619571020000_30.23.2637.7
  doi: 10.1002/j.1939-4640.2000.tb03408.x
– ident: 2021111619571020000_30.23.2637.10
  doi: 10.1182/blood-2011-01-331686
– ident: 2021111619571020000_30.23.2637.3
  doi: 10.1073/pnas.91.24.11298
– ident: 2021111619571020000_30.23.2637.33
  doi: 10.1146/annurev-cellbio-100913-013116
– ident: 2021111619571020000_30.23.2637.56
  doi: 10.1016/j.cell.2008.10.048
– ident: 2021111619571020000_30.23.2637.32
  doi: 10.1038/ncomms2780
– volume: 41
  start-page: 111
  year: 1997
  ident: 2021111619571020000_30.23.2637.40
  article-title: Transplantation of testis germinal cells into mouse seminiferous tubules
  publication-title: Int J Dev Biol
– ident: 2021111619571020000_30.23.2637.29
  doi: 10.1016/j.stem.2009.04.020
– ident: 2021111619571020000_30.23.2637.19
  doi: 10.1073/pnas.1401837111
– ident: 2021111619571020000_30.23.2637.37
  doi: 10.1095/biolreprod60.6.1429
– ident: 2021111619571020000_30.23.2637.28
  doi: 10.1242/dev.003004
– ident: 2021111619571020000_30.23.2637.11
  doi: 10.1172/JCI57984
– ident: 2021111619571020000_30.23.2637.39
  doi: 10.1074/jbc.M703474200
– ident: 2021111619571020000_30.23.2637.46
  doi: 10.4161/cc.6.24.5104
– ident: 2021111619571020000_30.23.2637.13
  doi: 10.1242/dev.076539
– ident: 2021111619571020000_30.23.2637.35
  doi: 10.1095/biolreprod.111.095307
– ident: 2021111619571020000_30.23.2637.26
  doi: 10.1016/j.stem.2008.09.005
– reference: 10330102 - Biol Reprod. 1999 Jun;60(6):1429-36
– reference: 26277543 - Semin Cell Dev Biol. 2015 Jul;43:11-21
– reference: 12381668 - Genes Dev. 2002 Oct 15;16(20):2699-712
– reference: 17551945 - Genesis. 2007 Jun;45(6):413-7
– reference: 19836223 - Curr Opin Cell Biol. 2009 Dec;21(6):844-54
– reference: 22123844 - Blood. 2012 Jan 12;119(2):377-87
– reference: 23021216 - Cell. 2012 Sep 28;151(1):68-79
– reference: 22491947 - Development. 2012 May;139(10 ):1734-43
– reference: 17113751 - Cell Signal. 2007 Mar;19(3):519-27
– reference: 12244163 - J Immunol. 2002 Oct 1;169(7):3700-9
– reference: 27025988 - Nat Commun. 2016 Mar 30;7:11056
– reference: 7972053 - Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11298-302
– reference: 19062086 - Cell. 2008 Dec 12;135(6):1118-29
– reference: 21525489 - FASEB J. 2011 Aug;25(8):2604-14
– reference: 12067996 - Cancer Res. 2002 Jun 15;62(12):3507-10
– reference: 24099084 - Annu Rev Cell Dev Biol. 2013;29:163-87
– reference: 19001505 - J Cell Sci. 2008 Dec 1;121(Pt 23):3941-50
– reference: 9074943 - Int J Dev Biol. 1997 Feb;41(1):111-22
– reference: 15520394 - Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16489-94
– reference: 24029916 - Genes Dev. 2013 Sep 15;27(18):1949-58
– reference: 16598026 - Biol Reprod. 2006 Jul;75(1):68-74
– reference: 18073536 - Cell Cycle. 2007 Dec 15;6(24):3039-42
– reference: 17428826 - Development. 2007 May;134(10):1853-9
– reference: 25288119 - Annu Rev Cell Dev Biol. 2014;30:647-75
– reference: 11105904 - J Androl. 2000 Nov-Dec;21(6):776-98
– reference: 8642256 - J Exp Med. 1996 Mar 1;183(3):1141-50
– reference: 15545632 - Genes Dev. 2004 Nov 15;18(22):2747-63
– reference: 24811379 - Neuron. 2014 May 7;82(3):545-59
– reference: 25564647 - Development. 2015 Feb 1;142(3):431-7
– reference: 19926938 - J Reprod Dev. 2010 Feb;56(1):145-53
– reference: 22549313 - Nat Rev Urol. 2012 May 01;9(6):330-8
– reference: 24879440 - Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8826-31
– reference: 12620992 - Development. 2003 Apr;130(8):1691-700
– reference: 17299052 - Proc Natl Acad Sci U S A. 2007 Feb 20;104(8):2596-601
– reference: 20651942 - Oncotarget. 2010 Jun;1(2):120-30
– reference: 23021215 - Cell. 2012 Sep 28;151(1):56-67
– reference: 23870119 - Cell. 2013 Jul 18;154(2):274-84
– reference: 17254969 - Cell. 2007 Jan 26;128(2):309-23
– reference: 19041778 - Cell Stem Cell. 2008 Dec 4;3(6):611-24
– reference: 26871632 - Cell. 2016 Feb 11;164(4):668-80
– reference: 21191109 - Biol Reprod. 2011 Apr;84(4):698-706
– reference: 20434984 - Cell. 2010 Apr 30;141(3):432-45
– reference: 24204931 - PLoS One. 2013 Oct 28;8(10):e77715
– reference: 23612295 - Nat Commun. 2013;4:1754
– reference: 19570516 - Cell Stem Cell. 2009 Jul 2;5(1):76-86
– reference: 22446391 - EMBO J. 2012 May 2;31(9):2103-16
– reference: 10319860 - Nat Genet. 1999 May;22(1):44-52
– reference: 18923074 - Genes Dev. 2008 Oct 15;22(20):2755-66
– reference: 23290136 - Cell Stem Cell. 2013 Jan 3;12(1):49-61
– reference: 21865646 - J Clin Invest. 2011 Sep;121(9):3456-66
– reference: 22357549 - Biol Reprod. 2012 May 10;86(5):148, 1-11
– reference: 17220891 - Nat Genet. 2007 Feb;39(2):178-88
– reference: 26059508 - Stem Cells. 2015 Sep;33(9):2699-711
– reference: 17597063 - J Biol Chem. 2007 Aug 31;282(35):25842-51
– reference: 12700182 - Biol Reprod. 2003 Aug;69(2):612-6
– reference: 15620358 - Cell. 2004 Dec 29;119(7):1001-12
SSID ssj0006066
Score 2.4879088
Snippet Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because...
Myc plays critical roles in the self-renewal division of various stem cell types. In spermatogonial stem cells (SSCs), Myc controls SSC fate decisions because...
Here, Kanatsu-Shinohara et al. investigated the mechanisms underlying Myc regulation of spermatogonial stem cell (SSC) fate. Their findings suggest that...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2637
SubjectTerms 3-Phosphoinositide-Dependent Protein Kinases - metabolism
Animals
Cell Division - genetics
Cell Proliferation - genetics
Cell Self Renewal - genetics
Gene Expression Regulation, Developmental - genetics
Gene Knockout Techniques
Glycolysis - genetics
Male
Mice
Mice, Inbred C57BL
N-Myc Proto-Oncogene Protein - genetics
N-Myc Proto-Oncogene Protein - metabolism
Proto-Oncogene Proteins c-myc - genetics
Proto-Oncogene Proteins c-myc - metabolism
Research Paper
RNA Splicing Factors - metabolism
Spermatogonia - cytology
Stem Cells - enzymology
Stem Cells - metabolism
Title Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal
URI https://www.ncbi.nlm.nih.gov/pubmed/28007786
https://www.proquest.com/docview/1852781972
https://www.proquest.com/docview/1859472462
https://pubmed.ncbi.nlm.nih.gov/PMC5204355
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgCIkXxJ2Oi4KExEPlrUnsXB4ntGmCrWgik_oWJbHTVnQOWhNN5ddzju3mAgUNXtzWce3E58vx8eV8h5D3PlhtfswlhbFhQlkGMAYjRFAYa-M8BPue62gN59Pg9JJ9mvFZ566ovUvq_KD4sdOv5H-kCnkgV_SS_QfJtpVCBnwH-UIKEob0VjI-3xTwZ0gV1R4gaD3OVxuQreYZkWqBMsVwN81ajpETHOzTag6vsfYSkVdjXLcfr-WqpEhteWMbtMYqUlKvNTZEd7So1dCZyup1Q78ulqpC1mdzCL-uurUAlX3TuQl8rhfLdj0XbqAx0bKn2XVz1bvQmGqOoOKqvx7hBr2zHdLqUBZTzmx0Fqtk7eaLAZPn91VmYFhf7PCLJ-52q3YdUmCeiQPcm2UccnZwaE-_pCeXZ2dpcjxL7pJ7XhjqzfvPFx2HPE7ZLH0n1Hk4rHFonvw25_j16GzPFkkekYd2EuEcGUQ8JnekekLum7Cim6fkAhBxOECF06HC2aLC0ahwhqhwEBUOosLpo-IZSU6Ok4-n1IbOoAXY7zWVPg8kaGvfc0uWTwLJRSTDgue5KDy_BEXuFkKCNSeEL4Iy9l1ZsqjE4AjepAz852RPVUq-JI7Ak7vS5QJsPRZnIi_josxZLKKAoZ_yiNBth6WFpZXH6CarVE8vJ24KHZyaDobfwYh8aMt_N4Qqfyz5btv_Keg8fPRMSeiaFB3-wwgD5v21TMxCD55nRF4YmbXteRGyWEXQQjiQZlsAOdeHV9RyobnXOfqSc75_i3t7RR5078drsldfN_INWLB1_lYD8icCaKCw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myc%2FMycn-mediated+glycolysis+enhances+mouse+spermatogonial+stem+cell+self-renewal&rft.jtitle=Genes+%26+development&rft.au=Kanatsu-Shinohara%2C+Mito&rft.au=Tanaka%2C+Takashi&rft.au=Ogonuki%2C+Narumi&rft.au=Ogura%2C+Atsuo&rft.date=2016-12-01&rft.eissn=1549-5477&rft.volume=30&rft.issue=23&rft.spage=2637&rft.epage=2648&rft_id=info:doi/10.1101%2Fgad.287045.116&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-9369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-9369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-9369&client=summon