Bioethanol production using carbohydrate-rich microalgae biomass as feedstock

► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the microalgae biomass. ► SHF & SSF processes produced ethanol from the microalgae biomass with high yield. ► SSF process gave better ethanol...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 135; pp. 191 - 198
Main Authors Ho, Shih-Hsin, Huang, Shu-Wen, Chen, Chun-Yen, Hasunuma, Tomohisa, Kondo, Akihiko, Chang, Jo-Shu
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the microalgae biomass. ► SHF & SSF processes produced ethanol from the microalgae biomass with high yield. ► SSF process gave better ethanol production performance with a 92% theoretical yield. This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461g (gbiomass)−1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50gL−1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7gL−1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production.
AbstractList This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461 g (g biomass)1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50 g L/1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7 g L/1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production.
This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461 g (g biomass)(-1)). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50 g L(-1). Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7 g L(-1) and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production.This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461 g (g biomass)(-1)). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50 g L(-1). Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7 g L(-1) and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production.
► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the microalgae biomass. ► SHF & SSF processes produced ethanol from the microalgae biomass with high yield. ► SSF process gave better ethanol production performance with a 92% theoretical yield. This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461g (gbiomass)−1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50gL−1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7gL−1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production.
This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461g (gbiomass)−1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50gL−1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7gL−1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production.
Author Chang, Jo-Shu
Huang, Shu-Wen
Kondo, Akihiko
Hasunuma, Tomohisa
Ho, Shih-Hsin
Chen, Chun-Yen
Author_xml – sequence: 1
  givenname: Shih-Hsin
  surname: Ho
  fullname: Ho, Shih-Hsin
  organization: Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
– sequence: 2
  givenname: Shu-Wen
  surname: Huang
  fullname: Huang, Shu-Wen
  organization: Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
– sequence: 3
  givenname: Chun-Yen
  surname: Chen
  fullname: Chen, Chun-Yen
  organization: University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC
– sequence: 4
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  organization: Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
– sequence: 5
  givenname: Akihiko
  surname: Kondo
  fullname: Kondo, Akihiko
  organization: Department of Chemical Science and Engineering, Kobe University, Kobe, Japan
– sequence: 6
  givenname: Jo-Shu
  surname: Chang
  fullname: Chang, Jo-Shu
  email: changjs@mail.ncku.edu.tw
  organization: Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23116819$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaDZp_0LwsRdvR5ItydBD25B-QEou7VnoY5zV1rZSSQ7k38fLZi-9-DQwPO_MMM8lOZvihIRcU9hSoOLjfmtDTAXdbsuAsqW5Bdq-IRuqJK9ZJ8UZ2UAnoFYtay7IZc57AOBUsrfkgnFKhaLdhvz6GiKWnZniUD2m6GdXQpyqOYfpoXIm2bh79skUrFNwu2oMLkUzPBislv2jybkyueoRfS7R_X1HznszZHz_Wq_In2-3v29-1Hf333_efLmrXct5qZ0X3mIDwISgxkqrTK9o3wgpDFBroesba5ll4I2yliupWtoa7y1H6fqeX5EPx7nLyf9mzEWPITscBjNhnLOmEjopedvRdbQFkKKTlK-jDaeCAQi2jnKueAcKugW9fkVnO6LXjymMJj3rk4MF-HQEltfmnLDXLhRz0FCSCYOmoA_K9V6flOuD8kN_Ub7ExX_x04bV4OdjEBdTTwGTzi7g5NCHhK5oH8PaiBehDMm6
CitedBy_id crossref_primary_10_1016_j_cej_2020_127798
crossref_primary_10_1007_s12010_016_2322_2
crossref_primary_10_1016_j_tibtech_2014_10_003
crossref_primary_10_2166_wst_2019_226
crossref_primary_10_1002_biot_201200353
crossref_primary_10_1016_j_algal_2017_04_031
crossref_primary_10_1016_j_renene_2018_06_041
crossref_primary_10_1016_j_biortech_2021_125055
crossref_primary_10_1016_j_algal_2021_102402
crossref_primary_10_1016_j_jwpe_2023_103584
crossref_primary_10_1016_j_scitotenv_2019_06_181
crossref_primary_10_1016_j_jiec_2015_04_016
crossref_primary_10_1016_j_jcis_2017_01_003
crossref_primary_10_1007_s10811_016_0884_6
crossref_primary_10_1016_j_biombioe_2021_106053
crossref_primary_10_1016_j_biortech_2014_11_026
crossref_primary_10_1080_15435075_2022_2070023
crossref_primary_10_1016_j_biortech_2015_04_121
crossref_primary_10_1016_j_algal_2024_103595
crossref_primary_10_4236_ajps_2015_615254
crossref_primary_10_1088_1757_899X_206_1_012018
crossref_primary_10_1016_j_rser_2021_111464
crossref_primary_10_1016_j_apenergy_2016_07_015
crossref_primary_10_1002_er_6097
crossref_primary_10_3390_biology12070935
crossref_primary_10_1016_j_biombioe_2022_106582
crossref_primary_10_1016_j_renene_2020_04_064
crossref_primary_10_1016_j_bej_2019_107385
crossref_primary_10_1016_j_biotechadv_2015_08_003
crossref_primary_10_1016_j_clce_2023_100111
