Attribute-Level Heterogeneity

Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture-that is, an attribute f...

Full description

Saved in:
Bibliographic Details
Published inManagement science Vol. 61; no. 4; pp. 885 - 897
Main Authors Ebbes, Peter, Liechty, John C., Grewal, Rajdeep
Format Journal Article
LanguageEnglish
Published Linthicum INFORMS 01.04.2015
Institute for Operations Research and the Management Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture-that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity. This paper was accepted by Pradeep Chintagunta, marketing.
AbstractList Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture-that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity. This paper was accepted by Pradeep Chintagunta, marketing.
Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture—that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity.
Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture--that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity. Keywords: heterogeneity; mixture models; hierarchical Bayes; conjoint analysis; reversible-jump MCMC; segmentation History : Received October 5, 2010; accepted November 26, 2013, by Pradeep Chintagunta, marketing. Published online in Articles in Advance April 18, 2014.
Audience Trade
Academic
Author Liechty, John C.
Grewal, Rajdeep
Ebbes, Peter
Author_xml – sequence: 1
  givenname: Peter
  surname: Ebbes
  fullname: Ebbes, Peter
– sequence: 2
  givenname: John C.
  surname: Liechty
  fullname: Liechty, John C.
– sequence: 3
  givenname: Rajdeep
  surname: Grewal
  fullname: Grewal, Rajdeep
BookMark eNqFkd1LwzAUxYNMcJu--jYQfLU1SZsmfRxDnTDwRZ9Dmt7UjH7MJBX239sycQoDCdxA-J1zc--ZoUnbtYDQNcExoYLfN63XMcUkjYnIxRmaEkaziDFMJmiKMWURyXF-gWbebzHGXPBsihbLEJwt-gDRBj6hvllDANdV0IIN-0t0blTt4er7nqO3x4fX1TravDw9r5abSLMkCVFhNM8FzXKjoSxKVhgFWBBCTMFUohnTgClPTSE4J2nBCMGlLjljLNMqESqZo9uD7851Hz34ILdd79qhpaQZ5xkTOE-PVKVqkLY1XXBKN9ZruUxpSjBjST5Q0QlqHMipetiYscPzHz4-wQ-nhMbqk4K7X4Ki97YFPxRvq_fgK9V7f9Jfu857B0bunG2U20uC5RicHIOTY3ByDG4QLA6CrQ-d-6FpOkSZcHIccPyra_x_fl_63aKq
CitedBy_id crossref_primary_10_1287_mksc_2016_1007
crossref_primary_10_1007_s40547_018_0088_0
crossref_primary_10_2139_ssrn_3018425
crossref_primary_10_1108_JM2_11_2020_0309
crossref_primary_10_2139_ssrn_2119337
crossref_primary_10_1007_s11573_023_01156_6
crossref_primary_10_1111_1477_8947_12487
crossref_primary_10_1016_j_ijresmar_2018_07_002
crossref_primary_10_1007_s10479_022_05075_7
crossref_primary_10_1177_0022243720965930
crossref_primary_10_1287_orsc_2020_1392
ContentType Journal Article
Copyright 2015 INFORMS
COPYRIGHT 2015 Institute for Operations Research and the Management Sciences
Copyright Institute for Operations Research and the Management Sciences Apr 2015
Copyright_xml – notice: 2015 INFORMS
– notice: COPYRIGHT 2015 Institute for Operations Research and the Management Sciences
– notice: Copyright Institute for Operations Research and the Management Sciences Apr 2015
DBID AAYXX
CITATION
N95
XI7
8BJ
FQK
JBE
DOI 10.1287/mnsc.2014.1898
DatabaseName CrossRef
Gale_Business Insights: Global
Business Insights: Essentials
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList



CrossRef

International Bibliography of the Social Sciences (IBSS)

DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1526-5501
EndPage 897
ExternalDocumentID A424105539
10_1287_mnsc_2014_1898
24550371
mnsc.2014.1898
Genre Research Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 08R
0R1
1AW
1OL
29M
2AX
3EH
3R3
3V.
4
4.4
41
5GY
6XO
7WY
7X5
85S
8AO
8FI
8FJ
8FL
8VB
AABCJ
AAIKC
AAPBV
AAYJJ
ABBHK
ABEFU
ABIVO
ABNOP
ABPPZ
ABSIS
ABTRL
ABUFD
ABUWG
ABZEH
ACDCL
ACHQT
ACNCT
ACTDY
ACVYA
ACYGS
ADBBV
ADDCT
ADGDI
ADNFJ
AEILP
AENEX
AETEA
AEUPB
AFDAS
AFFDN
AFFNX
AFKRA
AJPNJ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AQNXB
AQSKT
AQUVI
AZQEC
B-7
BBAFP
BENPR
BEZIV
BPHCQ
BVXVI
CBXGM
CCKSF
CS3
CWXUR
CYVLN
DU5
DWQXO
EBA
EBE
EBO
EBR
EBS
EBU
ECR
EHE
EJD
EMK
EPL
F20
F5P
FH7
FRNLG
FYUFA
G8K
GENNL
GNUQQ
GROUPED_ABI_INFORM_ARCHIVE
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUPYA
HGD
HVGLF
H~9
IAO
IEA
IGG
IOF
IPO
ISM
ITC
JAV
JBC
JPL
JSODD
JST
K6
K60
L8O
LI
M0C
M0T
M2M
MV1
N95
NEJ
NIEAY
P-O
P2P
PQEST
PQQKQ
PQUKI
PRINS
PROAC
QWB
REX
RNS
RPU
SA0
SJN
TH9
TN5
U5U
UKR
VOH
VQA
WH7
X
XFK
XHC
XI7
XXP
XZL
Y99
YCJ
YNT
YZZ
ZCG
ZL0
-~X
18M
AABXT
AAMNW
AAWTO
ABDNZ
ABKVW
ABLWH
ABXSQ
ABYYQ
ACGFO
ADEPB
ADNWM
ADULT
AEGXH
AEMOZ
AFAIT
AFTQD
AGHSJ
AHAJD
AIAGR
BAAKF
ICW
IPC
IPY
ISL
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPPEU
K1G
K6~
OFU
XSW
.-4
41~
AAYOK
AAYXX
ADACV
ALIPV
CCPQU
CITATION
IPSME
LPU
PQBIZ
PQBZA
PSYQQ
UKHRP
YYP
AAAZS
AAXLS
ADMHG
APTMU
8BJ
FQK
JBE
ID FETCH-LOGICAL-c533t-bfc798269fcedbd5bfae08111fb5a3c55ce0274fb87714b5110dcd75556ca38a3
ISSN 0025-1909
IngestDate Thu Oct 10 19:08:11 EDT 2024
Thu Feb 22 23:39:41 EST 2024
Fri Feb 02 05:09:26 EST 2024
Fri Feb 02 04:05:48 EST 2024
Tue Oct 08 14:33:49 EDT 2024
Thu Sep 12 18:12:40 EDT 2024
Fri Feb 02 07:49:05 EST 2024
Tue Jan 05 23:26:06 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c533t-bfc798269fcedbd5bfae08111fb5a3c55ce0274fb87714b5110dcd75556ca38a3
PQID 2677658094
PQPubID 40737
PageCount 13
ParticipantIDs informs_primary_10_1287_mnsc_2014_1898
gale_infotracmisc_A424105539
crossref_primary_10_1287_mnsc_2014_1898
gale_businessinsightsgauss_A424105539
jstor_primary_24550371
gale_infotracgeneralonefile_A424105539
proquest_journals_2677658094
gale_infotracacademiconefile_A424105539
ProviderPackageCode Y99
RPU
NIEAY
PublicationCentury 2000
PublicationDate 2015-04-01
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 04
  year: 2015
  text: 2015-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Linthicum
PublicationPlace_xml – name: Linthicum
PublicationTitle Management science
PublicationYear 2015
Publisher INFORMS
Institute for Operations Research and the Management Sciences
Publisher_xml – name: INFORMS
– name: Institute for Operations Research and the Management Sciences
SSID ssj0007876
Score 2.2324052
Snippet Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite...
SourceID proquest
gale
crossref
jstor
informs
SourceType Aggregation Database
Publisher
StartPage 885
SubjectTerms Analysis
Attributes
Bayesian analysis
conjoint analysis
Consumer behavior
Heterogeneity
hierarchical Bayes
Market strategy
Market structure
Marketing
Markov analysis
Markov processes
mixture models
Monte Carlo method
Monte Carlo simulation
Random variables
Reversible
reversible-jump MCMC
segmentation
Simulation
Specification
Title Attribute-Level Heterogeneity
URI https://www.jstor.org/stable/24550371
https://www.proquest.com/docview/2677658094
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbaRa24oNIWQYFqDy09VKaxYyfxcYtAqCorxEPiZtmOjXrogki48Os7jp3dGJCgXKwoGtnJfPE8nHkg9CUXhFFLKqwJuCisoCUWmXOYVU5kTNdUaZ-NfDQtDs_Zrwt-sWi-2mWXtHrX3D2aV_ISVOEe4OqzZP8D2fmkcAOuAV8YAWEYn4XxpA39qiz-7WN_QIcAl66A3P5pk9-1iyCX71HlDb19wgdBIp0HOAXf8Oh0KNEox6DUg9ixUYjRAoPnQYZSLpQ8j2iygciqQsucXvuFaNkHgpX6o4mDv7PGl30kbJdUoXn0vWLVKcFrtERh_1cjtPRzf3p8MleRICWKvpeuf_hYTRMW-ZHOkFgLUWe-CSVlmz6C9IEW7UyDs3doJdr040kAaBW9srP36G2fUvABbd_DaZzg9BGdH-yf7R3i2JYCG7CNW6ydKQV4ZcIZW-uaa6csGFaEOM1Vbjg31vv6TldlSZgGizarTV1yzguj8krla2g0u5rZdTQWuSU1FUopsEutoVpbkmVK1MIR5Sq9gb71ry-vQ_UR6b02YJT0jJKeUdIzagN99dyRsXUpDI0_3Gku1W3TyAmjPpyX5wJm7Og8D9sbZVTMwoDn8YXAEsqdhPIylEF_jHArIQT5ZNJ5ImBPvsJah-ecjPqM-7wksEAPsIy7r5G0KEuwnjPBPj13gU20vNhSW2jU3tzabTApW_05fqD_AM1Bcqk
link.rule.ids 315,783,787,27938,27939,33758
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribute-Level+Heterogeneity&rft.jtitle=Management+science&rft.date=2015-04-01&rft.pub=INFORMS&rft.issn=0025-1909&rft.eissn=1526-5501&rft.volume=61&rft.issue=4&rft.spage=885&rft.epage=897&rft_id=info:doi/10.1287%2Fmnsc.2014.1898&rft.externalDocID=mnsc.2014.1898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon