Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1
Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes an...
Saved in:
Published in | The Journal of biological chemistry Vol. 284; no. 42; pp. 28865 - 28873 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
16.10.2009
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. |
---|---|
AbstractList | Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring
electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce
both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting
direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached
to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer
in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential
window centered at â¼0 V ( versus standard hydrogen electrode), and was altered in single (Î omcA , Î mtrC ) and double deletion (Î omcA /Î mtrC ) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated
electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (â0.2 V). Scan rate analysis
indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (â¼1 s â1 ). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer
mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities
in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations
and demonstrates the complementary nature of S. oneidensis electron transfer strategies. Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at a1/40 V (versus standard hydrogen electrode), and was altered in single ([delta]omcA, [delta]mtrC) and double deletion ([delta]omcA/[delta]mtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (-0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (a1/41 s super(-1)). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ~0 V (versus standard hydrogen electrode), and was altered in single (∆omcA, ∆mtrC) and double deletion (∆omcA/∆mtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (-0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (~1 s¹). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V ( versus standard hydrogen electrode), and was altered in single (Δ omcA , Δ mtrC ) and double deletion (Δ omcA /Δ mtrC ) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s −1 ). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at ∼0 V (versus standard hydrogen electrode), and was altered in single (ΔomcA, ΔmtrC) and double deletion (ΔomcA/ΔmtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (−0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (∼1 s−1). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at approximately 0 V (versus standard hydrogen electrode), and was altered in single (DeltaomcA, DeltamtrC) and double deletion (DeltaomcA/DeltamtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (-0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (approximately 1 s(-1)). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at approximately 0 V (versus standard hydrogen electrode), and was altered in single (DeltaomcA, DeltamtrC) and double deletion (DeltaomcA/DeltamtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (-0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (approximately 1 s(-1)). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies.Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring electrons from the cell interior to surfaces located beyond the cell. Although purified outer membrane cytochromes will reduce both electrodes and metals, S. oneidensis also secretes flavins, which accelerate electron transfer to metals and electrodes. We developed techniques for detecting direct electron transfer by intact cells, using turnover and single turnover voltammetry. Metabolically active cells attached to graphite electrodes produced thin (submonolayer) films that demonstrated both catalytic and reversible electron transfer in the presence and absence of flavins. In the absence of soluble flavins, electron transfer occurred in a broad potential window centered at approximately 0 V (versus standard hydrogen electrode), and was altered in single (DeltaomcA, DeltamtrC) and double deletion (DeltaomcA/DeltamtrC) mutants of outer membrane cytochromes. The addition of soluble flavins at physiological concentrations significantly accelerated electron transfer and allowed catalytic electron transfer to occur at lower applied potentials (-0.2 V). Scan rate analysis indicated that rate constants for direct electron transfer were slower than those reported for pure cytochromes (approximately 1 s(-1)). These observations indicated that anodic current in the higher (>0 V) window is due to activation of a direct transfer mechanism, whereas electron transfer at lower potentials is enabled by flavins. The electrochemical dissection of these activities in living cells into two systems with characteristic midpoint potentials and kinetic behaviors explains prior observations and demonstrates the complementary nature of S. oneidensis electron transfer strategies. |
Author | Baron, Daniel LaBelle, Edward Bond, Daniel R. Gralnick, Jeffrey A. Coursolle, Dan |
Author_xml | – sequence: 1 givenname: Daniel surname: Baron fullname: Baron, Daniel organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108 – sequence: 2 givenname: Edward surname: LaBelle fullname: LaBelle, Edward organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108 – sequence: 3 givenname: Dan surname: Coursolle fullname: Coursolle, Dan organization: Department of Biochemistry, Biophysics, and Molecular Biology, University of Minnesota, St. Paul, Minnesota 55108 – sequence: 4 givenname: Jeffrey A. surname: Gralnick fullname: Gralnick, Jeffrey A. organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108 – sequence: 5 givenname: Daniel R. surname: Bond fullname: Bond, Daniel R. email: dbond@umn.edu organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota 55108 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19661057$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1v1DAQxS1URLeFMzeUA4JTth7biZMLEqrKh-gKCYrgZjnOpHGV2K2dbdX_HqdZPiWKfbBk_97Ms-YdkD3nHRLyFOgaqBRHF41Zb4DWayq4KIoHZAW04jkv4NseWVHKIK9ZUe2TgxgvaFqihkdkH-qyBFrIFfl6MqCZgjc9jtboIdugjtuAI7op8122e3bZWdAudhiyD9bhZE3Mmtvsc4832uEw6Cz5si26aGO2-ZTDY_Kw00PEJ7vzkHx5c3J2_C4__fj2_fHr09wUnE95ZYB2yRbjLchaYEV12rUpKYWukrVuhJbaNE26MCCYLBuoK6h4ww0tRMcPyaul7uW2GbE1yXbQg7oMdtThVnlt1Z8vzvbq3F8rJisQnKUCL3cFgr_aYpzUaKOZv-TQb6OSXFBZy1Ik8sW9pCgFpDHAf0EGUDC46_3sd_M_Xf8YTwKOFsAEH2PA7hdC1RwAlQKg5gCoJQBJUfylMHbSk_Xz7-1wj-75ouvteX9jA6rG3oVCsUoowdJRlTNWLximmV5bDCoai85gmyRmUq23_2zxHUiS02Y |
CitedBy_id | crossref_primary_10_1007_s11274_023_03582_8 crossref_primary_10_3389_fmicb_2020_00262 crossref_primary_10_1002_adma_202109442 crossref_primary_10_1111_j_1365_2958_2012_08088_x crossref_primary_10_1016_j_jhazmat_2023_133171 crossref_primary_10_1016_j_scitotenv_2023_169766 crossref_primary_10_1002_anie_201400463 crossref_primary_10_1016_j_copbio_2011_01_009 crossref_primary_10_1186_s13068_014_0118_6 crossref_primary_10_1016_j_biortech_2018_03_039 crossref_primary_10_1128_AEM_06803_11 crossref_primary_10_1002_anie_201000315 crossref_primary_10_1149_1945_7111_ab9e39 crossref_primary_10_1016_j_electacta_2011_03_076 crossref_primary_10_1021_acs_biochem_2c00148 crossref_primary_10_1021_acs_est_5b00006 crossref_primary_10_1038_s41467_019_13219_w crossref_primary_10_1016_j_jpowsour_2017_02_032 crossref_primary_10_1002_er_3706 crossref_primary_10_1016_j_scitotenv_2022_153443 crossref_primary_10_1007_s11431_019_9509_8 crossref_primary_10_1111_j_1472_4669_2012_00321_x crossref_primary_10_1016_j_electacta_2019_03_085 crossref_primary_10_1002_ep_13427 crossref_primary_10_1016_j_bioelechem_2022_108354 crossref_primary_10_1016_j_jpowsour_2016_05_078 crossref_primary_10_1021_acscatal_5b01733 crossref_primary_10_1039_C4CP03197K crossref_primary_10_1039_C6RA24835G crossref_primary_10_1016_j_scitotenv_2022_156501 crossref_primary_10_1016_j_bios_2016_08_037 crossref_primary_10_1002_celc_201500234 crossref_primary_10_1016_j_biortech_2011_04_008 crossref_primary_10_1071_MA14065 crossref_primary_10_1016_j_renene_2019_12_018 crossref_primary_10_1111_j_1365_2958_2010_07266_x crossref_primary_10_1371_journal_pone_0169955 crossref_primary_10_1002_elan_201400578 crossref_primary_10_1016_j_bioelechem_2019_107334 crossref_primary_10_1038_srep01616 crossref_primary_10_4236_ajac_2019_1010033 crossref_primary_10_1016_j_electacta_2013_02_051 crossref_primary_10_1142_S0218339019500037 crossref_primary_10_1039_C6TA09766A crossref_primary_10_1039_B917952F crossref_primary_10_1016_j_bios_2012_12_029 crossref_primary_10_1016_j_chempr_2017_01_001 crossref_primary_10_1021_acs_iecr_7b05314 crossref_primary_10_1002_bit_25624 crossref_primary_10_1016_j_coelec_2021_100763 crossref_primary_10_1111_j_1365_2958_2010_07353_x crossref_primary_10_1016_j_bioelechem_2015_03_011 crossref_primary_10_1039_C6CC00976J crossref_primary_10_1002_celc_202200965 crossref_primary_10_1128_spectrum_04081_23 crossref_primary_10_1007_s00792_011_0394_z crossref_primary_10_1039_D1GC02094C crossref_primary_10_1080_07388551_2019_1662367 crossref_primary_10_1002_cphc_201100246 crossref_primary_10_3390_pr8040416 crossref_primary_10_1002_slct_201602021 crossref_primary_10_1128_AEM_01460_12 crossref_primary_10_1016_j_electacta_2021_139305 crossref_primary_10_1016_j_corsci_2025_112694 crossref_primary_10_1021_es2025214 crossref_primary_10_1016_j_ibiod_2019_104842 crossref_primary_10_1146_annurev_micro_092611_150104 crossref_primary_10_1021_es201737g crossref_primary_10_1016_j_jpowsour_2016_03_033 crossref_primary_10_1021_sb300042w crossref_primary_10_1039_c0ee00242a crossref_primary_10_1038_s44222_024_00233_x crossref_primary_10_1039_C6RA22152A crossref_primary_10_1039_c2cc35595g crossref_primary_10_1002_celc_202001274 crossref_primary_10_1128_AEM_00436_10 crossref_primary_10_3389_fenrg_2022_920266 crossref_primary_10_1016_j_procbio_2015_07_016 crossref_primary_10_1007_s13399_020_00615_2 crossref_primary_10_1186_s13068_017_0881_2 crossref_primary_10_1021_acsenergylett_6b00435 crossref_primary_10_1016_j_bios_2017_03_006 crossref_primary_10_1002_elan_201900686 crossref_primary_10_1016_j_fuel_2020_118938 crossref_primary_10_3389_fmicb_2014_00318 crossref_primary_10_1021_acs_est_0c00141 crossref_primary_10_1021_jacs_4c12311 crossref_primary_10_1007_s00253_011_3653_0 crossref_primary_10_1039_C5RA26125B crossref_primary_10_1128_AEM_00903_17 crossref_primary_10_1021_acs_analchem_0c01650 crossref_primary_10_1042_EBC20200178 crossref_primary_10_1021_acssynbio_2c00208 crossref_primary_10_1128_aem_00795_24 crossref_primary_10_1021_acssynbio_2c00323 crossref_primary_10_1016_j_bioelechem_2011_12_003 crossref_primary_10_1016_j_jece_2022_108255 crossref_primary_10_1016_j_procbio_2012_07_032 crossref_primary_10_3389_fmicb_2023_1150091 crossref_primary_10_1128_AEM_02183_12 crossref_primary_10_1016_j_cej_2019_123238 crossref_primary_10_1109_JPROC_2015_2410303 crossref_primary_10_1002_cssc_201100733 crossref_primary_10_1016_j_electacta_2017_11_160 crossref_primary_10_1007_s12274_019_2534_1 crossref_primary_10_1038_srep03307 crossref_primary_10_1371_journal_pone_0016649 crossref_primary_10_1016_j_biortech_2020_123322 crossref_primary_10_1016_j_bioelechem_2016_01_008 crossref_primary_10_1002_aenm_201501535 crossref_primary_10_1016_j_synbio_2025_01_001 crossref_primary_10_1007_s00253_014_6005_z crossref_primary_10_1039_D1TB00680K crossref_primary_10_3389_fmicb_2019_00409 crossref_primary_10_1016_j_biortech_2017_04_075 crossref_primary_10_1021_acssynbio_6b00349 crossref_primary_10_1002_bit_28702 crossref_primary_10_1002_elan_201000499 crossref_primary_10_4155_bfs_10_25 crossref_primary_10_1039_c3cp53759e crossref_primary_10_1039_C8RA00951A crossref_primary_10_1002_er_3305 crossref_primary_10_1073_pnas_2107939118 crossref_primary_10_1016_j_bioelechem_2017_09_013 crossref_primary_10_1016_j_scitotenv_2020_144335 crossref_primary_10_3390_membranes10090205 crossref_primary_10_1016_j_bioelechem_2011_02_006 crossref_primary_10_1002_bit_26094 crossref_primary_10_3389_fenrg_2019_00095 crossref_primary_10_1016_j_electacta_2021_137864 crossref_primary_10_1128_mBio_01210_19 crossref_primary_10_1016_j_xcrp_2023_101368 crossref_primary_10_1016_j_ijhydene_2024_12_407 crossref_primary_10_1021_am500624k crossref_primary_10_1080_15567036_2012_670686 crossref_primary_10_1002_slct_201700748 crossref_primary_10_1002_celc_201500505 crossref_primary_10_1016_j_bios_2017_07_008 crossref_primary_10_1016_j_fuel_2022_123369 crossref_primary_10_1371_journal_pone_0147899 crossref_primary_10_1016_j_bioelechem_2021_107826 crossref_primary_10_1039_c1cc10159e crossref_primary_10_1021_es402749f crossref_primary_10_1016_j_bioelechem_2017_10_005 crossref_primary_10_1021_acs_est_6b04640 crossref_primary_10_1128_mBio_01074_21 crossref_primary_10_1016_j_bioelechem_2017_10_001 crossref_primary_10_1016_j_electacta_2015_03_105 crossref_primary_10_1021_acs_estlett_9b00707 crossref_primary_10_1002_ange_201400463 crossref_primary_10_1007_s11120_022_00912_z crossref_primary_10_1016_j_bios_2010_11_027 crossref_primary_10_1016_j_bios_2016_08_091 crossref_primary_10_1016_j_chemosphere_2014_05_039 crossref_primary_10_1039_c1ee02511b crossref_primary_10_1007_s12566_012_0033_x crossref_primary_10_1002_cssc_201000213 crossref_primary_10_1039_D3TC02294C crossref_primary_10_1016_j_tcb_2012_09_002 crossref_primary_10_35848_1347_4065_ac5291 crossref_primary_10_1016_j_electacta_2015_04_139 crossref_primary_10_1016_j_electacta_2017_04_059 crossref_primary_10_1016_j_energy_2019_04_124 crossref_primary_10_1111_j_1472_4669_2009_00226_x crossref_primary_10_1128_JB_00925_09 crossref_primary_10_1002_adma_201500487 crossref_primary_10_1038_srep03732 crossref_primary_10_1111_1462_2920_15131 crossref_primary_10_1016_j_ijhydene_2014_03_203 crossref_primary_10_1038_s41598_018_37025_4 crossref_primary_10_2166_wst_2016_059 crossref_primary_10_3390_en8031817 crossref_primary_10_1021_es101013e crossref_primary_10_1038_s41522_020_00147_7 crossref_primary_10_1016_j_electacta_2011_02_073 crossref_primary_10_1080_09593330_2015_1080764 crossref_primary_10_3390_pr9061038 crossref_primary_10_1021_sb500331x crossref_primary_10_1016_S1001_0742_13_60518_5 crossref_primary_10_1039_C6EM00219F crossref_primary_10_1039_c2ra21727a crossref_primary_10_1038_s41598_024_73474_w crossref_primary_10_1002_celc_201901618 crossref_primary_10_1002_ange_201000315 crossref_primary_10_1016_j_biortech_2013_08_108 crossref_primary_10_1016_j_procbio_2013_11_008 crossref_primary_10_1016_j_bioflm_2024_100193 crossref_primary_10_1039_C6CP04509J crossref_primary_10_1128_mBio_00190_10 crossref_primary_10_1039_D4LF00291A crossref_primary_10_1016_j_ijhydene_2023_08_303 crossref_primary_10_1128_JB_00347_18 crossref_primary_10_1007_s00449_025_03141_5 crossref_primary_10_1039_C5CC03188E crossref_primary_10_1039_C4CP01023J crossref_primary_10_1016_j_bioelechem_2012_05_002 crossref_primary_10_1016_j_jpowsour_2017_05_101 crossref_primary_10_1371_journal_pone_0109935 crossref_primary_10_1128_AEM_00935_10 crossref_primary_10_3389_fmicb_2018_03293 crossref_primary_10_1016_j_renene_2021_01_149 crossref_primary_10_1016_j_chemosphere_2014_09_070 crossref_primary_10_1007_s11120_023_01061_7 crossref_primary_10_1021_ja405072z crossref_primary_10_1016_j_jpowsour_2016_08_009 crossref_primary_10_1128_AEM_00852_19 crossref_primary_10_1016_j_biortech_2016_04_016 crossref_primary_10_1016_j_chemosphere_2023_141073 crossref_primary_10_1016_j_jpowsour_2014_11_127 crossref_primary_10_1128_jb_00469_22 crossref_primary_10_1128_AEM_01693_17 crossref_primary_10_1007_s11274_020_2801_z crossref_primary_10_1016_j_colsurfb_2010_10_015 crossref_primary_10_1021_acs_analchem_2c05155 crossref_primary_10_1016_j_mimet_2010_05_011 crossref_primary_10_1016_j_electacta_2014_11_103 crossref_primary_10_1098_rsif_2014_1117 crossref_primary_10_1038_s41467_020_17897_9 crossref_primary_10_1016_j_bios_2015_08_035 crossref_primary_10_3389_fbioe_2021_705414 crossref_primary_10_1016_j_etap_2018_07_006 |
Cites_doi | 10.1016/S0065-2911(04)49005-5 10.1039/b002290j 10.1128/AEM.00177-08 10.1128/AEM.01387-07 10.1039/b802363h 10.1021/ja980380c 10.1016/j.bioelechem.2009.02.010 10.1099/00221287-146-3-551 10.1038/35011098 10.1073/pnas.0604517103 10.1128/JB.00514-08 10.1021/jp981023r 10.1002/anie.200801310 10.1007/s00775-007-0278-y 10.1021/ja9534361 10.1128/AEM.01454-08 10.1021/es0109287 10.1016/S0022-0728(79)80075-3 10.1016/S0005-2736(98)00111-4 10.1111/j.1365-2958.2007.05778.x 10.1021/jp072060y 10.1016/j.electacta.2008.02.056 10.1016/j.ica.2007.07.015 10.1128/AEM.00544-09 10.1128/JB.182.1.67-75.2000 10.1128/JB.01966-05 10.1007/s10008-006-0183-2 10.1016/S0141-0229(01)00478-1 10.1021/ja012638w 10.1039/b816647a 10.1371/journal.pbio.0040268 10.1128/AEM.67.1.260-269.2001 10.1128/AEM.71.8.4414-4426.2005 10.1021/es800312v 10.1529/biophysj.108.134411 10.1073/pnas.0710525105 10.1111/j.1365-2958.2007.05783.x 10.1021/ja063526d 10.1128/AEM.72.4.2925-2935.2006 10.1146/annurev.mi.48.100194.001523 10.1128/JB.01518-06 10.1021/ja9723242 10.1021/pr7007658 10.1023/A:1008993029309 10.1128/AEM.00146-07 10.1042/bst0270206 10.1128/AEM.00840-08 10.1021/es702569y 10.1016/j.jinorgbio.2007.07.020 10.1002/bit.21671 10.1007/s00775-008-0398-z 10.1021/jp0718698 10.1039/cs9972600169 10.1128/JB.01698-06 10.1016/S0014-5793(03)00206-0 10.1016/j.gca.2006.04.029 10.1016/j.cbpa.2005.02.011 |
ContentType | Journal Article |
Copyright | 2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2009 by The American Society for Biochemistry and Molecular Biology, Inc. |
Copyright_xml | – notice: 2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2009 by The American Society for Biochemistry and Molecular Biology, Inc. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K 7S9 L.6 7X8 5PM |
DOI | 10.1074/jbc.M109.043455 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1083-351X |
EndPage | 28873 |
ExternalDocumentID | PMC2781432 19661057 10_1074_jbc_M109_043455 284_42_28865 S0021925820382545 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM008347 – fundername: NIGMS NIH HHS grantid: 2T32-GM008347-16 |
GroupedDBID | --- -DZ -ET -~X .55 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFFNX AFMIJ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F20 F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B MVM N9A OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ X7M XFK XSW YQT YSK YWH YZZ ZA5 ZE2 ~02 ~KM - 02 55 AAWZA ABFLS ABPTK ABUFD ABZEH ADACO ADCOW AEILP AIZTS DL DZ ET FH7 H13 KM LI LI0 MYA O0- X XHC .7T .GJ 0R~ 186 3O- 41~ 6TJ AALRI AAYJJ AAYOK AAYWO AAYXX ABFSI ACSFO ACVFH ACYGS ADCNI ADVLN ADXHL AEUPX AFPUW AI. AIGII AITUG AKBMS AKRWK AKYEP CITATION E.L FA8 J5H NHB OHT QZG UQL VH1 WHG XJT Y6R YYP ZGI ZY4 CGR CUY CVF ECM EIF NPM Z5M 7QL C1K 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c533t-8c10f00023d1794e80a0a09c6001f879ab4a7acbb600c14276b198183b3c054f3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:36:32 EDT 2025 Fri Jul 11 02:07:25 EDT 2025 Fri Jul 11 03:15:28 EDT 2025 Fri Jul 11 07:37:23 EDT 2025 Wed Feb 19 02:29:35 EST 2025 Tue Jul 01 01:53:19 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Tue Jan 05 14:52:48 EST 2021 Fri Feb 23 02:46:52 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c533t-8c10f00023d1794e80a0a09c6001f879ab4a7acbb600c14276b198183b3c054f3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://dx.doi.org/10.1074/jbc.M109.043455 |
PMID | 19661057 |
PQID | 21152132 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2781432 proquest_miscellaneous_734079764 proquest_miscellaneous_46410431 proquest_miscellaneous_21152132 pubmed_primary_19661057 crossref_primary_10_1074_jbc_M109_043455 crossref_citationtrail_10_1074_jbc_M109_043455 highwire_biochem_284_42_28865 elsevier_sciencedirect_doi_10_1074_jbc_M109_043455 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-10-16 |
PublicationDateYYYYMMDD | 2009-10-16 |
PublicationDate_xml | – month: 10 year: 2009 text: 2009-10-16 day: 16 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2009 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Srikanth, Marsili, Flickinger, Bond (bib40) 2008; 99 Shi, Squier, Zachara, Fredrickson (bib31) 2007; 65 Taillefert, Beckler, Carey, Burns, Fennessey, DiChristina (bib18) 2007; 101 Busalmen, Esteve-Nunez, Feliu (bib54) 2008; 42 Ross, Ruebush, Brantley, Hartshorne, Clarke, Richardson, Tien (bib9) 2007; 73 Kerisit, Rosso, Dupuis, Valiev (bib33) 2007; 111 Xing, Zuo, Cheng, Regan, Logan (bib61) 2008; 42 Busalmen, Esteve-Nunez, Berna, Feliu (bib55) 2008; 47 Eggleston, Voros, Shi, Lower, Droubay, Colberg (bib56) 2008; 361 Gralnick, Newman (bib4) 2007; 65 Richter, Nevin, Jia, Lowy, Lovley, Tender (bib42) 2009; 2 Hirst, Duff, Jameson, Kemper, Burgess, Armstrong (bib48) 1998; 120 Dumas, Basseguy, Bergel (bib43) 2008; 53 Ruebush, Brantley, Tien (bib12) 2006; 72 Fourmond, Hoke, Heering, Baffert, Leroux, Bertrand, Lèger (bib46) 2009; 76 Shi, Chen, Wang, Elias, Mayer, Gorby, Ni, Lower, Kennedy, Wunschel, Mottaz, Marshall, Hill, Beliaev, Zachara, Fredrickson, Squier (bib10) 2006; 188 Armstrong, Heering, Hirst (bib47) 1997; 26 Xiong, Shi, Chen, Mayer, Lower, Londer, Bose, Hochella, Fredrickson, Squier (bib58) 2006; 128 Marsili, Baron, Shikhare, Coursolle, Gralnick, Bond (bib23) 2008; 105 Baymann, Barlow, Aubert, Schoepp-Cothenet, Leroy, Armstrong (bib57) 2003; 539 Richardson (bib1) 2000; 146 Gorby, Yanina, McLean, Rosso, Moyles, Dohnalkova, Beveridge, Chang, Kim, Kim, Culley, Reed, Romine, Saffarini, Hill, Shi, Elias, Kennedy, Pinchuk, Watanabe, Ishii, Logan, Nealson, Fredrickson (bib14) 2006; 103 Lovley, Holmes, Nevin (bib3) 2004; 49 Haas, DiChristina (bib17) 2002; 36 Bard, Faulkner (bib50) 2001 Laviron (bib49) 1979; 101 Kim, Hyun, Chang, Kim (bib21) 1999; 9 Nealson, Scott (bib5) 2005 Armstrong, Camba, Heering, Hirst, Jeuken, Jones, Leger, McEvoy (bib51) 2000; 116 Kim, Ikeda, Park, Kim, Hyun, Kano, Takagi, Tatsumi (bib19) 1999; 13 Zhang, Tang, Munske, Zakharova, Yang, Zheng, Wolff, Tolic, Anderson, Shi, Marshall, Fredrickson, Bruce (bib26) 2008; 7 Marsili, Rollefson, Baron, Hozalski, Bond (bib41) 2008; 74 Lower, Shi, Yongsunthon, Droubay, McCready, Lower (bib32) 2007; 189 Armstrong (bib37) 1999; 27 Jeuken, Jones, Chapman, Cecchini, Armstrong (bib38) 2002; 124 Wang, Liu, Wang, Marshall, Zachara, Rosso, Dupuis, Fredrickson, Heald, Shi (bib27) 2008; 74 Shi, Deng, Marshall, Wang, Kennedy, Dohnalkova, Mottaz, Hill, Gorby, Beliaev, Richardson, Zachara, Fredrickson (bib28) 2008; 190 Hartshorne, Jepson, Clarke, Field, Fredrickson, Zachara, Shi, Butt, Richardson (bib11) 2007; 12 Kim, Park, Hyun, Chang, Kim, Kim (bib22) 2002; 30 Murphy, Saltikov (bib52) 2007; 189 Heering, Hirst, Armstrong (bib36) 1998; 102 Lies, Hernandez, Kappler, Mielke, Gralnick, Newman (bib16) 2005; 71 Nealson, Saffarini (bib2) 1994; 48 Blanford, Armstrong (bib60) 2006; 10 Hau, Gilbert, Coursolle, Gralnick (bib45) 2008; 74 Marshall, Beliaev, Dohnalkova, Kennedy, Shi, Wang, Boyanov, Lai, Kemner, McLean, Reed, Culley, Bailey, Simonson, Saffarini, Romine, Zachara, Fredrickson (bib34) 2006; 4 Newman, Kolter (bib15) 2000; 405 Hirst, Sucheta, Ackrell, Armstrong (bib53) 1996; 118 Armstrong (bib39) 2005; 9 Bonneville, Behrends, Van Cappellen, Hyacinthe, Roling (bib59) 2006; 70 Myers, Myers (bib6) 1998; 1373 Wigginton, Rosso (bib30) 2007; 111 Fricke, Harnisch, Schröder (bib44) 2008; 1 Ross, Brantley, Tien (bib25) 2009; 75 Kim, Kim, Hyun, Park (bib20) 1999; 9 Myers, Myers (bib8) 2001; 67 von Canstein, Ogawa, Shimizu, Lloyd (bib24) 2008; 74 Firer-Sherwood, Pulcu, Elliott (bib29) 2008; 13 El-Naggar, Gorby, Xia, Nealson (bib13) 2008; 95 Myers, Myers (bib7) 2000; 182 Heering, Weiner, Armstrong (bib35) 1997; 119 Fourmond (10.1074/jbc.M109.043455_bib46) 2009; 76 Hirst (10.1074/jbc.M109.043455_bib53) 1996; 118 Murphy (10.1074/jbc.M109.043455_bib52) 2007; 189 Lovley (10.1074/jbc.M109.043455_bib3) 2004; 49 Haas (10.1074/jbc.M109.043455_bib17) 2002; 36 Eggleston (10.1074/jbc.M109.043455_bib56) 2008; 361 Marsili (10.1074/jbc.M109.043455_bib41) 2008; 74 Richter (10.1074/jbc.M109.043455_bib42) 2009; 2 Wigginton (10.1074/jbc.M109.043455_bib30) 2007; 111 Armstrong (10.1074/jbc.M109.043455_bib51) 2000; 116 Richardson (10.1074/jbc.M109.043455_bib1) 2000; 146 Busalmen (10.1074/jbc.M109.043455_bib55) 2008; 47 Kim (10.1074/jbc.M109.043455_bib22) 2002; 30 Laviron (10.1074/jbc.M109.043455_bib49) 1979; 101 Srikanth (10.1074/jbc.M109.043455_bib40) 2008; 99 Ross (10.1074/jbc.M109.043455_bib25) 2009; 75 Armstrong (10.1074/jbc.M109.043455_bib37) 1999; 27 Armstrong (10.1074/jbc.M109.043455_bib39) 2005; 9 Newman (10.1074/jbc.M109.043455_bib15) 2000; 405 Bard (10.1074/jbc.M109.043455_bib50) 2001 Myers (10.1074/jbc.M109.043455_bib6) 1998; 1373 Kim (10.1074/jbc.M109.043455_bib20) 1999; 9 Hirst (10.1074/jbc.M109.043455_bib48) 1998; 120 Fricke (10.1074/jbc.M109.043455_bib44) 2008; 1 Shi (10.1074/jbc.M109.043455_bib31) 2007; 65 Heering (10.1074/jbc.M109.043455_bib35) 1997; 119 Baymann (10.1074/jbc.M109.043455_bib57) 2003; 539 Myers (10.1074/jbc.M109.043455_bib8) 2001; 67 Blanford (10.1074/jbc.M109.043455_bib60) 2006; 10 Dumas (10.1074/jbc.M109.043455_bib43) 2008; 53 Wang (10.1074/jbc.M109.043455_bib27) 2008; 74 Hartshorne (10.1074/jbc.M109.043455_bib11) 2007; 12 Armstrong (10.1074/jbc.M109.043455_bib47) 1997; 26 Bonneville (10.1074/jbc.M109.043455_bib59) 2006; 70 Ross (10.1074/jbc.M109.043455_bib9) 2007; 73 Shi (10.1074/jbc.M109.043455_bib10) 2006; 188 Myers (10.1074/jbc.M109.043455_bib7) 2000; 182 Jeuken (10.1074/jbc.M109.043455_bib38) 2002; 124 Ruebush (10.1074/jbc.M109.043455_bib12) 2006; 72 El-Naggar (10.1074/jbc.M109.043455_bib13) 2008; 95 Taillefert (10.1074/jbc.M109.043455_bib18) 2007; 101 Kim (10.1074/jbc.M109.043455_bib19) 1999; 13 Kim (10.1074/jbc.M109.043455_bib21) 1999; 9 Shi (10.1074/jbc.M109.043455_bib28) 2008; 190 Lower (10.1074/jbc.M109.043455_bib32) 2007; 189 Xing (10.1074/jbc.M109.043455_bib61) 2008; 42 Zhang (10.1074/jbc.M109.043455_bib26) 2008; 7 Gralnick (10.1074/jbc.M109.043455_bib4) 2007; 65 von Canstein (10.1074/jbc.M109.043455_bib24) 2008; 74 Nealson (10.1074/jbc.M109.043455_bib2) 1994; 48 Marshall (10.1074/jbc.M109.043455_bib34) 2006; 4 Busalmen (10.1074/jbc.M109.043455_bib54) 2008; 42 Kerisit (10.1074/jbc.M109.043455_bib33) 2007; 111 Gorby (10.1074/jbc.M109.043455_bib14) 2006; 103 Xiong (10.1074/jbc.M109.043455_bib58) 2006; 128 Heering (10.1074/jbc.M109.043455_bib36) 1998; 102 Lies (10.1074/jbc.M109.043455_bib16) 2005; 71 Marsili (10.1074/jbc.M109.043455_bib23) 2008; 105 Firer-Sherwood (10.1074/jbc.M109.043455_bib29) 2008; 13 Hau (10.1074/jbc.M109.043455_bib45) 2008; 74 Nealson (10.1074/jbc.M109.043455_bib5) 2005 |
References_xml | – volume: 12 start-page: 1083 year: 2007 end-page: 1094 ident: bib11 publication-title: J. Biol. Inorg. Chem. – volume: 405 start-page: 94 year: 2000 end-page: 97 ident: bib15 publication-title: Nature – volume: 189 start-page: 2283 year: 2007 end-page: 2290 ident: bib52 publication-title: J. Bacteriol. – volume: 119 start-page: 11628 year: 1997 end-page: 11638 ident: bib35 publication-title: J. Am. Chem. Soc. – volume: 189 start-page: 4944 year: 2007 end-page: 4952 ident: bib32 publication-title: J. Bacteriol. – volume: 118 start-page: 5031 year: 1996 end-page: 5038 ident: bib53 publication-title: J. Am. Chem. Soc. – volume: 75 start-page: 5218 year: 2009 end-page: 5226 ident: bib25 publication-title: Appl. Environ. Microbiol. – volume: 1 start-page: 144 year: 2008 end-page: 147 ident: bib44 publication-title: Energy Environ. Sci. – volume: 47 start-page: 4874 year: 2008 end-page: 4877 ident: bib55 publication-title: Angew. Chem. Int. – volume: 65 start-page: 1 year: 2007 end-page: 11 ident: bib4 publication-title: Mol. Microbiol. – volume: 111 start-page: 12857 year: 2007 end-page: 12864 ident: bib30 publication-title: J. Phys. Chem. B – volume: 95 start-page: L10 year: 2008 end-page: L12 ident: bib13 publication-title: Biophys. J. – volume: 13 start-page: 475 year: 1999 end-page: 478 ident: bib19 publication-title: Biotechnol. Tech. – volume: 105 start-page: 3968 year: 2008 end-page: 3973 ident: bib23 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 7 start-page: 1712 year: 2008 end-page: 1720 ident: bib26 publication-title: J. Proteome. Res. – volume: 13 start-page: 849 year: 2008 end-page: 854 ident: bib29 publication-title: J. Biol. Inorg. Chem. – volume: 99 start-page: 1065 year: 2008 end-page: 1073 ident: bib40 publication-title: Biotechnol. Bioeng. – volume: 48 start-page: 311 year: 1994 end-page: 343 ident: bib2 publication-title: Annu. Rev. Microbiol. – volume: 74 start-page: 615 year: 2008 end-page: 623 ident: bib24 publication-title: Appl. Environ. Microbiol. – volume: 190 start-page: 5512 year: 2008 end-page: 5516 ident: bib28 publication-title: J. Bacteriol. – volume: 74 start-page: 6746 year: 2008 end-page: 6755 ident: bib27 publication-title: Appl. Environ. Microbiol. – volume: 36 start-page: 373 year: 2002 end-page: 380 ident: bib17 publication-title: Environ. Sci. Technol. – volume: 2 start-page: 506 year: 2009 end-page: 516 ident: bib42 publication-title: Energy Env. Sci. – volume: 120 start-page: 7085 year: 1998 end-page: 7094 ident: bib48 publication-title: J. Am. Chem. Soc. – volume: 1373 start-page: 237 year: 1998 end-page: 251 ident: bib6 publication-title: BBA-Biomembranes – volume: 26 start-page: 169 year: 1997 end-page: 179 ident: bib47 publication-title: Chem. Soc. Rev. – volume: 124 start-page: 5702 year: 2002 end-page: 5713 ident: bib38 publication-title: J. Am. Chem. Soc. – volume: 361 start-page: 769 year: 2008 end-page: 777 ident: bib56 publication-title: Inorg. Chim. Acta – volume: 74 start-page: 7329 year: 2008 end-page: 7337 ident: bib41 publication-title: Appl. Environ. Microbiol. – volume: 30 start-page: 145 year: 2002 end-page: 152 ident: bib22 publication-title: Enzyme Microb. Technol. – volume: 53 start-page: 5235 year: 2008 end-page: 5241 ident: bib43 publication-title: Electrochim. Acta – volume: 116 start-page: 191 year: 2000 end-page: 203 ident: bib51 publication-title: Faraday Disc. – volume: 182 start-page: 67 year: 2000 end-page: 75 ident: bib7 publication-title: J. Bacteriol. – volume: 9 start-page: 365 year: 1999 end-page: 367 ident: bib21 publication-title: J. Microbiol. Biotechnol. – volume: 70 start-page: 5842 year: 2006 end-page: 5854 ident: bib59 publication-title: Geochim. Cosmochim. Acta – volume: 128 start-page: 13978 year: 2006 end-page: 13979 ident: bib58 publication-title: J. Am. Chem. Soc. – volume: 188 start-page: 4705 year: 2006 end-page: 4714 ident: bib10 publication-title: J. Bacteriol. – volume: 4 start-page: e268 year: 2006 ident: bib34 publication-title: PLoS Biol. – volume: 73 start-page: 5797 year: 2007 end-page: 5808 ident: bib9 publication-title: Appl. Environ. Microbiol. – volume: 102 start-page: 6889 year: 1998 end-page: 6902 ident: bib36 publication-title: J. Phys. Chem. B – volume: 27 start-page: 206 year: 1999 end-page: 210 ident: bib37 publication-title: Bioc. Soc. Tran. – volume: 101 start-page: 1760 year: 2007 end-page: 1767 ident: bib18 publication-title: J. Inorg. Biochem. – volume: 67 start-page: 260 year: 2001 end-page: 269 ident: bib8 publication-title: Appl. Environ. Microbiol. – volume: 9 start-page: 127 year: 1999 end-page: 131 ident: bib20 publication-title: J. Microbiol. Biotechnol. – volume: 74 start-page: 6880 year: 2008 end-page: 6886 ident: bib45 publication-title: Appl. Environ. Microbiol. – year: 2001 ident: bib50 publication-title: Electrochemical Methods – volume: 103 start-page: 11358 year: 2006 end-page: 11363 ident: bib14 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 9 start-page: 110 year: 2005 end-page: 117 ident: bib39 publication-title: Curr. Opinion Chem. Biol. – volume: 42 start-page: 4146 year: 2008 end-page: 4151 ident: bib61 publication-title: Environ. Sci. Technol. – volume: 42 start-page: 2445 year: 2008 end-page: 2450 ident: bib54 publication-title: Env. Sci. Technol. – volume: 10 start-page: 826 year: 2006 end-page: 832 ident: bib60 publication-title: J. Solid State Electrochem. – volume: 539 start-page: 91 year: 2003 end-page: 94 ident: bib57 publication-title: FEBS Lett. – start-page: 1133 year: 2005 end-page: 1151 ident: bib5 article-title: The Prokaryotes – volume: 49 start-page: 219 year: 2004 end-page: 286 ident: bib3 publication-title: Adv. Microb. Physiol. – volume: 71 start-page: 4414 year: 2005 end-page: 4426 ident: bib16 publication-title: Appl. Environ. Microbiol. – volume: 76 start-page: 141 year: 2009 end-page: 147 ident: bib46 publication-title: Bioelectrochemistry – volume: 65 start-page: 12 year: 2007 end-page: 20 ident: bib31 publication-title: Mol. Microbiol. – volume: 101 start-page: 19 year: 1979 end-page: 28 ident: bib49 publication-title: J. Electroanal. Chem. – volume: 146 start-page: 551 year: 2000 end-page: 571 ident: bib1 publication-title: Microbiology – volume: 111 start-page: 11363 year: 2007 end-page: 11375 ident: bib33 publication-title: J. Phys. Chem. C – volume: 72 start-page: 2925 year: 2006 end-page: 2935 ident: bib12 publication-title: Appl. Environ. Microbiol. – volume: 49 start-page: 219 year: 2004 ident: 10.1074/jbc.M109.043455_bib3 publication-title: Adv. Microb. Physiol. doi: 10.1016/S0065-2911(04)49005-5 – volume: 116 start-page: 191 year: 2000 ident: 10.1074/jbc.M109.043455_bib51 publication-title: Faraday Disc. doi: 10.1039/b002290j – volume: 74 start-page: 7329 year: 2008 ident: 10.1074/jbc.M109.043455_bib41 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00177-08 – volume: 74 start-page: 615 year: 2008 ident: 10.1074/jbc.M109.043455_bib24 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01387-07 – volume: 1 start-page: 144 year: 2008 ident: 10.1074/jbc.M109.043455_bib44 publication-title: Energy Environ. Sci. doi: 10.1039/b802363h – volume: 120 start-page: 7085 year: 1998 ident: 10.1074/jbc.M109.043455_bib48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja980380c – volume: 76 start-page: 141 year: 2009 ident: 10.1074/jbc.M109.043455_bib46 publication-title: Bioelectrochemistry doi: 10.1016/j.bioelechem.2009.02.010 – volume: 146 start-page: 551 year: 2000 ident: 10.1074/jbc.M109.043455_bib1 publication-title: Microbiology doi: 10.1099/00221287-146-3-551 – volume: 405 start-page: 94 year: 2000 ident: 10.1074/jbc.M109.043455_bib15 publication-title: Nature doi: 10.1038/35011098 – volume: 103 start-page: 11358 year: 2006 ident: 10.1074/jbc.M109.043455_bib14 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0604517103 – volume: 190 start-page: 5512 year: 2008 ident: 10.1074/jbc.M109.043455_bib28 publication-title: J. Bacteriol. doi: 10.1128/JB.00514-08 – volume: 102 start-page: 6889 year: 1998 ident: 10.1074/jbc.M109.043455_bib36 publication-title: J. Phys. Chem. B doi: 10.1021/jp981023r – volume: 47 start-page: 4874 year: 2008 ident: 10.1074/jbc.M109.043455_bib55 publication-title: Angew. Chem. Int. doi: 10.1002/anie.200801310 – volume: 12 start-page: 1083 year: 2007 ident: 10.1074/jbc.M109.043455_bib11 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-007-0278-y – volume: 118 start-page: 5031 year: 1996 ident: 10.1074/jbc.M109.043455_bib53 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9534361 – volume: 74 start-page: 6746 year: 2008 ident: 10.1074/jbc.M109.043455_bib27 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01454-08 – volume: 36 start-page: 373 year: 2002 ident: 10.1074/jbc.M109.043455_bib17 publication-title: Environ. Sci. Technol. doi: 10.1021/es0109287 – volume: 101 start-page: 19 year: 1979 ident: 10.1074/jbc.M109.043455_bib49 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(79)80075-3 – volume: 1373 start-page: 237 year: 1998 ident: 10.1074/jbc.M109.043455_bib6 publication-title: BBA-Biomembranes doi: 10.1016/S0005-2736(98)00111-4 – volume: 65 start-page: 1 year: 2007 ident: 10.1074/jbc.M109.043455_bib4 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05778.x – volume: 111 start-page: 11363 year: 2007 ident: 10.1074/jbc.M109.043455_bib33 publication-title: J. Phys. Chem. C doi: 10.1021/jp072060y – volume: 53 start-page: 5235 year: 2008 ident: 10.1074/jbc.M109.043455_bib43 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2008.02.056 – volume: 361 start-page: 769 year: 2008 ident: 10.1074/jbc.M109.043455_bib56 publication-title: Inorg. Chim. Acta doi: 10.1016/j.ica.2007.07.015 – volume: 75 start-page: 5218 year: 2009 ident: 10.1074/jbc.M109.043455_bib25 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00544-09 – volume: 182 start-page: 67 year: 2000 ident: 10.1074/jbc.M109.043455_bib7 publication-title: J. Bacteriol. doi: 10.1128/JB.182.1.67-75.2000 – volume: 188 start-page: 4705 year: 2006 ident: 10.1074/jbc.M109.043455_bib10 publication-title: J. Bacteriol. doi: 10.1128/JB.01966-05 – start-page: 1133 year: 2005 ident: 10.1074/jbc.M109.043455_bib5 – volume: 10 start-page: 826 year: 2006 ident: 10.1074/jbc.M109.043455_bib60 publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-006-0183-2 – volume: 30 start-page: 145 year: 2002 ident: 10.1074/jbc.M109.043455_bib22 publication-title: Enzyme Microb. Technol. doi: 10.1016/S0141-0229(01)00478-1 – volume: 9 start-page: 365 year: 1999 ident: 10.1074/jbc.M109.043455_bib21 publication-title: J. Microbiol. Biotechnol. – volume: 124 start-page: 5702 year: 2002 ident: 10.1074/jbc.M109.043455_bib38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja012638w – volume: 2 start-page: 506 year: 2009 ident: 10.1074/jbc.M109.043455_bib42 publication-title: Energy Env. Sci. doi: 10.1039/b816647a – volume: 4 start-page: e268 year: 2006 ident: 10.1074/jbc.M109.043455_bib34 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0040268 – volume: 67 start-page: 260 year: 2001 ident: 10.1074/jbc.M109.043455_bib8 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.67.1.260-269.2001 – volume: 71 start-page: 4414 year: 2005 ident: 10.1074/jbc.M109.043455_bib16 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.71.8.4414-4426.2005 – volume: 42 start-page: 4146 year: 2008 ident: 10.1074/jbc.M109.043455_bib61 publication-title: Environ. Sci. Technol. doi: 10.1021/es800312v – volume: 95 start-page: L10 year: 2008 ident: 10.1074/jbc.M109.043455_bib13 publication-title: Biophys. J. doi: 10.1529/biophysj.108.134411 – volume: 9 start-page: 127 year: 1999 ident: 10.1074/jbc.M109.043455_bib20 publication-title: J. Microbiol. Biotechnol. – volume: 105 start-page: 3968 year: 2008 ident: 10.1074/jbc.M109.043455_bib23 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0710525105 – volume: 65 start-page: 12 year: 2007 ident: 10.1074/jbc.M109.043455_bib31 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2007.05783.x – year: 2001 ident: 10.1074/jbc.M109.043455_bib50 – volume: 128 start-page: 13978 year: 2006 ident: 10.1074/jbc.M109.043455_bib58 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063526d – volume: 72 start-page: 2925 year: 2006 ident: 10.1074/jbc.M109.043455_bib12 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.72.4.2925-2935.2006 – volume: 48 start-page: 311 year: 1994 ident: 10.1074/jbc.M109.043455_bib2 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.mi.48.100194.001523 – volume: 189 start-page: 4944 year: 2007 ident: 10.1074/jbc.M109.043455_bib32 publication-title: J. Bacteriol. doi: 10.1128/JB.01518-06 – volume: 119 start-page: 11628 year: 1997 ident: 10.1074/jbc.M109.043455_bib35 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9723242 – volume: 7 start-page: 1712 year: 2008 ident: 10.1074/jbc.M109.043455_bib26 publication-title: J. Proteome. Res. doi: 10.1021/pr7007658 – volume: 13 start-page: 475 year: 1999 ident: 10.1074/jbc.M109.043455_bib19 publication-title: Biotechnol. Tech. doi: 10.1023/A:1008993029309 – volume: 73 start-page: 5797 year: 2007 ident: 10.1074/jbc.M109.043455_bib9 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00146-07 – volume: 27 start-page: 206 year: 1999 ident: 10.1074/jbc.M109.043455_bib37 publication-title: Bioc. Soc. Tran. doi: 10.1042/bst0270206 – volume: 74 start-page: 6880 year: 2008 ident: 10.1074/jbc.M109.043455_bib45 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.00840-08 – volume: 42 start-page: 2445 year: 2008 ident: 10.1074/jbc.M109.043455_bib54 publication-title: Env. Sci. Technol. doi: 10.1021/es702569y – volume: 101 start-page: 1760 year: 2007 ident: 10.1074/jbc.M109.043455_bib18 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2007.07.020 – volume: 99 start-page: 1065 year: 2008 ident: 10.1074/jbc.M109.043455_bib40 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21671 – volume: 13 start-page: 849 year: 2008 ident: 10.1074/jbc.M109.043455_bib29 publication-title: J. Biol. Inorg. Chem. doi: 10.1007/s00775-008-0398-z – volume: 111 start-page: 12857 year: 2007 ident: 10.1074/jbc.M109.043455_bib30 publication-title: J. Phys. Chem. B doi: 10.1021/jp0718698 – volume: 26 start-page: 169 year: 1997 ident: 10.1074/jbc.M109.043455_bib47 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9972600169 – volume: 189 start-page: 2283 year: 2007 ident: 10.1074/jbc.M109.043455_bib52 publication-title: J. Bacteriol. doi: 10.1128/JB.01698-06 – volume: 539 start-page: 91 year: 2003 ident: 10.1074/jbc.M109.043455_bib57 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(03)00206-0 – volume: 70 start-page: 5842 year: 2006 ident: 10.1074/jbc.M109.043455_bib59 publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.04.029 – volume: 9 start-page: 110 year: 2005 ident: 10.1074/jbc.M109.043455_bib39 publication-title: Curr. Opinion Chem. Biol. doi: 10.1016/j.cbpa.2005.02.011 |
SSID | ssj0000491 |
Score | 2.4459465 |
Snippet | Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring... Shewanella oneidensis strain MR-1 can respire using carbon electrodes and metal oxyhydroxides as electron acceptors, requiring mechanisms for transferring... |
SourceID | pubmedcentral proquest pubmed crossref highwire elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 28865 |
SubjectTerms | Adsorption Bacterial Outer Membrane Proteins - metabolism Biofilms Cytochrome c Group - metabolism Cytochromes - chemistry Electrochemistry - methods Electrodes Electrons Kinetics Metabolism and Bioenergetics Metals Microscopy, Confocal - methods Microscopy, Electron, Scanning - methods Mutation Oxidation-Reduction Shewanella - metabolism Shewanella oneidensis |
Title | Electrochemical Measurement of Electron Transfer Kinetics by Shewanella oneidensis MR-1 |
URI | https://dx.doi.org/10.1074/jbc.M109.043455 http://www.jbc.org/content/284/42/28865.abstract https://www.ncbi.nlm.nih.gov/pubmed/19661057 https://www.proquest.com/docview/21152132 https://www.proquest.com/docview/46410431 https://www.proquest.com/docview/734079764 https://pubmed.ncbi.nlm.nih.gov/PMC2781432 |
Volume | 284 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeIAXBBuwAAM_IIRUpTSO2zSPZRpMjCIBm-ibZTuONmlLpi4VGn8nfxB3dpykZRU_VCmqXKdx8n05n5O77wh5mSkweVpmYa40C7mMx2FqE5hHw0xpDo6SDaKZfRofnvAP89G81_vZiVpaVmqgf9yYV_I_qEIb4IpZsv-AbPOn0ADfAV_YAsKw_SuMD1wNG-2T_mftAz8bMViXuHEK5rlZ9I_Ap7S6zOB0fj013yUGuch-WaDaVYHaJLMvYdR1WNvUMeu0Os0mpyriS8W1D7sxWx3fYLSv9l1N6P5HiXlAptPTFsu7KjuNdU5Zfzrov1_I88LL9ftHEinacpcx2ckCQPPUCTx9e1Y243IxJL78b111s2v5bNwIc5ruA-MsM_iKmHYw75pu5srL1Rx1Ml3eEk8mrgjFb3MEOE04Ryg9mEWoVspjPlrpCSBfXljKgHkaYyHkdrL0AQJrc2gT2QgjEpwJe_Rb5DaDxQta36PPrYY9rMlcHcf6JL3gVMLfrA3KKtq6EWxymxpV65tWSOuBvh3P6fg-uVezh04dfx-Qnim2yc60kFV5cU1fURuEbLHZJnf2PXo75NsavWmH3rTMqac39fSmnt5UXdOW3rSlN0V6PyQn7w6O9w_Dug5IqGExUoUTHQ1zq8yU4fRhJkMJn1Sjr55PklQqLhOplYIGHXGWjFWUgiMaq1jDiiSPH5GtAg61S2imRyMTZ7CGMTGXyqRpnnGlpGG5YSnPAjLwl1noWiQfa7WcCxuskXABEAmESDiIAvK62eHS6cNs7so8bqJ2b53bKoCZm3fa8wgL5W4h0eVYQF542AXAg2_74NqWyyvBInTNY7a5Bx_zCLW1AkI39EhiPkxgwcID8tgxqT3JmpgBSVY41nRA3frVX4qzU6tfz1BmL2ZP_nBqT8nd1rg8I1vVYmn2YAVQqef2hvoFhoIIsw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Measurement+of+Electron+Transfer+Kinetics+by+Shewanella+oneidensis+MR-1&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Daniel+Baron&rft.au=Edward+LaBelle&rft.au=Dan+Coursolle&rft.au=Jeffrey+A.+Gralnick&rft.date=2009-10-16&rft.pub=American+Society+for+Biochemistry+and+Molecular+Biology&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=284&rft.issue=42&rft.spage=28865&rft_id=info:doi/10.1074%2Fjbc.M109.043455&rft_id=info%3Apmid%2F19661057&rft.externalDBID=n%2Fa&rft.externalDocID=284_42_28865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |