Super-Learning of an Optimal Dynamic Treatment Rule

We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimati...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of biostatistics Vol. 12; no. 1; pp. 305 - 332
Main Authors Luedtke, Alexander R., van der Laan, Mark J.
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 01.05.2016
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.
AbstractList We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.
We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.
We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.
We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment, where the candidate rules are restricted to depend only on a user-supplied subset of the baseline and intermediate covariates. This estimation problem is addressed in a statistical model for the data distribution that is nonparametric, beyond possible knowledge about the treatment and censoring mechanisms. We propose data adaptive estimators of this optimal dynamic regime which are defined by sequential loss-based learning under both the blip function and weighted classification frameworks. Rather than a priori selecting an estimation framework and algorithm, we propose combining estimators from both frameworks using a super-learning based cross-validation selector that seeks to minimize an appropriate cross-validated risk. The resulting selector is guaranteed to asymptotically perform as well as the best convex combination of candidate algorithms in terms of loss-based dissimilarity under conditions. We offer simulation results to support our theoretical findings.
Author van der Laan, Mark J.
Luedtke, Alexander R.
Author_xml – sequence: 1
  givenname: Alexander R.
  surname: Luedtke
  fullname: Luedtke, Alexander R.
  email: aluedtke@berkeley.edu
  organization: Division of Biostatistics, University of California, Berkeley, CA, USA
– sequence: 2
  givenname: Mark J.
  surname: van der Laan
  fullname: van der Laan, Mark J.
  email: laan@berkeley.edu
  organization: Division of Biostatistics, University of California, Berkeley, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27227726$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVIaTZpj7kWQy-5qNVIlmQTKIT0ExYCSQq9CVkeb7XY0ka2U_a_r5ZNQxrakwT6vac3847JYYgBCTkF9g4kyPd-3VDOQFLGJD8gC5BS01Lp-pAsONQllVr8OCLH47hmrIQK6pfkiGvOteZqQcTNvMFEl2hT8GFVxK6wobjaTH6wffFxG-zgXXGb0E4Dhqm4nnt8RV50th_x9cN5Qr5__nR7-ZUur758u7xYUieFmKguUbaC8Q5a3bJGY9VpQNloobpOC1czJVzpyqbsHHKOWtkKpG0b3lqVKXFCPux9N3MzYOvy_8n2ZpNytrQ10Xrz90vwP80q3hvFpIJaZ4OzB4MU72YcJzP40WHf24BxHg3omgtd1Ypl9O0zdB3nFPJ4BirFKi4rXmfqzdNEj1H-7DMDdA-4FMcxYfeIADO7vkzuy-z6Mru-Mi-e8c5PdvJxN5Dv_6s636t-2X7C1OIqzdt8eZL5XzrgIJgUvwGVL6ud
CitedBy_id crossref_primary_10_1111_rssa_12951
crossref_primary_10_1093_biomet_asy017
crossref_primary_10_1093_biostatistics_kxac029
crossref_primary_10_1214_19_AIHP1034
crossref_primary_10_1002_acr_24179
crossref_primary_10_1214_16_AOS1534
crossref_primary_10_1515_ijb_2020_0127
crossref_primary_10_1001_jamanetworkopen_2020_29050
crossref_primary_10_21105_joss_00512
crossref_primary_10_1186_s13063_022_06255_3
crossref_primary_10_1093_aje_kwac217
crossref_primary_10_1515_ijb_2020_0128
crossref_primary_10_1111_rssb_12483
crossref_primary_10_1177_09622802241307642
crossref_primary_10_1016_j_asoc_2021_108006
crossref_primary_10_1200_JCO_21_01957
crossref_primary_10_1214_23_EJS2157
crossref_primary_10_1515_jci_2022_0005
crossref_primary_10_1371_journal_pmed_1003020
crossref_primary_10_1146_annurev_statistics_030718_105251
crossref_primary_10_1016_j_drugalcdep_2021_109031
crossref_primary_10_1038_s41591_024_02902_1
crossref_primary_10_1093_jrsssb_qkae084
crossref_primary_10_1214_24_AOS2403
crossref_primary_10_1214_24_AOS2369
crossref_primary_10_1214_24_AOS2405
crossref_primary_10_1080_03610918_2020_1741621
crossref_primary_10_1093_aje_kwae040
crossref_primary_10_1177_0272989X241263356
crossref_primary_10_1002_sim_8822
crossref_primary_10_1001_jamanetworkopen_2019_21660
crossref_primary_10_1093_aje_kwae122
crossref_primary_10_1146_annurev_clinpsy_050817_084746
crossref_primary_10_1007_s10985_022_09566_4
crossref_primary_10_1111_add_15654
crossref_primary_10_1177_2167702618815466
crossref_primary_10_21105_joss_02232
crossref_primary_10_1080_01621459_2020_1828091
crossref_primary_10_1109_ACCESS_2022_3160179
crossref_primary_10_1287_msom_2023_1196
crossref_primary_10_1080_19345747_2023_2290546
crossref_primary_10_1080_01621459_2019_1668794
crossref_primary_10_1038_s41586_023_06501_x
crossref_primary_10_2139_ssrn_3982796
crossref_primary_10_1007_s00127_024_02694_2
crossref_primary_10_6339_24_JDS1143
crossref_primary_10_1186_s13063_022_06438_y
crossref_primary_10_1080_01621459_2016_1242427
crossref_primary_10_1080_10503307_2023_2182241
crossref_primary_10_1093_jrsssb_qkad017
crossref_primary_10_1093_biomet_asaa076
crossref_primary_10_1016_j_cct_2023_107306
crossref_primary_10_1093_jrsssb_qkac001
crossref_primary_10_1177_09622802231181223
crossref_primary_10_1093_jrsssa_qnae089
crossref_primary_10_1093_biomet_asad042
crossref_primary_10_1177_09622802211052831
crossref_primary_10_1186_s12888_022_04478_x
crossref_primary_10_1080_02664763_2018_1441383
crossref_primary_10_1001_jamapsychiatry_2021_2500
crossref_primary_10_1080_07350015_2020_1811102
crossref_primary_10_1016_j_artmed_2020_101964
crossref_primary_10_1016_j_arcontrol_2018_05_001
crossref_primary_10_1017_S0033291721000027
crossref_primary_10_1080_19466315_2019_1647874
Cites_doi 10.1007/s12561-011-9038-1
10.1007/978-1-4419-9076-1_11
10.1097/QAD.0b013e32830f97e2
10.1111/1467-9868.00389
10.1080/01621459.2012.695674
10.1198/016214505000000907
10.1214/10-AOS864
10.1093/aje/kwm232
10.1080/01621459.1986.10478354
10.1037/h0037350
10.1198/jasa.2009.0011
10.1023/A:1017928328829
10.1002/sim.3301
ContentType Journal Article
Copyright Copyright Walter de Gruyter GmbH 2016
Copyright_xml – notice: Copyright Walter de Gruyter GmbH 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88C
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
M0T
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1515/ijb-2015-0052
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Healthcare Administration Database (Alumni)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Healthcare Administration Database
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Health Management
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Health Management (Alumni Edition)
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
CrossRef
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-4679
EndPage 332
ExternalDocumentID PMC6056197
4306417471
27227726
10_1515_ijb_2015_0052
10_1515_ijb_2015_0052121305
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI074345
GroupedDBID ---
-~S
0R~
123
1WD
4.4
53G
7X7
88E
8FI
8FJ
AAAEU
AAAVF
AACIX
AADQG
AAFPC
AAGVJ
AAILP
AAJBH
AALGR
AAONY
AAOUV
AAOWA
AAPJK
AAQCX
AARVR
AASQH
AAXCG
ABAQN
ABDRH
ABFKT
ABJNI
ABMBZ
ABMIY
ABPLS
ABRDF
ABRQL
ABSOE
ABUWG
ABWLS
ABYBW
ABYKJ
ACDEB
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACPMA
ACUND
ACXLN
ACYCL
ACZBO
ADBBV
ADEQT
ADGQD
ADGYE
ADJVZ
ADOZN
AECWL
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AFBAA
AFBDD
AFBQV
AFCXV
AFGNR
AFKRA
AFYRI
AGBEV
AGQYU
AHCWZ
AHVWV
AHXUK
AIKXB
AIWOI
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
AMVHM
AQUVI
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BENPR
BLHJL
BPHCQ
BVXVI
CCPQU
CFGNV
CKPZI
CS3
DASCH
DU5
EBS
EJD
F5P
FYUFA
HMCUK
HZ~
IY9
J9A
K.~
KDIRW
LG7
M0T
M1P
MV1
NQBSW
O9-
P2P
PHGZM
PHGZT
PPXIY
PQQKQ
PROAC
PSQYO
QD8
SA.
