Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa

Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyper...

Full description

Saved in:
Bibliographic Details
Published inJournal of Reproduction and Development Vol. 61; no. 4; pp. 287 - 295
Main Authors TAKEI, Gen L., FUJINOKI, Masakatsu
Format Journal Article
LanguageEnglish
Published Japan THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT 2015
The Society for Reproduction and Development
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE2 through non-genomic regulation.
AbstractList Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE2 through non-genomic regulation.
Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE 2 ) and γ-aminobutyric acid (GABA). Although it has been indicated that melatonin also enhances hyperactivation, it is unknown whether melatonin-enhanced hyperactivation is also suppressed by 17βE 2 and GABA. In the present study, melatonin-enhanced hyperactivation was significantly suppressed by 17βE 2 but not by GABA. Moreover, suppression of melatonin-enhanced hyperactivation by 17βE 2 occurred through non-genomic regulation via the estrogen receptor (ER). These results suggest that enhancement of hyperactivation is regulated by melatonin and 17βE 2 through non-genomic regulation.
Author FUJINOKI, Masakatsu
TAKEI, Gen L.
Author_xml – sequence: 1
  fullname: TAKEI, Gen L.
  organization: Department of Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan
– sequence: 1
  fullname: FUJINOKI, Masakatsu
  organization: Department of Physiology, Dokkyo Medical University, Tochigi 321-0293, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25959801$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1P4zAURS1UBOVjN2uUHzBh7NhxnA0Sg5gBqYgNrK1X96VxldiR7VaCXz8pnVbDSGz8FvfcK_mckYnzDgn5xug1K2TxYxUW1wVlImdMHpEp40LlQlA6IVNaM5krxdQpOYtxRSkvSilOyGlR1mWtKJuSp_uYgl-iy-J6GALGiDHrsYPknXU5uhacwUXWvg0YwCS7gWS9y3yTtdDHhCGLY9KP_LuHC3LcQBfx8u89J6-_7l_uHvLZ8-_Hu9tZbkrOU14qaKhklKu5EtQoVjWympumpgYqBUqUpmCSUxAcJJel4mxeFUYiAm9kA_yc3Ox2h_W8x4VBlwJ0egi2h_CmPVj9OXG21Uu_0aIUVa3kOHD178ChuRczAsUOMMHHGLDRxqaPr497ttOM6q19PdrXW_t6tD-Wvv9X2u9-gf_c4auYYIkHGEKypsMPWDItts--dAhNC0Gj438AkhGgow
CitedBy_id crossref_primary_10_1016_j_domaniend_2020_106497
crossref_primary_10_1262_jrd_2023_040
crossref_primary_10_1262_jrd_2019_082
crossref_primary_10_1016_j_domaniend_2020_106527
crossref_primary_10_1002_rmb2_12474
crossref_primary_10_1262_jrd_2016_091
crossref_primary_10_1262_jrd_2022_114
crossref_primary_10_1262_jrd_2023_080
crossref_primary_10_1016_j_anireprosci_2016_07_006
crossref_primary_10_1530_REP_15_0367
crossref_primary_10_1262_jrd_2020_108
crossref_primary_10_1186_s12610_017_0053_z
crossref_primary_10_1262_jrd_2016_028
crossref_primary_10_2174_0929867329666221005101031
crossref_primary_10_3390_ijms21082701
crossref_primary_10_1007_s12576_015_0419_y
Cites_doi 10.1093/molehr/4.8.769
10.1242/dev.121.4.1129
10.1210/jcem.84.5.5670
10.1038/nature09769
10.1530/REP-12-0279
10.1071/RD11242
10.1111/j.1439-0272.2009.00964.x
10.2183/pjab.88.397
10.1016/0006-2952(79)90283-1
10.1006/dbio.1996.0301
10.1093/molehr/2.10.733
10.1095/biolreprod62.3.811
10.1111/j.1600-079X.2010.00822.x
10.1530/REP-11-0074
10.1095/biolreprod59.1.1
10.1073/pnas.91.2.529
10.1530/REP-10-0168
10.1210/endo-127-6-2757
10.1016/S0277-5379(81)80022-3
10.1210/jcem-64-4-865
10.1016/S0303-7207(99)00220-8
10.1530/REP-08-0202
10.1677/joe.0.0830401
10.1111/j.1447-0578.2008.00202.x
10.1530/REP-08-0366
10.1111/j.1600-079X.2009.00722.x
10.1111/j.1600-0897.2007.00559.x
10.1016/j.freeradbiomed.2006.04.027
10.1016/j.bbapap.2007.08.024
10.1016/S0015-0282(16)54855-9
10.2220/biomedres.22.147
10.1093/humrep/des467
10.3181/00379727-217-44199
10.1080/19396360802626648
10.1006/dbio.2002.0797
10.1530/rep.0.1220519
10.1007/s12522-012-0137-6
10.1046/j.1439-0531.2003.00397.x
10.1007/s12522-013-0175-8
10.2220/biomedres.22.45
10.1016/j.mce.2009.02.006
10.1016/j.fertnstert.2009.12.082
10.1007/s12522-009-0012-2
10.1002/j.1939-4640.1998.tb01994.x
10.1006/dbio.1994.1252
10.1530/jrf.0.0770499
10.1210/jcem-71-2-493
10.1530/jrf.0.1050099
10.1093/humupd/dmn044
10.1095/biolreprod65.5.1606
10.1111/j.1600-079X.2010.00843.x
10.1016/S0015-0282(16)56051-8
10.1095/biolreprod.102.011320
10.1262/jrd.2013-076
10.1095/biolreprod.105.040733
10.1038/nature09767
10.1095/biolreprod56.4.964
ContentType Journal Article
Copyright 2015 Society for Reproduction and Development
2015 Society for Reproduction and Development 2015
Copyright_xml – notice: 2015 Society for Reproduction and Development
– notice: 2015 Society for Reproduction and Development 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.1262/jrd.2014-116
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1348-4400
EndPage 295
ExternalDocumentID PMC4547986
25959801
10_1262_jrd_2014_116
article_jrd_61_4_61_2014_116_article_char_en
Genre Journal Article
Comparative Study
GroupedDBID ---
29L
2WC
53G
5GY
ACGFO
ACPRK
ADBBV
ADRAZ
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
B.T
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GROUPED_DOAJ
GX1
HYE
JSF
JSH
KQ8
M48
N5S
OK1
OVT
P2P
PGMZT
RJT
RNS
RPM
RZJ
TKC
TR2
XSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
5PM
ID FETCH-LOGICAL-c533t-58af061038b840c817f67bcf90ca78a845c21630a43a6365831b72c6eea3f6fa3
IEDL.DBID M48
ISSN 0916-8818
IngestDate Thu Aug 21 13:42:17 EDT 2025
Thu Jan 02 23:00:49 EST 2025
Tue Jul 01 02:55:17 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Wed Sep 03 06:13:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-58af061038b840c817f67bcf90ca78a845c21630a43a6365831b72c6eea3f6fa3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1262/jrd.2014-116
PMID 25959801
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4547986
pubmed_primary_25959801
crossref_citationtrail_10_1262_jrd_2014_116
crossref_primary_10_1262_jrd_2014_116
jstage_primary_article_jrd_61_4_61_2014_116_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015-00-00
PublicationDecade 2010
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Journal of Reproduction and Development
PublicationTitleAlternate J. Reprod. Dev.
PublicationYear 2015
Publisher THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
The Society for Reproduction and Development
Publisher_xml – name: THE SOCIETY FOR REPRODUCTION AND DEVELOPMENT
– name: The Society for Reproduction and Development
References 66. Rönnberg L, Kauppila A, Leppäluoto J, Martikainen H, Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol Metab 1990; 71: 492–496.
61. Casao A, Gallego M, Abecia JA, Forcada F, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA. Identification and immunolocalisation of melatonin MT(1) and MT(2) receptors in Rasa Aragonesa ram spermatozoa. Reprod Fertil Dev 2012; 24: 953–961.
62. Dimitrov R, Georgiev G, Todorov P, Dimitrov Y, Konakchieva R. Membrane melatonin receptor type MT1 expression in human ejaculated spermatozoa. Compt rend Acad bulg Sci 2012; 65: 947–952.
28. Adam HK, Douglas EJ, Kemp JV. The metabolism of tamoxifen in human. Biochem Pharmacol 1979; 28: 145–147.
63. Schillo KK. Reproductive Physiology of Mammals: From Farm to Field and Beyond. New York: Delmar; 2009.
1. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD (ed.), The Physiology of Reproduction Vol. 2, 2nd ed. New York: Raven Press; 1994: 189–317.
24. Lippman M, Bolan G, Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res 1976; 36: 4595–4601.
42. Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 2011; 471: 382–386.
53. Casao A, Mendoza N, Pérez-Pé R, Grasa P, Abecia J-A, Forcada F, Cebrián-Pérez JA, Muino-Blanco T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J Pineal Res 2010; 48: 39–46.
58. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008; 59: 2–11.
6. Yang J, Serres C, Philibert D, Robel P, Baulieu EE, Jouannet P. Progesterone and RU486: opposing effects on human sperm. Proc Natl Acad Sci USA 1994; 91: 529–533.
46. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995; 121: 1129–1137.
5. Sueldo CE, Oehninger S, Subias E, Mahony M, Alexander NJ, Burkman LJ, Acosta AA. Effect of progesterone on human zona pellucida sperm binding and oocyte penetrating capacity. Fertil Steril 1993; 60: 137–140.
52. Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2009; 15: 119–138.
22. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB. A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology 1990; 127: 2757–2762.
26. Reddel RR, Murphy LC, Sutherland RL. Effects of biologically active metabolites of tamoxifen on the proliferation kinetics of MCF-7 human breast cancer cells in vitro. Cancer Res 1983; 43: 4618–4624.
50. Suzuki T, Fujinoki M, Shibahara H, Suzuki M. Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 2010; 139: 847–856.
56. Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 2011; 50: 310–318.
33. Baldi E, Luconi M, Muratori M, Forti G. A novel functional estrogen receptor on human sperm membrane interferes with progesterone effects. Mol Cell Endocrinol 2000; 161: 31–35.
2. Fujinoki M. Non-genomic regulation of mammalian sperm hyperactivation. Reprod Med Biol 2009; 8: 47–52.
14. Calogero AE, Hall J, Fishel S, Green S, Hunter A, D’Agata R. Effects of γ-aminobutyric acid on human sperm motility and hyperactivation. Mol Hum Reprod 1996; 2: 733–738.
44. Carrera A, Gerton GL, Moss SB. The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev Biol 1994; 165: 272–284.
4. Alasmari W, Barratt CLR, Publicover SJ, Whalley KM, Foster E, Kay V, Martins da Silva S, Oxenham SK. The clinical significance of calcium-signalling pathways mediating human sperm hyperactivation. Hum Reprod 2013; 28: 866–876.
64. Louzan P, Gallardo MGP, Tramezzani JH. Gamma-aminobutyric acid in the genital tract of the rat during the oestrous cycle. J Reprod Fertil 1986; 77: 499–504.
9. Fujinoki M. Progesterone-enhanced sperm hyperactivation through IP3-PKC and PKA signals. Reprod Med Biol 2013; 12: 27–33.
34. Suarez SS, Ho HC. Hyperactivated motility in sperm. Reprod Domest Anim 2003; 38: 119–124.
20. Maleszewski M, Kline D, Yanagimachi R. Activation of hamster zona-free oocytes by homologous and heterologous spermatozoa. J Reprod Fertil 1995; 105: 99–107.
18. Kon H, Takei GL, Fujinoki M, Shinoda M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by γ-aminobutyric acid. J Reprod Dev 2014; 60: 202–209.
45. Visconti PE, Kopf GS. Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 1998; 59: 1–6.
54. Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 2010; 94: 1915–1917.
37. Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol 2009; 308: 39–46.
7. Noguchi T, Fujinoki M, Kitazawa M, Inaba N. 2008 Regulation of hyperactivation of hamster spermatozoa by progesterone. Reprod Med Biol 2008; 7: 63–74.
16. Ritta MN, Calamera JC, Bas DE. Occurrence of GABA and GABA receptors in human spermatozoa. Mol Hum Reprod 1998; 4: 769–773.
25. Coezy E, Borgna JL, Rochefort H. Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 1982; 42: 317–323.
27. Daniel CP, Gaskell SJ, Bishop H, Nicholson RI. Determination of tamoxifen and an hydroxylated metabolite in plasma from patients with advanced breast cancer using gas chromatography-mass spectrometry. J Endocrinol 1979; 83: 401–408.
10. Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod Med Biol 2014; 13: 143–152.
55. Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, García JF, Pariente JA, Rodríguez AB. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res 2011; 50: 132–139.
8. Fujinoki M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by estrogen. Reproduction 2010; 140: 453–464.
51. Harrison DA, Carr DW, Meizel S. Involvement of protein kinase A and A kinase anchoring protein in the progesterone-initiated human sperm acrosome reaction. Biol Reprod 2000; 62: 811–820.
3. Mohri H, Inaba K, Ishijima S, Baba SA. Tubulin-dynein system in flagellar and ciliary movement. Proc Jpn AcadSer B 2012; 88: 397–415.
35. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction 2012; 144: 649–660.
65. Brzezinski A, Seibel MM, Lynch HJ, Deng MH, Wurtman RJ. Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab 1987; 64: 865–867.
41. Lishko PV, Botchkina
44
45
46
47
48
49
50
51
52
53
10
54
11
55
12
56
13
57
14
58
15
59
16
17
18
19
1
2
3
4
5
6
7
8
9
60
61
62
63
20
64
21
65
22
66
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
References_xml – reference: 35. Coy P, García-Vázquez FA, Visconti PE, Avilés M. Roles of the oviduct in mammalian fertilization. Reproduction 2012; 144: 649–660.
– reference: 55. Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, García JF, Pariente JA, Rodríguez AB. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res 2011; 50: 132–139.
– reference: 60. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril 1992; 57: 409–416.
– reference: 50. Suzuki T, Fujinoki M, Shibahara H, Suzuki M. Regulation of hyperactivation by PPP2 in hamster spermatozoa. Reproduction 2010; 139: 847–856.
– reference: 15. de las Heras MA, Valcarcel A, Perez LJ. In vitro capacitating effect of gamma-aminobutyric acid in ram spermatozoa. Biol Reprod 1997; 56: 964–968.
– reference: 66. Rönnberg L, Kauppila A, Leppäluoto J, Martikainen H, Vakkuri O. Circadian and seasonal variation in human preovulatory follicular fluid melatonin concentration. J Clin Endocrinol Metab 1990; 71: 492–496.
– reference: 28. Adam HK, Douglas EJ, Kemp JV. The metabolism of tamoxifen in human. Biochem Pharmacol 1979; 28: 145–147.
– reference: 8. Fujinoki M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by estrogen. Reproduction 2010; 140: 453–464.
– reference: 58. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 2008; 59: 2–11.
– reference: 63. Schillo KK. Reproductive Physiology of Mammals: From Farm to Field and Beyond. New York: Delmar; 2009.
– reference: 33. Baldi E, Luconi M, Muratori M, Forti G. A novel functional estrogen receptor on human sperm membrane interferes with progesterone effects. Mol Cell Endocrinol 2000; 161: 31–35.
– reference: 43. Ignotz GG, Suarez SS. Calcium/calmodulin and calmodulin kinase II stimulate hyperactivation in demembranated bovine sperm. Biol Reprod 2005; 73: 519–526.
– reference: 37. Baldi E, Luconi M, Muratori M, Marchiani S, Tamburrino L, Forti G. Nongenomic activation of spermatozoa by steroid hormones: facts and fictions. Mol Cell Endocrinol 2009; 308: 39–46.
– reference: 20. Maleszewski M, Kline D, Yanagimachi R. Activation of hamster zona-free oocytes by homologous and heterologous spermatozoa. J Reprod Fertil 1995; 105: 99–107.
– reference: 23. Bhavnani BR. Pharmacokinetics and pharmacodynamics of conjugated equine estrogens: chemistry and metabolism. Proc Soc Exp Biol Med 1998; 217: 6–16.
– reference: 30. O’Brian CA, Liskamp RM, Solomon DH, Weinstein IB. Inhibition of protein kinase C by tamoxifen. Cancer Res 1985; 45: 2462–2465.
– reference: 38. Ho HC, Granish KA, Suarez SS. Hyperactivated motility of bull sperm is triggered at the axoneme by Ca2+ and not cAMP. Dev Biol 2002; 250: 208–217.
– reference: 3. Mohri H, Inaba K, Ishijima S, Baba SA. Tubulin-dynein system in flagellar and ciliary movement. Proc Jpn AcadSer B 2012; 88: 397–415.
– reference: 14. Calogero AE, Hall J, Fishel S, Green S, Hunter A, D’Agata R. Effects of γ-aminobutyric acid on human sperm motility and hyperactivation. Mol Hum Reprod 1996; 2: 733–738.
– reference: 24. Lippman M, Bolan G, Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res 1976; 36: 4595–4601.
– reference: 32. Luconi M, Muratori M, Forti G, Baldi E. Identification and characterization of a novel functional estrogen receptor on human sperm membrane that interferes with progesterone effects. J Clin Endocrinol Metab 1999; 84: 1670–1678.
– reference: 46. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 1995; 121: 1129–1137.
– reference: 7. Noguchi T, Fujinoki M, Kitazawa M, Inaba N. 2008 Regulation of hyperactivation of hamster spermatozoa by progesterone. Reprod Med Biol 2008; 7: 63–74.
– reference: 53. Casao A, Mendoza N, Pérez-Pé R, Grasa P, Abecia J-A, Forcada F, Cebrián-Pérez JA, Muino-Blanco T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J Pineal Res 2010; 48: 39–46.
– reference: 34. Suarez SS, Ho HC. Hyperactivated motility in sperm. Reprod Domest Anim 2003; 38: 119–124.
– reference: 48. Fujinoki M, Ohtake H, Okuno M. Tyrosine phosphorylation and dephosphorylation associated with motility of hamster spermatozoa. Biomed Res 2001; 22: 147–155.
– reference: 13. Fujinoki M. Serotonin-enhanced hyperactivation of hamster sperm. Reproduction 2011; 142: 255–266.
– reference: 44. Carrera A, Gerton GL, Moss SB. The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev Biol 1994; 165: 272–284.
– reference: 10. Fujinoki M. Regulation and disruption of hamster sperm hyperactivation by progesterone, 17β-estradiol and diethylstilbestrol. Reprod Med Biol 2014; 13: 143–152.
– reference: 65. Brzezinski A, Seibel MM, Lynch HJ, Deng MH, Wurtman RJ. Melatonin in human preovulatory follicular fluid. J Clin Endocrinol Metab 1987; 64: 865–867.
– reference: 16. Ritta MN, Calamera JC, Bas DE. Occurrence of GABA and GABA receptors in human spermatozoa. Mol Hum Reprod 1998; 4: 769–773.
– reference: 19. Fujinoki M, Suzuki T, Takayama T, Shibahara H, Ohtake H. Profiling of proteins phosphorylated or dephosphorylated during hyperactivation via activation on hamster spermatozoa. Reprod Med Biol 2006; 5: 123–135.
– reference: 40. Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod 2003; 68: 1590–1596.
– reference: 52. Gellersen B, Fernandes MS, Brosens JJ. Non-genomic progesterone actions in female reproduction. Hum Reprod Update 2009; 15: 119–138.
– reference: 26. Reddel RR, Murphy LC, Sutherland RL. Effects of biologically active metabolites of tamoxifen on the proliferation kinetics of MCF-7 human breast cancer cells in vitro. Cancer Res 1983; 43: 4618–4624.
– reference: 42. Strünker T, Goodwin N, Brenker C, Kashikar ND, Weyand I, Seifert R, Kaupp UB. The CatSper channel mediates progesterone-induced Ca2+ influx in human sperm. Nature 2011; 471: 382–386.
– reference: 54. Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB. Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 2010; 94: 1915–1917.
– reference: 51. Harrison DA, Carr DW, Meizel S. Involvement of protein kinase A and A kinase anchoring protein in the progesterone-initiated human sperm acrosome reaction. Biol Reprod 2000; 62: 811–820.
– reference: 1. Yanagimachi R. Mammalian fertilization. In: Knobil E, Neill JD (ed.), The Physiology of Reproduction Vol. 2, 2nd ed. New York: Raven Press; 1994: 189–317.
– reference: 49. Carrera A, Moos J, Ning XP, Gerton GL, Tesarik J, Kopf GS, Moss SB. Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol 1996; 180: 284–296.
– reference: 17. Jin J-Y, Chen W-Y, Zhou CX, Chen Z-H, Yu-Ying Y, Ni Y, Chan HC, Shi Q-X. Activation of GABAA receptor/Cl– channel and capacitation in rat spermatozoa: HCO3– and Cl– are essential. Syst Biol Reprod Med 2009; 55: 97–108.
– reference: 2. Fujinoki M. Non-genomic regulation of mammalian sperm hyperactivation. Reprod Med Biol 2009; 8: 47–52.
– reference: 27. Daniel CP, Gaskell SJ, Bishop H, Nicholson RI. Determination of tamoxifen and an hydroxylated metabolite in plasma from patients with advanced breast cancer using gas chromatography-mass spectrometry. J Endocrinol 1979; 83: 401–408.
– reference: 4. Alasmari W, Barratt CLR, Publicover SJ, Whalley KM, Foster E, Kay V, Martins da Silva S, Oxenham SK. The clinical significance of calcium-signalling pathways mediating human sperm hyperactivation. Hum Reprod 2013; 28: 866–876.
– reference: 22. Littlefield BA, Gurpide E, Markiewicz L, McKinley B, Hochberg RB. A simple and sensitive microtiter plate estrogen bioassay based on stimulation of alkaline phosphatase in Ishikawa cells: estrogenic action of delta 5 adrenal steroids. Endocrinology 1990; 127: 2757–2762.
– reference: 18. Kon H, Takei GL, Fujinoki M, Shinoda M. Suppression of progesterone-enhanced hyperactivation in hamster spermatozoa by γ-aminobutyric acid. J Reprod Dev 2014; 60: 202–209.
– reference: 5. Sueldo CE, Oehninger S, Subias E, Mahony M, Alexander NJ, Burkman LJ, Acosta AA. Effect of progesterone on human zona pellucida sperm binding and oocyte penetrating capacity. Fertil Steril 1993; 60: 137–140.
– reference: 6. Yang J, Serres C, Philibert D, Robel P, Baulieu EE, Jouannet P. Progesterone and RU486: opposing effects on human sperm. Proc Natl Acad Sci USA 1994; 91: 529–533.
– reference: 31. O’Brian CA, Kuo JF. Protein kinase C inhibitors. In: Kuo JF (ed.), Protein Kinase C. Oxford University Press; 1994: 96–129.
– reference: 21. Fujinoki M, Ohtake H, Okuno M. Serine phosphorylation of flagellar proteins associated with the motility activation of hamster spermatozoa. Biomed Res 2001; 22: 45–58.
– reference: 41. Lishko PV, Botchkina IL, Kirichok Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 2011; 471: 387–391.
– reference: 39. Ho HC, Suarez SS. An inositol 1,4,5-trisphosphate receptor-gated intracellular Ca(2+) store is involved in regulating sperm hyperactivated motility. Biol Reprod 2001; 65: 1606–1615.
– reference: 11. Fujinoki M. Melatonin-enhanced hyperactivation of hamster sperm. Reproduction 2008; 136: 533–541.
– reference: 25. Coezy E, Borgna JL, Rochefort H. Tamoxifen and metabolites in MCF7 cells: correlation between binding to estrogen receptor and inhibition of cell growth. Cancer Res 1982; 42: 317–323.
– reference: 9. Fujinoki M. Progesterone-enhanced sperm hyperactivation through IP3-PKC and PKA signals. Reprod Med Biol 2013; 12: 27–33.
– reference: 12. du Plessis SS, Hagenaar K, Lampiao F. The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 2010; 42: 112–116.
– reference: 47. Visconti PE, Galantino-Homer H, Moore GD, Bailey JL, Ning X, Fornes M, Kopf GS. The molecular basis of sperm capacitation. J Androl 1998; 19: 242–248.
– reference: 56. Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S. Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 2011; 50: 310–318.
– reference: 62. Dimitrov R, Georgiev G, Todorov P, Dimitrov Y, Konakchieva R. Membrane melatonin receptor type MT1 expression in human ejaculated spermatozoa. Compt rend Acad bulg Sci 2012; 65: 947–952.
– reference: 57. O’Flaherty C, de Lamirande E, Gagnon C. Positive role of reactive oxygen species in mammalian sperm capacitation: triggering and modulation of phosphorylation events. Free Radic Biol Med 2006; 41: 528–540.
– reference: 45. Visconti PE, Kopf GS. Regulation of protein phosphorylation during sperm capacitation. Biol Reprod 1998; 59: 1–6.
– reference: 64. Louzan P, Gallardo MGP, Tramezzani JH. Gamma-aminobutyric acid in the genital tract of the rat during the oestrous cycle. J Reprod Fertil 1986; 77: 499–504.
– reference: 59. de Lamirande E, O’Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta 2008; 1784: 106–115.
– reference: 36. Ho HC, Suarez SS. Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 2001; 122: 519–526.
– reference: 29. Daniel P, Gaskell SJ, Bishop H, Campbell C, Nicholson RI. Determination of tamoxifen and biologically active metabolites in human breast tumours and plasma. Eur J Cancer Clin Oncol 1981; 17: 1183–1189.
– reference: 61. Casao A, Gallego M, Abecia JA, Forcada F, Pérez-Pé R, Muiño-Blanco T, Cebrián-Pérez JA. Identification and immunolocalisation of melatonin MT(1) and MT(2) receptors in Rasa Aragonesa ram spermatozoa. Reprod Fertil Dev 2012; 24: 953–961.
– ident: 16
  doi: 10.1093/molehr/4.8.769
– ident: 46
  doi: 10.1242/dev.121.4.1129
– ident: 32
  doi: 10.1210/jcem.84.5.5670
– ident: 42
  doi: 10.1038/nature09769
– ident: 35
  doi: 10.1530/REP-12-0279
– ident: 61
  doi: 10.1071/RD11242
– ident: 12
  doi: 10.1111/j.1439-0272.2009.00964.x
– ident: 3
  doi: 10.2183/pjab.88.397
– ident: 28
  doi: 10.1016/0006-2952(79)90283-1
– ident: 31
– ident: 49
  doi: 10.1006/dbio.1996.0301
– ident: 14
  doi: 10.1093/molehr/2.10.733
– ident: 51
  doi: 10.1095/biolreprod62.3.811
– ident: 55
  doi: 10.1111/j.1600-079X.2010.00822.x
– ident: 13
  doi: 10.1530/REP-11-0074
– ident: 45
  doi: 10.1095/biolreprod59.1.1
– ident: 26
– ident: 6
  doi: 10.1073/pnas.91.2.529
– ident: 8
  doi: 10.1530/REP-10-0168
– ident: 22
  doi: 10.1210/endo-127-6-2757
– ident: 29
  doi: 10.1016/S0277-5379(81)80022-3
– ident: 65
  doi: 10.1210/jcem-64-4-865
– ident: 33
  doi: 10.1016/S0303-7207(99)00220-8
– ident: 1
– ident: 11
  doi: 10.1530/REP-08-0202
– ident: 27
  doi: 10.1677/joe.0.0830401
– ident: 7
  doi: 10.1111/j.1447-0578.2008.00202.x
– ident: 50
  doi: 10.1530/REP-08-0366
– ident: 30
– ident: 53
  doi: 10.1111/j.1600-079X.2009.00722.x
– ident: 58
  doi: 10.1111/j.1600-0897.2007.00559.x
– ident: 57
  doi: 10.1016/j.freeradbiomed.2006.04.027
– ident: 59
  doi: 10.1016/j.bbapap.2007.08.024
– ident: 60
  doi: 10.1016/S0015-0282(16)54855-9
– ident: 48
  doi: 10.2220/biomedres.22.147
– ident: 4
  doi: 10.1093/humrep/des467
– ident: 23
  doi: 10.3181/00379727-217-44199
– ident: 17
  doi: 10.1080/19396360802626648
– ident: 38
  doi: 10.1006/dbio.2002.0797
– ident: 24
– ident: 36
  doi: 10.1530/rep.0.1220519
– ident: 9
  doi: 10.1007/s12522-012-0137-6
– ident: 62
– ident: 34
  doi: 10.1046/j.1439-0531.2003.00397.x
– ident: 10
  doi: 10.1007/s12522-013-0175-8
– ident: 21
  doi: 10.2220/biomedres.22.45
– ident: 37
  doi: 10.1016/j.mce.2009.02.006
– ident: 54
  doi: 10.1016/j.fertnstert.2009.12.082
– ident: 2
  doi: 10.1007/s12522-009-0012-2
– ident: 47
  doi: 10.1002/j.1939-4640.1998.tb01994.x
– ident: 44
  doi: 10.1006/dbio.1994.1252
– ident: 64
  doi: 10.1530/jrf.0.0770499
– ident: 19
– ident: 66
  doi: 10.1210/jcem-71-2-493
– ident: 20
  doi: 10.1530/jrf.0.1050099
– ident: 52
  doi: 10.1093/humupd/dmn044
– ident: 39
  doi: 10.1095/biolreprod65.5.1606
– ident: 56
  doi: 10.1111/j.1600-079X.2010.00843.x
– ident: 5
  doi: 10.1016/S0015-0282(16)56051-8
– ident: 40
  doi: 10.1095/biolreprod.102.011320
– ident: 18
  doi: 10.1262/jrd.2013-076
– ident: 43
  doi: 10.1095/biolreprod.105.040733
– ident: 63
– ident: 41
  doi: 10.1038/nature09767
– ident: 25
– ident: 15
  doi: 10.1095/biolreprod56.4.964
SSID ssj0032564
Score 2.1098034
Snippet Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE2) and...
Hamster sperm hyperactivation is enhanced by progesterone, and this progesterone-enhanced hyperactivation is suppressed by 17β-estradiol (17βE 2 ) and...
SourceID pubmedcentral
pubmed
crossref
jstage
SourceType Open Access Repository
Index Database
Enrichment Source
Publisher
StartPage 287
SubjectTerms Animals
Estradiol
Estradiol - chemistry
Estradiol - metabolism
Estrogen Antagonists
Female
gamma-Aminobutyric Acid - metabolism
Hyperactivation
Kinetics
Male
Melatonin
Melatonin - agonists
Melatonin - antagonists & inhibitors
Melatonin - metabolism
Mesocricetus
Models, Biological
Non-genomic regulation
Original
Sperm Capacitation - drug effects
Sperm Motility - drug effects
Spermatozoa
Spermatozoa - cytology
Spermatozoa - drug effects
Spermatozoa - metabolism
Tamoxifen - pharmacology
Title Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa
URI https://www.jstage.jst.go.jp/article/jrd/61/4/61_2014-116/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/25959801
https://pubmed.ncbi.nlm.nih.gov/PMC4547986
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Reproduction and Development, 2015, Vol.61(4), pp.287-295
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LixQxEC7W9YEX0fU1PoY-6Eminc5zEBGRXValFw8O7K1JZxJml93udWYWXH-9VekHjujFPuSSCjRVCfVVUvUVwIsC42gZYs4WoZBMLkLO6gVXTHHj8NOhUFQoXB7pw7n8fKyOd2DoNtorcP3X0I76Sc1XZ69_fL96jwf-XeJG0MWb0xVRfnLJONfX4Dr6JENHtJTje4JAx56IpBAMMYs-qk-B_3M1UQOrmZrZvkfM4KdunCJUoxr80UttZ1D-5pIO7sKdHktmHzrj34Od0OzBza675NUe3Cr7d_P7UO6vN6sW90q2vrxIqa9hnZ1THhzdxrLQLFMiQLbEqDSVTXUXtVkbs6U7Jy6FjBjFEd22P1v3AOYH-98-HrK-kQLziOY2TFkX0W_nwtYYz3nLTdSm9nGWe2ess1L5AnFZ7qRwWiAmEbw2hdchOBF1dOIh7DZtEx5D5ovgDI_R6GjR9y8c98IhyCyiqIU1fgKvBrVVvmcZp2YXZxVFG6jvCvVdkb4x9tATeDlKX3TsGv-Qe9tZYJTqz1WS0rySNAzS4yQVruHpn8Cjzlrj6sHIEzBbdhwFiHR7e6Y5WSbybSJAm1n95L9XPoXb-KOqu8Z5Brub1WV4jsBmU08R0n_6Mk3XAtO0f3E8-lr-ArEO_TQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estrogen+suppresses+melatonin-enhanced+hyperactivation+of+hamster+spermatozoa&rft.jtitle=The+Journal+of+reproduction+and+development&rft.au=FUJINOKI%2C+Masakatsu&rft.au=TAKEI%2C+Gen+L.&rft.date=2015&rft.pub=The+Society+for+Reproduction+and+Development&rft.issn=0916-8818&rft.eissn=1348-4400&rft.volume=61&rft.issue=4&rft.spage=287&rft.epage=295&rft_id=info:doi/10.1262%2Fjrd.2014-116&rft_id=info%3Apmid%2F25959801&rft.externalDocID=PMC4547986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8818&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8818&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8818&client=summon