The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anod...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 7; p. 3134 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
31.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems. |
---|---|
AbstractList | When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems. When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems. |
Audience | Academic |
Author | Zhou, Jian Liu, Xiang Xu, Xiangyu Zhang, Zhen Yang, Han Zhang, Yi Pan, Zhengdao Wang, Zhoulu Xu, Yuanyuan Zhou, Xinchi Tan, Suchong Gu, Yudong Rao, Xingyou Wu, Yutong |
AuthorAffiliation | 2 Jiangsu Svace Intelligent Technology Co., Ltd., Nanjing 210023, China 1 School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China |
AuthorAffiliation_xml | – name: 2 Jiangsu Svace Intelligent Technology Co., Ltd., Nanjing 210023, China – name: 1 School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China |
Author_xml | – sequence: 1 givenname: Suchong surname: Tan fullname: Tan, Suchong – sequence: 2 givenname: Han surname: Yang fullname: Yang, Han – sequence: 3 givenname: Zhen surname: Zhang fullname: Zhang, Zhen – sequence: 4 givenname: Xiangyu surname: Xu fullname: Xu, Xiangyu – sequence: 5 givenname: Yuanyuan surname: Xu fullname: Xu, Yuanyuan – sequence: 6 givenname: Jian surname: Zhou fullname: Zhou, Jian – sequence: 7 givenname: Xinchi surname: Zhou fullname: Zhou, Xinchi – sequence: 8 givenname: Zhengdao surname: Pan fullname: Pan, Zhengdao – sequence: 9 givenname: Xingyou surname: Rao fullname: Rao, Xingyou – sequence: 10 givenname: Yudong surname: Gu fullname: Gu, Yudong – sequence: 11 givenname: Zhoulu surname: Wang fullname: Wang, Zhoulu – sequence: 12 givenname: Yutong surname: Wu fullname: Wu, Yutong – sequence: 13 givenname: Xiang surname: Liu fullname: Liu, Xiang – sequence: 14 givenname: Yi orcidid: 0000-0002-1603-8623 surname: Zhang fullname: Zhang, Yi |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37049897$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Ul1vFCEUJabGfugP8MWQ-OLLVhhggCezbqy7SY0m1mfCwJ0tmxmoMGPiv5fttqatMTxADueee8-99xQdxRQBodeUnDOmyfsxDeDmAUqjiGSU8WfohPKGLBjh-ujB-xidlrIjpKGcihfomMkKKi1P0PrqGvC3nLYZSsGpx2ubPV7Z3KWIbcE24mVMHvAXO0EOdsAh4u_Jh3lcbCrlo532OJSX6HlvhwKv7u4z9OPi09Vqvbj8-nmzWl4unGBsWggJqlbaccek7K0Xqu0l8y0QRlroiKdW0abVXAvWSCGc6zRwrwhQSVTXsTO0Oej6ZHfmJofR5t8m2WBugZS3xuYpuAGMqzmY7X2jesqBM0WE4y1jgvtOOqBV68NB62buRvAO4pTt8Ej08U8M12abfhlKiBaSiqrw7k4hp58zlMmMoTgYBhshzcXUwZC24bpVlfr2CXWX5hxrr0wjtW6lUpRV1vmBtbXVQYh9qoldPR7G4Or4-1DxpeS1RZIqUgPePPTwt_j7EVeCPBBcTqVk6I0Lk51C2lsKQ_Vi9stk_lmmGkmfRN6L_z_mD8mdzMc |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2024_177282 crossref_primary_10_1016_j_jpowsour_2024_236160 crossref_primary_10_1007_s10854_024_12209_z crossref_primary_10_1016_j_jcis_2024_08_059 crossref_primary_10_1007_s10751_024_02180_w crossref_primary_10_1016_j_jelechem_2024_118085 crossref_primary_10_1016_j_est_2025_116127 crossref_primary_10_1002_elt2_31 crossref_primary_10_1016_j_est_2024_114931 crossref_primary_10_1039_D4NR03503H crossref_primary_10_1039_D4DT00459K crossref_primary_10_1039_D4MH01118J crossref_primary_10_1016_j_cej_2024_153418 crossref_primary_10_1039_D4CP04409F crossref_primary_10_1016_j_mtsust_2024_100990 crossref_primary_10_7498_aps_74_20241461 crossref_primary_10_1039_D4SE01698J crossref_primary_10_1016_j_est_2024_112767 crossref_primary_10_1002_celc_202300512 crossref_primary_10_1016_j_est_2025_115649 crossref_primary_10_1016_j_jelechem_2024_118754 crossref_primary_10_1016_j_ensm_2024_103839 crossref_primary_10_3390_en16166096 crossref_primary_10_1016_j_electacta_2024_144234 crossref_primary_10_1002_aenm_202403142 crossref_primary_10_1021_acsaem_3c02188 crossref_primary_10_1016_j_cej_2024_150316 crossref_primary_10_1021_acs_chemrev_3c00728 crossref_primary_10_3390_molecules28124753 crossref_primary_10_1039_D4TA02817A crossref_primary_10_1016_j_est_2024_113864 crossref_primary_10_1039_D4NR03460K crossref_primary_10_1016_j_electacta_2024_143907 crossref_primary_10_1016_j_jaecs_2024_100252 crossref_primary_10_1016_j_seppur_2023_124121 crossref_primary_10_1016_j_fuproc_2024_108159 crossref_primary_10_1016_j_mtchem_2024_102407 crossref_primary_10_1002_slct_202402294 crossref_primary_10_1016_j_mtcomm_2024_110271 crossref_primary_10_3390_molecules28165972 crossref_primary_10_1016_j_est_2024_112629 crossref_primary_10_1002_adfm_202401188 crossref_primary_10_3390_polym16111452 crossref_primary_10_1016_j_xcrp_2025_102447 crossref_primary_10_1021_acs_nanolett_4c04569 crossref_primary_10_3390_molecules30051003 crossref_primary_10_1016_j_jcis_2023_12_022 crossref_primary_10_1016_j_jpowsour_2024_235599 crossref_primary_10_1016_j_jpowsour_2024_234949 crossref_primary_10_1016_j_diamond_2024_111679 |
Cites_doi | 10.1002/aenm.202204083 10.1021/acsenergylett.2c00908 10.1002/aenm.202001274 10.1002/cey2.191 10.1016/j.mtchem.2022.101002 10.1002/anie.202007008 10.1002/adma.202008810 10.1002/aenm.201703217 10.1007/s10854-023-10197-0 10.1016/j.cej.2021.128490 10.1002/advs.202201433 10.1016/j.colsurfa.2023.131005 10.1016/j.cej.2020.127565 10.1016/j.cej.2022.137742 10.1021/acsami.1c00182 10.1039/D1EE00087J 10.1016/j.ensm.2022.11.008 10.1016/j.carbon.2016.01.033 10.1002/aenm.201803648 10.1039/D2EE00566B 10.1007/s40820-020-00587-y 10.1016/j.cej.2022.139514 10.1016/j.jechem.2023.01.011 10.1039/D0TA06910H 10.1002/adfm.202100278 10.1016/j.ensm.2020.01.014 10.1002/smll.202207638 10.1021/acsaem.1c01949 10.1021/acsenergylett.3c00009 10.1016/j.jcis.2020.01.085 10.1039/D2EE02606F 10.1002/aenm.201600659 10.26599/NRE.2022.9120025 10.1016/j.ensm.2022.06.035 10.1016/j.carbon.2021.09.063 10.1007/s12598-022-02073-3 10.1002/adma.202108384 10.1016/j.jcis.2022.06.073 10.1021/acsami.2c09985 10.1039/C9NR00146H 10.1002/adfm.202106980 10.1149/1.1379565 10.1039/C9TA02037C 10.1002/aenm.202102356 10.1016/j.fuel.2022.126683 10.1002/smtd.202100580 10.1002/inf2.12272 10.1002/cssc.202202070 10.1002/adma.202209128 10.1002/adma.202202673 10.1002/eem2.12603 10.1021/acsenergylett.2c02130 10.1073/pnas.2111119118 10.1002/cey2.221 10.1016/j.cej.2021.131656 10.1002/cey2.196 10.1007/s12598-021-01890-2 10.1021/acsaelm.2c01476 10.1016/j.carbon.2022.09.075 10.1016/j.cej.2021.133257 10.1002/adma.202210447 10.1002/aenm.201700403 10.1039/C6CS00776G 10.1021/acs.nanolett.1c04492 10.1016/j.jcis.2022.05.155 10.1002/aenm.202201734 10.1016/j.ensm.2022.07.005 10.1002/aenm.202003336 10.1016/j.jechem.2022.12.044 10.1002/app.53069 10.26599/NRE.2022.9120026 10.1021/acs.chemrev.2c00247 10.1016/j.ensm.2022.02.043 10.1016/j.cej.2022.138882 10.1002/anie.202013951 10.1021/acsami.1c14738 10.1002/aenm.202100757 10.1021/nl3016957 10.1038/natrevmats.2018.13 10.1007/s10854-022-08393-5 10.1002/aenm.202200715 10.1021/jacs.6b06673 10.1021/acsami.0c23165 10.1002/adma.202109282 10.1016/j.cej.2022.139932 10.1002/aenm.202003911 10.1021/acsenergylett.1c02307 10.1002/aenm.202200647 10.1002/aenm.202201834 10.1002/adfm.201706294 10.1016/j.jechem.2020.07.025 10.1021/acsami.9b22745 10.1007/s12598-021-01893-z 10.1002/aenm.202002704 10.1002/smll.201802694 10.1002/smll.202108092 10.26599/NRE.2022.9120037 10.26599/NRE.2022.9120031 10.1002/aenm.202103939 10.1073/pnas.2210203119 10.1016/j.carbon.2023.01.048 10.1002/aenm.201702856 10.1021/acsami.2c13862 10.1016/j.cej.2020.128104 10.1039/D2TA04194D 10.1002/aenm.202000283 10.1002/anie.202202518 10.1002/adma.202207829 10.1149/1.1393348 10.1002/cey2.220 10.1016/j.jpowsour.2023.232649 10.1021/acs.chemmater.2c00405 10.1016/j.cej.2020.126430 10.1016/j.jpowsour.2023.232688 10.1002/adfm.202111720 10.1016/j.nanoen.2020.105738 10.1002/anie.202215865 10.1002/aenm.202000974 10.1021/acsenergylett.0c01712 10.1002/adfm.202203117 10.1016/j.ensm.2022.06.008 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/molecules28073134 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_cc373afd28f14e43805c463354db7ce1 PMC10095715 A746947180 37049897 10_3390_molecules28073134 |
Genre | Journal Article Review |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51702157 – fundername: Ministry of Science and Technology grantid: 2018YFE0124800 – fundername: National Key Research and Development Project grantid: 2020YFE0100100 |
GroupedDBID | --- 0R~ 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAYXX ABDBF ABUWG ACGFO ACIWK ACPRK ACUHS AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DIK DU5 E3Z EBD EMOBN ESX FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE HZ~ I09 IAO IHR ITC KQ8 LK8 M1P MODMG O-U O9- OK1 P2P PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM SV3 TR2 TUS UKHRP ~8M 3V. ABJCF BBNVY BHPHI HCIFZ KB. M7P M~E NPM PDBOC PMFND 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c533t-57e8313b4c377fad586f73d6e0306eb0d1a8126949532755ccb9e4d80e1708bb3 |
IEDL.DBID | 7X7 |
ISSN | 1420-3049 |
IngestDate | Wed Aug 27 01:31:20 EDT 2025 Thu Aug 21 18:38:22 EDT 2025 Fri Jul 11 03:25:31 EDT 2025 Fri Jul 25 09:34:42 EDT 2025 Tue Jun 10 21:00:19 EDT 2025 Wed Feb 19 02:24:19 EST 2025 Thu Apr 24 22:58:54 EDT 2025 Tue Jul 01 01:22:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | hard carbon anode sodium-ion storage electrochemical performance sodium-ion battery |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-57e8313b4c377fad586f73d6e0306eb0d1a8126949532755ccb9e4d80e1708bb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1603-8623 |
OpenAccessLink | https://www.proquest.com/docview/2799678813?pq-origsite=%requestingapplication% |
PMID | 37049897 |
PQID | 2799678813 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_cc373afd28f14e43805c463354db7ce1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10095715 proquest_miscellaneous_2800624968 proquest_journals_2799678813 gale_infotracacademiconefile_A746947180 pubmed_primary_37049897 crossref_citationtrail_10_3390_molecules28073134 crossref_primary_10_3390_molecules28073134 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230331 |
PublicationDateYYYYMMDD | 2023-03-31 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230331 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Lin (ref_45) 2022; 51 Ren (ref_93) 2021; 425 Li (ref_51) 2022; 12 Yao (ref_55) 2022; 139 Yu (ref_58) 2023; 5 Jin (ref_110) 2020; 5 Li (ref_33) 2022; 1 Yan (ref_127) 2022; 432 Yan (ref_106) 2021; 11 Lu (ref_59) 2022; 119 Lohani (ref_111) 2022; 14 Peng (ref_20) 2021; 14 Ilic (ref_79) 2022; 186 Tian (ref_16) 2022; 1 Xu (ref_31) 2022; 41 Zhou (ref_12) 2023; 35 Zhou (ref_118) 2023; 558 Lu (ref_27) 2023; 34 Kong (ref_11) 2023; 663 Yang (ref_97) 2020; 566 Deng (ref_21) 2022; 626 Gan (ref_123) 2021; 5 Guo (ref_6) 2022; 1 Jin (ref_126) 2020; 27 Lei (ref_69) 2022; 4 Jin (ref_82) 2021; 417 Zhang (ref_14) 2023; 5 Hirsh (ref_35) 2020; 10 Lemoine (ref_42) 2022; 122 Zeng (ref_113) 2023; 79 Cao (ref_89) 2012; 12 Chen (ref_50) 2022; 5 Zhang (ref_56) 2021; 82 Chi (ref_71) 2022; 54 Yu (ref_102) 2020; 12 Gao (ref_13) 2022; 448 ref_75 Zhang (ref_30) 2023; 334 Yang (ref_36) 2020; 11 Li (ref_96) 2016; 6 Liang (ref_46) 2022; 47 Zhao (ref_18) 2023; 451 Gong (ref_70) 2022; 7 Wang (ref_15) 2022; 61 Li (ref_105) 2020; 8 Zhang (ref_26) 2021; 11 Wang (ref_120) 2022; 11 Yu (ref_80) 2021; 55 Peng (ref_22) 2018; 8 Xu (ref_88) 2023; 452 Peng (ref_17) 2023; 62 Liu (ref_73) 2023; 79 Zhao (ref_68) 2022; 14 Surta (ref_76) 2022; 12 Wang (ref_40) 2023; 8 Stevens (ref_85) 2000; 147 Gong (ref_25) 2023; 404 Lu (ref_90) 2018; 14 Zeng (ref_4) 2019; 11 Yu (ref_63) 2016; 138 Kamiyama (ref_125) 2021; 60 Niu (ref_117) 2021; 4 Peng (ref_38) 2022; 32 Wang (ref_104) 2021; 13 Zhen (ref_121) 2021; 118 Niitani (ref_49) 2022; 7 Yu (ref_47) 2022; 41 Alvin (ref_81) 2020; 10 Yin (ref_98) 2022; 34 Liu (ref_99) 2021; 13 Zhu (ref_52) 2022; 4 Zhang (ref_65) 2016; 11 Song (ref_94) 2022; 51 Hou (ref_83) 2023; 20 Vaalma (ref_34) 2018; 3 Ma (ref_108) 2021; 31 Liu (ref_29) 2022; 1 Liang (ref_103) 2022; 34 Sun (ref_3) 2022; 7 Fan (ref_122) 2023; 205 Huang (ref_2) 2019; 7 Jiang (ref_91) 2022; 18 Zhang (ref_109) 2022; 11 Yuan (ref_9) 2023; 559 Wang (ref_119) 2022; 33 Michael (ref_84) 2023; 10 Zhao (ref_57) 2020; 11 Luo (ref_5) 2021; 404 Kang (ref_116) 2023; 10 Lin (ref_8) 2022; 9 Ren (ref_1) 2021; 14 Zhao (ref_67) 2019; 9 Yuan (ref_92) 2022; 34 Yang (ref_100) 2021; 13 Huang (ref_107) 2023; 20 Sun (ref_72) 2023; 17 Liu (ref_53) 2022; 32 Zhou (ref_115) 2020; 59 Huang (ref_61) 2018; 28 Voronina (ref_43) 2022; 12 Li (ref_62) 2021; 32 Wang (ref_28) 2022; 15 Kim (ref_74) 2023; 20 Zhao (ref_60) 2023; 201 Peng (ref_7) 2022; 34 Qiu (ref_86) 2017; 7 Pi (ref_124) 2021; 413 Chen (ref_77) 2022; 4 Liu (ref_23) 2022; 26 Hwang (ref_24) 2017; 46 Alvin (ref_66) 2021; 411 Sun (ref_78) 2022; 12 Hou (ref_114) 2023; 453 Chen (ref_41) 2022; 12 Fan (ref_48) 2022; 41 Yuan (ref_39) 2023; 2 Li (ref_19) 2022; 625 Dong (ref_112) 2021; 33 Chen (ref_64) 2020; 11 Yan (ref_32) 2021; 13 Yuan (ref_44) 2022; 50 Peng (ref_10) 2022; 22 Stevens (ref_87) 2001; 148 Peng (ref_37) 2021; 11 Wu (ref_101) 2022; 10 Peng (ref_54) 2022; 33 Bai (ref_95) 2018; 8 |
References_xml | – volume: 10 start-page: 2204083 year: 2023 ident: ref_116 article-title: Dendrite-free sodium metal anodes via solid electrolyte interphase engineering with a covalent organic framework separator publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202204083 – volume: 7 start-page: 1774 year: 2022 ident: ref_3 article-title: A rising tide of co-free chemistries for li-ion batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00908 – volume: 10 start-page: 2001274 year: 2020 ident: ref_35 article-title: Sodium-ion batteries paving the way for grid energy storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202001274 – volume: 5 start-page: e191 year: 2022 ident: ref_50 article-title: Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries publication-title: Carbon Energy doi: 10.1002/cey2.191 – volume: 26 start-page: 101002 year: 2022 ident: ref_23 article-title: In situ fragmented and confined CoP nanocrystals into sandwich-structure MXene@CoP@NPC heterostructure for superior sodium-ion storage publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2022.101002 – volume: 59 start-page: 16725 year: 2020 ident: ref_115 article-title: Polyolefin-based janus separator for rechargeable sodium batteries publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202007008 – volume: 33 start-page: e2008810 year: 2021 ident: ref_112 article-title: Elucidating the mechanism of fast na storage kinetics in ether electrolytes for hard carbon anodes publication-title: Adv. Mater. doi: 10.1002/adma.202008810 – volume: 8 start-page: 1703217 year: 2018 ident: ref_95 article-title: Elucidation of the sodium-storage mechanism in hard carbons publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201703217 – volume: 34 start-page: 797 year: 2023 ident: ref_27 article-title: U-shaped micropores induced dielectric and piezoelectric tunability in bismuth sodium titanate-based ceramics publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-023-10197-0 – volume: 411 start-page: 128490 year: 2021 ident: ref_66 article-title: Controlling intercalation sites of hard carbon for enhancing Na and K storage performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.128490 – volume: 9 start-page: e2201433 year: 2022 ident: ref_8 article-title: High-rate, large capacity, and long life dendrite-free zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range publication-title: Adv. Sci. doi: 10.1002/advs.202201433 – volume: 663 start-page: 131005 year: 2023 ident: ref_11 article-title: Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2023.131005 – volume: 413 start-page: 127565 year: 2021 ident: ref_124 article-title: Insight into pre-sodiation in Na3V2(PO4)(2)F-3/C @ hard carbon full cells for promoting the development of sodium-ion battery publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127565 – volume: 448 start-page: 1377742 year: 2022 ident: ref_13 article-title: Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.137742 – volume: 13 start-page: 14258 year: 2021 ident: ref_32 article-title: Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c00182 – volume: 14 start-page: 3130 year: 2021 ident: ref_20 article-title: Defect-free-induced Na+ disordering in electrode materials publication-title: Energy Environ. Sci. doi: 10.1039/D1EE00087J – volume: 54 start-page: 668 year: 2022 ident: ref_71 article-title: Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.11.008 – volume: 11 start-page: 600 year: 2016 ident: ref_65 article-title: Thermal reduction of graphene oxide mixed with hard carbon and their high performance as lithium ion battery anode publication-title: Carbon doi: 10.1016/j.carbon.2016.01.033 – volume: 9 start-page: 1803648 year: 2019 ident: ref_67 article-title: Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201803648 – volume: 15 start-page: 3923 year: 2022 ident: ref_28 article-title: High performance Li-, Na-, and K-ion storage in electrically conducting coordination polymers publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00566B – volume: 2 start-page: 1361 year: 2023 ident: ref_39 article-title: Fast-charging cathode materials for lithium & sodium ion batteries publication-title: Mater. Today – volume: 13 start-page: 98 year: 2021 ident: ref_100 article-title: From micropores to ultra-micropores inside hard carbon: Toward enhanced capacity in room-/low-temperature sodium-ion storage publication-title: Nano-Micro Lett. doi: 10.1007/s40820-020-00587-y – volume: 452 start-page: 139514 year: 2023 ident: ref_88 article-title: Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139514 – volume: 79 start-page: 373 year: 2023 ident: ref_73 article-title: Ultrasmall CoS nanoparticles embedded in heteroatom-doped carbon for sodium-ion batteries and mechanism explorations via synchrotron X-ray techniques publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2023.01.011 – volume: 8 start-page: 20486 year: 2020 ident: ref_105 article-title: Phosphorus-doped hard carbon with controlled active groups and microstructure for high-performance sodium-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/D0TA06910H – volume: 31 start-page: 2100278 year: 2021 ident: ref_108 article-title: Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202100278 – volume: 27 start-page: 43 year: 2020 ident: ref_126 article-title: Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.01.014 – volume: 20 start-page: 2207638 year: 2023 ident: ref_83 article-title: Boosting the reversible, high-rate Na+ storage capability of the hard carbon anode via the synergistic structural tailoring and controlled presodiation publication-title: Small doi: 10.1002/smll.202207638 – volume: 4 start-page: 11080 year: 2021 ident: ref_117 article-title: Interconnected porous poly(ether imide) separator for thermally stable sodium ion battery publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c01949 – volume: 8 start-page: 1434 year: 2023 ident: ref_40 article-title: In situ plastic-crystal-coated cathode toward high-performance na-ion batteries publication-title: Acs Energy Lett. doi: 10.1021/acsenergylett.3c00009 – volume: 566 start-page: 257 year: 2020 ident: ref_97 article-title: Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.01.085 – volume: 404 start-page: 535 year: 2023 ident: ref_25 article-title: The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02606F – volume: 6 start-page: 1600659 year: 2016 ident: ref_96 article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600659 – volume: 1 start-page: e9120025 year: 2022 ident: ref_16 article-title: A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries publication-title: Nano Res. Energy doi: 10.26599/NRE.2022.9120025 – volume: 51 start-page: 159 year: 2022 ident: ref_45 article-title: In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.06.035 – volume: 186 start-page: 55 year: 2022 ident: ref_79 article-title: Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes publication-title: Carbon doi: 10.1016/j.carbon.2021.09.063 – volume: 41 start-page: 3421 year: 2022 ident: ref_31 article-title: Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries publication-title: Rare Met. doi: 10.1007/s12598-022-02073-3 – volume: 34 start-page: e2108384 year: 2022 ident: ref_7 article-title: Prussian blue analogues for sodium-ion batteries: Past, present, and future publication-title: Adv. Mater. doi: 10.1002/adma.202108384 – volume: 626 start-page: 700 year: 2022 ident: ref_21 article-title: Ultrathin cobalt nickel selenides (Co(0.5)Ni(0.5)Se(2)) nanosheet arrays anchoring on Ti(3)C(2) MXene for high-performance Na(+)/K(+) batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.06.073 – volume: 14 start-page: 37793 year: 2022 ident: ref_111 article-title: Artificial organo-fluoro-rich anode electrolyte interface and partially sodiated hard carbon anode for improved cycle life and practical sodium-ion batteries publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/acsami.2c09985 – volume: 11 start-page: 6766 year: 2019 ident: ref_4 article-title: Rational design of few-layer MoSe(2) confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries publication-title: Nanoscale doi: 10.1039/C9NR00146H – volume: 32 start-page: 2106980 year: 2021 ident: ref_62 article-title: Intergrowth of graphite-like crystals in hard carbon for highly reversible na-ion storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202106980 – volume: 148 start-page: A803 year: 2001 ident: ref_87 article-title: The mechanisms of lithium and sodium insertion in carbon materials publication-title: J. Electrochem. Soc. doi: 10.1149/1.1379565 – volume: 7 start-page: 11250 year: 2019 ident: ref_2 article-title: A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA02037C – volume: 11 start-page: 2102356 year: 2021 ident: ref_37 article-title: Processing rusty metals into versatile prussian blue for sustainable energy storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102356 – volume: 334 start-page: 126683 year: 2023 ident: ref_30 article-title: Enhanced cyclic stability of Ga2O3@PDA-C nanospheres as pseudocapacitive anode materials for lithium-ion batteries publication-title: Fuel doi: 10.1016/j.fuel.2022.126683 – volume: 5 start-page: 2100580 year: 2021 ident: ref_123 article-title: Extra sodiation sites in hard carbon for high performance sodium ion batteries publication-title: Small Methods doi: 10.1002/smtd.202100580 – volume: 4 start-page: e12272 year: 2022 ident: ref_69 article-title: A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries publication-title: InfoMat doi: 10.1002/inf2.12272 – volume: 20 start-page: e202202070 year: 2023 ident: ref_107 article-title: High Proportion of Active Nitrogen-doped hard carbon based on mannich reaction as anode material for high-performance sodium-ion batteries publication-title: ChemSusChem doi: 10.1002/cssc.202202070 – volume: 20 start-page: 2209128 year: 2023 ident: ref_74 article-title: Revisiting lithium- and sodium-ion storage in hard carbon anodes publication-title: Adv. Mater. doi: 10.1002/adma.202209128 – volume: 34 start-page: 2202673 year: 2022 ident: ref_103 article-title: Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage publication-title: Adv. Mater. doi: 10.1002/adma.202202673 – volume: 17 start-page: e12603 year: 2023 ident: ref_72 article-title: Low-temperature carbonized nitrogen doped hard carbon nanofiber towards high-performance sodium-ion capacitors publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12603 – volume: 7 start-page: 4417 year: 2022 ident: ref_70 article-title: Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host publication-title: Acs Energy Lett. doi: 10.1021/acsenergylett.2c02130 – volume: 118 start-page: e111119118 year: 2021 ident: ref_121 article-title: Ultrafast synthesis of hard carbon anodes for sodium-ion batteries publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2111119118 – volume: 11 start-page: 5974 year: 2022 ident: ref_109 article-title: Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive publication-title: Nano Res. – volume: 4 start-page: 1182 year: 2022 ident: ref_52 article-title: Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries publication-title: Carbon Energy doi: 10.1002/cey2.221 – volume: 11 start-page: 5974 year: 2022 ident: ref_120 article-title: Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries publication-title: Nano Res. – volume: 425 start-page: 131656 year: 2021 ident: ref_93 article-title: Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.131656 – volume: 4 start-page: 1133 year: 2022 ident: ref_77 article-title: Understanding of the sodium storage mechanism in hard carbon anodes publication-title: Carbon Energy doi: 10.1002/cey2.196 – volume: 41 start-page: 1294 year: 2022 ident: ref_48 article-title: NiS2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries publication-title: Rare Met. doi: 10.1007/s12598-021-01890-2 – volume: 5 start-page: 498 year: 2023 ident: ref_14 article-title: Self-powered electronic skin for remote human–machine synchronization publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c01476 – volume: 33 start-page: e00446 year: 2022 ident: ref_119 article-title: Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries publication-title: Sustain. Mater. Technol. – volume: 201 start-page: 864 year: 2023 ident: ref_60 article-title: Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries publication-title: Carbon doi: 10.1016/j.carbon.2022.09.075 – volume: 432 start-page: 133257 year: 2022 ident: ref_127 article-title: In-Situ graphene-coated carbon microsphere as high initial coulombic efficiency anode for superior Na/K-ion full cell publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2021.133257 – ident: ref_75 doi: 10.1002/adma.202210447 – volume: 14 start-page: 5 year: 2021 ident: ref_1 article-title: Porous Co(2)VO(4) nanodisk as a high-energy and fast-charging anode for lithium-ion batteries publication-title: Nanomicro Lett. – volume: 7 start-page: 1700403 year: 2017 ident: ref_86 article-title: Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700403 – volume: 46 start-page: 3529 year: 2017 ident: ref_24 article-title: Sodium-ion batteries: Present and future publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00776G – volume: 22 start-page: 1302 year: 2022 ident: ref_10 article-title: Ice-assisted synthesis of highly crystallized prussian blue analogues for all-climate and long-calendar-life sodium ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c04492 – volume: 625 start-page: 41 year: 2022 ident: ref_19 article-title: Rational design of heterostructured bimetallic sulfides (CoS(2)/NC@VS(4)) with VS(4) nanodots decorated on CoS(2) dodecahedron for high-performance sodium and potassium ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.05.155 – volume: 12 start-page: 2201734 year: 2022 ident: ref_51 article-title: Unraveling the key atomic interactions in determining the varying li/na/k storage mechanism of hard carbon anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201734 – volume: 51 start-page: 620 year: 2022 ident: ref_94 article-title: Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.07.005 – volume: 11 start-page: 2003336 year: 2020 ident: ref_64 article-title: Enabling 6C fast charging of li-ion batteries with graphite/hard carbon hybrid anodes publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003336 – volume: 79 start-page: 459 year: 2023 ident: ref_113 article-title: Innovative discontinuous-SEI constructed in ether-based electrolyte to maximize the capacity of hard carbon anode publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2022.12.044 – volume: 139 start-page: e53069 year: 2022 ident: ref_55 article-title: Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@ double-shell structured Zn@ZnO@PS particles publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.53069 – volume: 1 start-page: e9120026 year: 2022 ident: ref_6 article-title: Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries publication-title: Nano Res. Energy doi: 10.26599/NRE.2022.9120026 – volume: 122 start-page: 14405 year: 2022 ident: ref_42 article-title: Fluorinated materials as positive electrodes for li- and na-ion batteries publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00247 – volume: 47 start-page: 515 year: 2022 ident: ref_46 article-title: Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.02.043 – volume: 451 start-page: 138882 year: 2023 ident: ref_18 article-title: Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138882 – volume: 60 start-page: 5114 year: 2021 ident: ref_125 article-title: MgO-template synthesis of extremely high capacity hard carbon for na-ion battery publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202013951 – volume: 13 start-page: 47671 year: 2021 ident: ref_99 article-title: Boosting sodium storage performance of hard carbon anodes by pore architecture engineering publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/acsami.1c14738 – volume: 11 start-page: 2100757 year: 2021 ident: ref_26 article-title: Architecting amorphous vanadium oxide/mxene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100757 – volume: 12 start-page: 3783 year: 2012 ident: ref_89 article-title: Sodium ion insertion in hollow carbon nanowires for battery applications publication-title: Nano Lett. doi: 10.1021/nl3016957 – volume: 3 start-page: 18013 year: 2018 ident: ref_34 article-title: A cost and resource analysis of sodium-ion batteries publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2018.13 – volume: 33 start-page: 14735 year: 2022 ident: ref_54 article-title: Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-022-08393-5 – volume: 12 start-page: 2200715 year: 2022 ident: ref_78 article-title: Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200715 – volume: 138 start-page: 14915 year: 2016 ident: ref_63 article-title: Ion-Catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06673 – volume: 13 start-page: 12059 year: 2021 ident: ref_104 article-title: Regulate phosphorus configuration in high p-doped hard carbon as a superanode for sodium storage publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c23165 – volume: 34 start-page: 2109282 year: 2022 ident: ref_98 article-title: Enabling fast na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage publication-title: Adv. Mater. doi: 10.1002/adma.202109282 – volume: 453 start-page: 139932 year: 2023 ident: ref_114 article-title: Weak coulomb interaction between anions and Na plus during solvation enabling desirable solid electrolyte interphase and superior kinetics for HC-based sodium ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.139932 – volume: 11 start-page: 2003911 year: 2021 ident: ref_106 article-title: Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202003911 – volume: 7 start-page: 145 year: 2022 ident: ref_49 article-title: Hard carbon anode with a sodium carborane electrolyte for fast-charging all-solid-state sodium-ion batteries publication-title: Acs Energy Lett. doi: 10.1021/acsenergylett.1c02307 – volume: 12 start-page: 2200647 year: 2022 ident: ref_76 article-title: Combining experimental and theoretical techniques to gain an atomic level understanding of the defect binding mechanism in hard carbon anodes for sodium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202200647 – volume: 12 start-page: 2201834 year: 2022 ident: ref_41 article-title: Toward high-areal-capacity electrodes for lithium and sodium ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201834 – volume: 28 start-page: 1706294 year: 2018 ident: ref_61 article-title: N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706294 – volume: 55 start-page: 499 year: 2021 ident: ref_80 article-title: Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.07.025 – volume: 12 start-page: 10544 year: 2020 ident: ref_102 article-title: Hyperaccumulation route to ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries publication-title: Acs Appl. Mater. Interfaces doi: 10.1021/acsami.9b22745 – volume: 41 start-page: 1616 year: 2022 ident: ref_47 article-title: Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery publication-title: Rare Met. doi: 10.1007/s12598-021-01893-z – volume: 11 start-page: 2002704 year: 2020 ident: ref_57 article-title: Hard carbon anodes: Fundamental understanding and commercial perspectives for na-ion batteries beyond li-ion and k-ion counterparts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002704 – volume: 14 start-page: 2108092 year: 2018 ident: ref_90 article-title: Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method publication-title: Small doi: 10.1002/smll.201802694 – volume: 18 start-page: 2108092 year: 2022 ident: ref_91 article-title: Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage publication-title: Small doi: 10.1002/smll.202108092 – volume: 1 start-page: 9120037 year: 2022 ident: ref_29 article-title: The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review publication-title: Nano Res. Energy doi: 10.26599/NRE.2022.9120037 – volume: 1 start-page: e9120031 year: 2022 ident: ref_33 article-title: Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy publication-title: Nano Res. Energy doi: 10.26599/NRE.2022.9120031 – volume: 12 start-page: 2103939 year: 2022 ident: ref_43 article-title: Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103939 – volume: 119 start-page: e2210203119 year: 2022 ident: ref_59 article-title: Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2210203119 – volume: 205 start-page: 353 year: 2023 ident: ref_122 article-title: Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2023.01.048 – volume: 10 start-page: 1039 year: 2023 ident: ref_84 article-title: Sodiation energetics in pore size controlled hard carbons determined via entropy profiling publication-title: J. Mater. Chem. A – volume: 8 start-page: 1702856 year: 2018 ident: ref_22 article-title: A dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702856 – volume: 14 start-page: 54662 year: 2022 ident: ref_68 article-title: Three-dimensional honeycomb-like carbon as sulfur host for sodium-sulfur batteries without the shuttle effect publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c13862 – volume: 417 start-page: 128104 year: 2021 ident: ref_82 article-title: Tuning microstructures of hard carbon for high capacity and rate sodium storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.128104 – volume: 10 start-page: 17225 year: 2022 ident: ref_101 article-title: Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/D2TA04194D – volume: 10 start-page: 2000283 year: 2020 ident: ref_81 article-title: Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000283 – volume: 61 start-page: e202202518 year: 2022 ident: ref_15 article-title: Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202202518 – volume: 35 start-page: e2207829 year: 2023 ident: ref_12 article-title: Core-shell engineering of conductive fillers toward enhanced dielectric properties: A universal polarization mechanism in polymer conductor composites publication-title: Adv. Mater. doi: 10.1002/adma.202207829 – volume: 147 start-page: 1271 year: 2000 ident: ref_85 article-title: High capacity anode materials for rechargeable sodium-ion batteries publication-title: J. Electrochem. Soc. doi: 10.1149/1.1393348 – volume: 5 start-page: e220 year: 2023 ident: ref_58 article-title: Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries publication-title: Carbon Energy doi: 10.1002/cey2.220 – volume: 558 start-page: 232649 year: 2023 ident: ref_118 article-title: Cellulose filter papers derived separator featuring effective ion transferring channels for sodium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232649 – volume: 34 start-page: 3489 year: 2022 ident: ref_92 article-title: Sodium storage mechanism of nongraphitic carbons: A general model and the function of accessible closed pores publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.2c00405 – volume: 404 start-page: 123430 year: 2021 ident: ref_5 article-title: In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126430 – volume: 559 start-page: e912002617 year: 2023 ident: ref_9 article-title: Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2023.232688 – volume: 32 start-page: 2111720 year: 2022 ident: ref_38 article-title: The emerging electrochemical activation tactic for aqueous energy storage: Fundamentals, applications, and future publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111720 – volume: 82 start-page: 105738 year: 2021 ident: ref_56 article-title: Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105738 – volume: 62 start-page: e202215865 year: 2023 ident: ref_17 article-title: A disordered rubik’s cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.202215865 – volume: 11 start-page: 2000974 year: 2020 ident: ref_36 article-title: Materials design for high-safety sodium-ion battery publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202000974 – volume: 5 start-page: 3212 year: 2020 ident: ref_110 article-title: Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases publication-title: Acs Energy Lett doi: 10.1021/acsenergylett.0c01712 – volume: 32 start-page: 2203117 year: 2022 ident: ref_53 article-title: Advances in carbon materials for sodium and potassium storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202203117 – volume: 50 start-page: 760 year: 2022 ident: ref_44 article-title: Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2022.06.008 |
SSID | ssj0021415 |
Score | 2.5849283 |
SecondaryResourceType | review_article |
Snippet | When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 3134 |
SubjectTerms | Adsorption Carbon Chemical properties Electric properties electrochemical performance Energy storage Graphite hard carbon anode Ions Lithium Morphology Review Sodium Sodium compounds sodium-ion battery sodium-ion storage |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7SF30R7462EkEQhKGTyf2xXSyrUBG00LeQ2-CCnSnd3f_vOZPZZYeCvvg6yUByLjnnIyffIeRD7AJkHSLUMqlUC-5DbYMQdWOCFCJ1IY3dGi6_qeWV-Hotrw9afWFNWKEHLoI7jZFr7rvUmo6JjPzoMgrFuRQp6JhH4AMxbwemJqjFIC6VO0wOoP70prSazWvkfuGMi1kUGsn67x_JBzFpXi95EIAunpDHU-ZIz8qKn5IHuX9GHi52DduekyWonH7Heis4vejQUbyVpwt_F4ae-jX1PQWwnzK99JvR7uiqpz-GtNre1F9gSqHaBOT8glxdfP65WNZTo4Q6Qra2qaXOBnYVBMhKdz5JozrNk8oICHJoEvMQx5XFWtJWSxljsFkk02SmQSmBvyRH_dDn14TybBQzvk02e8E6a0PWylt02wTe2lak2QnOxYlFHJtZ_HaAJlDW7p6sK_Jp_8ttodD42-Rz1MZ-IrJfjx_AJtxkE-5fNlGRj6hLhz4Ki4t-emoAW0S2K3emBQgDonJTkeOdut3kvGvXagCBSLPPK_J-PwzKxLsU3-dhC3MMvj4VVpmKvCrWsV8z1wC7jNUVMTO7mW1qPtKvfo3U3gxTXs3km_8hhrfkUQspWXlBeUyONnfbfAIp1Ca8G73lDwBeGcM priority: 102 providerName: Directory of Open Access Journals |
Title | The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37049897 https://www.proquest.com/docview/2799678813 https://www.proquest.com/docview/2800624968 https://pubmed.ncbi.nlm.nih.gov/PMC10095715 https://doaj.org/article/cc373afd28f14e43805c463354db7ce1 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7a5NBeSt91mi4qFAoFk5UlWfKpJEu220JCaBvYm9HL7UJjp_v4_5mxvZuYQC4-2DJI8x6N9A3AJ185jDqkS1XIQyqFdWnhpEzHxikpQ-VC263h7DyfXcofczXvN9xW_bHKrU1sDXVoPO2RH2UaI3PCPhdfr_-n1DWKqqt9C43HsE_QZSTVen6bcHH0Tl0lU2Bqf3TVNZyNK0KAEVzIgS9qIfvvG-Y7nml4avKOG5o-h2d9_MiOO4a_gEexfglPJtu2ba9ghoxnF3TqCm0YaypGtXk2sUvX1MyumK0ZpvwhsjO7bqWPLWr2qwmLzVX6HYd0gJuYP7-Gy-np78ks7dslpB5jtnWqdDS4Kie90LqyQZm80iLkkdKC6MaBW_TmeUEnSjOtlPeuiDKYceQaWePEG9irmzq-AyaiybmxWSiilbwqChd1bgtS3oA6myUw3hKu9D2WOLW0-FdiTkG0Lu_ROoEvu1-uOyCNhwafEDd2AwkDu33RLP-UvUqVHtcpbBUyU3EZCTlfeZkLoWRw2keewGfiZUmaipPztr9wgEskzKvyWEskBvrmcQKHW3aXvQqvyluBS-Dj7jMykyoqto7NBscYuoMqi9wk8LaTjt2chcbkyxQ6ATOQm8Gihl_qxd8W4JtT4Ku5Onh4Xu_haYYhV3dD8hD21stN_IAh0tqNWj3Ap5l-G8H-yen5xc9Ru91wA-VBFNA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJtAASOBkJCiJrETOweEloVll3YrJFqpt9SvwEo0KfsQ4k_xG5nJY-mqUm-9xt6NPTOeRzzzDcArWxr0OoQJU5e5UHBtwtwIEUbKpEK40rimW8P0MBsfiy8n6ckW_O1rYSitsteJjaJ2taVv5HuJRM-csM_5-_NfIXWNotvVvoVGKxb7_s9vDNkW7yYfkb-vk2T06Wg4DruuAqFF12YZptIrHnMjLJey1C5VWSm5yzx5z95ELtZo9LKcEi8TmabWmtwLpyIfS9yB4fi_N-Cm4GjJqTJ99Hkd4MVoDdubUxyM9s7aBrd-QYgz-EqxYfuaFgGXDcEFS7iZpXnB7I3uwO3OX2WDVsDuwpav7sHOsG8Tdx_GKGjsK2V5oc5kdckoF4AN9dzUFdMLpis2qGrn2VQvG2lns4p9q91sdRZOcEoL8Inx-gM4vhZCPoTtqq78Y2DcqyxWOnG51yIu89x4memclIVDHZEEEPWEK2yHXU4tNH4WGMMQrYtLtA7g7fon5y1wx1WTPxA31hMJc7t5UM-_F90RLizuk-vSJaqMhSek_tSKjPNUOCOtjwN4Q7wsSDPg4qzuChxwi4SxVQykQGKgLxAFsNuzu-hUxqL4L-ABvFwPIzPpBkdXvl7hHEU1ryLPVACPWulYr5lLDPZULgNQG3KzsanNkWr2owEUj8nRlnH65Op1vYCd8dH0oDiYHO4_hVsJunttdeYubC_nK_8M3bOled6cCQan130I_wGbs0zz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosEQkKyYnvXXvuAUJo2SiiNIqBSb2ZfhkjULnkI8df4dcz4ERpV6q3XeJPszszOfOOd_QbgtSk0og6h_dgm1hdcaT_TQvhBqmMhbKFt3a3heJqMT8TH0_h0B_52d2GorLLzibWjtpWhd-T9SCIyJ-5z3i_asojZwejD-S-fOkjRSWvXTqMxkSP35zemb8v3kwPU9ZsoGh1-HY79tsOAbxDmrPxYupSHXAvDpSyUjdOkkNwmjpC004ENFQbAJKMizEjGsTE6c8KmgQslrkZz_N0bsCspK-rB7v7hdPZ5k-6FGBubc1TOs6B_1rS7dUvin8E_FVuRsG4YcDksXIiL2zWbF4Lg6C7cadErGzTmdg92XHkfbg27pnEPYIxmx2ZU84UelFUFo8oANlQLXZVMLZkq2aCsrGPHalXbPpuX7Etl5-szf4JDGrpPzN4fwsm1iPIR9MqqdE-AcZcmYaoimzklwiLLtJOJysh1WPQYkQdBJ7jctEzm1FDjZ44ZDck6vyRrD95tvnLe0HhcNXiftLEZSAzc9QfV4nvebujc4Dq5KmyUFqFwxNsfG5FwHgurpXGhB29Jlzn5CZycUe11B1wiMW7lAylQGIgMAg_2OnXnrQNZ5v_N3YNXm8eoTDrPUaWr1jgmpRuwIktSDx431rGZM5eY-qWZ9CDdsputRW0_Kec_anrxkGC3DOOnV8_rJdzEDZh_mkyPnsHtCLFfc1VzD3qrxdo9R6y20i_aTcHg23Xvw3-py1KF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Progress+of+Hard+Carbon+as+an+Anode+Material+in+Sodium-Ion+Batteries&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Tan%2C+Suchong&rft.au=Yang%2C+Han&rft.au=Zhang%2C+Zhen&rft.au=Xu%2C+Xiangyu&rft.date=2023-03-31&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=28&rft.issue=7&rft_id=info:doi/10.3390%2Fmolecules28073134&rft.externalDocID=PMC10095715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |