Prediction of the Adaptability of Pseudomonas putida DOT-T1E to a Second Phase of a Solvent for Economically Sound Two-Phase Biotransformations

Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the...

Full description

Saved in:
Bibliographic Details
Published inApplied and Environmental Microbiology Vol. 71; no. 11; pp. 6606 - 6612
Main Authors NEUMANN, Grit, KABELITZ, Nadja, ZEHNSDORF, Andreas, MILTNER, Anja, LIPPOLD, Holger, MEYER, Daniel, SCHMID, Andreas, HEIPIEPER, Hermann J
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for Microbiology 01.11.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
AbstractList The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria. [PUBLICATION ABSTRACT]
Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue AEM About AEM Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy AEM RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0099-2240 Online ISSN: 1098-5336 Copyright © 2014 by the American Society for Microbiology.   For an alternate route to AEM .asm.org, visit: AEM       
ABSTRACT The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400 mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.
Author Andreas Schmid
Hermann J. Heipieper
Nadja Kabelitz
Andreas Zehnsdorf
Daniel Meyer
Anja Miltner
Holger Lippold
Grit Neumann
AuthorAffiliation Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany, 1 Environmental and Biotechnology Centre (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany, 2 Institute of Interdisciplinary Isotope Research (IIF), Permoserstrasse 15, 04318 Leipzig, Germany, 3 Institute of Biotechnology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland, 4 Chair of Chemical Biotechnology and Institute for Analytical Sciences, University of Dortmund, 44227 Dortmund, Germany 5
AuthorAffiliation_xml – name: Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany, 1 Environmental and Biotechnology Centre (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany, 2 Institute of Interdisciplinary Isotope Research (IIF), Permoserstrasse 15, 04318 Leipzig, Germany, 3 Institute of Biotechnology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland, 4 Chair of Chemical Biotechnology and Institute for Analytical Sciences, University of Dortmund, 44227 Dortmund, Germany 5
Author_xml – sequence: 1
  givenname: Grit
  surname: NEUMANN
  fullname: NEUMANN, Grit
  organization: Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 2
  givenname: Nadja
  surname: KABELITZ
  fullname: KABELITZ, Nadja
  organization: Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 3
  givenname: Andreas
  surname: ZEHNSDORF
  fullname: ZEHNSDORF, Andreas
  organization: Environmental and Biotechnology Centre (UBZ), Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 4
  givenname: Anja
  surname: MILTNER
  fullname: MILTNER, Anja
  organization: Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 5
  givenname: Holger
  surname: LIPPOLD
  fullname: LIPPOLD, Holger
  organization: Institute of Interdisciplinary Isotope Research (IIF), Permoserstrasse 15, 04318 Leipzig, Germany
– sequence: 6
  givenname: Daniel
  surname: MEYER
  fullname: MEYER, Daniel
  organization: Institute of Biotechnology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
– sequence: 7
  givenname: Andreas
  surname: SCHMID
  fullname: SCHMID, Andreas
  organization: University of Dortmund, 44227 Dortmund, Germany
– sequence: 8
  givenname: Hermann J
  surname: HEIPIEPER
  fullname: HEIPIEPER, Hermann J
  organization: Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17244883$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16269688$$D View this record in MEDLINE/PubMed
BookMark eNpdkVFv0zAQxy00xLrBV0AWErylnB3HTl6QyugAaWiVKM-W6zirpyQudrKpn4KvvIta0cGDZevud-f_3f-CnPWhd4RQBnPGePlxsfwxVwzfcylBZlIyPucAxQsyY1CVWZHn8ozMAKoq41zAOblI6R4ABMjyFTlnkstKluWM_FlFV3s7-NDT0NBh6-iiNrvBbHzrh_0UWyU31qELvUl0Nw6-NvTL7TpbsyUdAjX0p7Ohr-lqa5KbeIyE9sH1A21CpEtMhs5b07Z7TIxIrh9DdqA_-zBE0ycEOzNpSK_Jy8a0yb053pfk1_VyffUtu7n9-v1qcZNZnG3IDLCiBsucYoXiVVOyGlQD1jCxEcwJrhS4ylkoeFMLWypVqnwzHQXSiia_JJ8OfXfjpnO1RbnRtHoXfWfiXgfj9b-Z3m_1XXjQuH4l8wIbfDg2iOH36NKgO5-sa1vTuzAmzapKFqoUCL77D7wPY-xxOM2hQIizCqHyANkYUoqu-auEgZ4s12i5VgzferJcT5bryXIsfft8klPh0WME3h8Bk9CGBhdufTpxiguB2Eno1t9tH3102qROG9c9-zd_AlaOwx8
CODEN AEMIDF
CitedBy_id crossref_primary_10_1093_femsre_fuv006
crossref_primary_10_1016_j_ymben_2022_11_006
crossref_primary_10_1128_AEM_00949_12
crossref_primary_10_1007_s00253_011_3229_z
crossref_primary_10_1111_1751_7915_12061
crossref_primary_10_1111_j_1751_7915_2011_00286_x
crossref_primary_10_1007_s00253_006_0833_4
crossref_primary_10_1007_s00253_010_2975_7
crossref_primary_10_3390_metabo6020014
crossref_primary_10_1128_AEM_02904_05
crossref_primary_10_1007_s00253_007_1036_3
crossref_primary_10_1016_j_chemosphere_2017_03_031
crossref_primary_10_1002_bit_21257
crossref_primary_10_1007_s00253_008_1809_3
crossref_primary_10_1186_1472_6750_6_23
crossref_primary_10_1016_j_gca_2018_07_037
crossref_primary_10_1271_bbb_80627
crossref_primary_10_1007_s00253_006_0703_0
crossref_primary_10_1016_j_bej_2016_03_010
crossref_primary_10_1186_s13568_018_0718_9
crossref_primary_10_1128_AEM_00225_09
crossref_primary_10_1007_s10295_015_1615_8
crossref_primary_10_1002_bit_21483
crossref_primary_10_1002_jobm_201600710
crossref_primary_10_1016_j_biotechadv_2018_05_007
crossref_primary_10_1111_j_1462_2920_2007_01276_x
crossref_primary_10_1128_AEM_01142_08
crossref_primary_10_1007_s12010_012_0069_y
crossref_primary_10_1016_j_biortech_2011_08_015
crossref_primary_10_1128_AEM_00694_13
crossref_primary_10_3390_microorganisms11040837
crossref_primary_10_1128_AEM_02900_13
crossref_primary_10_1177_1934578X1501000667
crossref_primary_10_1111_j_1365_2672_2007_03666_x
crossref_primary_10_1002_bit_21941
crossref_primary_10_3390_molecules25112589
crossref_primary_10_1111_1751_7915_12413
crossref_primary_10_5012_jkcs_2009_53_3_325
crossref_primary_10_5352_JLS_2015_25_12_1458
crossref_primary_10_1007_s00253_014_5668_9
crossref_primary_10_1002_biot_201900569
crossref_primary_10_1007_s00253_019_09812_0
crossref_primary_10_1016_j_mib_2009_02_001
crossref_primary_10_1080_10242420802393519
crossref_primary_10_1007_s00253_018_8832_9
crossref_primary_10_1007_s00253_011_3442_9
crossref_primary_10_1111_j_1758_2229_2011_00255_x
crossref_primary_10_1111_j_1742_4658_2008_06648_x
Cites_doi 10.1016/S0168-1656(01)00252-8
10.1246/bcsj.31.1081
10.1126/science.1079237
10.1016/S0378-1097(03)00792-4
10.1016/0167-7799(94)90029-9
10.1016/0003-2697(76)90527-3
10.1128/JB.181.18.5693-5700.1999
10.1002/bit.260300112
10.1016/S0141-0229(98)00078-7
10.1016/0141-0229(93)90001-I
10.1016/S0304-4157(96)00010-X
10.1016/0006-291X(73)91494-0
10.1016/S0378-1119(99)00113-4
10.1038/35051736
10.1128/jb.177.14.3911-3916.1995
10.1016/S0167-7799(98)01234-7
10.1021/bp00008a006
10.1146/annurev.micro.56.012302.161038
10.1016/S0378-1097(03)00103-4
10.1016/S0022-2275(20)40190-7
10.1016/S0021-9258(17)37154-5
10.1128/aem.58.6.1847-1852.1992
10.1007/s002530000381
10.1128/mr.59.2.201-222.1995
10.1128/AEM.71.4.1915-1922.2005
10.1007/s002530100808
10.1128/aem.61.11.3889-3893.1995
10.1128/aem.55.11.2850-2855.1989
10.1002/bit.10313
10.1016/0045-6535(95)00015-Z
10.1128/AEM.67.9.4338-4341.2001
10.1139/o59-099
10.1038/338264a0
10.1046/j.1462-2920.1999.00033.x
10.1128/aem.62.8.2773-2777.1996
10.1128/AEM.70.6.3637-3643.2004
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright American Society for Microbiology Nov 2005
Copyright © 2005, American Society for Microbiology 2005
Copyright_xml – notice: 2006 INIST-CNRS
– notice: Copyright American Society for Microbiology Nov 2005
– notice: Copyright © 2005, American Society for Microbiology 2005
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7TV
5PM
DOI 10.1128/AEM.71.11.6606-6612.2005
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
Pollution Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Pollution Abstracts
DatabaseTitleList MEDLINE

Virology and AIDS Abstracts

Technology Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Biology
EISSN 1098-5336
EndPage 6612
ExternalDocumentID 936877751
10_1128_AEM_71_11_6606_6612_2005
16269688
17244883
aem_71_11_6606
Genre Evaluation Studies
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
08R
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
85S
AAPBV
AAUGY
AAZTW
ABOGM
ABPPZ
ABPTK
ABTAH
ACBTR
ACGFO
ACIWK
ACNCT
ACPRK
ADBBV
AENEX
AFFNX
AFMIJ
AFRAH
AGCDD
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C1A
CS3
D0L
DIK
E.-
E3Z
EBS
EJD
F20
F5P
GX1
H13
HYE
HZ~
H~9
IQODW
K-O
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
PQQKQ
RHF
RHI
RNS
RPM
RSF
RXW
TAE
TAF
TN5
TR2
TWZ
UCJ
UHB
VH1
W8F
WH7
WHG
WOQ
X6Y
X7M
XFK
XJT
YV5
ZA5
ZCG
ZGI
ZXP
ZY4
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ADUKH
AGVNZ
CITATION
7QL
7QO
7SN
7SS
7ST
7T7
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
SOI
7TV
5PM
ID FETCH-LOGICAL-c533t-a015d0c1e715729f81d07f0ca14b41e42770e9ec052fd4c877873b873b706c4f3
IEDL.DBID RPM
ISSN 0099-2240
IngestDate Tue Sep 17 21:28:17 EDT 2024
Fri Aug 16 22:21:59 EDT 2024
Fri Sep 13 06:49:43 EDT 2024
Thu Sep 12 16:32:11 EDT 2024
Thu May 23 23:10:32 EDT 2024
Sun Oct 29 17:08:35 EDT 2023
Wed May 18 15:27:50 EDT 2016
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Pseudomonadales
Organic solvent
Biphasic system
Biotransformation
Prediction
Alkanol
Tolerance
Bacteria
Pseudomonadaceae
Pseudomonas putida
Adaptation
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-a015d0c1e715729f81d07f0ca14b41e42770e9ec052fd4c877873b873b706c4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Corresponding author. Mailing address: Department of Bioremediation, Centre for Environmental Research Leipzig-Halle (UFZ), Permoserstr. 15, 04318 Leipzig, Germany. Phone: 49 341 235 2772. Fax: 49 341 235 2492. E-mail: hermann.heipieper@ufz.de.
OpenAccessLink https://doi.org/10.1128/aem.71.11.6606-6612.2005
PMID 16269688
PQID 205965219
PQPubID 42251
PageCount 7
ParticipantIDs pubmed_primary_16269688
proquest_miscellaneous_19965784
proquest_journals_205965219
highwire_asm_aem_71_11_6606
pascalfrancis_primary_17244883
crossref_primary_10_1128_AEM_71_11_6606_6612_2005
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1287635
PublicationCentury 2000
PublicationDate 2005-11-01
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Applied and Environmental Microbiology
PublicationTitleAlternate Appl Environ Microbiol
PublicationYear 2005
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References 16535373 - Appl Environ Microbiol. 1996 Aug;62(8):2773-7
4585693 - Biochem Biophys Res Commun. 1973 Sep 18;54(2):796-9
10968630 - Appl Microbiol Biotechnol. 2000 Aug;54(2):180-5
8132524 - J Biol Chem. 1994 Mar 18;269(11):8022-8
7608060 - J Bacteriol. 1995 Jul;177(14):3911-6
15812020 - Appl Environ Microbiol. 2005 Apr;71(4):1915-22
18576586 - Biotechnol Bioeng. 1987 Jul;30(1):81-7
10333523 - Gene. 1999 May 17;232(1):69-76
11762602 - Appl Microbiol Biotechnol. 2001 Nov;57(4):541-7
12142492 - Annu Rev Microbiol. 2002;56:743-68
11377761 - J Biotechnol. 2001 Jun 1;88(1):11-9
942051 - Anal Biochem. 1976 May 7;72:248-54
13671378 - Can J Biochem Physiol. 1959 Aug;37(8):911-7
7764006 - Enzyme Microb Technol. 1993 Sep;15(9):722-9
15184168 - Appl Environ Microbiol. 2004 Jun;70(6):3637-43
10482510 - J Bacteriol. 1999 Sep;181(18):5693-700
12637735 - Science. 2003 Mar 14;299(5613):1694-7
11207738 - Environ Microbiol. 1999 Jun;1(3):191-8
11196655 - Nature. 2001 Jan 11;409(6817):258-68
1622260 - Appl Environ Microbiol. 1992 Jun;58(6):1847-52
7603409 - Microbiol Rev. 1995 Jun;59(2):201-22
8526501 - Appl Environ Microbiol. 1995 Nov;61(11):3889-93
1367167 - Biotechnol Prog. 1991 Mar-Apr;7(2):116-24
16348047 - Appl Environ Microbiol. 1989 Nov;55(11):2850-5
12670684 - FEMS Microbiol Lett. 2003 Mar 28;220(2):223-7
8982284 - Biochim Biophys Acta. 1996 Oct 29;1286(3):225-45
11526042 - Appl Environ Microbiol. 2001 Sep;67(9):4338-41
14221106 - J Lipid Res. 1964 Oct;5:600-8
14659535 - FEMS Microbiol Lett. 2003 Dec 5;229(1):1-7
12209805 - Biotechnol Bioeng. 2002 Sep 20;79(6):587-94
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
(e_1_3_2_28_2) 1979; 14
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
(e_1_3_2_33_2) 2004; 2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_15_2
  doi: 10.1016/S0168-1656(01)00252-8
– ident: e_1_3_2_19_2
  doi: 10.1246/bcsj.31.1081
– ident: e_1_3_2_31_2
  doi: 10.1126/science.1079237
– ident: e_1_3_2_12_2
  doi: 10.1016/S0378-1097(03)00792-4
– ident: e_1_3_2_14_2
  doi: 10.1016/0167-7799(94)90029-9
– ident: e_1_3_2_3_2
  doi: 10.1016/0003-2697(76)90527-3
– ident: e_1_3_2_17_2
  doi: 10.1128/JB.181.18.5693-5700.1999
– ident: e_1_3_2_20_2
  doi: 10.1002/bit.260300112
– ident: e_1_3_2_22_2
  doi: 10.1016/S0141-0229(98)00078-7
– ident: e_1_3_2_36_2
  doi: 10.1016/0141-0229(93)90001-I
– ident: e_1_3_2_38_2
  doi: 10.1016/S0304-4157(96)00010-X
– ident: e_1_3_2_21_2
  doi: 10.1016/0006-291X(73)91494-0
– ident: e_1_3_2_24_2
  doi: 10.1016/S0378-1119(99)00113-4
– ident: e_1_3_2_30_2
  doi: 10.1038/35051736
– ident: e_1_3_2_26_2
  doi: 10.1128/jb.177.14.3911-3916.1995
– volume: 2
  start-page: 479
  year: 2004
  ident: e_1_3_2_33_2
  publication-title: The pseudomonads
– ident: e_1_3_2_5_2
  doi: 10.1016/S0167-7799(98)01234-7
– ident: e_1_3_2_4_2
  doi: 10.1021/bp00008a006
– ident: e_1_3_2_25_2
  doi: 10.1146/annurev.micro.56.012302.161038
– ident: e_1_3_2_18_2
  doi: 10.1016/S0378-1097(03)00103-4
– ident: e_1_3_2_23_2
  doi: 10.1016/S0022-2275(20)40190-7
– ident: e_1_3_2_34_2
  doi: 10.1016/S0021-9258(17)37154-5
– ident: e_1_3_2_10_2
  doi: 10.1128/aem.58.6.1847-1852.1992
– ident: e_1_3_2_39_2
  doi: 10.1007/s002530000381
– ident: e_1_3_2_35_2
  doi: 10.1128/mr.59.2.201-222.1995
– ident: e_1_3_2_7_2
  doi: 10.1128/AEM.71.4.1915-1922.2005
– ident: e_1_3_2_9_2
  doi: 10.1007/s002530100808
– ident: e_1_3_2_6_2
  doi: 10.1128/aem.61.11.3889-3893.1995
– ident: e_1_3_2_8_2
  doi: 10.1128/aem.55.11.2850-2855.1989
– ident: e_1_3_2_37_2
  doi: 10.1002/bit.10313
– ident: e_1_3_2_11_2
  doi: 10.1016/0045-6535(95)00015-Z
– ident: e_1_3_2_27_2
  doi: 10.1128/AEM.67.9.4338-4341.2001
– ident: e_1_3_2_2_2
  doi: 10.1139/o59-099
– ident: e_1_3_2_16_2
  doi: 10.1038/338264a0
– ident: e_1_3_2_32_2
  doi: 10.1046/j.1462-2920.1999.00033.x
– ident: e_1_3_2_13_2
  doi: 10.1128/aem.62.8.2773-2777.1996
– volume: 14
  start-page: 479
  year: 1979
  ident: e_1_3_2_28_2
  publication-title: J. Eur. Med. Chem.
– ident: e_1_3_2_29_2
  doi: 10.1128/AEM.70.6.3637-3643.2004
SSID ssj0004068
Score 2.1014595
Snippet Classifications Services AEM Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit...
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase...
ABSTRACT The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in...
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6606
SubjectTerms 1-Octanol - metabolism
Adaptability
Adaptation, Physiological
Bacteria
Bioconversions. Hemisynthesis
Biological and medical sciences
Bioreactors
Biotechnology
Biotechnology - methods
Cells
Culture Media
Fatty Alcohols - metabolism
Fermentation
Fundamental and applied biological sciences. Psychology
Methods. Procedures. Technologies
Microbiology
Physiology and Biotechnology
Predictive Value of Tests
Pseudomonas putida
Pseudomonas putida - growth & development
Pseudomonas putida - metabolism
Pseudomonas putida - physiology
Solvents
Solvents - metabolism
Toluene - analogs & derivatives
Toluene - metabolism
Water
Title Prediction of the Adaptability of Pseudomonas putida DOT-T1E to a Second Phase of a Solvent for Economically Sound Two-Phase Biotransformations
URI http://aem.asm.org/content/71/11/6606.abstract
https://www.ncbi.nlm.nih.gov/pubmed/16269688
https://www.proquest.com/docview/205965219/abstract/
https://search.proquest.com/docview/19965784
https://pubmed.ncbi.nlm.nih.gov/PMC1287635
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6tkxDwgKD8CoPiB17T2okTJ4_V6DSBCkV00t4sx3G0SW1SLalQ_wr-Zc5JvKWIJx4qRfHZaXt3vs_x-TuAT7TI0qzggc-4iXyOgNrPaJijLTOTcbSiWNvDyctv8eUV_3IdXZ9A5M7CtEn7OrudlpvttLy9aXMrd1s9c3lis9XyHOdUy6M2G8FIhKFborvDkDROHPWkjVcufSdIZvPFcioYXk9jxO0-hqaWirKtXoPAPu3qrwzCk6MMthmTqsY_reiqXfwLjv6dVTkIUxfP4VmPL8m8-x0v4MSUY3jUVZw8jOGxO4hcj-HpgIvwJfxe3dk9G6snUhUEcSGZ52rXdDzeB3tvVZt9XqHdqprs0GBzRT5_X_trtiBNRRT5aRfXOVndYGS08nin2th8SoLImLgnq83mgA17lFz_qvxOGr9gM4DQ6Aqv4OpisT6_9PtqDb5GyNj4CoFFTjUzgkWI2AsEwlQUVCvGM84MD4SgJjWaRkGRc50InCrCzH4EjTUvwtdwWlaleQskpSaJQ2UC7MM1FSpJC0tNSJlGvMSoB8wpSe46Ug7ZLmaCRKKOpWB4La2OpdWxLbUZeXDmtClVvZXKbAdyHkyOFPwwrED8kyQhdncal72X1zhulMaIf1IPPt63onvaPRdVmmpfS5vkjZMi9-BNZx0PI_cW54E4spt7AUv8fdyC_tASgPf2_-6_e57Bk46C1r5Keg-nzd3efEBw1WQTGH39kUxal_oDB2Ugpg
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFH4aQ2hw4EcZEAabD1yT2qkTJ8dqbCqwjkp0aDfLcRxtok2qJRUq_wT_Ms9JvbUTFzhEiuJnt02-5_e5ef4ewAdaZGlW8NBn3EQ-R0LtZ3SQI5aZyTiiKNZ2c_L4PB5d8M-X0eUORG4vTJu0r7ProJzNg_L6qs2tXMx13-WJ9SfjY5xTrY5a_wE8RH8NhVuku-2QNE6c-KSNWC6BJ0z6w5NxIBieBzEydx-DUytG2davQWqfdhVYNgKUEw22OZOqxttWdPUu_kZI7-dVbgSq02fw3f3ELj_lR7BsskD_uqf--M_34Dk8XVNXMuyaX8COKXvwqCtmuerBntvjXPfgyYbM4Uv4Pbmxr4MsBEhVEKScZJirRdNJhK_stUltlnmFLqFqskBfyBX5-HXqT9kJaSqiyDe7bs_J5AqDrrXHK9XMpmoSJN3EfbKazVbYsETL6c_K76zxCzYb7By9bB8uTk-mxyN_XQjC18hGG18hZ8mpZkawCBcDBXJsKgqqFeMZZ4aHQlCTGk2jsMi5TgTOQoPMHoLGmheDV7BbVqV5AySlJokHyoTYh2sqVJIWVvWQMo1UjFEPmHv6ctHpfch2nRQmEsEjBcNzacEjLXhsFc_IgwMHE6nquVRmvmHnweEWcu6GFUitkmSA3R2U5HoCqXHcKI2RWqUeHN22oufb1zmqNNWyljZ_HOdb7sHrDnZ3I6-h7IHYAuStgdUU325BmLXa4mtYvf3vnkewN5qOz-TZp_MvB_C4U7q1_1i9g93mZmneI4drssPWY_8ARRxBqQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb5swFD7aOu32sEt2Y91aP-wVsInB8Bi1ibpLukhLpWovyBijVksgKkRT9if2l3cMcUuqPfUBCeFjE9B3jj-H4-8AfKJFlmQFD1zGdehyJNRuRoc5YpnpjCOKImU2J09Po5Mz_uU8PO-V-mqT9lV26ZWLpVdeXrS5laul8m2emD-bHmFMNTpq_iov_PvwAH02SOxC3W6JpFFsBSjNrGWTeILYH42nnmB47kXI3l2coFpByraGDdL7pKvC0pukrHCwyZuUNb66oqt58T9Seju3sjdZTZ7DT_uYXY7KL2_dZJ76c0sB8k7v4QU821JYMupMXsI9XQ7gYVfUcjOAx3avcz2Apz25w1fwd3ZlPgsZKJCqIEg9ySiXq6aTCt-Ya7Nar_MKXUPWZIU-kUty_H3uztmYNBWR5IdZv-dkdoGTr7HHK9XCpGwSJN_E3lkuFhtsWKPl_Hfldtb4A5seS0dvew1nk_H86MTdFoRwFbLSxpXIXXKqmBYsxEVBgVybioIqyXjGmeaBEFQnWtEwKHKuYoHRaJiZQ9BI8WL4BvbKqtTvgCRUx9FQ6gD7cEWFjJPCqB9SppCSMeoAswhIV53uR9qul4I4RQClguF5agCUGgCZap6hA_sWKqmsl6nUy56dAwc76LkZViDFiuMhdrdwSreBpMZxwyRCipU4cHjdihHAfNaRpa7WdWryyDHucgfedtC7GXkLZwfEDiivDYy2-G4LQq3VGN9C6_2dex7Co9nxJP32-fTrPjzpBG_NH1cfYK-5WuuPSOWa7KB12n9e1kQp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+the+Adaptability+of+Pseudomonas+putida+DOT-T1E+to+a+Second+Phase+of+a+Solvent+for+Economically+Sound+Two-Phase+Biotransformations&rft.jtitle=Applied+and+environmental+microbiology&rft.au=Neumann%2C+Grit&rft.au=Kabelitz%2C+Nadja&rft.au=Zehnsdorf%2C+Andreas&rft.au=Miltner%2C+Anja&rft.date=2005-11-01&rft.pub=American+Society+for+Microbiology&rft.issn=0099-2240&rft.eissn=1098-5336&rft.volume=71&rft.issue=11&rft.spage=6606&rft.epage=6612&rft_id=info:doi/10.1128%2FAEM.71.11.6606-6612.2005&rft_id=info%3Apmid%2F16269688&rft.externalDBID=PMC1287635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0099-2240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0099-2240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0099-2240&client=summon