Weaver mutant mice exhibit long-term learning deficits under several measures of instrumental behavior
Homozygous weaver mutant mice (wv/wv) exhibit symptoms that parallel Parkinson's disease, including motor deficits and the destruction of dopaminergic neurons as well as degeneration in the cerebellum and hippocampus. To develop a more complete behavioral profile of these organisms, groups of w...
Saved in:
Published in | Physiology & behavior Vol. 92; no. 5; pp. 1002 - 1009 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Elsevier Inc
05.12.2007
New York, NY Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0031-9384 1873-507X |
DOI | 10.1016/j.physbeh.2007.07.015 |
Cover
Summary: | Homozygous weaver mutant mice (wv/wv) exhibit symptoms that parallel Parkinson's disease, including motor deficits and the destruction of dopaminergic neurons as well as degeneration in the cerebellum and hippocampus. To develop a more complete behavioral profile of these organisms, groups of wv/wv, wv/+ mice and C57BL/6 mice were observed on a within-subjects basis under a fixed-interval schedule of reinforcement, a differential-reinforcement-of-low-rate-of-responding schedule, and a discrimination task in which a saccharin solution and tap water were concurrently available from two food cups. Under both reinforcement schedules, the wv/wv mice responded as frequently as the comparison subjects, but they responded in a manner that was inappropriate to the contingencies. Rather than respond with increasing frequency as the upcoming reinforcer became temporally proximate, wv/wv mice responded with decreasing probability as a function of the time since the previous reinforcer. Under the discrimination task, the wv/wv mice, unlike the controls, obtained saccharin over tap water at the level of chance. The findings suggest that weaver mutant mice express learning deficits similar to those found in other dopamine-deficient organisms. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0031-9384 1873-507X |
DOI: | 10.1016/j.physbeh.2007.07.015 |