T2Y
UK5
UKHRP
WTRAM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ADNPR
ID FETCH-LOGICAL-c533t-74e5d302f1d7d0b7e8f71e5b736ff73c9063c4c4b4fce22e76a815adb2da6b733
IEDL.DBID 7X7
ISSN 2194-573X
1557-4679
IngestDate Thu Aug 21 18:42:16 EDT 2025
Fri Jul 11 02:28:25 EDT 2025
Fri Jul 25 05:45:53 EDT 2025
Mon Jul 21 05:59:47 EDT 2025
Thu Apr 24 22:59:14 EDT 2025
Tue Jul 01 01:02:50 EDT 2025
Thu Jul 10 10:39:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This content is free.
http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-74e5d302f1d7d0b7e8f71e5b736ff73c9063c4c4b4fce22e76a815adb2da6b733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.degruyter.com/document/doi/10.1515/ijb-2015-0052/html
PMID 27227726
PQID 1860825829
PQPubID 2031306
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6056197
proquest_miscellaneous_1792378960
proquest_journals_1860825829
pubmed_primary_27227726
crossref_primary_10_1515_ijb_2015_0052
crossref_citationtrail_10_1515_ijb_2015_0052
walterdegruyter_journals_10_1515_ijb_2015_0052121305
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle The international journal of biostatistics
PublicationTitleAlternate Int J Biostat
PublicationYear 2016
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References Laan (ref321) 2014
(ref711) 2011
(ref721) 2011
(ref581) 2003; 65
Diaz (ref381) 2013
(ref701) 2014
Dudoit (ref211) 2005; 22
(ref281) 2012; 68
ref11
Laan (ref491) 2004
(ref231) 2002; 49
(ref311) 2011
(ref261) 2012; 107
(ref361) 2006; 101
(ref301) 2011
Laan (ref731) 2014
(ref181) 2003; 65
(ref341) 2001; 29
(ref131) 2008; 27
(ref671) 2012; 107
(ref101) 2005; 10
(ref441) 1986; 81
(ref471) 1974; 66
Ypma (ref401) 2014
(ref411) 1987; 14
(ref651) 2003
Polley (ref801) 2012
(ref171) 2003; 65
Laan (ref81) 2004
(ref751) 2001; 29
(ref191) 1998
(ref201) 2004; volume 179
(ref61) 1974; 66
(ref241) 2003
(ref31) 1986; 81
(ref611) 2004; volume 179
(ref661) 2011; 39
(ref41) 1923; 5
(ref331) 2014b; 3
(ref01) 1987; 14
(ref111) 2011; 3
(ref51) 2009
(ref291) 2014
(ref741) 2014b; 3
(ref551) 2008; 22
ref421
Chakraborty (ref351) 2013
(ref221) 2005; 6
(ref531) 2010; 6
(ref521) 2011; 3
(ref631) 2005; 6
(ref501) 2007; 6
Zheng (ref781) 2010
(ref451) 1923; 5
(ref431) 1997
(ref161) 2009; 104
(ref601) 1998
(ref691) 2012; 68
(ref251) 2011; 39
(ref461) 2009
(ref151) 2007; 166
(ref561) 2007; 166
Chakraborty (ref761) 2013
(ref641) 2002; 49
(ref271) 2012; 8
(ref91) 2007; 6
(ref141) 2008; 22
(ref121) 2010; 6
(ref681) 2012; 8
(ref591) 2003; 65
Zheng (ref371) 2010
(ref21) 1997
(ref571) 2009; 104
(ref511) 2005; 10
Polley (ref391) 2012
(ref541) 2008; 27
Dudoit (ref621) 2005; 22
(ref771) 2006; 101
Ypma (ref811) 2014
Diaz (ref791) 2013
References_xml – volume: 65
  start-page: 355
  year: 2003
  ident: ref181
  article-title: Discussion of “Optimal dynamic treatment regimes” by Susan A. Murphy
  publication-title: J R Stat Soc Ser B
– volume-title: Reinforcement learning: an introduction.
  year: 1998
  ident: ref191
– start-page: 39
  year: 2013
  ident: ref791
  article-title: van der Targeted data adaptive estimation of the causal dose response curve Technical Report Division of Biostatistics University of California Berkeley submitted to JCI
– volume: 3
  start-page: 28
  year: 2011
  ident: ref111
  article-title: A data augmentation method for estimating the causal effect of adherence to treatment regimens targeting control of an intermediate measure
  publication-title: Stat Biosc
  doi: 10.1007/s12561-011-9038-1
– volume-title: Unified methods for censored longitudinal data and causality.
  year: 2003
  ident: ref651
– volume: volume 179,
  start-page: 189
  year: 2004
  ident: ref611
  article-title: Optimal structural nested models for optimal sequential decisions
  publication-title: Proc Second Seattle Symp Biostat
  doi: 10.1007/978-1-4419-9076-1_11
– volume: 22
  start-page: 2097
  year: 2008
  ident: ref141
  article-title: Long-term consequences of the delay between virologic failure of highly active antiretroviral therapy and regimen modification
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e32830f97e2
– year: 2014
  ident: ref701
  article-title: New statistical learning methods for estimating optimal dynamic treatment regimes
  publication-title: J Am Stat Assoc
– start-page: 329
  year: 2014
  ident: ref321
  article-title: van der AR Targeted learning of an optimal dynamic treatment and statistical inference for its mean outcome Technical Report available at http www bepress com ucbbiostat Division of Biostatistics University of California a
– volume: 22
  start-page: 2097
  year: 2008
  ident: ref551
  article-title: Long-term consequences of the delay between virologic failure of highly active antiretroviral therapy and regimen modification
  publication-title: AIDS
  doi: 10.1097/QAD.0b013e32830f97e2
– volume: 65
  start-page: 331
  year: 2003
  ident: ref581
  article-title: Optimal dynamic treatment regimes
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.00389
– volume: 8
  start-page: Article 18
  year: 2012
  ident: ref681
  article-title: Statistical issues and limitations in personalized medicine research with clinical trials
  publication-title: Int J Biostat
– volume: 22
  start-page: 131
  year: 2005
  ident: ref621
  article-title: der Asymptotics of cross - validated risk estimation in estimator selection and performance assessment
  publication-title: Stat
– start-page: 273
  year: 2010
  ident: ref371
  article-title: van der Asymptotic theory for cross - validated targeted maximum likelihood estimation Technical Report Division of University of California
  publication-title: Biostatistics
– volume: 107
  start-page: 1106
  year: 2012
  ident: ref261
  article-title: Estimating individual treatment rules using outcome weighted learning
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2012.695674
– volume: 101
  start-page: 138
  year: 2006
  ident: ref771
  article-title: Convexity, classification, and risk bounds
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000000907
– volume: 6
  start-page: Article 25
  year: 2007
  ident: ref91
  article-title: Super learner
  publication-title: Stat Appl Genet Mol
– volume: 39
  start-page: 1180
  year: 2011
  ident: ref251
  article-title: Performance guarantees for individualized treatment rules
  publication-title: Ann Statist
  doi: 10.1214/10-AOS864
– volume: 5
  start-page: 465
  year: 1923
  ident: ref41
  article-title: Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes (In Polish). English translation by D.M. Dabrowska and T.P. Speed (1990)
  publication-title: Stat Sci
– volume: 5
  start-page: 465
  year: 1923
  ident: ref451
  article-title: Sur les applications de la theorie des probabilites aux experiences agricoles: Essai des principes (In Polish). English translation by D.M. Dabrowska and T.P. Speed (1990)
  publication-title: Stat Sci
– volume: 166
  start-page: 985
  year: 2007
  ident: ref151
  article-title: History-adjusted marginal structural models for estimating time-varying effect modification
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm232
– year: 2013
  ident: ref761
  article-title: Statistical for Dynamic Treatment Regimes Heidelberg New York
  publication-title: Methods
– start-page: 329
  year: 2014
  ident: ref731
  article-title: van der AR Targeted learning of an optimal dynamic treatment and statistical inference for its mean outcome Technical Report available at http www bepress com ucbbiostat Division of Biostatistics University of California a
– start-page: 142
  year: 2004
  ident: ref81
  article-title: van der van der The cross validated adaptive epsilon net estimator Technical Report Division of University of California
  publication-title: Biostatistics
– year: 2012
  ident: ref391
  article-title: der Super Learner Prediction
– volume-title: Targeted Learning: Causal Inference for Observational and Experimental Data.
  year: 2011
  ident: ref711
– volume-title: Targeted Learning: Causal Inference for Observational and Experimental Data.
  year: 2011
  ident: ref301
– volume: 68
  start-page: 103
  year: 2012
  ident: ref691
  article-title: Estimating optimal treatment regimes from a classification perspective
  publication-title: Statistics
– volume: 22
  start-page: 131
  year: 2005
  ident: ref211
  article-title: der Asymptotics of cross - validated risk estimation in estimator selection and performance assessment
  publication-title: Stat
– volume: 6
  start-page: 503
  year: 2005
  ident: ref221
  article-title: Tree-based batch mode reinforcement learning
  publication-title: J Mach Learn Res
– volume: 6
  start-page: Article 25
  year: 2007
  ident: ref501
  article-title: Super learner
  publication-title: Stat Appl Genet Mol
– volume-title: Reinforcement learning: an introduction.
  year: 1998
  ident: ref601
– volume: 81
  start-page: 945
  year: 1986
  ident: ref31
  article-title: Statistics and causal inference
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478354
– volume: 66
  start-page: 688
  year: 1974
  ident: ref471
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
  doi: 10.1037/h0037350
– volume: 6
  start-page: 503
  year: 2005
  ident: ref631
  article-title: Tree-based batch mode reinforcement learning
  publication-title: J Mach Learn Res
– volume: 6
  start-page: 8
  year: 2010
  ident: ref531
  article-title: Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: proofs and additional results
  publication-title: Int J Biostat
– ident: ref421
  article-title: Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers
  publication-title: Proc Biopharm Sect
– start-page: 142
  year: 2004
  ident: ref491
  article-title: van der van der The cross validated adaptive epsilon net estimator Technical Report Division of University of California
  publication-title: Biostatistics
– volume: 29
  start-page: 1785
  year: 2001
  ident: ref751
  article-title: Causal inference in complex longitudinal studies: continuous case
  publication-title: Ann Stat
– volume: 104
  start-page: 155
  year: 2009
  ident: ref571
  article-title: Estimating response-maximized decision rules with applications to breastfeeding
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.0011
– volume-title: Targeted learning: causal inference for observational and experimental data.
  year: 2011
  ident: ref311
– year: 2014
  ident: ref811
  article-title: The nonlinear optimization package
– start-page: 273
  year: 2010
  ident: ref781
  article-title: van der Asymptotic theory for cross - validated targeted maximum likelihood estimation Technical Report Division of University of California
  publication-title: Biostatistics
– volume: 14
  start-page: 139s
  year: 1987
  ident: ref411
  article-title: A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods
  publication-title: Comput Math Appl
– volume: 107
  start-page: 1106
  year: 2012
  ident: ref671
  article-title: Estimating individual treatment rules using outcome weighted learning
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2012.695674
– volume: 29
  start-page: 1785
  year: 2001
  ident: ref341
  article-title: Causal inference in complex longitudinal studies: continuous case
  publication-title: Ann Stat
– volume: 49
  start-page: 161
  year: 2002
  ident: ref231
  article-title: Kernel-based reinforcement learning
  publication-title: Mach Learn
  doi: 10.1023/A:1017928328829
– year: 2014
  ident: ref291
  article-title: New statistical learning methods for estimating optimal dynamic treatment regimes
  publication-title: J Am Stat Assoc
– volume: 104
  start-page: 155
  year: 2009
  ident: ref161
  article-title: Estimating response-maximized decision rules with applications to breastfeeding
  publication-title: J Am Stat Assoc
  doi: 10.1198/jasa.2009.0011
– year: 2013
  ident: ref351
  article-title: Statistical for Dynamic Treatment Regimes Heidelberg New York
  publication-title: Methods
– year: 2014
  ident: ref401
  article-title: The nonlinear optimization package
– volume: 81
  start-page: 945
  year: 1986
  ident: ref441
  article-title: Statistics and causal inference
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1986.10478354
– volume: 27
  start-page: 4678
  year: 2008
  ident: ref131
  article-title: Estimation and extrapolation of optimal treatment and testing strategies
  publication-title: Stat Med
  doi: 10.1002/sim.3301
– volume: 27
  start-page: 4678
  year: 2008
  ident: ref541
  article-title: Estimation and extrapolation of optimal treatment and testing strategies
  publication-title: Stat Med
  doi: 10.1002/sim.3301
– volume: 39
  start-page: 1180
  year: 2011
  ident: ref661
  article-title: Performance guarantees for individualized treatment rules
  publication-title: Ann Statist
  doi: 10.1214/10-AOS864
– volume: 3
  start-page: 61
  year: 2014b
  ident: ref741
  article-title: Targeted learning of the mean outcome under an optimal dynamic treatment rule
  publication-title: J Causal Inference
– volume: 49
  start-page: 161
  year: 2002
  ident: ref641
  article-title: Kernel-based reinforcement learning
  publication-title: Mach Learn
  doi: 10.1023/A:1017928328829
– volume: 3
  start-page: 61
  year: 2014b
  ident: ref331
  article-title: Targeted learning of the mean outcome under an optimal dynamic treatment rule
  publication-title: J Causal Inference
– volume-title: Unified methods for censored longitudinal data and causality.
  year: 2003
  ident: ref241
– volume: 6
  start-page: 8
  year: 2010
  ident: ref121
  article-title: Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: proofs and additional results
  publication-title: Int J Biostat
– volume: 65
  start-page: 355
  year: 2003
  ident: ref591
  article-title: Discussion of “Optimal dynamic treatment regimes” by Susan A. Murphy
  publication-title: J R Stat Soc Ser B
– volume: 68
  start-page: 103
  year: 2012
  ident: ref281
  article-title: Estimating optimal treatment regimes from a classification perspective
  publication-title: Statistics
– volume: 3
  start-page: 28
  year: 2011
  ident: ref521
  article-title: A data augmentation method for estimating the causal effect of adherence to treatment regimens targeting control of an intermediate measure
  publication-title: Stat Biosc
  doi: 10.1007/s12561-011-9038-1
– volume: 8
  start-page: Article 18
  year: 2012
  ident: ref271
  article-title: Statistical issues and limitations in personalized medicine research with clinical trials
  publication-title: Int J Biostat
– volume-title: Causality: models, reasoning and inference,
  year: 2009
  ident: ref51
– volume: 10
  start-page: 24
  year: 2005
  ident: ref101
  article-title: An experimental design for the development of adaptive treatment strategies
  publication-title: Stat Med
– volume-title: Causality: models, reasoning and inference,
  year: 2009
  ident: ref461
– volume: 14
  start-page: 139s
  year: 1987
  ident: ref01
  article-title: A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods
  publication-title: Comput Math Appl
– volume: 101
  start-page: 138
  year: 2006
  ident: ref361
  article-title: Convexity, classification, and risk bounds
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214505000000907
– year: 2012
  ident: ref801
  article-title: der Super Learner Prediction
– start-page: 69
  volume-title: Latent variable modeling and applications to causality
  year: 1997:
  ident: ref21
– volume: 166
  start-page: 985
  year: 2007
  ident: ref561
  article-title: History-adjusted marginal structural models for estimating time-varying effect modification
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm232
– volume: 10
  start-page: 24
  year: 2005
  ident: ref511
  article-title: An experimental design for the development of adaptive treatment strategies
  publication-title: Stat Med
– volume: 65
  start-page: 331
  year: 2003
  ident: ref171
  article-title: Optimal dynamic treatment regimes
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/1467-9868.00389
– volume: volume 179,
  start-page: 189
  year: 2004
  ident: ref201
  article-title: Optimal structural nested models for optimal sequential decisions
  publication-title: Proc Second Seattle Symp Biostat
  doi: 10.1007/978-1-4419-9076-1_11
– volume-title: Targeted learning: causal inference for observational and experimental data.
  year: 2011
  ident: ref721
– ident: ref11
  article-title: Information recovery and bias adjustment in proportional hazards regression analysis of randomized trials using surrogate markers
  publication-title: Proc Biopharm Sect
– start-page: 69
  volume-title: Latent variable modeling and applications to causality
  year: 1997:
  ident: ref431
– volume: 66
  start-page: 688
  year: 1974
  ident: ref61
  article-title: Estimating causal effects of treatments in randomized and nonrandomized studies
  publication-title: J Educ Psychol
  doi: 10.1037/h0037350
– start-page: 39
  year: 2013
  ident: ref381
  article-title: van der Targeted data adaptive estimation of the causal dose response curve Technical Report Division of Biostatistics University of California Berkeley submitted to JCI
SSID ssj0041819
Score 2.3758042
Snippet We consider the estimation of an optimal dynamic two time-point treatment rule defined as the rule that maximizes the mean outcome under the dynamic treatment,...
SourceID pubmedcentral
proquest
pubmed
crossref
walterdegruyter
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 305
SubjectTerms Biostatistics - methods
causal inference
cross-validation
dynamic treatment
loss function
Models, Theoretical
oracle inequality
Title Super-Learning of an Optimal Dynamic Treatment Rule
URI https://www.degruyter.com/doi/10.1515/ijb-2015-0052
https://www.ncbi.nlm.nih.gov/pubmed/27227726
https://www.proquest.com/docview/1860825829
https://www.proquest.com/docview/1792378960
https://pubmed.ncbi.nlm.nih.gov/PMC6056197
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKyQuFW8CpQoS4oTVxM_khHi0qpAoqLTS3iI7sduikl22G6H-e2YSJ7AUOHuixDO25xvP5BuAF0IEb3PnmVPUwkwJw6wsNVOulioPhbIl_Y388VAfnMgPMzWLF26XsaxyPBP7g7qZ13RHvpsXmqKZgpevF98ZdY2i7GpsoXETNom6jEq6zGwKuCR6L4K_uCklU0bMIscmuvDd868OF0iuGN2Lrvuka0Dzer3k1o8-l93402V3tRpzp71L2r8DWxFLpm8G49-FG769B7eG7pJX90F86RZ-ySKD6mk6D6lt0094RnzDp94PrejT47HSPD3qLvwDONnfO353wGKPBFYjUFsxI71qRMZD3pgmc8YXweReOSN0CEbUJUKQWtbSyVB7zr3RtsiVbRxvrEYp8RA22nnrH0NqPEKlLLNFyXOZG4SOGl2V4yJkNtOFS-DVqKWqjgTi1MfioqJAApVaoVIrUmpFSk3g5SS-GJgz_iW4Paq8ihvosvpl7gSeT8O49CmfYVs_71CGuA9NgTFYAo8GC01v4oZzDBx0AmbNdpMA0Wqvj7TnZz29tqagqjQJyD-s_NvX_W0eRI6XqSf_n81TuI0P6KFkchs2VsvOP0NYs3I7_drdgc23e4efj34C7Vf2TA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgheJr7JGBAk4Alr8XfygBCwTR3bChqd1LfMTpzRaUtL12jqP8XfyLlJCmXA255zTuK7893vfPYdwEvOC2eodcRK38JMck2MSBSRNhOSFrE0ib-NfNBT3SPxaSAHK_CjvQvjj1W2NnFuqPNR5vfIN2msfDQTs-Td-DvxXaN8drVtoVGrxZ6bXWLIdvF2dwvl-4qxne3-xy5pugqQDKHNlGjhZM4jVtBc55HVLi40ddJqropC8yxBp52JTFhRZI4xp5WJqTS5ZblRSMXxvTdgVXAMZTqw-mG79-Wwtf0C_aUH3GgGBJGaD5qqnggaNoenFlWSSuJ3Ype94BVoe_WE5trlPHueu5NJNZu22dq5E9y5A2sNeg3f1-p2F1ZceQ9u1v0sZ_eBf63GbkKamq0n4agITRl-Rqt0jqO2ZqU5H2Zhvz3bHh5WZ-4BHF0L_x5CpxyV7jGE2iE4iyITJ4wKqhGsKnSOlvEiMpGKbQBvWi6lWVOy3HfOOEt96IJMTZGpqWdq6pkawOsF-biu1fEvwo2W5WmzZC_SXwoWwIvFY1xsPoNiSjeqkMZXW9QxRn0BPKoltPgS04xhqKIC0EuyWxD4Qt7LT8rht3lBb-XDuEQHIP6Q8m9_97d5-HJ8kVz__2yew61u_2A_3d_t7T2B2zhY1Qc2N6AznVTuKYKqqX3WaHIIx9e9eH4Ccykz5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVqBeyrsNFAgS4oS7iZ_JsdAu5VUQtGhvkZ3YbaFkV9tEVfn1jJuHdrtwgbPHiT2e8czY428AnjPmrI6NJUb4EmaCKaJ5KokwORexS4RO_Wvkj_ty75C_G4vx3Ct-n1ZZ2KNZfVE1CKnDYpLX_qCsxxpACzw8-W5wfWNB_LHmcFq467CScAxlBrCy_ebV7rduN-ZowbwLjIrJiVBs3OJsLn1k0S4tOZvLOZNr55f32f1g58zS6BbobkJNNsqPrboyW_mvK1iP_zPj27DW-qzhdiNkd-CaLe_CjaaK5cU9YF_rqZ2RFqn1KJy4UJfhJ9yLfmKvnabkfXjQZbSHX-pTex8OR7sHr_dIW4uB5OgQVkRxKwoWURcXqoiMsolTsRVGMemcYnmKrk7Oc264yy2lVkmdxEIXhhZaIhV7AINyUtoNCJVFlyyKdJLSmMcKXVSJJtFQ5iIdycQE8LJbiSxvgcp9vYzTzAcsyIsMeZF5XmSeFwG86MmnDULH3wg3u2XNWkU9y-JE-iA5oWkAz_pmVDF_b6JLO6mRxmMsqgRjvQDWGyno_0QVpRigyADUgnz0BB6-e7GlPDm-hPGWPnhLVQD8iiTNje5P8_AgfJF4-G_dnsLNzzuj7MPb_fePYBUbZZO9uQmDalbbx-hhVeZJq0S_Af3EIEk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-Learning+of+an+Optimal+Dynamic+Treatment+Rule&rft.jtitle=The+international+journal+of+biostatistics&rft.au=Luedtke%2C+Alexander+R.&rft.au=van+der+Laan%2C+Mark+J.&rft.date=2016-05-01&rft.issn=2194-573X&rft.eissn=1557-4679&rft.volume=12&rft.issue=1&rft.spage=305&rft.epage=332&rft_id=info:doi/10.1515%2Fijb-2015-0052&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_ijb_2015_0052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2194-573X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2194-573X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2194-573X&client=summon