Bioethanol production using carbohydrate-rich microalgae biomass as feedstock
► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the microalgae biomass. ► SHF & SSF processes produced ethanol from the microalgae biomass with high yield. ► SSF process gave better ethanol...
Saved in:
Published in | Bioresource technology Vol. 135; pp. 191 - 198 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the microalgae biomass. ► SHF & SSF processes produced ethanol from the microalgae biomass with high yield. ► SSF process gave better ethanol production performance with a 92% theoretical yield.
This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461g (gbiomass)−1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50gL−1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7gL−1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production. |
---|---|
AbstractList | This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461 g (g biomass)1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50 g L/1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7 g L/1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production. This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461 g (g biomass)(-1)). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50 g L(-1). Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7 g L(-1) and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production.This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461 g (g biomass)(-1)). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50 g L(-1). Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7 g L(-1) and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production. ► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the microalgae biomass. ► SHF & SSF processes produced ethanol from the microalgae biomass with high yield. ► SSF process gave better ethanol production performance with a 92% theoretical yield. This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461g (gbiomass)−1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50gL−1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7gL−1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production. This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various hydrolysis strategies and fermentation processes. Enzymatic hydrolysis of C. vulgaris FSP-E biomass (containing 51% carbohydrate per dry weight) gave a glucose yield of 90.4% (or 0.461g (gbiomass)−1). The SHF and SSF processes converted the enzymatic microalgae hydrolysate into ethanol with a 79.9% and 92.3% theoretical yield, respectively. Dilute acidic hydrolysis with 1% sulfuric acid was also very effective in saccharifying C. vulgaris FSP-E biomass, achieving a glucose yield of nearly 93.6% from the microalgal carbohydrates at a starting biomass concentration of 50gL−1. Using the acidic hydrolysate of C. vulgaris FSP-E biomass as feedstock, the SHF process produced ethanol at a concentration of 11.7gL−1 and an 87.6% theoretical yield. These findings indicate the feasibility of using carbohydrate-producing microalgae as feedstock for fermentative bioethanol production. |
Author | Chang, Jo-Shu Huang, Shu-Wen Kondo, Akihiko Hasunuma, Tomohisa Ho, Shih-Hsin Chen, Chun-Yen |
Author_xml | – sequence: 1 givenname: Shih-Hsin surname: Ho fullname: Ho, Shih-Hsin organization: Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC – sequence: 2 givenname: Shu-Wen surname: Huang fullname: Huang, Shu-Wen organization: Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC – sequence: 3 givenname: Chun-Yen surname: Chen fullname: Chen, Chun-Yen organization: University Center for Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, ROC – sequence: 4 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa organization: Department of Chemical Science and Engineering, Kobe University, Kobe, Japan – sequence: 5 givenname: Akihiko surname: Kondo fullname: Kondo, Akihiko organization: Department of Chemical Science and Engineering, Kobe University, Kobe, Japan – sequence: 6 givenname: Jo-Shu surname: Chang fullname: Chang, Jo-Shu email: changjs@mail.ncku.edu.tw organization: Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23116819$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaDZp_0LwsRdvR5ItydBD25B-QEou7VnoY5zV1rZSSQ7k38fLZi-9-DQwPO_MMM8lOZvihIRcU9hSoOLjfmtDTAXdbsuAsqW5Bdq-IRuqJK9ZJ8UZ2UAnoFYtay7IZc57AOBUsrfkgnFKhaLdhvz6GiKWnZniUD2m6GdXQpyqOYfpoXIm2bh79skUrFNwu2oMLkUzPBislv2jybkyueoRfS7R_X1HznszZHz_Wq_In2-3v29-1Hf333_efLmrXct5qZ0X3mIDwISgxkqrTK9o3wgpDFBroesba5ll4I2yliupWtoa7y1H6fqeX5EPx7nLyf9mzEWPITscBjNhnLOmEjopedvRdbQFkKKTlK-jDaeCAQi2jnKueAcKugW9fkVnO6LXjymMJj3rk4MF-HQEltfmnLDXLhRz0FCSCYOmoA_K9V6flOuD8kN_Ub7ExX_x04bV4OdjEBdTTwGTzi7g5NCHhK5oH8PaiBehDMm6 |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_127798 crossref_primary_10_1007_s12010_016_2322_2 crossref_primary_10_1016_j_tibtech_2014_10_003 crossref_primary_10_2166_wst_2019_226 crossref_primary_10_1002_biot_201200353 crossref_primary_10_1016_j_algal_2017_04_031 crossref_primary_10_1016_j_renene_2018_06_041 crossref_primary_10_1016_j_biortech_2021_125055 crossref_primary_10_1016_j_algal_2021_102402 crossref_primary_10_1016_j_jwpe_2023_103584 crossref_primary_10_1016_j_scitotenv_2019_06_181 crossref_primary_10_1016_j_jiec_2015_04_016 crossref_primary_10_1016_j_jcis_2017_01_003 crossref_primary_10_1007_s10811_016_0884_6 crossref_primary_10_1016_j_biombioe_2021_106053 crossref_primary_10_1016_j_biortech_2014_11_026 crossref_primary_10_1080_15435075_2022_2070023 crossref_primary_10_1016_j_biortech_2015_04_121 crossref_primary_10_1016_j_algal_2024_103595 crossref_primary_10_4236_ajps_2015_615254 crossref_primary_10_1088_1757_899X_206_1_012018 crossref_primary_10_1016_j_rser_2021_111464 crossref_primary_10_1016_j_apenergy_2016_07_015 crossref_primary_10_1002_er_6097 crossref_primary_10_3390_biology12070935 crossref_primary_10_1016_j_biombioe_2022_106582 crossref_primary_10_1016_j_renene_2020_04_064 crossref_primary_10_1016_j_bej_2019_107385 crossref_primary_10_1016_j_biotechadv_2015_08_003 crossref_primary_10_1016_j_clce_2023_100111 crossref_primary_10_3390_biology11081146 crossref_primary_10_3390_en14154567 crossref_primary_10_1134_S0003683820070030 crossref_primary_10_1039_C4RA13359E crossref_primary_10_3390_en15249597 crossref_primary_10_3390_catal7050163 crossref_primary_10_1016_j_biortech_2013_08_156 crossref_primary_10_3390_en14051246 crossref_primary_10_1134_S0040601517090105 crossref_primary_10_1016_j_bcab_2023_102877 crossref_primary_10_1016_j_biortech_2018_02_006 crossref_primary_10_1016_j_fuel_2024_132275 crossref_primary_10_1016_j_rser_2017_05_197 crossref_primary_10_1016_j_copbio_2014_11_001 crossref_primary_10_1016_j_fuel_2019_04_092 crossref_primary_10_1016_j_rser_2014_07_089 crossref_primary_10_1016_j_biortech_2019_03_106 crossref_primary_10_1016_j_mcat_2021_111517 crossref_primary_10_1016_j_matpr_2022_03_551 crossref_primary_10_1007_s12649_016_9492_6 crossref_primary_10_21519_0234_2758_2019_35_3_12_29 crossref_primary_10_5004_dwt_2018_23040 crossref_primary_10_1016_j_renene_2017_04_001 crossref_primary_10_1016_j_fuel_2019_02_139 crossref_primary_10_1016_j_fuel_2021_120988 crossref_primary_10_1016_j_ijhydene_2023_11_065 crossref_primary_10_1016_j_biortech_2014_04_033 crossref_primary_10_1016_j_jenvman_2021_112065 crossref_primary_10_1080_15567036_2020_1758853 crossref_primary_10_1016_j_biortech_2018_11_103 crossref_primary_10_1016_j_algal_2020_102044 crossref_primary_10_1016_j_biotechadv_2016_10_003 crossref_primary_10_1002_cben_201900014 crossref_primary_10_3390_molecules29163838 crossref_primary_10_1007_s12155_020_10180_1 crossref_primary_10_1016_j_nbt_2017_12_003 crossref_primary_10_1007_s13399_021_02275_2 crossref_primary_10_1016_j_biombioe_2016_03_038 crossref_primary_10_1016_j_enconman_2020_113609 crossref_primary_10_1007_s12010_017_2687_x crossref_primary_10_1186_s13068_019_1432_9 crossref_primary_10_1016_j_ijbiomac_2020_10_159 crossref_primary_10_1016_j_bej_2020_107523 crossref_primary_10_1016_j_algal_2023_103133 crossref_primary_10_1016_j_algal_2023_103019 crossref_primary_10_1016_j_biotechadv_2017_06_001 crossref_primary_10_1016_j_jbiosc_2015_02_012 crossref_primary_10_1002_biot_201300142 crossref_primary_10_1016_j_rser_2019_01_064 crossref_primary_10_1002_bbb_2515 crossref_primary_10_5004_dwt_2017_21373 crossref_primary_10_1007_s13399_018_0350_6 crossref_primary_10_1016_j_biortech_2017_09_143 crossref_primary_10_1021_acs_energyfuels_1c02294 crossref_primary_10_3390_pr13020364 crossref_primary_10_1080_17597269_2024_2432148 crossref_primary_10_1093_jxb_ert134 crossref_primary_10_3389_fmicb_2021_674864 crossref_primary_10_1016_j_jmrt_2021_06_085 crossref_primary_10_1016_j_rser_2021_111396 crossref_primary_10_1016_j_biortech_2015_12_054 crossref_primary_10_1016_j_biortech_2017_07_108 crossref_primary_10_1016_j_heliyon_2021_e07115 crossref_primary_10_1016_j_energy_2019_116039 crossref_primary_10_1016_j_algal_2022_102630 crossref_primary_10_18596_jotcsa_425907 crossref_primary_10_1016_j_biortech_2014_11_080 crossref_primary_10_1016_j_biteb_2020_100598 crossref_primary_10_1016_j_chemosphere_2021_130553 crossref_primary_10_1088_1757_899X_778_1_012039 crossref_primary_10_1080_17597269_2019_1679572 crossref_primary_10_1016_j_rser_2019_109606 crossref_primary_10_1016_j_jclepro_2019_02_254 crossref_primary_10_1007_s10811_016_0805_8 crossref_primary_10_1016_j_rser_2017_05_158 crossref_primary_10_1016_j_biortech_2016_12_104 crossref_primary_10_1007_s11814_021_0764_x crossref_primary_10_1016_j_algal_2018_12_003 crossref_primary_10_1016_j_biortech_2015_11_015 crossref_primary_10_1016_j_biortech_2017_11_054 crossref_primary_10_1016_j_chemosphere_2023_139183 crossref_primary_10_1186_s12934_018_0879_x crossref_primary_10_18412_1816_0387_2023_3_66_80 crossref_primary_10_1029_2023JC020280 crossref_primary_10_1002_elsc_201600194 crossref_primary_10_1016_j_biortech_2015_08_094 crossref_primary_10_1016_j_seta_2022_102443 crossref_primary_10_1016_j_btre_2020_e00551 crossref_primary_10_1016_j_enconman_2022_116118 crossref_primary_10_1016_j_algal_2017_10_021 crossref_primary_10_3390_su12239980 crossref_primary_10_1016_j_biortech_2016_09_050 crossref_primary_10_1016_j_eti_2020_101282 crossref_primary_10_1016_j_biortech_2016_02_069 crossref_primary_10_1016_j_biortech_2015_07_040 crossref_primary_10_1016_j_biteb_2018_08_001 crossref_primary_10_1021_acssuschemeng_6b01957 crossref_primary_10_1039_D1SE01701B crossref_primary_10_3390_en12203947 crossref_primary_10_1016_j_biortech_2016_01_036 crossref_primary_10_1016_j_micres_2022_127187 crossref_primary_10_1007_s10811_019_01960_0 crossref_primary_10_1186_s13068_018_1050_y crossref_primary_10_1016_j_cogsc_2018_06_008 crossref_primary_10_1016_j_jclepro_2018_03_250 crossref_primary_10_3390_fermentation9080712 crossref_primary_10_3390_catal11010022 crossref_primary_10_1016_j_molliq_2021_116264 crossref_primary_10_1080_10826068_2015_1031398 crossref_primary_10_1007_s12649_018_0253_6 crossref_primary_10_1016_j_ijhydene_2025_01_158 crossref_primary_10_1016_j_biortech_2023_129277 crossref_primary_10_3390_en16010125 crossref_primary_10_1016_j_rser_2019_109371 crossref_primary_10_1038_srep05819 crossref_primary_10_1038_s41598_020_73816_4 crossref_primary_10_1016_j_jclepro_2019_119770 crossref_primary_10_1007_s11802_020_4302_y crossref_primary_10_1016_j_chemosphere_2022_134791 crossref_primary_10_1016_j_fuel_2020_118435 crossref_primary_10_1039_D3RA01556D crossref_primary_10_1016_j_biortech_2016_07_113 crossref_primary_10_1371_journal_pone_0268565 crossref_primary_10_1016_j_biortech_2019_121700 crossref_primary_10_1080_17597269_2022_2123938 crossref_primary_10_1016_j_biombioe_2020_105547 crossref_primary_10_1590_1678_4324_2019160816 crossref_primary_10_1039_C4RA06441K crossref_primary_10_1007_s11120_013_9828_z crossref_primary_10_1016_j_biortech_2019_121939 crossref_primary_10_1080_10242422_2021_1931145 crossref_primary_10_1016_j_fuel_2017_03_090 crossref_primary_10_1016_j_biortech_2013_02_119 crossref_primary_10_1016_j_biortech_2014_04_003 crossref_primary_10_1093_jxb_erv130 crossref_primary_10_1016_j_rser_2016_06_084 crossref_primary_10_1007_s13399_022_02470_9 crossref_primary_10_1007_s12155_021_10292_2 crossref_primary_10_1016_j_jksus_2018_09_007 crossref_primary_10_1007_s11814_018_0173_y crossref_primary_10_1016_j_cej_2023_147809 crossref_primary_10_1080_00288330_2024_2373881 crossref_primary_10_1007_s12155_018_9913_4 crossref_primary_10_26907_2542_064X_2024_1_82_125 crossref_primary_10_1007_s12223_019_00732_0 crossref_primary_10_1021_acs_energyfuels_6b00253 crossref_primary_10_1080_17597269_2025_2469384 crossref_primary_10_1016_j_enconman_2024_119037 crossref_primary_10_1002_bit_25644 crossref_primary_10_1186_s42269_019_0205_8 crossref_primary_10_1016_j_jece_2020_104926 crossref_primary_10_1007_s11144_017_1271_2 crossref_primary_10_1016_j_rser_2022_112284 crossref_primary_10_1016_j_ijhydene_2013_07_120 crossref_primary_10_1016_j_procbio_2016_02_016 crossref_primary_10_1590_0104_6632_20180361s20170284 crossref_primary_10_3390_foods13244154 crossref_primary_10_1039_D3EN00918A crossref_primary_10_1016_j_biortech_2017_02_040 crossref_primary_10_3109_07388551_2015_1108956 crossref_primary_10_3390_md18050229 crossref_primary_10_1016_j_bcab_2018_02_016 crossref_primary_10_1016_j_biortech_2014_11_004 crossref_primary_10_1002_bbb_2006 crossref_primary_10_1007_s10811_013_0154_9 crossref_primary_10_1016_j_rser_2017_08_042 crossref_primary_10_3390_pr9040678 crossref_primary_10_1016_j_watres_2014_07_025 crossref_primary_10_1007_s10811_018_1566_3 crossref_primary_10_1016_j_rser_2017_09_091 crossref_primary_10_3390_microorganisms12122467 crossref_primary_10_1016_j_resconrec_2023_107229 crossref_primary_10_15407_alg27_03_337 crossref_primary_10_1007_s13399_019_00540_z crossref_primary_10_1016_j_energy_2019_04_219 crossref_primary_10_1016_j_eti_2021_101362 crossref_primary_10_1007_s12155_022_10554_7 crossref_primary_10_3390_molecules26040943 crossref_primary_10_1016_j_jclepro_2017_01_144 crossref_primary_10_1016_j_biortech_2022_126907 crossref_primary_10_1016_j_jics_2022_100555 crossref_primary_10_3390_pr12122936 crossref_primary_10_1007_s12010_016_2249_7 crossref_primary_10_1016_j_biortech_2013_11_059 crossref_primary_10_1016_j_jclepro_2022_131153 crossref_primary_10_1016_j_algal_2018_10_023 crossref_primary_10_1016_j_rser_2017_02_071 crossref_primary_10_3390_fermentation9030284 crossref_primary_10_1016_j_bej_2014_08_007 crossref_primary_10_1016_j_biortech_2019_121514 crossref_primary_10_3390_sym15020525 crossref_primary_10_3390_fermentation9030289 crossref_primary_10_1007_s10811_018_1552_9 crossref_primary_10_1016_j_procbio_2020_02_011 crossref_primary_10_1016_j_biortech_2014_01_091 crossref_primary_10_1016_j_biortech_2015_09_067 crossref_primary_10_1016_j_energy_2024_131130 crossref_primary_10_1007_s13762_022_04696_6 crossref_primary_10_1016_j_btre_2016_07_001 crossref_primary_10_1016_j_renene_2022_12_044 crossref_primary_10_1002_biot_201400594 crossref_primary_10_1016_j_jece_2023_110566 crossref_primary_10_1016_j_rser_2016_07_064 crossref_primary_10_1016_j_ecoleng_2016_06_058 crossref_primary_10_1016_j_biortech_2013_05_043 crossref_primary_10_1016_j_jece_2020_104025 crossref_primary_10_1002_ceat_202300010 crossref_primary_10_1002_jctb_5735 crossref_primary_10_1007_s13399_021_01779_1 crossref_primary_10_1016_j_rser_2014_04_073 crossref_primary_10_1016_j_scitotenv_2020_143080 crossref_primary_10_1016_j_fuel_2020_118962 crossref_primary_10_1016_j_jenvman_2021_112919 crossref_primary_10_1007_s12257_019_0417_7 crossref_primary_10_1016_j_biortech_2019_122628 crossref_primary_10_3389_fmicb_2021_760307 crossref_primary_10_1080_15435075_2015_1088855 crossref_primary_10_3390_synbio2020011 crossref_primary_10_1002_jctb_4415 crossref_primary_10_1016_j_energy_2021_122604 crossref_primary_10_1080_19443994_2015_1128987 crossref_primary_10_1016_j_biortech_2019_122517 crossref_primary_10_1016_j_algal_2020_101961 crossref_primary_10_1016_j_biombioe_2024_107216 crossref_primary_10_3390_fermentation4040099 crossref_primary_10_1080_09593330_2020_1726471 crossref_primary_10_1002_bit_25619 crossref_primary_10_1007_s42452_019_1501_5 crossref_primary_10_1186_s13568_016_0320_y crossref_primary_10_35429_JRE_2019_8_3_23_34 crossref_primary_10_3390_ijms23052623 crossref_primary_10_1016_j_enconman_2016_10_026 crossref_primary_10_1016_j_enconman_2016_05_093 crossref_primary_10_1016_j_fuel_2018_04_143 crossref_primary_10_1016_j_biortech_2017_04_031 crossref_primary_10_1016_j_biortech_2022_128002 crossref_primary_10_1016_j_renene_2020_10_086 crossref_primary_10_1002_jemt_24042 crossref_primary_10_1016_j_biteb_2023_101543 crossref_primary_10_2139_ssrn_4186528 crossref_primary_10_1089_ind_2022_0024 crossref_primary_10_1016_j_rser_2021_111930 crossref_primary_10_1016_j_biortech_2020_123347 crossref_primary_10_1080_01430750_2021_1873849 crossref_primary_10_1016_j_crsust_2021_100050 crossref_primary_10_1016_j_ijggc_2022_103727 crossref_primary_10_1016_j_enconman_2017_06_054 crossref_primary_10_1016_j_rser_2015_11_001 crossref_primary_10_1007_s10311_021_01213_y crossref_primary_10_1016_j_biteb_2024_101937 crossref_primary_10_1016_j_rser_2016_07_024 crossref_primary_10_1016_j_rser_2015_07_086 crossref_primary_10_1016_j_biortech_2019_121964 crossref_primary_10_1016_j_biortech_2023_129867 crossref_primary_10_1007_s41207_024_00678_x crossref_primary_10_1039_C4GC01612B crossref_primary_10_1016_j_biortech_2020_123100 crossref_primary_10_1016_j_enconman_2019_111907 crossref_primary_10_1016_j_energy_2014_11_040 crossref_primary_10_1016_j_cej_2022_140588 crossref_primary_10_1016_j_jclepro_2016_02_016 crossref_primary_10_1080_07388551_2019_1624945 crossref_primary_10_3390_ijms25158299 crossref_primary_10_1016_j_btre_2020_e00509 crossref_primary_10_1051_e3sconf_202457606014 crossref_primary_10_1016_j_scitotenv_2024_173643 crossref_primary_10_1016_j_biteb_2022_101003 crossref_primary_10_1016_j_cej_2014_10_049 crossref_primary_10_1186_s40068_020_00201_5 crossref_primary_10_1016_j_rser_2015_06_030 crossref_primary_10_1007_s11356_017_9040_3 crossref_primary_10_1016_j_biortech_2016_03_168 crossref_primary_10_1016_j_fuel_2017_12_119 crossref_primary_10_4491_KSEE_2020_42_3_164 crossref_primary_10_1002_clen_201800380 crossref_primary_10_7717_peerj_6637 crossref_primary_10_1016_j_biotechadv_2014_09_002 crossref_primary_10_3389_fmicb_2017_00515 crossref_primary_10_1016_j_renene_2019_04_008 crossref_primary_10_1007_s13204_021_01948_8 crossref_primary_10_1016_j_renene_2019_12_069 crossref_primary_10_3390_hydrobiology2020021 crossref_primary_10_1016_j_carbpol_2017_09_104 crossref_primary_10_1016_j_jhazmat_2020_123115 crossref_primary_10_1007_s12649_019_00601_4 crossref_primary_10_1016_j_enconman_2018_07_054 crossref_primary_10_1016_j_biortech_2015_02_072 crossref_primary_10_1186_s13068_017_0821_1 crossref_primary_10_1186_1754_6834_7_97 crossref_primary_10_1039_C9GC02634G crossref_primary_10_1016_j_energy_2018_01_124 crossref_primary_10_1007_s10811_018_1487_1 crossref_primary_10_1016_j_bej_2014_07_001 crossref_primary_10_1016_j_jclepro_2022_135236 crossref_primary_10_1016_j_jcou_2021_101683 crossref_primary_10_1080_10408398_2021_1879729 crossref_primary_10_1016_j_psep_2020_08_046 crossref_primary_10_1080_00986445_2017_1356291 crossref_primary_10_1002_ep_13157 crossref_primary_10_1016_j_biortech_2016_06_087 crossref_primary_10_1016_j_chemosphere_2021_130129 crossref_primary_10_3390_su14010499 crossref_primary_10_1016_j_biortech_2022_128446 crossref_primary_10_1016_j_biortech_2022_128323 crossref_primary_10_1016_j_jenvman_2017_08_012 crossref_primary_10_1016_j_renene_2020_05_013 crossref_primary_10_1016_j_carbpol_2018_12_057 crossref_primary_10_1021_jacsau_4c00511 crossref_primary_10_1016_j_algal_2022_102895 crossref_primary_10_1016_j_ceja_2024_100616 crossref_primary_10_1016_j_algal_2019_101549 crossref_primary_10_1016_j_chemosphere_2021_131587 crossref_primary_10_1186_s13068_017_0712_5 crossref_primary_10_1016_j_biotechadv_2013_07_011 crossref_primary_10_1016_j_biortech_2019_122698 crossref_primary_10_1002_ep_12056 crossref_primary_10_1007_s00449_015_1493_5 crossref_primary_10_1186_s13068_015_0215_1 crossref_primary_10_1007_s10811_020_02139_8 crossref_primary_10_1016_j_biortech_2019_122219 crossref_primary_10_3390_en14248366 crossref_primary_10_1016_j_algal_2016_12_021 crossref_primary_10_1080_15435075_2021_1968872 crossref_primary_10_3390_molecules22060960 crossref_primary_10_1016_j_biortech_2015_03_013 crossref_primary_10_1016_j_eti_2023_103296 crossref_primary_10_1016_j_jece_2021_105930 crossref_primary_10_1016_j_carbpol_2015_02_046 crossref_primary_10_1002_btpr_2729 crossref_primary_10_1002_bab_1820 crossref_primary_10_1111_pre_12160 crossref_primary_10_1016_j_renene_2020_10_066 crossref_primary_10_1016_j_biortech_2022_128103 crossref_primary_10_1016_j_fuel_2021_122543 crossref_primary_10_1134_S2070050424010069 crossref_primary_10_1007_s00203_021_02509_x crossref_primary_10_1007_s13399_023_04523_z crossref_primary_10_1007_s00449_016_1570_4 crossref_primary_10_1016_j_biortech_2014_10_090 crossref_primary_10_3390_app14219667 crossref_primary_10_1039_C7SE00236J crossref_primary_10_1007_s12033_015_9900_3 crossref_primary_10_1007_s42452_025_06588_z crossref_primary_10_1002_bbb_1805 crossref_primary_10_3390_ijms18010215 crossref_primary_10_1016_j_enconman_2022_115929 crossref_primary_10_1016_j_fuel_2018_11_126 crossref_primary_10_2139_ssrn_4178870 crossref_primary_10_1016_j_renene_2020_03_176 crossref_primary_10_3390_en6083937 crossref_primary_10_1016_j_jcou_2019_12_001 crossref_primary_10_4236_ajps_2020_1112148 crossref_primary_10_1016_j_nbt_2025_02_007 crossref_primary_10_1016_j_wasman_2022_08_016 crossref_primary_10_1021_acs_jafc_1c07267 crossref_primary_10_3390_w13040486 crossref_primary_10_1080_09593330_2016_1254685 crossref_primary_10_1038_s41598_023_43576_y crossref_primary_10_3390_en14238112 crossref_primary_10_1016_j_cej_2019_123774 crossref_primary_10_1007_s40995_021_01097_1 crossref_primary_10_1007_s12010_018_2916_y crossref_primary_10_1016_j_biortech_2017_05_007 crossref_primary_10_1016_j_biortech_2015_11_075 crossref_primary_10_1016_j_ijhydene_2022_01_057 crossref_primary_10_1002_biot_201500270 crossref_primary_10_1039_C3LC51345A crossref_primary_10_1016_j_energy_2022_124151 crossref_primary_10_1007_s11356_024_34861_y crossref_primary_10_1016_j_biombioe_2017_06_023 crossref_primary_10_1016_j_rser_2021_111677 crossref_primary_10_12677_HJCET_2021_114027 crossref_primary_10_3390_polym12112672 crossref_primary_10_1016_j_supflu_2018_10_012 crossref_primary_10_1021_acs_est_1c04907 crossref_primary_10_1016_j_algal_2019_101606 crossref_primary_10_1016_j_rser_2018_03_100 crossref_primary_10_1016_j_ecmx_2022_100317 crossref_primary_10_1016_j_rser_2017_04_063 crossref_primary_10_1016_j_biortech_2013_09_031 crossref_primary_10_1016_j_biortech_2016_04_019 crossref_primary_10_1002_er_3727 crossref_primary_10_1177_0958305X231204032 crossref_primary_10_1186_s13068_016_0691_y crossref_primary_10_3390_fermentation8070316 crossref_primary_10_1016_j_algal_2020_101926 crossref_primary_10_1016_j_jwpe_2021_102183 crossref_primary_10_1002_btpr_2941 crossref_primary_10_1016_j_biortech_2019_122315 crossref_primary_10_1016_j_fuel_2021_121782 crossref_primary_10_1016_j_biortech_2015_10_056 crossref_primary_10_1016_j_mset_2018_12_007 crossref_primary_10_1016_j_rser_2014_08_075 |
Cites_doi | 10.1016/S0141-0229(00)00266-0 10.3389/fpls.2012.00082 10.1016/j.apenergy.2011.03.012 10.1128/MMBR.66.3.506-577.2002 10.1007/s00253-006-0827-2 10.4014/jmb.0810.578 10.1016/S0960-8524(01)00212-7 10.1186/1472-6750-11-7 10.1016/j.biotechadv.2010.07.001 10.1016/j.biortech.2011.11.133 10.1186/1471-2164-12-148 10.1016/j.biortech.2011.03.053 10.1002/jctb.2287 10.1016/j.biotechadv.2007.02.001 10.1016/j.biortech.2010.02.026 10.1002/biot.201000433 10.4061/2011/405603 10.1016/j.rser.2009.10.009 10.1021/ef7003893 10.1016/j.pecs.2010.01.003 10.1111/j.1744-7909.2010.01024.x 10.1016/j.biortech.2010.06.139 10.1016/j.procbio.2010.08.027 10.1016/j.biotechadv.2010.11.001 10.1093/jaoac/80.3.571 10.2527/1996.744858x 10.1126/science.1214547 10.1016/j.biortech.2010.06.112 10.1016/j.biortech.2010.06.159 10.1016/j.biortech.2010.01.088 10.1002/elsc.200900061 |
ContentType | Journal Article |
Copyright | 2012 Elsevier Ltd Copyright © 2012 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2012 Elsevier Ltd – notice: Copyright © 2012 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 7QO 8FD F1W FR3 H95 H98 L.G M7N P64 7SU 7TB C1K KR7 |
DOI | 10.1016/j.biortech.2012.10.015 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Biotechnology Research Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 198 |
ExternalDocumentID | 23116819 10_1016_j_biortech_2012_10_015 S0960852412015179 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 7QO 8FD F1W FR3 H95 H98 L.G M7N P64 7SU 7TB C1K KR7 |
ID | FETCH-LOGICAL-c533t-cd6dbe4002661ab7b8af81f4676a01bb09f4bb2b20da8bb3878515addb3e7cff3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 00:45:44 EDT 2025 Fri Jul 11 05:12:18 EDT 2025 Sun Aug 24 03:54:49 EDT 2025 Fri Jul 11 05:03:40 EDT 2025 Thu Apr 03 07:09:32 EDT 2025 Tue Jul 01 02:43:02 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Fri Feb 23 02:34:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Acid hydrolysis Microalgae Carbohydrate Chlorella vulgaris Enzymatic hydrolysis |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 Copyright © 2012 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-cd6dbe4002661ab7b8af81f4676a01bb09f4bb2b20da8bb3878515addb3e7cff3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 23116819 |
PQID | 1338390809 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1709773591 proquest_miscellaneous_1500769713 proquest_miscellaneous_1431620062 proquest_miscellaneous_1338390809 pubmed_primary_23116819 crossref_citationtrail_10_1016_j_biortech_2012_10_015 crossref_primary_10_1016_j_biortech_2012_10_015 elsevier_sciencedirect_doi_10_1016_j_biortech_2012_10_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2013 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Harun, Danquah (b0060) 2011; 46 Harun, Danquah, Forde (b0065) 2010; 85 Siaut, Cuine, Cagnon, Fessler, Nguyen, Carrier, Beyly, Beisson, Triantaphylides, Li-Beisson, Peltier (b0145) 2011; 11 Chisti (b0030) 2007; 25 Sun, Cheng (b0160) 2002; 83 Marsalkova, Sirmerova, Kurec, Branyik, Branyikova, Melzoch, Zachleder (b0100) 2010; 21 Butler, Calaman, Beam (b0015) 1996; 74 Wargacki, Leonard, Win, Regitsky, Santos, Kim, Cooper, Raisner, Herman, Sivitz, Lakshmanaswamy, Kashiyama, Baker, Yoshikuni (b0170) 2012; 335 Domozych, Ciancia, Fangel, Mikkelsen, Ulvskov, Willats (b0035) 2012; 3 Richmond (b0130) 2004 Yeh, Chang (b0175) 2011; 6 Brennan, Owende (b0010) 2010; 14 Ho, Chen, Chang (b0070) 2012; 113 Sivakumar, Vail, Xu, Burner, Lay, Ge, Weathers (b0155) 2010; 10 Girio, Fonseca, Carvalheiro, Duarte, Marques, Bogel-Lukasik (b0050) 2010; 101 Lynd, Weimer, van Zyl, Pretorius (b0095) 2002; 66 Illman, Scragg, Shales (b0085) 2000; 27 Ho, Chen, Chang (b0080) 2010; 101 Mussatto, Dragone, Guimaraes, Silva, Carneiro, Roberto, Vicente, Domingues, Teixeira (b0115) 2010; 28 Ho, Chen, Lee, Chang (b0075) 2011; 29 Hahn-Hagerdal, Karhumaa, Fonseca, Spencer-Martins, Gorwa-Grauslund (b0055) 2007; 74 Moxley, Zhang (b0110) 2007; 21 Nigam, Singh (b0125) 2011; 37 Rodrigues, Bon (b0140) 2011 Eshaq, Ali, Mohd (b0045) 2010; 2 Nguyen, Choi, Lee, Lee, Sim (b0120) 2009; 19 Cheng, Chang (b0025) 2011; 102 John, Anisha, Nampoothiri, Pandey (b0090) 2011; 102 Becker (b0005) 1994 Chen, Yeh, Aisyah, Lee, Chang (b0020) 2011; 102 Sim, Choi, Nguyen (b0150) 2010; 101 Dragone, Fernandes, Abreu, Vicente, Teixeira (b0040) 2011; 88 Wang, Liu, Wang (b0165) 2011; 53 Rismani-Yazdi, Haznedaroglu, Bibby, Peccia (b0135) 2011; 12 McCleary, Gibson, Mugford (b0105) 1997; 80 Lynd (10.1016/j.biortech.2012.10.015_b0095) 2002; 66 Yeh (10.1016/j.biortech.2012.10.015_b0175) 2011; 6 Becker (10.1016/j.biortech.2012.10.015_b0005) 1994 Girio (10.1016/j.biortech.2012.10.015_b0050) 2010; 101 Ho (10.1016/j.biortech.2012.10.015_b0075) 2011; 29 Rismani-Yazdi (10.1016/j.biortech.2012.10.015_b0135) 2011; 12 Mussatto (10.1016/j.biortech.2012.10.015_b0115) 2010; 28 Cheng (10.1016/j.biortech.2012.10.015_b0025) 2011; 102 Domozych (10.1016/j.biortech.2012.10.015_b0035) 2012; 3 Marsalkova (10.1016/j.biortech.2012.10.015_b0100) 2010; 21 Sim (10.1016/j.biortech.2012.10.015_b0150) 2010; 101 Sivakumar (10.1016/j.biortech.2012.10.015_b0155) 2010; 10 Wargacki (10.1016/j.biortech.2012.10.015_b0170) 2012; 335 Siaut (10.1016/j.biortech.2012.10.015_b0145) 2011; 11 Nguyen (10.1016/j.biortech.2012.10.015_b0120) 2009; 19 Illman (10.1016/j.biortech.2012.10.015_b0085) 2000; 27 Harun (10.1016/j.biortech.2012.10.015_b0060) 2011; 46 Brennan (10.1016/j.biortech.2012.10.015_b0010) 2010; 14 Nigam (10.1016/j.biortech.2012.10.015_b0125) 2011; 37 Moxley (10.1016/j.biortech.2012.10.015_b0110) 2007; 21 Butler (10.1016/j.biortech.2012.10.015_b0015) 1996; 74 Dragone (10.1016/j.biortech.2012.10.015_b0040) 2011; 88 Hahn-Hagerdal (10.1016/j.biortech.2012.10.015_b0055) 2007; 74 John (10.1016/j.biortech.2012.10.015_b0090) 2011; 102 McCleary (10.1016/j.biortech.2012.10.015_b0105) 1997; 80 Richmond (10.1016/j.biortech.2012.10.015_b0130) 2004 Wang (10.1016/j.biortech.2012.10.015_b0165) 2011; 53 Ho (10.1016/j.biortech.2012.10.015_b0070) 2012; 113 Harun (10.1016/j.biortech.2012.10.015_b0065) 2010; 85 Ho (10.1016/j.biortech.2012.10.015_b0080) 2010; 101 Chen (10.1016/j.biortech.2012.10.015_b0020) 2011; 102 Chisti (10.1016/j.biortech.2012.10.015_b0030) 2007; 25 Rodrigues (10.1016/j.biortech.2012.10.015_b0140) 2011 Sun (10.1016/j.biortech.2012.10.015_b0160) 2002; 83 Eshaq (10.1016/j.biortech.2012.10.015_b0045) 2010; 2 |
References_xml | – volume: 27 start-page: 631 year: 2000 end-page: 635 ident: b0085 article-title: Increase in publication-title: Enzyme Microb. Technol. – volume: 21 start-page: 3684 year: 2007 end-page: 3688 ident: b0110 article-title: More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification publication-title: Energy Fuels – volume: 25 start-page: 294 year: 2007 end-page: 306 ident: b0030 article-title: Biodiesel from microalgae publication-title: Biotechnol. Adv. – volume: 21 start-page: 1279 year: 2010 end-page: 1284 ident: b0100 article-title: Microalgae publication-title: Chem. Eng. Trans. – volume: 10 start-page: 8 year: 2010 end-page: 18 ident: b0155 article-title: Bioethanol and biodiesel: alternative liquid fuels for future generations publication-title: Eng. Life Sci. – volume: 11 start-page: 7 year: 2011 ident: b0145 article-title: Oil accumulation in the model green alga publication-title: BMC Biotechnol. – volume: 29 start-page: 189 year: 2011 end-page: 198 ident: b0075 article-title: Perspectives on microalgal CO publication-title: Biotechnol. Adv. – year: 2004 ident: b0130 article-title: Handbook of Microalgal Culture: Biotechnology and Applied Phycology – volume: 102 start-page: 71 year: 2011 end-page: 81 ident: b0020 article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review publication-title: Bioresour. Technol. – volume: 101 start-page: 8725 year: 2010 end-page: 8730 ident: b0080 article-title: CNW-N as a potential candidate for CO publication-title: Bioresour. Technol. – volume: 37 start-page: 52 year: 2011 end-page: 68 ident: b0125 article-title: Production of liquid biofuels from renewable resources publication-title: Prog. Energ. Combust. – volume: 83 start-page: 1 year: 2002 end-page: 11 ident: b0160 article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review publication-title: Bioresour. Technol. – start-page: 1 year: 2011 end-page: 5 ident: b0140 article-title: Evaluation of publication-title: Enzyme Res. – volume: 74 start-page: 858 year: 1996 end-page: 865 ident: b0015 article-title: Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle publication-title: J. Anim. Sci. – volume: 101 start-page: 5330 year: 2010 end-page: 5336 ident: b0150 article-title: Enzymatic pretreatment of publication-title: Bioresour. Technol. – volume: 102 start-page: 8628 year: 2011 end-page: 8634 ident: b0025 article-title: Hydrolysis of lignocellulosic feedstock by novel cellulases originating from publication-title: Bioresour. Technol. – volume: 12 start-page: 148 year: 2011 ident: b0135 article-title: Transcriptome sequencing and annotation of the microalgae publication-title: BMC Genomics – volume: 46 start-page: 304 year: 2011 end-page: 309 ident: b0060 article-title: Influence of acid pre-treatment on microalgal biomass for bioethanol production publication-title: Process Biochem. – volume: 3 start-page: 82 year: 2012 ident: b0035 article-title: The cell walls of green algae: a journey through evolution and diversity publication-title: Frontiers Plant Sci. – volume: 85 start-page: 199 year: 2010 end-page: 203 ident: b0065 article-title: Microalgal biomass as a fermentation feedstock for bioethanol production publication-title: J. Chem. Technol. Biotechnol. – volume: 74 start-page: 937 year: 2007 end-page: 953 ident: b0055 article-title: Towards industrial pentose-fermenting yeast strains publication-title: Appl. Microbiol. Biotechnol. – volume: 53 start-page: 246 year: 2011 end-page: 252 ident: b0165 article-title: Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation publication-title: J. Integr. Plant Biol. – volume: 2 start-page: 7045 year: 2010 end-page: 7054 ident: b0045 article-title: Spirogyra biomass a renewable source for biofuel (bioethanol) production publication-title: Eng. Sci. Technol. – year: 1994 ident: b0005 article-title: Microalgae: Biotechnology and Microbiology – volume: 80 start-page: 571 year: 1997 end-page: 579 ident: b0105 article-title: Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study publication-title: J. AOAC. Int. – volume: 335 start-page: 308 year: 2012 end-page: 313 ident: b0170 article-title: An engineered microbial platform for direct biofuel production from brown macroalgae publication-title: Science – volume: 88 start-page: 3331 year: 2011 end-page: 3335 ident: b0040 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl. Energy – volume: 113 start-page: 244 year: 2012 end-page: 252 ident: b0070 article-title: Effect of light intensity and nitrogen starvation on CO publication-title: Bioresour. Technol. – volume: 102 start-page: 186 year: 2011 end-page: 193 ident: b0090 article-title: Micro and macroalgal biomass: a renewable source for bioethanol publication-title: Bioresour. Technol. – volume: 19 start-page: 161 year: 2009 end-page: 166 ident: b0120 article-title: Hydrothermal acid pretreatment of publication-title: J. Microbiol. Biotechnol. – volume: 6 start-page: 1358 year: 2011 end-page: 1366 ident: b0175 article-title: Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga publication-title: Biotechnol. J. – volume: 14 start-page: 557 year: 2010 end-page: 577 ident: b0010 article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renew. Sust. Energy Rev. – volume: 101 start-page: 4775 year: 2010 end-page: 4800 ident: b0050 article-title: Hemicelluloses for fuel ethanol: a review publication-title: Bioresour. Technol. – volume: 28 start-page: 817 year: 2010 end-page: 830 ident: b0115 article-title: Technological trends, global market, and challenges of bio-ethanol production publication-title: Biotechnol. Adv. – volume: 66 start-page: 506 year: 2002 end-page: 577 ident: b0095 article-title: Microbial cellulose utilization: fundamentals and biotechnology publication-title: Microbiol. Mol. Biol. Rev. – volume: 27 start-page: 631 issue: 8 year: 2000 ident: 10.1016/j.biortech.2012.10.015_b0085 article-title: Increase in Chlorella strains calorific values when grown in low nitrogen medium publication-title: Enzyme Microb. Technol. doi: 10.1016/S0141-0229(00)00266-0 – volume: 3 start-page: 82 year: 2012 ident: 10.1016/j.biortech.2012.10.015_b0035 article-title: The cell walls of green algae: a journey through evolution and diversity publication-title: Frontiers Plant Sci. doi: 10.3389/fpls.2012.00082 – volume: 88 start-page: 3331 issue: 10 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0040 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.03.012 – volume: 66 start-page: 506 issue: 3 year: 2002 ident: 10.1016/j.biortech.2012.10.015_b0095 article-title: Microbial cellulose utilization: fundamentals and biotechnology publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/MMBR.66.3.506-577.2002 – volume: 74 start-page: 937 issue: 5 year: 2007 ident: 10.1016/j.biortech.2012.10.015_b0055 article-title: Towards industrial pentose-fermenting yeast strains publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0827-2 – volume: 19 start-page: 161 issue: 2 year: 2009 ident: 10.1016/j.biortech.2012.10.015_b0120 article-title: Hydrothermal acid pretreatment of Chlamydomonas reinhardtii biomass for ethanol production publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.0810.578 – volume: 83 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.biortech.2012.10.015_b0160 article-title: Hydrolysis of lignocellulosic materials for ethanol production: a review publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(01)00212-7 – volume: 11 start-page: 7 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0145 article-title: Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-11-7 – volume: 28 start-page: 817 issue: 6 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0115 article-title: Technological trends, global market, and challenges of bio-ethanol production publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.07.001 – volume: 113 start-page: 244 year: 2012 ident: 10.1016/j.biortech.2012.10.015_b0070 article-title: Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.11.133 – volume: 12 start-page: 148 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0135 article-title: Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels publication-title: BMC Genomics doi: 10.1186/1471-2164-12-148 – volume: 102 start-page: 8628 issue: 18 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0025 article-title: Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2011.03.053 – volume: 21 start-page: 1279 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0100 article-title: Microalgae Chlorella sp. as an alternative source of fermentable sugars publication-title: Chem. Eng. Trans. – volume: 85 start-page: 199 issue: 2 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0065 article-title: Microalgal biomass as a fermentation feedstock for bioethanol production publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.2287 – volume: 25 start-page: 294 issue: 3 year: 2007 ident: 10.1016/j.biortech.2012.10.015_b0030 article-title: Biodiesel from microalgae publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2007.02.001 – volume: 101 start-page: 5330 issue: 14 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0150 article-title: Enzymatic pretreatment of Chlamydomonas reinhardtii biomass for ethanol production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.02.026 – volume: 6 start-page: 1358 issue: 11 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0175 article-title: Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga C. vulgaris ESP-31: Implications for biofuels publication-title: Biotechnol. J. doi: 10.1002/biot.201000433 – year: 2004 ident: 10.1016/j.biortech.2012.10.015_b0130 – start-page: 1 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0140 article-title: Evaluation of Chlorella (chlorophyta) as source of fermentable sugars via cell wall enzymatic hydrolysis publication-title: Enzyme Res. doi: 10.4061/2011/405603 – volume: 14 start-page: 557 issue: 2 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0010 article-title: Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products publication-title: Renew. Sust. Energy Rev. doi: 10.1016/j.rser.2009.10.009 – volume: 21 start-page: 3684 issue: 6 year: 2007 ident: 10.1016/j.biortech.2012.10.015_b0110 article-title: More accurate determination of acid-labile carbohydrates in lignocellulose by modified quantitative saccharification publication-title: Energy Fuels doi: 10.1021/ef7003893 – volume: 37 start-page: 52 issue: 1 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0125 article-title: Production of liquid biofuels from renewable resources publication-title: Prog. Energ. Combust. doi: 10.1016/j.pecs.2010.01.003 – volume: 53 start-page: 246 issue: 3 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0165 article-title: Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2010.01024.x – volume: 102 start-page: 186 issue: 1 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0090 article-title: Micro and macroalgal biomass: a renewable source for bioethanol publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.139 – volume: 46 start-page: 304 issue: 1 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0060 article-title: Influence of acid pre-treatment on microalgal biomass for bioethanol production publication-title: Process Biochem. doi: 10.1016/j.procbio.2010.08.027 – volume: 29 start-page: 189 issue: 2 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0075 article-title: Perspectives on microalgal CO2-emission mitigation systems – a review publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2010.11.001 – volume: 80 start-page: 571 issue: 3 year: 1997 ident: 10.1016/j.biortech.2012.10.015_b0105 article-title: Measurement of total starch in cereal products by amyloglucosidase-alpha-amylase method: collaborative study publication-title: J. AOAC. Int. doi: 10.1093/jaoac/80.3.571 – volume: 2 start-page: 7045 issue: 12 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0045 article-title: Spirogyra biomass a renewable source for biofuel (bioethanol) production publication-title: Eng. Sci. Technol. – volume: 74 start-page: 858 issue: 4 year: 1996 ident: 10.1016/j.biortech.2012.10.015_b0015 article-title: Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle publication-title: J. Anim. Sci. doi: 10.2527/1996.744858x – volume: 335 start-page: 308 issue: 6066 year: 2012 ident: 10.1016/j.biortech.2012.10.015_b0170 article-title: An engineered microbial platform for direct biofuel production from brown macroalgae publication-title: Science doi: 10.1126/science.1214547 – volume: 101 start-page: 8725 issue: 22 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0080 article-title: Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.112 – volume: 102 start-page: 71 issue: 1 year: 2011 ident: 10.1016/j.biortech.2012.10.015_b0020 article-title: Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.06.159 – volume: 101 start-page: 4775 issue: 13 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0050 article-title: Hemicelluloses for fuel ethanol: a review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.088 – volume: 10 start-page: 8 issue: 1 year: 2010 ident: 10.1016/j.biortech.2012.10.015_b0155 article-title: Bioethanol and biodiesel: alternative liquid fuels for future generations publication-title: Eng. Life Sci. doi: 10.1002/elsc.200900061 – year: 1994 ident: 10.1016/j.biortech.2012.10.015_b0005 |
SSID | ssj0003172 |
Score | 2.5822537 |
Snippet | ► A sugar-rich Chlorella vulgaris FSP-E strain was used as feedstock for ethanol production. ► Enzymatic and acidic hydrolyses can efficiently saccharify the... This study aimed to evaluate the potential of using a carbohydrate-rich microalga Chlorella vulgaris FSP-E as feedstock for bioethanol production via various... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 191 |
SubjectTerms | Acid hydrolysis analysis Biofuels Biofuels - microbiology Biomass biosynthesis Biotechnology Biotechnology - methods Carbohydrate Carbohydrate Metabolism Carbohydrate Metabolism - drug effects Carbohydrates Carbohydrates - biosynthesis Chlorella vulgaris Chlorella vulgaris - drug effects Chlorella vulgaris - growth & development Chlorella vulgaris - metabolism drug effects Enzymatic hydrolysis Ethanol Ethanol - metabolism ethanol production Ethyl alcohol Feedstock feedstocks fermentation Fermentation - drug effects Glucose Glucose - biosynthesis Glucosidases Glucosidases - metabolism growth & development Hydrolysates Hydrolysis Hydrolysis - drug effects Lipids Lipids - analysis metabolism methods Microalgae Microalgae - drug effects Microalgae - growth & development Microalgae - metabolism microbiology Nitrates Nitrates - analysis Nitrogen Nitrogen - pharmacology pharmacology Proteins Proteins - analysis sulfuric acid Sulfuric Acids Sulfuric Acids - pharmacology Time Factors Zymomonas Zymomonas - drug effects Zymomonas - metabolism |
Title | Bioethanol production using carbohydrate-rich microalgae biomass as feedstock |
URI | https://dx.doi.org/10.1016/j.biortech.2012.10.015 https://www.ncbi.nlm.nih.gov/pubmed/23116819 https://www.proquest.com/docview/1338390809 https://www.proquest.com/docview/1431620062 https://www.proquest.com/docview/1500769713 https://www.proquest.com/docview/1709773591 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4hOFAOFdAWUh4yElcn8a69j2OIikIruBQkbiuP44XwyEYhOfTS387MPgKVSjhw9Y5X6xnvzGfPC-CYPTkmCVEalzqpNRqJ3sQSAz1MnHYOy6uB84tocKV_XpvrFeg3uTAcVlnr_kqnl9q6HunU3OxMRqPObwbfiSELRDaMC01xBruOeZe3_76EeZB9LD0JRCyZ-lWW8F0bRxzRWjolVNDmKC9uj_t_A_UWAC0N0ekmfK4RpOhVH7kFK368DRu9m2ldRcNvw3q_aeNGT15VHPwC5yejwvNtefEgJlWxVxKM4Oj3G-HsFIvbP0OuHiHpdbfikcP1ONvDC87TJ6At7JPIyeIRZnT3X-Hq9MdlfyDrjgrSEaybScfto7zmg1ekLMaY2DxROSnLyHYVYjfNNWKAQXdoE8QwiQmQGVKBGPrY5Xn4DVbHxdjvgqCDGqaKqAjQ0RHP2aHy2scRarRBGPoWmIaNmavLjXPXi4esiSu7yxr2Z8x-Hif2t6CzmDepCm68OyNtpJT9s3Uysgrvzj1qxJqRXNhZYse-mD9l5dk9JTydLqHhOgJ8JxMsoTHs7ExjFS6hibsEw0OTqhbsVHtrsXbC3yoi2Pb9A6vcg09B2cWD4zT3YXU2nfsDwlIzPCx_lkNY6539Glw8A-aLH6s |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcigcEBQo4WkkODqJvfY-DhxKoUpp0wut1NvicbxtSslGSSrUC3-KP8jMPkqRID2gXnft1e7YO_PZ8_kbgDecybFphNL6zEtj0EoMNpGozSj1xnustgaG-_Hg0Hw6skcr8LM9C8O0ysb31z698tbNlV5jzd50PO59ZvCdWopAFMNYaKphVu6Gi--0bpu_2_lAg_xW6-2PB1sD2ZQWkJ7wzUJ6rqMUDK9AYuUwwdQVqSrIa8SurxD7WWEQNer-yKWIUco17C35AoxC4osioufegtuG3AWXTej--M0roYBcpS7o7SS_3pVjyaddHDOFtsqCKN1lWhnX4_17RPwX4q0i3_Z9uNdAVrFZW-UBrITJOtzdPJ41sh1hHda22rpxdOeKxOFDGL4fl4G358szMa3VZWkmCKbbHwvvZlieXIxYrkLS407EN-YH8vGSIFgYgJC9cHNRUIglkOq_PoLDG7HzY1idlJPwBAStDDFT1IoQJK0pvRupYEISo0Gnoyh0wLZmzH2jb85lNs7ylsh2mrfmz9n8fJ3M34HeZb9prfBxbY-sHaX8j7maUxi6tu_rdlhzGhfOzrhJKM_nebVZkBGAz5a0YeEC3gTSS9pYzq5miYqWtEn6hPsjm6kObNRz6_LbCfCrmHDi0__4ylewNjgY7uV7O_u7z-COrkqIMEn0OawuZufhBQG5Bb6sfhwBX276T_0FeX5dIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bioethanol+production+using+carbohydrate-rich+microalgae+biomass+as+feedstock&rft.jtitle=Bioresource+technology&rft.au=Ho%2C+Shih-Hsin&rft.au=Huang%2C+Shu-Wen&rft.au=Chen%2C+Chun-Yen&rft.au=Hasunuma%2C+Tomohisa&rft.date=2013-05-01&rft.issn=0960-8524&rft.volume=135&rft.spage=191&rft.epage=198&rft_id=info:doi/10.1016%2Fj.biortech.2012.10.015&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |