Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa
Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyper...
Saved in:
Published in | Journal of Reproduction and Development Vol. 61; no. 4; pp. 287 - 295 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Japan
THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
2015
The Society for Reproduction and Development |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE2 through non-genomic regulation. |
---|---|
AbstractList | Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE2 through non-genomic regulation. Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE 2 ) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE 2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE 2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE 2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE 2 through non-genomic regulation. |
Author | FUJINOKI, Masakatsu TAKEI, Gen L. |
Author_xml | – sequence: 1 fullname: TAKEI, Gen L. organization: Department of Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan – sequence: 1 fullname: FUJINOKI, Masakatsu organization: Department of Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25959801$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kE1P4zAURS1UBOVjN2uUHzBh7NhxnA0Sg5gBqYgNrK1X96VxldiR7VaCXz8pnVbDSGz8FvfcK_mckYnzDgn5xug1K2TxYxUW1wVlImdMHpEp40LlQlA6IVNaM5krxdQpOYtxRSkvSilOyGlR1mWtKJuSp_uYgl-iy-J6GALGiDHrsYPknXU5uhacwUXWvg0YwCS7gWS9y3yTtdDHhCGLY9KP_LuHC3LcQBfx8u89J6-_7l_uHvLZ8-_Hu9tZbkrOU14qaKhklKu5EtQoVjWympumpgYqBUqUpmCSUxAcJJel4mxeFUYiAm9kA_yc3Ox2h_W8x4VBlwJ0egi2h_CmPVj9OXG21Uu_0aIUVa3kOHD178ChuRczAsUOMMHHGLDRxqaPr497ttOM6q19PdrXW_t6tD-Wvv9X2u9-gf_c4auYYIkHGEKypsMPWDItts--dAhNC0Gj438AkhGgow |
CitedBy_id | crossref_primary_10_1016_j_domaniend_2020_106497 crossref_primary_10_1262_jrd_2023_040 crossref_primary_10_1262_jrd_2019_082 crossref_primary_10_1016_j_domaniend_2020_106527 crossref_primary_10_1002_rmb2_12474 crossref_primary_10_1262_jrd_2016_091 crossref_primary_10_1262_jrd_2022_114 crossref_primary_10_1262_jrd_2023_080 crossref_primary_10_1016_j_anireprosci_2016_07_006 crossref_primary_10_1530_REP_15_0367 crossref_primary_10_1262_jrd_2020_108 crossref_primary_10_1186_s12610_017_0053_z crossref_primary_10_1262_jrd_2016_028 crossref_primary_10_2174_0929867329666221005101031 crossref_primary_10_3390_ijms21082701 crossref_primary_10_1007_s12576_015_0419_y |
Cites_doi | 10.1093/molehr/4.8.769 10.1242/dev.121.4.1129 10.1210/jcem.84.5.5670 10.1038/nature09769 10.1530/REP-12-0279 10.1071/RD11242 10.1111/j.1439-0272.2009.00964.x 10.2183/pjab.88.397 10.1016/0006-2952(79)90283-1 10.1006/dbio.1996.0301 10.1093/molehr/2.10.733 10.1095/biolreprod62.3.811 10.1111/j.1600-079X.2010.00822.x 10.1530/REP-11-0074 10.1095/biolreprod59.1.1 10.1073/pnas.91.2.529 10.1530/REP-10-0168 10.1210/endo-127-6-2757 10.1016/S0277-5379(81)80022-3 10.1210/jcem-64-4-865 10.1016/S0303-7207(99)00220-8 10.1530/REP-08-0202 10.1677/joe.0.0830401 10.1111/j.1447-0578.2008.00202.x 10.1530/REP-08-0366 10.1111/j.1600-079X.2009.00722.x 10.1111/j.1600-0897.2007.00559.x 10.1016/j.freeradbiomed.2006.04.027 10.1016/j.bbapap.2007.08.024 10.1016/S0015-0282(16)54855-9 10.2220/biomedres.22.147 10.1093/humrep/des467 10.3181/00379727-217-44199 10.1080/19396360802626648 10.1006/dbio.2002.0797 10.1530/rep.0.1220519 10.1007/s12522-012-0137-6 10.1046/j.1439-0531.2003.00397.x 10.1007/s12522-013-0175-8 10.2220/biomedres.22.45 10.1016/j.mce.2009.02.006 10.1016/j.fertnstert.2009.12.082 10.1007/s12522-009-0012-2 10.1002/j.1939-4640.1998.tb01994.x 10.1006/dbio.1994.1252 10.1530/jrf.0.0770499 10.1210/jcem-71-2-493 10.1530/jrf.0.1050099 10.1093/humupd/dmn044 10.1095/biolreprod65.5.1606 10.1111/j.1600-079X.2010.00843.x 10.1016/S0015-0282(16)56051-8 10.1095/biolreprod.102.011320 10.1262/jrd.2013-076 10.1095/biolreprod.105.040733 10.1038/nature09767 10.1095/biolreprod56.4.964 |
ContentType | Journal Article |
Copyright | 2015 Society for Reproduction and Development 2015 Society for Reproduction and Development 2015 |
Copyright_xml | – notice: 2015 Society for Reproduction and Development – notice: 2015 Society for Reproduction and Development 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1262/jrd.2014-116 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1348-4400 |
EndPage | 295 |
ExternalDocumentID | PMC4547986 25959801 10_1262_jrd_2014_116 article_jrd_61_4_61_2014_116_article_char_en |
Genre | Journal Article Comparative Study |
GroupedDBID | --- 29L 2WC 53G 5GY ACGFO ACPRK ADBBV ADRAZ AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS B.T BAWUL CS3 DIK DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 HYE JSF JSH KQ8 M48 N5S OK1 OVT P2P PGMZT RJT RNS RPM RZJ TKC TR2 XSB AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
ID | FETCH-LOGICAL-c533t-58af061038b840c817f67bcf90ca78a845c21630a43a6365831b72c6eea3f6fa3 |
IEDL.DBID | M48 |
ISSN | 0916-8818 |
IngestDate | Thu Aug 21 13:42:17 EDT 2025 Thu Jan 02 23:00:49 EST 2025 Tue Jul 01 02:55:17 EDT 2025 Thu Apr 24 22:54:00 EDT 2025 Wed Sep 03 06:13:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-58af061038b840c817f67bcf90ca78a845c21630a43a6365831b72c6eea3f6fa3 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2014-116 |
PMID | 25959801 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547986 pubmed_primary_25959801 crossref_citationtrail_10_1262_jrd_2014_116 crossref_primary_10_1262_jrd_2014_116 jstage_primary_article_jrd_61_4_61_2014_116_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-00-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015-00-00 |
PublicationDecade | 2010 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan |
PublicationTitle | Journal of Reproduction and Development |
PublicationTitleAlternate | J. Reprod. Dev. |
PublicationYear | 2015 |
Publisher | THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT The Society for Reproduction and Development |
Publisher_xml | – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT – name: The Society for Reproduction and Development |
References | 66. Rönnberg L, Kauppila A, Leppäluoto J, Martikainen H, Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol Metab 1990; 71: 492–496. 61. Casao A, Gallego M, Abecia JA, Forcada F, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA. Identification and immunolocalisation of melatonin MT(1) and MT(2) receptors in Rasa Aragonesa ram spermatozoa. Reprod Fertil Dev 2012; 24: 953–961. 62. Dimitrov R, Georgiev G, Todorov P, Dimitrov Y, Konakchieva R. Membrane melatonin receptor type MT1 expression in human ejaculated spermatozoa. Compt rend Acad bulg Sci 2012; 65: 947–952. 28. Adam HK, Douglas EJ, Kemp JV. The metabolism of tamoxifen in human. Biochem Pharmacol 1979; 28: 145–147. 63. Schillo KK. Reproductive Physiology of Mammals: From Farm to Field and Beyond. New York: Delmar; 2009. 1. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD (ed.), The Physiology of Reproduction Vol. 2, 2nd ed. New York: Raven Press; 1994: 189–317. 24. Lippman M, Bolan G, Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res 1976; 36: 4595–4601. 42. Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 2011; 471: 382–386. 53. Casao A, Mendoza N, Pérez-Pé R, Grasa P, Abecia J-A, Forcada F, Cebrián-Pérez JA, Muino-Blanco T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J Pineal Res 2010; 48: 39–46. 58. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008; 59: 2–11. 6. Yang J, Serres C, Philibert D, Robel P, Baulieu EE, Jouannet P. Progesterone and RU486: opposing effects on human sperm. Proc Natl Acad Sci USA 1994; 91: 529–533. 46. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995; 121: 1129–1137. 5. Sueldo CE, Oehninger S, Subias E, Mahony M, Alexander NJ, Burkman LJ, Acosta AA. Effect of progesterone on human zona pellucida sperm binding and oocyte penetrating capacity. Fertil Steril 1993; 60: 137–140. 52. Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2009; 15: 119–138. 22. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB. A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology 1990; 127: 2757–2762. 26. Reddel RR, Murphy LC, Sutherland RL. Effects of biologically active metabolites of tamoxifen on the proliferation kinetics of MCF-7 human breast cancer cells in vitro. Cancer Res 1983; 43: 4618–4624. 50. Suzuki T, Fujinoki M, Shibahara H, Suzuki M. Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 2010; 139: 847–856. 56. Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 2011; 50: 310–318. 33. Baldi E, Luconi M, Muratori M, Forti G. A novel functional estrogen receptor on human sperm membrane interferes with progesterone effects. Mol Cell Endocrinol 2000; 161: 31–35. 2. Fujinoki M. Non-genomic regulation of mammalian sperm hyperactivation. Reprod Med Biol 2009; 8: 47–52. 14. Calogero AE, Hall J, Fishel S, Green S, Hunter A, D’Agata R. Effects of γ-aminobutyric acid on human sperm motility and hyperactivation. Mol Hum Reprod 1996; 2: 733–738. 44. Carrera A, Gerton GL, Moss SB. The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev Biol 1994; 165: 272–284. 4. Alasmari W, Barratt CLR, Publicover SJ, Whalley KM, Foster E, Kay V, Martins da Silva S, Oxenham SK. The clinical significance of calcium-signalling pathways mediating human sperm hyperactivation. Hum Reprod 2013; 28: 866–876. 64. Louzan P, Gallardo MGP, Tramezzani JH. Gamma-aminobutyric acid in the genital tract of the rat during the oestrous cycle. J Reprod Fertil 1986; 77: 499–504. 9. Fujinoki M. Progesterone-enhanced sperm hyperactivation through IP3-PKC and PKA signals. Reprod Med Biol 2013; 12: 27–33. 34. Suarez SS, Ho HC. Hyperactivated motility in sperm. Reprod Domest Anim 2003; 38: 119–124. 20. Maleszewski M, Kline D, Yanagimachi R. Activation of hamster zona-free oocytes by homologous and heterologous spermatozoa. J Reprod Fertil 1995; 105: 99–107. 18. Kon H, Takei GL, Fujinoki M, Shinoda M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by γ-aminobutyric acid. J Reprod Dev 2014; 60: 202–209. 45. Visconti PE, Kopf GS. Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 1998; 59: 1–6. 54. Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 2010; 94: 1915–1917. 37. Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol 2009; 308: 39–46. 7. Noguchi T, Fujinoki M, Kitazawa M, Inaba N. 2008 Regulation of hyperactivation of hamster spermatozoa by progesterone. Reprod Med Biol 2008; 7: 63–74. 16. Ritta MN, Calamera JC, Bas DE. Occurrence of GABA and GABA receptors in human spermatozoa. Mol Hum Reprod 1998; 4: 769–773. 25. Coezy E, Borgna JL, Rochefort H. Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 1982; 42: 317–323. 27. Daniel CP, Gaskell SJ, Bishop H, Nicholson RI. Determination of tamoxifen and an hydroxylated metabolite in plasma from patients with advanced breast cancer using gas chromatography-mass spectrometry. J Endocrinol 1979; 83: 401–408. 10. Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod Med Biol 2014; 13: 143–152. 55. Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, García JF, Pariente JA, Rodríguez AB. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res 2011; 50: 132–139. 8. Fujinoki M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by estrogen. Reproduction 2010; 140: 453–464. 51. Harrison DA, Carr DW, Meizel S. Involvement of protein kinase A and A kinase anchoring protein in the progesterone-initiated human sperm acrosome reaction. Biol Reprod 2000; 62: 811–820. 3. Mohri H, Inaba K, Ishijima S, Baba SA. Tubulin-dynein system in flagellar and ciliary movement. Proc Jpn AcadSer B 2012; 88: 397–415. 35. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction 2012; 144: 649–660. 65. Brzezinski A, Seibel MM, Lynch HJ, Deng MH, Wurtman RJ. Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab 1987; 64: 865–867. 41. Lishko PV, Botchkina 44 45 46 47 48 49 50 51 52 53 10 54 11 55 12 56 13 57 14 58 15 59 16 17 18 19 1 2 3 4 5 6 7 8 9 60 61 62 63 20 64 21 65 22 66 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
References_xml | – reference: 35. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction 2012; 144: 649–660. – reference: 55. Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, García JF, Pariente JA, Rodríguez AB. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res 2011; 50: 132–139. – reference: 60. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril 1992; 57: 409–416. – reference: 50. Suzuki T, Fujinoki M, Shibahara H, Suzuki M. Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 2010; 139: 847–856. – reference: 15. de las Heras MA, Valcarcel A, Perez LJ. In vitro capacitating effect of gamma-aminobutyric acid in ram spermatozoa. Biol Reprod 1997; 56: 964–968. – reference: 66. Rönnberg L, Kauppila A, Leppäluoto J, Martikainen H, Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol Metab 1990; 71: 492–496. – reference: 28. Adam HK, Douglas EJ, Kemp JV. The metabolism of tamoxifen in human. Biochem Pharmacol 1979; 28: 145–147. – reference: 8. Fujinoki M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by estrogen. Reproduction 2010; 140: 453–464. – reference: 58. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008; 59: 2–11. – reference: 63. Schillo KK. Reproductive Physiology of Mammals: From Farm to Field and Beyond. New York: Delmar; 2009. – reference: 33. Baldi E, Luconi M, Muratori M, Forti G. A novel functional estrogen receptor on human sperm membrane interferes with progesterone effects. Mol Cell Endocrinol 2000; 161: 31–35. – reference: 43. Ignotz GG, Suarez SS. Calcium/calmodulin and calmodulin kinase II stimulate hyperactivation in demembranated bovine sperm. Biol Reprod 2005; 73: 519–526. – reference: 37. Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol 2009; 308: 39–46. – reference: 20. Maleszewski M, Kline D, Yanagimachi R. Activation of hamster zona-free oocytes by homologous and heterologous spermatozoa. J Reprod Fertil 1995; 105: 99–107. – reference: 23. Bhavnani BR. Pharmacokinetics and pharmacodynamics of conjugated equine estrogens: chemistry and metabolism. Proc Soc Exp Biol Med 1998; 217: 6–16. – reference: 30. O’Brian CA, Liskamp RM, Solomon DH, Weinstein IB. Inhibition of protein kinase C by tamoxifen. Cancer Res 1985; 45: 2462–2465. – reference: 38. Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev Biol 2002; 250: 208–217. – reference: 3. Mohri H, Inaba K, Ishijima S, Baba SA. Tubulin-dynein system in flagellar and ciliary movement. Proc Jpn AcadSer B 2012; 88: 397–415. – reference: 14. Calogero AE, Hall J, Fishel S, Green S, Hunter A, D’Agata R. Effects of γ-aminobutyric acid on human sperm motility and hyperactivation. Mol Hum Reprod 1996; 2: 733–738. – reference: 24. Lippman M, Bolan G, Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res 1976; 36: 4595–4601. – reference: 32. Luconi M, Muratori M, Forti G, Baldi E. Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects. J Clin Endocrinol Metab 1999; 84: 1670–1678. – reference: 46. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995; 121: 1129–1137. – reference: 7. Noguchi T, Fujinoki M, Kitazawa M, Inaba N. 2008 Regulation of hyperactivation of hamster spermatozoa by progesterone. Reprod Med Biol 2008; 7: 63–74. – reference: 53. Casao A, Mendoza N, Pérez-Pé R, Grasa P, Abecia J-A, Forcada F, Cebrián-Pérez JA, Muino-Blanco T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J Pineal Res 2010; 48: 39–46. – reference: 34. Suarez SS, Ho HC. Hyperactivated motility in sperm. Reprod Domest Anim 2003; 38: 119–124. – reference: 48. Fujinoki M, Ohtake H, Okuno M. Tyrosine phosphorylation and dephosphorylation associated with motility of hamster spermatozoa. Biomed Res 2001; 22: 147–155. – reference: 13. Fujinoki M. Serotonin-enhanced hyperactivation of hamster sperm. Reproduction 2011; 142: 255–266. – reference: 44. Carrera A, Gerton GL, Moss SB. The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev Biol 1994; 165: 272–284. – reference: 10. Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod Med Biol 2014; 13: 143–152. – reference: 65. Brzezinski A, Seibel MM, Lynch HJ, Deng MH, Wurtman RJ. Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab 1987; 64: 865–867. – reference: 16. Ritta MN, Calamera JC, Bas DE. Occurrence of GABA and GABA receptors in human spermatozoa. Mol Hum Reprod 1998; 4: 769–773. – reference: 19. Fujinoki M, Suzuki T, Takayama T, Shibahara H, Ohtake H. Profiling of proteins phosphorylated or dephosphorylated during hyperactivation via activation on hamster spermatozoa. Reprod Med Biol 2006; 5: 123–135. – reference: 40. Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 2003; 68: 1590–1596. – reference: 52. Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2009; 15: 119–138. – reference: 26. Reddel RR, Murphy LC, Sutherland RL. Effects of biologically active metabolites of tamoxifen on the proliferation kinetics of MCF-7 human breast cancer cells in vitro. Cancer Res 1983; 43: 4618–4624. – reference: 42. Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 2011; 471: 382–386. – reference: 54. Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 2010; 94: 1915–1917. – reference: 51. Harrison DA, Carr DW, Meizel S. Involvement of protein kinase A and A kinase anchoring protein in the progesterone-initiated human sperm acrosome reaction. Biol Reprod 2000; 62: 811–820. – reference: 1. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD (ed.), The Physiology of Reproduction Vol. 2, 2nd ed. New York: Raven Press; 1994: 189–317. – reference: 49. Carrera A, Moos J, Ning XP, Gerton GL, Tesarik J, Kopf GS, Moss SB. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol 1996; 180: 284–296. – reference: 17. Jin J-Y, Chen W-Y, Zhou CX, Chen Z-H, Yu-Ying Y, Ni Y, Chan HC, Shi Q-X. Activation of GABAA receptor/Cl– channel and capacitation in rat spermatozoa: HCO3– and Cl– are essential. Syst Biol Reprod Med 2009; 55: 97–108. – reference: 2. Fujinoki M. Non-genomic regulation of mammalian sperm hyperactivation. Reprod Med Biol 2009; 8: 47–52. – reference: 27. Daniel CP, Gaskell SJ, Bishop H, Nicholson RI. Determination of tamoxifen and an hydroxylated metabolite in plasma from patients with advanced breast cancer using gas chromatography-mass spectrometry. J Endocrinol 1979; 83: 401–408. – reference: 4. Alasmari W, Barratt CLR, Publicover SJ, Whalley KM, Foster E, Kay V, Martins da Silva S, Oxenham SK. The clinical significance of calcium-signalling pathways mediating human sperm hyperactivation. Hum Reprod 2013; 28: 866–876. – reference: 22. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB. A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology 1990; 127: 2757–2762. – reference: 18. Kon H, Takei GL, Fujinoki M, Shinoda M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by γ-aminobutyric acid. J Reprod Dev 2014; 60: 202–209. – reference: 5. Sueldo CE, Oehninger S, Subias E, Mahony M, Alexander NJ, Burkman LJ, Acosta AA. Effect of progesterone on human zona pellucida sperm binding and oocyte penetrating capacity. Fertil Steril 1993; 60: 137–140. – reference: 6. Yang J, Serres C, Philibert D, Robel P, Baulieu EE, Jouannet P. Progesterone and RU486: opposing effects on human sperm. Proc Natl Acad Sci USA 1994; 91: 529–533. – reference: 31. O’Brian CA, Kuo JF. Protein kinase C inhibitors. In: Kuo JF (ed.), Protein Kinase C. Oxford University Press; 1994: 96–129. – reference: 21. Fujinoki M, Ohtake H, Okuno M. Serine phosphorylation of flagellar proteins associated with the motility activation of hamster spermatozoa. Biomed Res 2001; 22: 45–58. – reference: 41. Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 2011; 471: 387–391. – reference: 39. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615. – reference: 11. Fujinoki M. Melatonin-enhanced hyperactivation of hamster sperm. Reproduction 2008; 136: 533–541. – reference: 25. Coezy E, Borgna JL, Rochefort H. Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 1982; 42: 317–323. – reference: 9. Fujinoki M. Progesterone-enhanced sperm hyperactivation through IP3-PKC and PKA signals. Reprod Med Biol 2013; 12: 27–33. – reference: 12. du Plessis SS, Hagenaar K, Lampiao F. The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 2010; 42: 112–116. – reference: 47. Visconti PE, Galantino-Homer H, Moore GD, Bailey JL, Ning X, Fornes M, Kopf GS. The molecular basis of sperm capacitation. J Androl 1998; 19: 242–248. – reference: 56. Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 2011; 50: 310–318. – reference: 62. Dimitrov R, Georgiev G, Todorov P, Dimitrov Y, Konakchieva R. Membrane melatonin receptor type MT1 expression in human ejaculated spermatozoa. Compt rend Acad bulg Sci 2012; 65: 947–952. – reference: 57. O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 2006; 41: 528–540. – reference: 45. Visconti PE, Kopf GS. Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 1998; 59: 1–6. – reference: 64. Louzan P, Gallardo MGP, Tramezzani JH. Gamma-aminobutyric acid in the genital tract of the rat during the oestrous cycle. J Reprod Fertil 1986; 77: 499–504. – reference: 59. de Lamirande E, O’Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 2008; 1784: 106–115. – reference: 36. Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 2001; 122: 519–526. – reference: 29. Daniel P, Gaskell SJ, Bishop H, Campbell C, Nicholson RI. Determination of tamoxifen and biologically active metabolites in human breast tumours and plasma. Eur J Cancer Clin Oncol 1981; 17: 1183–1189. – reference: 61. Casao A, Gallego M, Abecia JA, Forcada F, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA. Identification and immunolocalisation of melatonin MT(1) and MT(2) receptors in Rasa Aragonesa ram spermatozoa. Reprod Fertil Dev 2012; 24: 953–961. – ident: 16 doi: 10.1093/molehr/4.8.769 – ident: 46 doi: 10.1242/dev.121.4.1129 – ident: 32 doi: 10.1210/jcem.84.5.5670 – ident: 42 doi: 10.1038/nature09769 – ident: 35 doi: 10.1530/REP-12-0279 – ident: 61 doi: 10.1071/RD11242 – ident: 12 doi: 10.1111/j.1439-0272.2009.00964.x – ident: 3 doi: 10.2183/pjab.88.397 – ident: 28 doi: 10.1016/0006-2952(79)90283-1 – ident: 31 – ident: 49 doi: 10.1006/dbio.1996.0301 – ident: 14 doi: 10.1093/molehr/2.10.733 – ident: 51 doi: 10.1095/biolreprod62.3.811 – ident: 55 doi: 10.1111/j.1600-079X.2010.00822.x – ident: 13 doi: 10.1530/REP-11-0074 – ident: 45 doi: 10.1095/biolreprod59.1.1 – ident: 26 – ident: 6 doi: 10.1073/pnas.91.2.529 – ident: 8 doi: 10.1530/REP-10-0168 – ident: 22 doi: 10.1210/endo-127-6-2757 – ident: 29 doi: 10.1016/S0277-5379(81)80022-3 – ident: 65 doi: 10.1210/jcem-64-4-865 – ident: 33 doi: 10.1016/S0303-7207(99)00220-8 – ident: 1 – ident: 11 doi: 10.1530/REP-08-0202 – ident: 27 doi: 10.1677/joe.0.0830401 – ident: 7 doi: 10.1111/j.1447-0578.2008.00202.x – ident: 50 doi: 10.1530/REP-08-0366 – ident: 30 – ident: 53 doi: 10.1111/j.1600-079X.2009.00722.x – ident: 58 doi: 10.1111/j.1600-0897.2007.00559.x – ident: 57 doi: 10.1016/j.freeradbiomed.2006.04.027 – ident: 59 doi: 10.1016/j.bbapap.2007.08.024 – ident: 60 doi: 10.1016/S0015-0282(16)54855-9 – ident: 48 doi: 10.2220/biomedres.22.147 – ident: 4 doi: 10.1093/humrep/des467 – ident: 23 doi: 10.3181/00379727-217-44199 – ident: 17 doi: 10.1080/19396360802626648 – ident: 38 doi: 10.1006/dbio.2002.0797 – ident: 24 – ident: 36 doi: 10.1530/rep.0.1220519 – ident: 9 doi: 10.1007/s12522-012-0137-6 – ident: 62 – ident: 34 doi: 10.1046/j.1439-0531.2003.00397.x – ident: 10 doi: 10.1007/s12522-013-0175-8 – ident: 21 doi: 10.2220/biomedres.22.45 – ident: 37 doi: 10.1016/j.mce.2009.02.006 – ident: 54 doi: 10.1016/j.fertnstert.2009.12.082 – ident: 2 doi: 10.1007/s12522-009-0012-2 – ident: 47 doi: 10.1002/j.1939-4640.1998.tb01994.x – ident: 44 doi: 10.1006/dbio.1994.1252 – ident: 64 doi: 10.1530/jrf.0.0770499 – ident: 19 – ident: 66 doi: 10.1210/jcem-71-2-493 – ident: 20 doi: 10.1530/jrf.0.1050099 – ident: 52 doi: 10.1093/humupd/dmn044 – ident: 39 doi: 10.1095/biolreprod65.5.1606 – ident: 56 doi: 10.1111/j.1600-079X.2010.00843.x – ident: 5 doi: 10.1016/S0015-0282(16)56051-8 – ident: 40 doi: 10.1095/biolreprod.102.011320 – ident: 18 doi: 10.1262/jrd.2013-076 – ident: 43 doi: 10.1095/biolreprod.105.040733 – ident: 63 – ident: 41 doi: 10.1038/nature09767 – ident: 25 – ident: 15 doi: 10.1095/biolreprod56.4.964 |
SSID | ssj0032564 |
Score | 2.1098034 |
Snippet | Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and... Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE 2 ) and... |
SourceID | pubmedcentral pubmed crossref jstage |
SourceType | Open Access Repository Index Database Enrichment Source Publisher |
StartPage | 287 |
SubjectTerms | Animals Estradiol Estradiol - chemistry Estradiol - metabolism Estrogen Antagonists Female gamma-Aminobutyric Acid - metabolism Hyperactivation Kinetics Male Melatonin Melatonin - agonists Melatonin - antagonists & inhibitors Melatonin - metabolism Mesocricetus Models, Biological Non-genomic regulation Original Sperm Capacitation - drug effects Sperm Motility - drug effects Spermatozoa Spermatozoa - cytology Spermatozoa - drug effects Spermatozoa - metabolism Tamoxifen - pharmacology |
Title | Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa |
URI | https://www.jstage.jst.go.jp/article/jrd/61/4/61_2014-116/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/25959801 https://pubmed.ncbi.nlm.nih.gov/PMC4547986 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Reproduction and Development, 2015, Vol.61(4), pp.287-295 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEC7W9YEX0fU1PoY-6Eminc5zEBGRXValFw8O7K1JZxJml93udWYWXH-9VekHjujFPuSSCjRVCfVVUvUVwIsC42gZYs4WoZBMLkLO6gVXTHHj8NOhUFQoXB7pw7n8fKyOd2DoNtorcP3X0I76Sc1XZ69_fL96jwf-XeJG0MWb0xVRfnLJONfX4Dr6JENHtJTje4JAx56IpBAMMYs-qk-B_3M1UQOrmZrZvkfM4KdunCJUoxr80UttZ1D-5pIO7sKdHktmHzrj34Od0OzBza675NUe3Cr7d_P7UO6vN6sW90q2vrxIqa9hnZ1THhzdxrLQLFMiQLbEqDSVTXUXtVkbs6U7Jy6FjBjFEd22P1v3AOYH-98-HrK-kQLziOY2TFkX0W_nwtYYz3nLTdSm9nGWe2ess1L5AnFZ7qRwWiAmEbw2hdchOBF1dOIh7DZtEx5D5ovgDI_R6GjR9y8c98IhyCyiqIU1fgKvBrVVvmcZp2YXZxVFG6jvCvVdkb4x9tATeDlKX3TsGv-Qe9tZYJTqz1WS0rySNAzS4yQVruHpn8Cjzlrj6sHIEzBbdhwFiHR7e6Y5WSbybSJAm1n95L9XPoXb-KOqu8Z5Brub1WV4jsBmU08R0n_6Mk3XAtO0f3E8-lr-ArEO_TQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estrogen+suppresses+melatonin-enhanced+hyperactivation+of+hamster+spermatozoa&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=FUJINOKI%2C+Masakatsu&rft.au=TAKEI%2C+Gen+L.&rft.date=2015&rft.pub=The+Society+for+Reproduction+and+Development&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=61&rft.issue=4&rft.spage=287&rft.epage=295&rft_id=info:doi/10.1262%2Fjrd.2014-116&rft_id=info%3Apmid%2F25959801&rft.externalDocID=PMC4547986 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon |