Attribute-Level Heterogeneity
Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture-that is, an attribute f...
Saved in:
Published in | Management science Vol. 61; no. 4; pp. 885 - 897 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Linthicum
INFORMS
01.04.2015
Institute for Operations Research and the Management Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture-that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity.
This paper was accepted by Pradeep Chintagunta, marketing. |
---|---|
AbstractList | Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture-that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity.
This paper was accepted by Pradeep Chintagunta, marketing. Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture—that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity. Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite mixture specifications for modeling consumer heterogeneity where each regression coefficient has its own finite mixture--that is, an attribute finite mixture model. An important challenge of such an approach to modeling heterogeneity lies in its estimation. A proposed Bayesian estimation approach, based on recent advances in reversible-jump Markov chain Monte Carlo methods, can estimate parameters for the attribute-based finite mixture model, assuming that the number of components for each finite mixture is a discrete random variable. An attribute specification has several advantages over traditional, vector-based, finite mixture specifications; specifically, the attribute mixture model offers a more appropriate aggregation of information than does the vector specification facilitating estimation. In an extensive simulation study and an empirical application, we show that the attribute model can recover complex heterogeneity structures, making it dominant over traditional (vector) finite mixture regression models and a strong contender compared to mixture-of-normals models for modeling heterogeneity. Keywords: heterogeneity; mixture models; hierarchical Bayes; conjoint analysis; reversible-jump MCMC; segmentation History : Received October 5, 2010; accepted November 26, 2013, by Pradeep Chintagunta, marketing. Published online in Articles in Advance April 18, 2014. |
Audience | Trade Academic |
Author | Liechty, John C. Grewal, Rajdeep Ebbes, Peter |
Author_xml | – sequence: 1 givenname: Peter surname: Ebbes fullname: Ebbes, Peter – sequence: 2 givenname: John C. surname: Liechty fullname: Liechty, John C. – sequence: 3 givenname: Rajdeep surname: Grewal fullname: Grewal, Rajdeep |
BookMark | eNqFkd1LwzAUxYNMcJu--jYQfLU1SZsmfRxDnTDwRZ9Dmt7UjH7MJBX239sycQoDCdxA-J1zc--ZoUnbtYDQNcExoYLfN63XMcUkjYnIxRmaEkaziDFMJmiKMWURyXF-gWbebzHGXPBsihbLEJwt-gDRBj6hvllDANdV0IIN-0t0blTt4er7nqO3x4fX1TravDw9r5abSLMkCVFhNM8FzXKjoSxKVhgFWBBCTMFUohnTgClPTSE4J2nBCMGlLjljLNMqESqZo9uD7851Hz34ILdd79qhpaQZ5xkTOE-PVKVqkLY1XXBKN9ZruUxpSjBjST5Q0QlqHMipetiYscPzHz4-wQ-nhMbqk4K7X4Ki97YFPxRvq_fgK9V7f9Jfu857B0bunG2U20uC5RicHIOTY3ByDG4QLA6CrQ-d-6FpOkSZcHIccPyra_x_fl_63aKq |
CitedBy_id | crossref_primary_10_1287_mksc_2016_1007 crossref_primary_10_1007_s40547_018_0088_0 crossref_primary_10_2139_ssrn_3018425 crossref_primary_10_1108_JM2_11_2020_0309 crossref_primary_10_2139_ssrn_2119337 crossref_primary_10_1007_s11573_023_01156_6 crossref_primary_10_1111_1477_8947_12487 crossref_primary_10_1016_j_ijresmar_2018_07_002 crossref_primary_10_1007_s10479_022_05075_7 crossref_primary_10_1177_0022243720965930 crossref_primary_10_1287_orsc_2020_1392 |
ContentType | Journal Article |
Copyright | 2015 INFORMS COPYRIGHT 2015 Institute for Operations Research and the Management Sciences Copyright Institute for Operations Research and the Management Sciences Apr 2015 |
Copyright_xml | – notice: 2015 INFORMS – notice: COPYRIGHT 2015 Institute for Operations Research and the Management Sciences – notice: Copyright Institute for Operations Research and the Management Sciences Apr 2015 |
DBID | AAYXX CITATION N95 XI7 8BJ FQK JBE |
DOI | 10.1287/mnsc.2014.1898 |
DatabaseName | CrossRef Gale_Business Insights: Global Business Insights: Essentials International Bibliography of the Social Sciences (IBSS) International Bibliography of the Social Sciences International Bibliography of the Social Sciences |
DatabaseTitle | CrossRef International Bibliography of the Social Sciences (IBSS) |
DatabaseTitleList | CrossRef International Bibliography of the Social Sciences (IBSS) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Business |
EISSN | 1526-5501 |
EndPage | 897 |
ExternalDocumentID | A424105539 10_1287_mnsc_2014_1898 24550371 mnsc.2014.1898 |
Genre | Research Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | 08R 0R1 1AW 1OL 29M 2AX 3EH 3R3 3V. 4 4.4 41 5GY 6XO 7WY 7X5 85S 8AO 8FI 8FJ 8FL 8VB AABCJ AAIKC AAPBV AAYJJ ABBHK ABEFU ABIVO ABNOP ABPPZ ABSIS ABTRL ABUFD ABUWG ABZEH ACDCL ACHQT ACNCT ACTDY ACVYA ACYGS ADBBV ADDCT ADGDI ADNFJ AEILP AENEX AETEA AEUPB AFDAS AFFDN AFFNX AFKRA AJPNJ AKVCP ALMA_UNASSIGNED_HOLDINGS AQNXB AQSKT AQUVI AZQEC B-7 BBAFP BENPR BEZIV BPHCQ BVXVI CBXGM CCKSF CS3 CWXUR CYVLN DU5 DWQXO EBA EBE EBO EBR EBS EBU ECR EHE EJD EMK EPL F20 F5P FH7 FRNLG FYUFA G8K GENNL GNUQQ GROUPED_ABI_INFORM_ARCHIVE GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUPYA HGD HVGLF H~9 IAO IEA IGG IOF IPO ISM ITC JAV JBC JPL JSODD JST K6 K60 L8O LI M0C M0T M2M MV1 N95 NEJ NIEAY P-O P2P PQEST PQQKQ PQUKI PRINS PROAC QWB REX RNS RPU SA0 SJN TH9 TN5 U5U UKR VOH VQA WH7 X XFK XHC XI7 XXP XZL Y99 YCJ YNT YZZ ZCG ZL0 -~X 18M AABXT AAMNW AAWTO ABDNZ ABKVW ABLWH ABXSQ ABYYQ ACGFO ADEPB ADNWM ADULT AEGXH AEMOZ AFAIT AFTQD AGHSJ AHAJD AIAGR BAAKF ICW IPC IPY ISL JAAYA JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JPPEU K1G K6~ OFU XSW .-4 41~ AAYOK AAYXX ADACV ALIPV CCPQU CITATION IPSME LPU PQBIZ PQBZA PSYQQ UKHRP YYP AAAZS AAXLS ADMHG APTMU 8BJ FQK JBE |
ID | FETCH-LOGICAL-c533t-bfc798269fcedbd5bfae08111fb5a3c55ce0274fb87714b5110dcd75556ca38a3 |
ISSN | 0025-1909 |
IngestDate | Thu Oct 10 19:08:11 EDT 2024 Thu Feb 22 23:39:41 EST 2024 Fri Feb 02 05:09:26 EST 2024 Fri Feb 02 04:05:48 EST 2024 Tue Oct 08 14:33:49 EDT 2024 Thu Sep 12 18:12:40 EDT 2024 Fri Feb 02 07:49:05 EST 2024 Tue Jan 05 23:26:06 EST 2021 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c533t-bfc798269fcedbd5bfae08111fb5a3c55ce0274fb87714b5110dcd75556ca38a3 |
PQID | 2677658094 |
PQPubID | 40737 |
PageCount | 13 |
ParticipantIDs | informs_primary_10_1287_mnsc_2014_1898 gale_infotracmisc_A424105539 crossref_primary_10_1287_mnsc_2014_1898 gale_businessinsightsgauss_A424105539 jstor_primary_24550371 gale_infotracgeneralonefile_A424105539 proquest_journals_2677658094 gale_infotracacademiconefile_A424105539 |
ProviderPackageCode | Y99 RPU NIEAY |
PublicationCentury | 2000 |
PublicationDate | 2015-04-01 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 04 year: 2015 text: 2015-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Linthicum |
PublicationPlace_xml | – name: Linthicum |
PublicationTitle | Management science |
PublicationYear | 2015 |
Publisher | INFORMS Institute for Operations Research and the Management Sciences |
Publisher_xml | – name: INFORMS – name: Institute for Operations Research and the Management Sciences |
SSID | ssj0007876 |
Score | 2.2324052 |
Snippet | Modeling consumer heterogeneity helps practitioners understand market structures and devise effective marketing strategies. In this research we study finite... |
SourceID | proquest gale crossref jstor informs |
SourceType | Aggregation Database Publisher |
StartPage | 885 |
SubjectTerms | Analysis Attributes Bayesian analysis conjoint analysis Consumer behavior Heterogeneity hierarchical Bayes Market strategy Market structure Marketing Markov analysis Markov processes mixture models Monte Carlo method Monte Carlo simulation Random variables Reversible reversible-jump MCMC segmentation Simulation Specification |
Title | Attribute-Level Heterogeneity |
URI | https://www.jstor.org/stable/24550371 https://www.proquest.com/docview/2677658094 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbaRa24oNIWQYFqDy09VKaxYyfxcYtAqCorxEPiZtmOjXrogki48Os7jp3dGJCgXKwoGtnJfPE8nHkg9CUXhFFLKqwJuCisoCUWmXOYVU5kTNdUaZ-NfDQtDs_Zrwt-sWi-2mWXtHrX3D2aV_ISVOEe4OqzZP8D2fmkcAOuAV8YAWEYn4XxpA39qiz-7WN_QIcAl66A3P5pk9-1iyCX71HlDb19wgdBIp0HOAXf8Oh0KNEox6DUg9ixUYjRAoPnQYZSLpQ8j2iygciqQsucXvuFaNkHgpX6o4mDv7PGl30kbJdUoXn0vWLVKcFrtERh_1cjtPRzf3p8MleRICWKvpeuf_hYTRMW-ZHOkFgLUWe-CSVlmz6C9IEW7UyDs3doJdr040kAaBW9srP36G2fUvABbd_DaZzg9BGdH-yf7R3i2JYCG7CNW6ydKQV4ZcIZW-uaa6csGFaEOM1Vbjg31vv6TldlSZgGizarTV1yzguj8krla2g0u5rZdTQWuSU1FUopsEutoVpbkmVK1MIR5Sq9gb71ry-vQ_UR6b02YJT0jJKeUdIzagN99dyRsXUpDI0_3Gku1W3TyAmjPpyX5wJm7Og8D9sbZVTMwoDn8YXAEsqdhPIylEF_jHArIQT5ZNJ5ImBPvsJah-ecjPqM-7wksEAPsIy7r5G0KEuwnjPBPj13gU20vNhSW2jU3tzabTApW_05fqD_AM1Bcqk |
link.rule.ids | 315,783,787,27938,27939,33758 |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Attribute-Level+Heterogeneity&rft.jtitle=Management+science&rft.date=2015-04-01&rft.pub=INFORMS&rft.issn=0025-1909&rft.eissn=1526-5501&rft.volume=61&rft.issue=4&rft.spage=885&rft.epage=897&rft_id=info:doi/10.1287%2Fmnsc.2014.1898&rft.externalDocID=mnsc.2014.1898 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-1909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-1909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-1909&client=summon |