crossref_primary_10_3390_biology11081146
crossref_primary_10_3390_en14154567
crossref_primary_10_1134_S0003683820070030
crossref_primary_10_1039_C4RA13359E
crossref_primary_10_3390_en15249597
crossref_primary_10_3390_catal7050163
crossref_primary_10_1016_j_biortech_2013_08_156
crossref_primary_10_3390_en14051246
crossref_primary_10_1134_S0040601517090105
crossref_primary_10_1016_j_bcab_2023_102877
crossref_primary_10_1016_j_biortech_2018_02_006
crossref_primary_10_1016_j_fuel_2024_132275
crossref_primary_10_1016_j_rser_2017_05_197
crossref_primary_10_1016_j_copbio_2014_11_001
crossref_primary_10_1016_j_fuel_2019_04_092
crossref_primary_10_1016_j_rser_2014_07_089
crossref_primary_10_1016_j_biortech_2019_03_106
crossref_primary_10_1016_j_mcat_2021_111517
crossref_primary_10_1016_j_matpr_2022_03_551
crossref_primary_10_1007_s12649_016_9492_6
crossref_primary_10_21519_0234_2758_2019_35_3_12_29
crossref_primary_10_5004_dwt_2018_23040
crossref_primary_10_1016_j_renene_2017_04_001
crossref_primary_10_1016_j_fuel_2019_02_139
crossref_primary_10_1016_j_fuel_2021_120988
crossref_primary_10_1016_j_ijhydene_2023_11_065
crossref_primary_10_1016_j_biortech_2014_04_033
crossref_primary_10_1016_j_jenvman_2021_112065
crossref_primary_10_1080_15567036_2020_1758853
crossref_primary_10_1016_j_biortech_2018_11_103
crossref_primary_10_1016_j_algal_2020_102044
crossref_primary_10_1016_j_biotechadv_2016_10_003
crossref_primary_10_1002_cben_201900014
crossref_primary_10_3390_molecules29163838
crossref_primary_10_1007_s12155_020_10180_1
crossref_primary_10_1016_j_nbt_2017_12_003
crossref_primary_10_1007_s13399_021_02275_2
crossref_primary_10_1016_j_biombioe_2016_03_038
crossref_primary_10_1016_j_enconman_2020_113609
crossref_primary_10_1007_s12010_017_2687_x
crossref_primary_10_1186_s13068_019_1432_9
crossref_primary_10_1016_j_ijbiomac_2020_10_159
crossref_primary_10_1016_j_bej_2020_107523
crossref_primary_10_1016_j_algal_2023_103133
crossref_primary_10_1016_j_algal_2023_103019
crossref_primary_10_1016_j_biotechadv_2017_06_001
crossref_primary_10_1016_j_jbiosc_2015_02_012
crossref_primary_10_1002_biot_201300142
crossref_primary_10_1016_j_rser_2019_01_064
crossref_primary_10_1002_bbb_2515
crossref_primary_10_5004_dwt_2017_21373
crossref_primary_10_1007_s13399_018_0350_6
crossref_primary_10_1016_j_biortech_2017_09_143
crossref_primary_10_1021_acs_energyfuels_1c02294
crossref_primary_10_3390_pr13020364
crossref_primary_10_1080_17597269_2024_2432148
crossref_primary_10_1093_jxb_ert134
crossref_primary_10_3389_fmicb_2021_674864
crossref_primary_10_1016_j_jmrt_2021_06_085
crossref_primary_10_1016_j_rser_2021_111396
crossref_primary_10_1016_j_biortech_2015_12_054
crossref_primary_10_1016_j_biortech_2017_07_108
crossref_primary_10_1016_j_heliyon_2021_e07115
crossref_primary_10_1016_j_energy_2019_116039
crossref_primary_10_1016_j_algal_2022_102630
crossref_primary_10_18596_jotcsa_425907
crossref_primary_10_1016_j_biortech_2014_11_080
crossref_primary_10_1016_j_biteb_2020_100598
crossref_primary_10_1016_j_chemosphere_2021_130553
crossref_primary_10_1088_1757_899X_778_1_012039
crossref_primary_10_1080_17597269_2019_1679572
crossref_primary_10_1016_j_rser_2019_109606
crossref_primary_10_1016_j_jclepro_2019_02_254
crossref_primary_10_1007_s10811_016_0805_8
crossref_primary_10_1016_j_rser_2017_05_158
crossref_primary_10_1016_j_biortech_2016_12_104
crossref_primary_10_1007_s11814_021_0764_x
crossref_primary_10_1016_j_algal_2018_12_003
crossref_primary_10_1016_j_biortech_2015_11_015
crossref_primary_10_1016_j_biortech_2017_11_054
crossref_primary_10_1016_j_chemosphere_2023_139183
crossref_primary_10_1186_s12934_018_0879_x
crossref_primary_10_18412_1816_0387_2023_3_66_80
crossref_primary_10_1029_2023JC020280
crossref_primary_10_1002_elsc_201600194
crossref_primary_10_1016_j_biortech_2015_08_094
crossref_primary_10_1016_j_seta_2022_102443
crossref_primary_10_1016_j_btre_2020_e00551
crossref_primary_10_1016_j_enconman_2022_116118
crossref_primary_10_1016_j_algal_2017_10_021
crossref_primary_10_3390_su12239980
crossref_primary_10_1016_j_biortech_2016_09_050
crossref_primary_10_1016_j_eti_2020_101282
crossref_primary_10_1016_j_biortech_2016_02_069
crossref_primary_10_1016_j_biortech_2015_07_040
crossref_primary_10_1016_j_biteb_2018_08_001
crossref_primary_10_1021_acssuschemeng_6b01957
crossref_primary_10_1039_D1SE01701B
crossref_primary_10_3390_en12203947
crossref_primary_10_1016_j_biortech_2016_01_036
crossref_primary_10_1016_j_micres_2022_127187
crossref_primary_10_1007_s10811_019_01960_0
crossref_primary_10_1186_s13068_018_1050_y
crossref_primary_10_1016_j_cogsc_2018_06_008
crossref_primary_10_1016_j_jclepro_2018_03_250
crossref_primary_10_3390_fermentation9080712
crossref_primary_10_3390_catal11010022
crossref_primary_10_1016_j_molliq_2021_116264
crossref_primary_10_1080_10826068_2015_1031398
crossref_primary_10_1007_s12649_018_0253_6
crossref_primary_10_1016_j_ijhydene_2025_01_158
crossref_primary_10_1016_j_biortech_2023_129277
crossref_primary_10_3390_en16010125
crossref_primary_10_1016_j_rser_2019_109371
crossref_primary_10_1038_srep05819
crossref_primary_10_1038_s41598_020_73816_4
crossref_primary_10_1016_j_jclepro_2019_119770
crossref_primary_10_1007_s11802_020_4302_y
crossref_primary_10_1016_j_chemosphere_2022_134791
crossref_primary_10_1016_j_fuel_2020_118435
crossref_primary_10_1039_D3RA01556D
crossref_primary_10_1016_j_biortech_2016_07_113
crossref_primary_10_1371_journal_pone_0268565
crossref_primary_10_1016_j_biortech_2019_121700
crossref_primary_10_1080_17597269_2022_2123938
crossref_primary_10_1016_j_biombioe_2020_105547
crossref_primary_10_1590_1678_4324_2019160816
crossref_primary_10_1039_C4RA06441K
crossref_primary_10_1007_s11120_013_9828_z
crossref_primary_10_1016_j_biortech_2019_121939
crossref_primary_10_1080_10242422_2021_1931145
crossref_primary_10_1016_j_fuel_2017_03_090
crossref_primary_10_1016_j_biortech_2013_02_119
crossref_primary_10_1016_j_biortech_2014_04_003
crossref_primary_10_1093_jxb_erv130
crossref_primary_10_1016_j_rser_2016_06_084
crossref_primary_10_1007_s13399_022_02470_9
crossref_primary_10_1007_s12155_021_10292_2
crossref_primary_10_1016_j_jksus_2018_09_007
crossref_primary_10_1007_s11814_018_0173_y
crossref_primary_10_1016_j_cej_2023_147809
crossref_primary_10_1080_00288330_2024_2373881
crossref_primary_10_1007_s12155_018_9913_4
crossref_primary_10_26907_2542_064X_2024_1_82_125
crossref_primary_10_1007_s12223_019_00732_0
crossref_primary_10_1021_acs_energyfuels_6b00253
crossref_primary_10_1080_17597269_2025_2469384
crossref_primary_10_1016_j_enconman_2024_119037
crossref_primary_10_1002_bit_25644
crossref_primary_10_1186_s42269_019_0205_8
crossref_primary_10_1016_j_jece_2020_104926
crossref_primary_10_1007_s11144_017_1271_2
crossref_primary_10_1016_j_rser_2022_112284
crossref_primary_10_1016_j_ijhydene_2013_07_120
crossref_primary_10_1016_j_procbio_2016_02_016
crossref_primary_10_1590_0104_6632_20180361s20170284
crossref_primary_10_3390_foods13244154
crossref_primary_10_1039_D3EN00918A
crossref_primary_10_1016_j_biortech_2017_02_040
crossref_primary_10_3109_07388551_2015_1108956
crossref_primary_10_3390_md18050229
crossref_primary_10_1016_j_bcab_2018_02_016
crossref_primary_10_1016_j_biortech_2014_11_004
crossref_primary_10_1002_bbb_2006
crossref_primary_10_1007_s10811_013_0154_9
crossref_primary_10_1016_j_rser_2017_08_042
crossref_primary_10_3390_pr9040678
crossref_primary_10_1016_j_watres_2014_07_025
crossref_primary_10_1007_s10811_018_1566_3
crossref_primary_10_1016_j_rser_2017_09_091
crossref_primary_10_3390_microorganisms12122467
crossref_primary_10_1016_j_resconrec_2023_107229
crossref_primary_10_15407_alg27_03_337
crossref_primary_10_1007_s13399_019_00540_z
crossref_primary_10_1016_j_energy_2019_04_219
crossref_primary_10_1016_j_eti_2021_101362
crossref_primary_10_1007_s12155_022_10554_7
crossref_primary_10_3390_molecules26040943
crossref_primary_10_1016_j_jclepro_2017_01_144
crossref_primary_10_1016_j_biortech_2022_126907
crossref_primary_10_1016_j_jics_2022_100555
crossref_primary_10_3390_pr12122936
crossref_primary_10_1007_s12010_016_2249_7
crossref_primary_10_1016_j_biortech_2013_11_059
crossref_primary_10_1016_j_jclepro_2022_131153
crossref_primary_10_1016_j_algal_2018_10_023
crossref_primary_10_1016_j_rser_2017_02_071
crossref_primary_10_3390_fermentation9030284
crossref_primary_10_1016_j_bej_2014_08_007
crossref_primary_10_1016_j_biortech_2019_121514
crossref_primary_10_3390_sym15020525
crossref_primary_10_3390_fermentation9030289
crossref_primary_10_1007_s10811_018_1552_9
crossref_primary_10_1016_j_procbio_2020_02_011
crossref_primary_10_1016_j_biortech_2014_01_091
crossref_primary_10_1016_j_biortech_2015_09_067
crossref_primary_10_1016_j_energy_2024_131130
crossref_primary_10_1007_s13762_022_04696_6
crossref_primary_10_1016_j_btre_2016_07_001
crossref_primary_10_1016_j_renene_2022_12_044
crossref_primary_10_1002_biot_201400594
crossref_primary_10_1016_j_jece_2023_110566
crossref_primary_10_1016_j_rser_2016_07_064
crossref_primary_10_1016_j_ecoleng_2016_06_058
crossref_primary_10_1016_j_biortech_2013_05_043
crossref_primary_10_1016_j_jece_2020_104025
crossref_primary_10_1002_ceat_202300010
crossref_primary_10_1002_jctb_5735
crossref_primary_10_1007_s13399_021_01779_1
crossref_primary_10_1016_j_rser_2014_04_073
crossref_primary_10_1016_j_scitotenv_2020_143080
crossref_primary_10_1016_j_fuel_2020_118962
crossref_primary_10_1016_j_jenvman_2021_112919
crossref_primary_10_1007_s12257_019_0417_7
crossref_primary_10_1016_j_biortech_2019_122628
crossref_primary_10_3389_fmicb_2021_760307
crossref_primary_10_1080_15435075_2015_1088855
crossref_primary_10_3390_synbio2020011
crossref_primary_10_1002_jctb_4415
crossref_primary_10_1016_j_energy_2021_122604
crossref_primary_10_1080_19443994_2015_1128987
crossref_primary_10_1016_j_biortech_2019_122517
crossref_primary_10_1016_j_algal_2020_101961
crossref_primary_10_1016_j_biombioe_2024_107216
crossref_primary_10_3390_fermentation4040099
crossref_primary_10_1080_09593330_2020_1726471
crossref_primary_10_1002_bit_25619
crossref_primary_10_1007_s42452_019_1501_5
crossref_primary_10_1186_s13568_016_0320_y
crossref_primary_10_35429_JRE_2019_8_3_23_34
crossref_primary_10_3390_ijms23052623
crossref_primary_10_1016_j_enconman_2016_10_026
crossref_primary_10_1016_j_enconman_2016_05_093
crossref_primary_10_1016_j_fuel_2018_04_143
crossref_primary_10_1016_j_biortech_2017_04_031
crossref_primary_10_1016_j_biortech_2022_128002
crossref_primary_10_1016_j_renene_2020_10_086
crossref_primary_10_1002_jemt_24042
crossref_primary_10_1016_j_biteb_2023_101543
crossref_primary_10_2139_ssrn_4186528
crossref_primary_10_1089_ind_2022_0024
crossref_primary_10_1016_j_rser_2021_111930
crossref_primary_10_1016_j_biortech_2020_123347
crossref_primary_10_1080_01430750_2021_1873849
crossref_primary_10_1016_j_crsust_2021_100050
crossref_primary_10_1016_j_ijggc_2022_103727
crossref_primary_10_1016_j_enconman_2017_06_054
crossref_primary_10_1016_j_rser_2015_11_001
crossref_primary_10_1007_s10311_021_01213_y
crossref_primary_10_1016_j_biteb_2024_101937
crossref_primary_10_1016_j_rser_2016_07_024
crossref_primary_10_1016_j_rser_2015_07_086
crossref_primary_10_1016_j_biortech_2019_121964
crossref_primary_10_1016_j_biortech_2023_129867
crossref_primary_10_1007_s41207_024_00678_x
crossref_primary_10_1039_C4GC01612B
crossref_primary_10_1016_j_biortech_2020_123100
crossref_primary_10_1016_j_enconman_2019_111907
crossref_primary_10_1016_j_energy_2014_11_040
crossref_primary_10_1016_j_cej_2022_140588
crossref_primary_10_1016_j_jclepro_2016_02_016
crossref_primary_10_1080_07388551_2019_1624945
crossref_primary_10_3390_ijms25158299
crossref_primary_10_1016_j_btre_2020_e00509
crossref_primary_10_1051_e3sconf_202457606014
crossref_primary_10_1016_j_scitotenv_2024_173643
crossref_primary_10_1016_j_biteb_2022_101003
crossref_primary_10_1016_j_cej_2014_10_049
crossref_primary_10_1186_s40068_020_00201_5
crossref_primary_10_1016_j_rser_2015_06_030
crossref_primary_10_1007_s11356_017_9040_3
crossref_primary_10_1016_j_biortech_2016_03_168
crossref_primary_10_1016_j_fuel_2017_12_119
crossref_primary_10_4491_KSEE_2020_42_3_164
crossref_primary_10_1002_clen_201800380
crossref_primary_10_7717_peerj_6637
crossref_primary_10_1016_j_biotechadv_2014_09_002
crossref_primary_10_3389_fmicb_2017_00515
crossref_primary_10_1016_j_renene_2019_04_008
crossref_primary_10_1007_s13204_021_01948_8
crossref_primary_10_1016_j_renene_2019_12_069
crossref_primary_10_3390_hydrobiology2020021
crossref_primary_10_1016_j_carbpol_2017_09_104
crossref_primary_10_1016_j_jhazmat_2020_123115
crossref_primary_10_1007_s12649_019_00601_4
crossref_primary_10_1016_j_enconman_2018_07_054
crossref_primary_10_1016_j_biortech_2015_02_072
crossref_primary_10_1186_s13068_017_0821_1
crossref_primary_10_1186_1754_6834_7_97
crossref_primary_10_1039_C9GC02634G
crossref_primary_10_1016_j_energy_2018_01_124
crossref_primary_10_1007_s10811_018_1487_1
crossref_primary_10_1016_j_bej_2014_07_001
crossref_primary_10_1016_j_jclepro_2022_135236
crossref_primary_10_1016_j_jcou_2021_101683
crossref_primary_10_1080_10408398_2021_1879729
crossref_primary_10_1016_j_psep_2020_08_046
crossref_primary_10_1080_00986445_2017_1356291
crossref_primary_10_1002_ep_13157
crossref_primary_10_1016_j_biortech_2016_06_087
crossref_primary_10_1016_j_chemosphere_2021_130129
crossref_primary_10_3390_su14010499
crossref_primary_10_1016_j_biortech_2022_128446
crossref_primary_10_1016_j_biortech_2022_128323
crossref_primary_10_1016_j_jenvman_2017_08_012
crossref_primary_10_1016_j_renene_2020_05_013
crossref_primary_10_1016_j_carbpol_2018_12_057
crossref_primary_10_1021_jacsau_4c00511
crossref_primary_10_1016_j_algal_2022_102895
crossref_primary_10_1016_j_ceja_2024_100616
crossref_primary_10_1016_j_algal_2019_101549
crossref_primary_10_1016_j_chemosphere_2021_131587
crossref_primary_10_1186_s13068_017_0712_5
crossref_primary_10_1016_j_biotechadv_2013_07_011
crossref_primary_10_1016_j_biortech_2019_122698
crossref_primary_10_1002_ep_12056
crossref_primary_10_1007_s00449_015_1493_5
crossref_primary_10_1186_s13068_015_0215_1
crossref_primary_10_1007_s10811_020_02139_8
crossref_primary_10_1016_j_biortech_2019_122219
crossref_primary_10_3390_en14248366
crossref_primary_10_1016_j_algal_2016_12_021
crossref_primary_10_1080_15435075_2021_1968872
crossref_primary_10_3390_molecules22060960
crossref_primary_10_1016_j_biortech_2015_03_013
crossref_primary_10_1016_j_eti_2023_103296
crossref_primary_10_1016_j_jece_2021_105930
crossref_primary_10_1016_j_carbpol_2015_02_046
crossref_primary_10_1002_btpr_2729
crossref_primary_10_1002_bab_1820
crossref_primary_10_1111_pre_12160
crossref_primary_10_1016_j_renene_2020_10_066
crossref_primary_10_1016_j_biortech_2022_128103
crossref_primary_10_1016_j_fuel_2021_122543
crossref_primary_10_1134_S2070050424010069
crossref_primary_10_1007_s00203_021_02509_x
crossref_primary_10_1007_s13399_023_04523_z
crossref_primary_10_1007_s00449_016_1570_4
crossref_primary_10_1016_j_biortech_2014_10_090
crossref_primary_10_3390_app14219667
crossref_primary_10_1039_C7SE00236J
crossref_primary_10_1007_s12033_015_9900_3
crossref_primary_10_1007_s42452_025_06588_z
crossref_primary_10_1002_bbb_1805
crossref_primary_10_3390_ijms18010215
crossref_primary_10_1016_j_enconman_2022_115929
crossref_primary_10_1016_j_fuel_2018_11_126
crossref_primary_10_2139_ssrn_4178870
crossref_primary_10_1016_j_renene_2020_03_176
crossref_primary_10_3390_en6083937
crossref_primary_10_1016_j_jcou_2019_12_001
crossref_primary_10_4236_ajps_2020_1112148
crossref_primary_10_1016_j_nbt_2025_02_007
crossref_primary_10_1016_j_wasman_2022_08_016
crossref_primary_10_1021_acs_jafc_1c07267
crossref_primary_10_3390_w13040486
crossref_primary_10_1080_09593330_2016_1254685
crossref_primary_10_1038_s41598_023_43576_y
crossref_primary_10_3390_en14238112
crossref_primary_10_1016_j_cej_2019_123774
crossref_primary_10_1007_s40995_021_01097_1
crossref_primary_10_1007_s12010_018_2916_y
crossref_primary_10_1016_j_biortech_2017_05_007
crossref_primary_10_1016_j_biortech_2015_11_075
crossref_primary_10_1016_j_ijhydene_2022_01_057
crossref_primary_10_1002_biot_201500270
crossref_primary_10_1039_C3LC51345A
crossref_primary_10_1016_j_energy_2022_124151
crossref_primary_10_1007_s11356_024_34861_y
crossref_primary_10_1016_j_biombioe_2017_06_023
crossref_primary_10_1016_j_rser_2021_111677
crossref_primary_10_12677_HJCET_2021_114027
crossref_primary_10_3390_polym12112672
crossref_primary_10_1016_j_supflu_2018_10_012
crossref_primary_10_1021_acs_est_1c04907
crossref_primary_10_1016_j_algal_2019_101606
crossref_primary_10_1016_j_rser_2018_03_100
crossref_primary_10_1016_j_ecmx_2022_100317
crossref_primary_10_1016_j_rser_2017_04_063
crossref_primary_10_1016_j_biortech_2013_09_031
crossref_primary_10_1016_j_biortech_2016_04_019
crossref_primary_10_1002_er_3727
crossref_primary_10_1177_0958305X231204032
crossref_primary_10_1186_s13068_016_0691_y
crossref_primary_10_3390_fermentation8070316
crossref_primary_10_1016_j_algal_2020_101926
crossref_primary_10_1016_j_jwpe_2021_102183
crossref_primary_10_1002_btpr_2941
crossref_primary_10_1016_j_biortech_2019_122315
crossref_primary_10_1016_j_fuel_2021_121782
crossref_primary_10_1016_j_biortech_2015_10_056
crossref_primary_10_1016_j_mset_2018_12_007
crossref_primary_10_1016_j_rser_2014_08_075
Cites_doi 10.1016/S0141-0229(00)00266-0
10.3389/fpls.2012.00082
10.1016/j.apenergy.2011.03.012
10.1128/MMBR.66.3.506-577.2002
10.1007/s00253-006-0827-2
10.4014/jmb.0810.578
10.1016/S0960-8524(01)00212-7
10.1186/1472-6750-11-7
10.1016/j.biotechadv.2010.07.001
10.1016/j.biortech.2011.11.133
10.1186/1471-2164-12-148
10.1016/j.biortech.2011.03.053
10.1002/jctb.2287
10.1016/j.biotechadv.2007.02.001
10.1016/j.biortech.2010.02.026
10.1002/biot.201000433
10.4061/2011/405603
10.1016/j.rser.2009.10.009
10.1021/ef7003893
10.1016/j.pecs.2010.01.003
10.1111/j.1744-7909.2010.01024.x
10.1016/j.biortech.2010.06.139
10.1016/j.procbio.2010.08.027
10.1016/j.biotechadv.2010.11.001
10.1093/jaoac/80.3.571
10.2527/1996.744858x
10.1126/science.1214547
10.1016/j.biortech.2010.06.112
10.1016/j.biortech.2010.06.159
10.1016/j.biortech.2010.01.088
10.1002/elsc.200900061
ContentType Journal Article
Copyright 2012 Elsevier Ltd
Copyright © 2012 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: Copyright © 2012 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
C1K
KR7
DOI 10.1016/j.biortech.2012.10.015
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Biotechnology Research Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 198
ExternalDocumentID 23116819
10_1016_j_biortech_2012_10_015
S0960852412015179
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
7QO
8FD
F1W
FR3
H95
H98
L.G
M7N
P64
7SU
7TB
C1K
KR7
ID FETCH-LOGICAL-c533t-cd6dbe4002661ab7b8af81f4676a01bb09f4bb2b20da8bb3878515addb3e7cff3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 00:45:44 EDT 2025
Fri Jul 11 05:12:18 EDT 2025
Sun Aug 24 03:54:49 EDT 2025
Fri Jul 11 05:03:40 EDT 2025
Thu Apr 03 07:09:32 EDT 2025
Tue Jul 01 02:43:02 EDT 2025
Thu Apr 24 23:11:22 EDT 2025
Fri Feb 23 02:34:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Acid hydrolysis
Microalgae
Carbohydrate
Chlorella vulgaris
Enzymatic hydrolysis
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
Copyright © 2012 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-cd6dbe4002661ab7b8af81f4676a01bb09f4bb2b20da8bb3878515addb3e7cff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23116819
PQID 1338390809
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1709773591
proquest_miscellaneous_1500769713
proquest_miscellaneous_1431620062
proquest_miscellaneous_1338390809
pubmed_primary_23116819
crossref_citationtrail_10_1016_j_biortech_2012_10_015
crossref_primary_10_1016_j_biortech_2012_10_015
elsevier_sciencedirect_doi_10_1016_j_biortech_2012_10_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2013
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Harun, Danquah (b0060) 2011; 46
Harun, Danquah, Forde (b0065) 2010; 85
Siaut, Cuine, Cagnon, Fessler, Nguyen, Carrier, Beyly, Beisson, Triantaphylides, Li-Beisson, Peltier (b0145) 2011; 11
Chisti (b0030) 2007; 25
Sun, Cheng (b0160) 2002; 83
Marsalkova, Sirmerova, Kurec, Branyik, Branyikova, Melzoch, Zachleder (b0100) 2010; 21
Butler, Calaman, Beam (b0015) 1996; 74
Wargacki, Leonard, Win, Regitsky, Santos, Kim, Cooper, Raisner, Herman, Sivitz, Lakshmanaswamy, Kashiyama, Baker, Yoshikuni (b0170) 2012; 335
Domozych, Ciancia, Fangel, Mikkelsen, Ulvskov, Willats (b0035) 2012; 3
Richmond (b0130) 2004
Yeh, Chang (b0175) 2011; 6
Brennan, Owende (b0010) 2010; 14
Ho, Chen, Chang (b0070) 2012; 113
Sivakumar, Vail, Xu, Burner, Lay, Ge, Weathers (b0155) 2010; 10
Girio, Fonseca, Carvalheiro, Duarte, Marques, Bogel-Lukasik (b0050) 2010; 101
Lynd, Weimer, van Zyl, Pretorius (b0095) 2002; 66
Illman, Scragg, Shales (b0085) 2000; 27
Ho, Chen, Chang (b0080) 2010; 101
Mussatto, Dragone, Guimaraes, Silva, Carneiro, Roberto, Vicente, Domingues, Teixeira (b0115) 2010; 28
Ho, Chen, Lee, Chang (b0075) 2011; 29
Hahn-Hagerdal, Karhumaa, Fonseca, Spencer-Martins, Gorwa-Grauslund (b0055) 2007; 74
Moxley, Zhang (b0110) 2007; 21
Nigam, Singh (b0125) 2011; 37
Rodrigues, Bon (b0140) 2011
Eshaq, Ali, Mohd (b0045) 2010; 2
Nguyen, Choi, Lee, Lee, Sim (b0120) 2009; 19
Cheng, Chang (b0025) 2011; 102
John, Anisha, Nampoothiri, Pandey (b0090) 2011; 102
Becker (b0005) 1994
Chen, Yeh, Aisyah, Lee, Chang (b0020) 2011; 102
Sim, Choi, Nguyen (b0150) 2010; 101
Dragone, Fernandes, Abreu, Vicente, Teixeira (b0040) 2011; 88
Wang, Liu, Wang (b0165) 2011; 53
Rismani-Yazdi, Haznedaroglu, Bibby, Peccia (b0135) 2011; 12
McCleary, Gibson, Mugford (b0105) 1997; 80
Lynd (10.1016/j.biortech.2012.10.015_b0095) 2002; 66
Yeh (10.1016/j.biortech.2012.10.015_b0175) 2011; 6
Becker (10.1016/j.biortech.2012.10.015_b0005) 1994
Girio (10.1016/j.biortech.2012.10.015_b0050) 2010; 101
Ho (10.1016/j.biortech.2012.10.015_b0075) 2011; 29
Rismani-Yazdi (10.1016/j.biortech.2012.10.015_b0135) 2011; 12
Mussatto (10.1016/j.biortech.2012.10.015_b0115) 2010; 28
Cheng (10.1016/j.biortech.2012.10.015_b0025) 2011; 102
Domozych (10.1016/j.biortech.2012.10.015_b0035) 2012; 3
Marsalkova (10.1016/j.biortech.2012.10.015_b0100) 2010; 21
Sim (10.1016/j.biortech.2012.10.015_b0150) 2010; 101
Sivakumar (10.1016/j.biortech.2012.10.015_b0155) 2010; 10
Wargacki (10.1016/j.biortech.2012.10.015_b0170) 2012; 335
Siaut (10.1016/j.biortech.2012.10.015_b0145) 2011; 11
Nguyen (10.1016/j.biortech.2012.10.015_b0120) 2009; 19
Illman (10.1016/j.biortech.2012.10.015_b0085) 2000; 27
Harun (10.1016/j.biortech.2012.10.015_b0060) 2011; 46
Brennan (10.1016/j.biortech.2012.10.015_b0010) 2010; 14
Nigam (10.1016/j.biortech.2012.10.015_b0125) 2011; 37
Moxley (10.1016/j.biortech.2012.10.015_b0110) 2007; 21
Butler (10.1016/j.biortech.2012.10.015_b0015) 1996; 74
Dragone (10.1016/j.biortech.2012.10.015_b0040) 2011; 88
Hahn-Hagerdal (10.1016/j.biortech.2012.10.015_b0055) 2007; 74
John (10.1016/j.biortech.2012.10.015_b0090) 2011; 102
McCleary (10.1016/j.biortech.2012.10.015_b0105) 1997; 80
Richmond (10.1016/j.biortech.2012.10.015_b0130) 2004
Wang (10.1016/j.biortech.2012.10.015_b0165) 2011; 53
Ho (10.1016/j.biortech.2012.10.015_b0070) 2012; 113
Harun (10.1016/j.biortech.2012.10.015_b0065) 2010; 85
Ho (10.1016/j.biortech.2012.10.015_b0080) 2010; 101
Chen (10.1016/j.biortech.2012.10.015_b0020) 2011; 102
Chisti (10.1016/j.biortech.2012.10.015_b0030) 2007; 25
Rodrigues (10.1016/j.biortech.2012.10.015_b0140) 2011
Sun (10.1016/j.biortech.2012.10.015_b0160) 2002; 83
Eshaq (10.1016/j.biortech.2012.10.015_b0045) 2010; 2
References_xml – volume: 27
  start-page: 631
  year: 2000
  end-page: 635
  ident: b0085
  article-title: Increase in
  publication-title: Enzyme Microb. Technol.
– volume: 21
  start-page: 3684
  year: 2007
  end-page: 3688
  ident: b0110
  article-title: More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification
  publication-title: Energy Fuels
– volume: 25
  start-page: 294
  year: 2007
  end-page: 306
  ident: b0030
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol. Adv.
– volume: 21
  start-page: 1279
  year: 2010
  end-page: 1284
  ident: b0100
  article-title: Microalgae
  publication-title: Chem. Eng. Trans.
– volume: 10
  start-page: 8
  year: 2010
  end-page: 18
  ident: b0155
  article-title: Bioethanol and biodiesel: alternative liquid fuels for future generations
  publication-title: Eng. Life Sci.
– volume: 11
  start-page: 7
  year: 2011
  ident: b0145
  article-title: Oil accumulation in the model green alga
  publication-title: BMC Biotechnol.
– volume: 29
  start-page: 189
  year: 2011
  end-page: 198
  ident: b0075
  article-title: Perspectives on microalgal CO
  publication-title: Biotechnol. Adv.
– year: 2004
  ident: b0130
  article-title: Handbook of Microalgal Culture: Biotechnology and Applied Phycology
– volume: 102
  start-page: 71
  year: 2011
  end-page: 81
  ident: b0020
  article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review
  publication-title: Bioresour. Technol.
– volume: 101
  start-page: 8725
  year: 2010
  end-page: 8730
  ident: b0080
  article-title: CNW-N as a potential candidate for CO
  publication-title: Bioresour. Technol.
– volume: 37
  start-page: 52
  year: 2011
  end-page: 68
  ident: b0125
  article-title: Production of liquid biofuels from renewable resources
  publication-title: Prog. Energ. Combust.
– volume: 83
  start-page: 1
  year: 2002
  end-page: 11
  ident: b0160
  article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review
  publication-title: Bioresour. Technol.
– start-page: 1
  year: 2011
  end-page: 5
  ident: b0140
  article-title: Evaluation of
  publication-title: Enzyme Res.
– volume: 74
  start-page: 858
  year: 1996
  end-page: 865
  ident: b0015
  article-title: Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle
  publication-title: J. Anim. Sci.
– volume: 101
  start-page: 5330
  year: 2010
  end-page: 5336
  ident: b0150
  article-title: Enzymatic pretreatment of
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 8628
  year: 2011
  end-page: 8634
  ident: b0025
  article-title: Hydrolysis of lignocellulosic feedstock by novel cellulases originating from
  publication-title: Bioresour. Technol.
– volume: 12
  start-page: 148
  year: 2011
  ident: b0135
  article-title: Transcriptome sequencing and annotation of the microalgae
  publication-title: BMC Genomics
– volume: 46
  start-page: 304
  year: 2011
  end-page: 309
  ident: b0060
  article-title: Influence of acid pre-treatment on microalgal biomass for bioethanol production
  publication-title: Process Biochem.
– volume: 3
  start-page: 82
  year: 2012
  ident: b0035
  article-title: The cell walls of green algae: a journey through evolution and diversity
  publication-title: Frontiers Plant Sci.
– volume: 85
  start-page: 199
  year: 2010
  end-page: 203
  ident: b0065
  article-title: Microalgal biomass as a fermentation feedstock for bioethanol production
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 74
  start-page: 937
  year: 2007
  end-page: 953
  ident: b0055
  article-title: Towards industrial pentose-fermenting yeast strains
  publication-title: Appl. Microbiol. Biotechnol.
– volume: 53
  start-page: 246
  year: 2011
  end-page: 252
  ident: b0165
  article-title: Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation
  publication-title: J. Integr. Plant Biol.
– volume: 2
  start-page: 7045
  year: 2010
  end-page: 7054
  ident: b0045
  article-title: Spirogyra biomass a renewable source for biofuel (bioethanol) production
  publication-title: Eng. Sci. Technol.
– year: 1994
  ident: b0005
  article-title: Microalgae: Biotechnology and Microbiology
– volume: 80
  start-page: 571
  year: 1997
  end-page: 579
  ident: b0105
  article-title: Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study
  publication-title: J. AOAC. Int.
– volume: 335
  start-page: 308
  year: 2012
  end-page: 313
  ident: b0170
  article-title: An engineered microbial platform for direct biofuel production from brown macroalgae
  publication-title: Science
– volume: 88
  start-page: 3331
  year: 2011
  end-page: 3335
  ident: b0040
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl. Energy
– volume: 113
  start-page: 244
  year: 2012
  end-page: 252
  ident: b0070
  article-title: Effect of light intensity and nitrogen starvation on CO
  publication-title: Bioresour. Technol.
– volume: 102
  start-page: 186
  year: 2011
  end-page: 193
  ident: b0090
  article-title: Micro and macroalgal biomass: a renewable source for bioethanol
  publication-title: Bioresour. Technol.
– volume: 19
  start-page: 161
  year: 2009
  end-page: 166
  ident: b0120
  article-title: Hydrothermal acid pretreatment of
  publication-title: J. Microbiol. Biotechnol.
– volume: 6
  start-page: 1358
  year: 2011
  end-page: 1366
  ident: b0175
  article-title: Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga
  publication-title: Biotechnol. J.
– volume: 14
  start-page: 557
  year: 2010
  end-page: 577
  ident: b0010
  article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products
  publication-title: Renew. Sust. Energy Rev.
– volume: 101
  start-page: 4775
  year: 2010
  end-page: 4800
  ident: b0050
  article-title: Hemicelluloses for fuel ethanol: a review
  publication-title: Bioresour. Technol.
– volume: 28
  start-page: 817
  year: 2010
  end-page: 830
  ident: b0115
  article-title: Technological trends, global market, and challenges of bio-ethanol production
  publication-title: Biotechnol. Adv.
– volume: 66
  start-page: 506
  year: 2002
  end-page: 577
  ident: b0095
  article-title: Microbial cellulose utilization: fundamentals and biotechnology
  publication-title: Microbiol. Mol. Biol. Rev.
– volume: 27
  start-page: 631
  issue: 8
  year: 2000
  ident: 10.1016/j.biortech.2012.10.015_b0085
  article-title: Increase in Chlorella strains calorific values when grown in low nitrogen medium
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/S0141-0229(00)00266-0
– volume: 3
  start-page: 82
  year: 2012
  ident: 10.1016/j.biortech.2012.10.015_b0035
  article-title: The cell walls of green algae: a journey through evolution and diversity
  publication-title: Frontiers Plant Sci.
  doi: 10.3389/fpls.2012.00082
– volume: 88
  start-page: 3331
  issue: 10
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0040
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.03.012
– volume: 66
  start-page: 506
  issue: 3
  year: 2002
  ident: 10.1016/j.biortech.2012.10.015_b0095
  article-title: Microbial cellulose utilization: fundamentals and biotechnology
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.66.3.506-577.2002
– volume: 74
  start-page: 937
  issue: 5
  year: 2007
  ident: 10.1016/j.biortech.2012.10.015_b0055
  article-title: Towards industrial pentose-fermenting yeast strains
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0827-2
– volume: 19
  start-page: 161
  issue: 2
  year: 2009
  ident: 10.1016/j.biortech.2012.10.015_b0120
  article-title: Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.0810.578
– volume: 83
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.biortech.2012.10.015_b0160
  article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(01)00212-7
– volume: 11
  start-page: 7
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0145
  article-title: Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-11-7
– volume: 28
  start-page: 817
  issue: 6
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0115
  article-title: Technological trends, global market, and challenges of bio-ethanol production
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.07.001
– volume: 113
  start-page: 244
  year: 2012
  ident: 10.1016/j.biortech.2012.10.015_b0070
  article-title: Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.11.133
– volume: 12
  start-page: 148
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0135
  article-title: Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-12-148
– volume: 102
  start-page: 8628
  issue: 18
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0025
  article-title: Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2011.03.053
– volume: 21
  start-page: 1279
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0100
  article-title: Microalgae Chlorella sp. as an alternative source of fermentable sugars
  publication-title: Chem. Eng. Trans.
– volume: 85
  start-page: 199
  issue: 2
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0065
  article-title: Microalgal biomass as a fermentation feedstock for bioethanol production
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.2287
– volume: 25
  start-page: 294
  issue: 3
  year: 2007
  ident: 10.1016/j.biortech.2012.10.015_b0030
  article-title: Biodiesel from microalgae
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2007.02.001
– volume: 101
  start-page: 5330
  issue: 14
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0150
  article-title: Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.02.026
– volume: 6
  start-page: 1358
  issue: 11
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0175
  article-title: Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga C. vulgaris ESP-31: Implications for biofuels
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.201000433
– year: 2004
  ident: 10.1016/j.biortech.2012.10.015_b0130
– start-page: 1
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0140
  article-title: Evaluation of Chlorella (chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis
  publication-title: Enzyme Res.
  doi: 10.4061/2011/405603
– volume: 14
  start-page: 557
  issue: 2
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0010
  article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products
  publication-title: Renew. Sust. Energy Rev.
  doi: 10.1016/j.rser.2009.10.009
– volume: 21
  start-page: 3684
  issue: 6
  year: 2007
  ident: 10.1016/j.biortech.2012.10.015_b0110
  article-title: More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification
  publication-title: Energy Fuels
  doi: 10.1021/ef7003893
– volume: 37
  start-page: 52
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0125
  article-title: Production of liquid biofuels from renewable resources
  publication-title: Prog. Energ. Combust.
  doi: 10.1016/j.pecs.2010.01.003
– volume: 53
  start-page: 246
  issue: 3
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0165
  article-title: Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2010.01024.x
– volume: 102
  start-page: 186
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0090
  article-title: Micro and macroalgal biomass: a renewable source for bioethanol
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.139
– volume: 46
  start-page: 304
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0060
  article-title: Influence of acid pre-treatment on microalgal biomass for bioethanol production
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2010.08.027
– volume: 29
  start-page: 189
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0075
  article-title: Perspectives on microalgal CO2-emission mitigation systems – a review
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2010.11.001
– volume: 80
  start-page: 571
  issue: 3
  year: 1997
  ident: 10.1016/j.biortech.2012.10.015_b0105
  article-title: Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study
  publication-title: J. AOAC. Int.
  doi: 10.1093/jaoac/80.3.571
– volume: 2
  start-page: 7045
  issue: 12
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0045
  article-title: Spirogyra biomass a renewable source for biofuel (bioethanol) production
  publication-title: Eng. Sci. Technol.
– volume: 74
  start-page: 858
  issue: 4
  year: 1996
  ident: 10.1016/j.biortech.2012.10.015_b0015
  article-title: Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle
  publication-title: J. Anim. Sci.
  doi: 10.2527/1996.744858x
– volume: 335
  start-page: 308
  issue: 6066
  year: 2012
  ident: 10.1016/j.biortech.2012.10.015_b0170
  article-title: An engineered microbial platform for direct biofuel production from brown macroalgae
  publication-title: Science
  doi: 10.1126/science.1214547
– volume: 101
  start-page: 8725
  issue: 22
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0080
  article-title: Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.112
– volume: 102
  start-page: 71
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2012.10.015_b0020
  article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.06.159
– volume: 101
  start-page: 4775
  issue: 13
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0050
  article-title: Hemicelluloses for fuel ethanol: a review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.088
– volume: 10
  start-page: 8
  issue: 1
  year: 2010
  ident: 10.1016/j.biortech.2012.10.015_b0155
  article-title: Bioethanol and biodiesel: alternative liquid fuels for future generations
  publication-title: Eng. Life Sci.
  doi: 10.1002/elsc.200900061
– year: 1994
  ident: 10.1016/j.biortech.2012.10.015_b0005
SSID ssj0003172
Score 2.5822537
Snippet ► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the...
This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 191
SubjectTerms Acid hydrolysis
analysis
Biofuels
Biofuels - microbiology
Biomass
biosynthesis
Biotechnology
Biotechnology - methods
Carbohydrate
Carbohydrate Metabolism
Carbohydrate Metabolism - drug effects
Carbohydrates
Carbohydrates - biosynthesis
Chlorella vulgaris
Chlorella vulgaris - drug effects
Chlorella vulgaris - growth & development
Chlorella vulgaris - metabolism
drug effects
Enzymatic hydrolysis
Ethanol
Ethanol - metabolism
ethanol production
Ethyl alcohol
Feedstock
feedstocks
fermentation
Fermentation - drug effects
Glucose
Glucose - biosynthesis
Glucosidases
Glucosidases - metabolism
growth & development
Hydrolysates
Hydrolysis
Hydrolysis - drug effects
Lipids
Lipids - analysis
metabolism
methods
Microalgae
Microalgae - drug effects
Microalgae - growth & development
Microalgae - metabolism
microbiology
Nitrates
Nitrates - analysis
Nitrogen
Nitrogen - pharmacology
pharmacology
Proteins
Proteins - analysis
sulfuric acid
Sulfuric Acids
Sulfuric Acids - pharmacology
Time Factors
Zymomonas
Zymomonas - drug effects
Zymomonas - metabolism
Title Bioethanol production using carbohydrate-rich microalgae biomass as feedstock
URI https://dx.doi.org/10.1016/j.biortech.2012.10.015
https://www.ncbi.nlm.nih.gov/pubmed/23116819
https://www.proquest.com/docview/1338390809
https://www.proquest.com/docview/1431620062
https://www.proquest.com/docview/1500769713
https://www.proquest.com/docview/1709773591
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hOFAOFdAWUh4yElcn8a69j2OIikIruBQkbiuP44XwyEYhOfTS387MPgKVSjhw9Y5X6xnvzGfPC-CYPTkmCVEalzqpNRqJ3sQSAz1MnHYOy6uB84tocKV_XpvrFeg3uTAcVlnr_kqnl9q6HunU3OxMRqPObwbfiSELRDaMC01xBruOeZe3_76EeZB9LD0JRCyZ-lWW8F0bRxzRWjolVNDmKC9uj_t_A_UWAC0N0ekmfK4RpOhVH7kFK368DRu9m2ldRcNvw3q_aeNGT15VHPwC5yejwvNtefEgJlWxVxKM4Oj3G-HsFIvbP0OuHiHpdbfikcP1ONvDC87TJ6At7JPIyeIRZnT3X-Hq9MdlfyDrjgrSEaybScfto7zmg1ekLMaY2DxROSnLyHYVYjfNNWKAQXdoE8QwiQmQGVKBGPrY5Xn4DVbHxdjvgqCDGqaKqAjQ0RHP2aHy2scRarRBGPoWmIaNmavLjXPXi4esiSu7yxr2Z8x-Hif2t6CzmDepCm68OyNtpJT9s3Uysgrvzj1qxJqRXNhZYse-mD9l5dk9JTydLqHhOgJ8JxMsoTHs7ExjFS6hibsEw0OTqhbsVHtrsXbC3yoi2Pb9A6vcg09B2cWD4zT3YXU2nfsDwlIzPCx_lkNY6539Glw8A-aLH6s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcEBQo4WkkODqJvfY-DhxKoUpp0wut1NvicbxtSslGSSrUC3-KP8jMPkqRID2gXnft1e7YO_PZ8_kbgDecybFphNL6zEtj0EoMNpGozSj1xnustgaG-_Hg0Hw6skcr8LM9C8O0ysb31z698tbNlV5jzd50PO59ZvCdWopAFMNYaKphVu6Gi--0bpu_2_lAg_xW6-2PB1sD2ZQWkJ7wzUJ6rqMUDK9AYuUwwdQVqSrIa8SurxD7WWEQNer-yKWIUco17C35AoxC4osioufegtuG3AWXTej--M0roYBcpS7o7SS_3pVjyaddHDOFtsqCKN1lWhnX4_17RPwX4q0i3_Z9uNdAVrFZW-UBrITJOtzdPJ41sh1hHda22rpxdOeKxOFDGL4fl4G358szMa3VZWkmCKbbHwvvZlieXIxYrkLS407EN-YH8vGSIFgYgJC9cHNRUIglkOq_PoLDG7HzY1idlJPwBAStDDFT1IoQJK0pvRupYEISo0Gnoyh0wLZmzH2jb85lNs7ylsh2mrfmz9n8fJ3M34HeZb9prfBxbY-sHaX8j7maUxi6tu_rdlhzGhfOzrhJKM_nebVZkBGAz5a0YeEC3gTSS9pYzq5miYqWtEn6hPsjm6kObNRz6_LbCfCrmHDi0__4ylewNjgY7uV7O_u7z-COrkqIMEn0OawuZufhBQG5Bb6sfhwBX276T_0FeX5dIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioethanol+production+using+carbohydrate-rich+microalgae+biomass+as+feedstock&rft.jtitle=Bioresource+technology&rft.au=Ho%2C+Shih-Hsin&rft.au=Huang%2C+Shu-Wen&rft.au=Chen%2C+Chun-Yen&rft.au=Hasunuma%2C+Tomohisa&rft.date=2013-05-01&rft.issn=0960-8524&rft.volume=135&rft.spage=191&rft.epage=198&rft_id=info:doi/10.1016%2Fj.biortech.2012.10.015&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon