The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries

When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anod...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 7; p. 3134
Main Authors Tan, Suchong, Yang, Han, Zhang, Zhen, Xu, Xiangyu, Xu, Yuanyuan, Zhou, Jian, Zhou, Xinchi, Pan, Zhengdao, Rao, Xingyou, Gu, Yudong, Wang, Zhoulu, Wu, Yutong, Liu, Xiang, Zhang, Yi
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 31.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.
AbstractList When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.
When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are expected to replace lithium-ion batteries and become the most likely energy storage system for large-scale applications. Among the many anode materials for sodium-ion batteries, hard carbon has obvious advantages and great commercial potential. In this review, the adsorption behavior of sodium ions at the active sites on the surface of hard carbon, the process of entering the graphite lamellar, and their sequence in the discharge process are analyzed. The controversial storage mechanism of sodium ions is discussed, and four storage mechanisms for sodium ions are summarized. Not only is the storage mechanism of sodium ions (in hard carbon) analyzed in depth, but also the relationships between their morphology and structure regulation and between heteroatom doping and electrolyte optimization are further discussed, as well as the electrochemical performance of hard carbon anodes in sodium-ion batteries. It is expected that the sodium-ion batteries with hard carbon anodes will have excellent electrochemical performance, and lower costs will be required for large-scale energy storage systems.
Audience Academic
Author Zhou, Jian
Liu, Xiang
Xu, Xiangyu
Zhang, Zhen
Yang, Han
Zhang, Yi
Pan, Zhengdao
Wang, Zhoulu
Xu, Yuanyuan
Zhou, Xinchi
Tan, Suchong
Gu, Yudong
Rao, Xingyou
Wu, Yutong
AuthorAffiliation 2 Jiangsu Svace Intelligent Technology Co., Ltd., Nanjing 210023, China
1 School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
AuthorAffiliation_xml – name: 2 Jiangsu Svace Intelligent Technology Co., Ltd., Nanjing 210023, China
– name: 1 School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
Author_xml – sequence: 1
  givenname: Suchong
  surname: Tan
  fullname: Tan, Suchong
– sequence: 2
  givenname: Han
  surname: Yang
  fullname: Yang, Han
– sequence: 3
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
– sequence: 4
  givenname: Xiangyu
  surname: Xu
  fullname: Xu, Xiangyu
– sequence: 5
  givenname: Yuanyuan
  surname: Xu
  fullname: Xu, Yuanyuan
– sequence: 6
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
– sequence: 7
  givenname: Xinchi
  surname: Zhou
  fullname: Zhou, Xinchi
– sequence: 8
  givenname: Zhengdao
  surname: Pan
  fullname: Pan, Zhengdao
– sequence: 9
  givenname: Xingyou
  surname: Rao
  fullname: Rao, Xingyou
– sequence: 10
  givenname: Yudong
  surname: Gu
  fullname: Gu, Yudong
– sequence: 11
  givenname: Zhoulu
  surname: Wang
  fullname: Wang, Zhoulu
– sequence: 12
  givenname: Yutong
  surname: Wu
  fullname: Wu, Yutong
– sequence: 13
  givenname: Xiang
  surname: Liu
  fullname: Liu, Xiang
– sequence: 14
  givenname: Yi
  orcidid: 0000-0002-1603-8623
  surname: Zhang
  fullname: Zhang, Yi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37049897$$D View this record in MEDLINE/PubMed
BookMark eNp1Ul1vFCEUJabGfugP8MWQ-OLLVhhggCezbqy7SY0m1mfCwJ0tmxmoMGPiv5fttqatMTxADueee8-99xQdxRQBodeUnDOmyfsxDeDmAUqjiGSU8WfohPKGLBjh-ujB-xidlrIjpKGcihfomMkKKi1P0PrqGvC3nLYZSsGpx2ubPV7Z3KWIbcE24mVMHvAXO0EOdsAh4u_Jh3lcbCrlo532OJSX6HlvhwKv7u4z9OPi09Vqvbj8-nmzWl4unGBsWggJqlbaccek7K0Xqu0l8y0QRlroiKdW0abVXAvWSCGc6zRwrwhQSVTXsTO0Oej6ZHfmJofR5t8m2WBugZS3xuYpuAGMqzmY7X2jesqBM0WE4y1jgvtOOqBV68NB62buRvAO4pTt8Ej08U8M12abfhlKiBaSiqrw7k4hp58zlMmMoTgYBhshzcXUwZC24bpVlfr2CXWX5hxrr0wjtW6lUpRV1vmBtbXVQYh9qoldPR7G4Or4-1DxpeS1RZIqUgPePPTwt_j7EVeCPBBcTqVk6I0Lk51C2lsKQ_Vi9stk_lmmGkmfRN6L_z_mD8mdzMc
CitedBy_id crossref_primary_10_1016_j_jallcom_2024_177282
crossref_primary_10_1016_j_jpowsour_2024_236160
crossref_primary_10_1007_s10854_024_12209_z
crossref_primary_10_1016_j_jcis_2024_08_059
crossref_primary_10_1007_s10751_024_02180_w
crossref_primary_10_1016_j_jelechem_2024_118085
crossref_primary_10_1016_j_est_2025_116127
crossref_primary_10_1002_elt2_31
crossref_primary_10_1016_j_est_2024_114931
crossref_primary_10_1039_D4NR03503H
crossref_primary_10_1039_D4DT00459K
crossref_primary_10_1039_D4MH01118J
crossref_primary_10_1016_j_cej_2024_153418
crossref_primary_10_1039_D4CP04409F
crossref_primary_10_1016_j_mtsust_2024_100990
crossref_primary_10_7498_aps_74_20241461
crossref_primary_10_1039_D4SE01698J
crossref_primary_10_1016_j_est_2024_112767
crossref_primary_10_1002_celc_202300512
crossref_primary_10_1016_j_est_2025_115649
crossref_primary_10_1016_j_jelechem_2024_118754
crossref_primary_10_1016_j_ensm_2024_103839
crossref_primary_10_3390_en16166096
crossref_primary_10_1016_j_electacta_2024_144234
crossref_primary_10_1002_aenm_202403142
crossref_primary_10_1021_acsaem_3c02188
crossref_primary_10_1016_j_cej_2024_150316
crossref_primary_10_1021_acs_chemrev_3c00728
crossref_primary_10_3390_molecules28124753
crossref_primary_10_1039_D4TA02817A
crossref_primary_10_1016_j_est_2024_113864
crossref_primary_10_1039_D4NR03460K
crossref_primary_10_1016_j_electacta_2024_143907
crossref_primary_10_1016_j_jaecs_2024_100252
crossref_primary_10_1016_j_seppur_2023_124121
crossref_primary_10_1016_j_fuproc_2024_108159
crossref_primary_10_1016_j_mtchem_2024_102407
crossref_primary_10_1002_slct_202402294
crossref_primary_10_1016_j_mtcomm_2024_110271
crossref_primary_10_3390_molecules28165972
crossref_primary_10_1016_j_est_2024_112629
crossref_primary_10_1002_adfm_202401188
crossref_primary_10_3390_polym16111452
crossref_primary_10_1016_j_xcrp_2025_102447
crossref_primary_10_1021_acs_nanolett_4c04569
crossref_primary_10_3390_molecules30051003
crossref_primary_10_1016_j_jcis_2023_12_022
crossref_primary_10_1016_j_jpowsour_2024_235599
crossref_primary_10_1016_j_jpowsour_2024_234949
crossref_primary_10_1016_j_diamond_2024_111679
Cites_doi 10.1002/aenm.202204083
10.1021/acsenergylett.2c00908
10.1002/aenm.202001274
10.1002/cey2.191
10.1016/j.mtchem.2022.101002
10.1002/anie.202007008
10.1002/adma.202008810
10.1002/aenm.201703217
10.1007/s10854-023-10197-0
10.1016/j.cej.2021.128490
10.1002/advs.202201433
10.1016/j.colsurfa.2023.131005
10.1016/j.cej.2020.127565
10.1016/j.cej.2022.137742
10.1021/acsami.1c00182
10.1039/D1EE00087J
10.1016/j.ensm.2022.11.008
10.1016/j.carbon.2016.01.033
10.1002/aenm.201803648
10.1039/D2EE00566B
10.1007/s40820-020-00587-y
10.1016/j.cej.2022.139514
10.1016/j.jechem.2023.01.011
10.1039/D0TA06910H
10.1002/adfm.202100278
10.1016/j.ensm.2020.01.014
10.1002/smll.202207638
10.1021/acsaem.1c01949
10.1021/acsenergylett.3c00009
10.1016/j.jcis.2020.01.085
10.1039/D2EE02606F
10.1002/aenm.201600659
10.26599/NRE.2022.9120025
10.1016/j.ensm.2022.06.035
10.1016/j.carbon.2021.09.063
10.1007/s12598-022-02073-3
10.1002/adma.202108384
10.1016/j.jcis.2022.06.073
10.1021/acsami.2c09985
10.1039/C9NR00146H
10.1002/adfm.202106980
10.1149/1.1379565
10.1039/C9TA02037C
10.1002/aenm.202102356
10.1016/j.fuel.2022.126683
10.1002/smtd.202100580
10.1002/inf2.12272
10.1002/cssc.202202070
10.1002/adma.202209128
10.1002/adma.202202673
10.1002/eem2.12603
10.1021/acsenergylett.2c02130
10.1073/pnas.2111119118
10.1002/cey2.221
10.1016/j.cej.2021.131656
10.1002/cey2.196
10.1007/s12598-021-01890-2
10.1021/acsaelm.2c01476
10.1016/j.carbon.2022.09.075
10.1016/j.cej.2021.133257
10.1002/adma.202210447
10.1002/aenm.201700403
10.1039/C6CS00776G
10.1021/acs.nanolett.1c04492
10.1016/j.jcis.2022.05.155
10.1002/aenm.202201734
10.1016/j.ensm.2022.07.005
10.1002/aenm.202003336
10.1016/j.jechem.2022.12.044
10.1002/app.53069
10.26599/NRE.2022.9120026
10.1021/acs.chemrev.2c00247
10.1016/j.ensm.2022.02.043
10.1016/j.cej.2022.138882
10.1002/anie.202013951
10.1021/acsami.1c14738
10.1002/aenm.202100757
10.1021/nl3016957
10.1038/natrevmats.2018.13
10.1007/s10854-022-08393-5
10.1002/aenm.202200715
10.1021/jacs.6b06673
10.1021/acsami.0c23165
10.1002/adma.202109282
10.1016/j.cej.2022.139932
10.1002/aenm.202003911
10.1021/acsenergylett.1c02307
10.1002/aenm.202200647
10.1002/aenm.202201834
10.1002/adfm.201706294
10.1016/j.jechem.2020.07.025
10.1021/acsami.9b22745
10.1007/s12598-021-01893-z
10.1002/aenm.202002704
10.1002/smll.201802694
10.1002/smll.202108092
10.26599/NRE.2022.9120037
10.26599/NRE.2022.9120031
10.1002/aenm.202103939
10.1073/pnas.2210203119
10.1016/j.carbon.2023.01.048
10.1002/aenm.201702856
10.1021/acsami.2c13862
10.1016/j.cej.2020.128104
10.1039/D2TA04194D
10.1002/aenm.202000283
10.1002/anie.202202518
10.1002/adma.202207829
10.1149/1.1393348
10.1002/cey2.220
10.1016/j.jpowsour.2023.232649
10.1021/acs.chemmater.2c00405
10.1016/j.cej.2020.126430
10.1016/j.jpowsour.2023.232688
10.1002/adfm.202111720
10.1016/j.nanoen.2020.105738
10.1002/anie.202215865
10.1002/aenm.202000974
10.1021/acsenergylett.0c01712
10.1002/adfm.202203117
10.1016/j.ensm.2022.06.008
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/molecules28073134
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
PubMed

CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_cc373afd28f14e43805c463354db7ce1
PMC10095715
A746947180
37049897
10_3390_molecules28073134
Genre Journal Article
Review
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51702157
– fundername: Ministry of Science and Technology
  grantid: 2018YFE0124800
– fundername: National Key Research and Development Project
  grantid: 2020YFE0100100
GroupedDBID ---
0R~
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABUWG
ACGFO
ACIWK
ACPRK
ACUHS
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESX
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
HZ~
I09
IAO
IHR
ITC
KQ8
LK8
M1P
MODMG
O-U
O9-
OK1
P2P
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RPM
SV3
TR2
TUS
UKHRP
~8M
3V.
ABJCF
BBNVY
BHPHI
HCIFZ
KB.
M7P
M~E
NPM
PDBOC
PMFND
7XB
8FK
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c533t-57e8313b4c377fad586f73d6e0306eb0d1a8126949532755ccb9e4d80e1708bb3
IEDL.DBID 7X7
ISSN 1420-3049
IngestDate Wed Aug 27 01:31:20 EDT 2025
Thu Aug 21 18:38:22 EDT 2025
Fri Jul 11 03:25:31 EDT 2025
Fri Jul 25 09:34:42 EDT 2025
Tue Jun 10 21:00:19 EDT 2025
Wed Feb 19 02:24:19 EST 2025
Thu Apr 24 22:58:54 EDT 2025
Tue Jul 01 01:22:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords hard carbon anode
sodium-ion storage
electrochemical performance
sodium-ion battery
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-57e8313b4c377fad586f73d6e0306eb0d1a8126949532755ccb9e4d80e1708bb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1603-8623
OpenAccessLink https://www.proquest.com/docview/2799678813?pq-origsite=%requestingapplication%
PMID 37049897
PQID 2799678813
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_cc373afd28f14e43805c463354db7ce1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10095715
proquest_miscellaneous_2800624968
proquest_journals_2799678813
gale_infotracacademiconefile_A746947180
pubmed_primary_37049897
crossref_citationtrail_10_3390_molecules28073134
crossref_primary_10_3390_molecules28073134
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230331
PublicationDateYYYYMMDD 2023-03-31
PublicationDate_xml – month: 3
  year: 2023
  text: 20230331
  day: 31
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lin (ref_45) 2022; 51
Ren (ref_93) 2021; 425
Li (ref_51) 2022; 12
Yao (ref_55) 2022; 139
Yu (ref_58) 2023; 5
Jin (ref_110) 2020; 5
Li (ref_33) 2022; 1
Yan (ref_127) 2022; 432
Yan (ref_106) 2021; 11
Lu (ref_59) 2022; 119
Lohani (ref_111) 2022; 14
Peng (ref_20) 2021; 14
Ilic (ref_79) 2022; 186
Tian (ref_16) 2022; 1
Xu (ref_31) 2022; 41
Zhou (ref_12) 2023; 35
Zhou (ref_118) 2023; 558
Lu (ref_27) 2023; 34
Kong (ref_11) 2023; 663
Yang (ref_97) 2020; 566
Deng (ref_21) 2022; 626
Gan (ref_123) 2021; 5
Guo (ref_6) 2022; 1
Jin (ref_126) 2020; 27
Lei (ref_69) 2022; 4
Jin (ref_82) 2021; 417
Zhang (ref_14) 2023; 5
Hirsh (ref_35) 2020; 10
Lemoine (ref_42) 2022; 122
Zeng (ref_113) 2023; 79
Cao (ref_89) 2012; 12
Chen (ref_50) 2022; 5
Zhang (ref_56) 2021; 82
Chi (ref_71) 2022; 54
Yu (ref_102) 2020; 12
Gao (ref_13) 2022; 448
ref_75
Zhang (ref_30) 2023; 334
Yang (ref_36) 2020; 11
Li (ref_96) 2016; 6
Liang (ref_46) 2022; 47
Zhao (ref_18) 2023; 451
Gong (ref_70) 2022; 7
Wang (ref_15) 2022; 61
Li (ref_105) 2020; 8
Zhang (ref_26) 2021; 11
Wang (ref_120) 2022; 11
Yu (ref_80) 2021; 55
Peng (ref_22) 2018; 8
Xu (ref_88) 2023; 452
Peng (ref_17) 2023; 62
Liu (ref_73) 2023; 79
Zhao (ref_68) 2022; 14
Surta (ref_76) 2022; 12
Wang (ref_40) 2023; 8
Stevens (ref_85) 2000; 147
Gong (ref_25) 2023; 404
Lu (ref_90) 2018; 14
Zeng (ref_4) 2019; 11
Yu (ref_63) 2016; 138
Kamiyama (ref_125) 2021; 60
Niu (ref_117) 2021; 4
Peng (ref_38) 2022; 32
Wang (ref_104) 2021; 13
Zhen (ref_121) 2021; 118
Niitani (ref_49) 2022; 7
Yu (ref_47) 2022; 41
Alvin (ref_81) 2020; 10
Yin (ref_98) 2022; 34
Liu (ref_99) 2021; 13
Zhu (ref_52) 2022; 4
Zhang (ref_65) 2016; 11
Song (ref_94) 2022; 51
Hou (ref_83) 2023; 20
Vaalma (ref_34) 2018; 3
Ma (ref_108) 2021; 31
Liu (ref_29) 2022; 1
Liang (ref_103) 2022; 34
Sun (ref_3) 2022; 7
Fan (ref_122) 2023; 205
Huang (ref_2) 2019; 7
Jiang (ref_91) 2022; 18
Zhang (ref_109) 2022; 11
Yuan (ref_9) 2023; 559
Wang (ref_119) 2022; 33
Michael (ref_84) 2023; 10
Zhao (ref_57) 2020; 11
Luo (ref_5) 2021; 404
Kang (ref_116) 2023; 10
Lin (ref_8) 2022; 9
Ren (ref_1) 2021; 14
Zhao (ref_67) 2019; 9
Yuan (ref_92) 2022; 34
Yang (ref_100) 2021; 13
Huang (ref_107) 2023; 20
Sun (ref_72) 2023; 17
Liu (ref_53) 2022; 32
Zhou (ref_115) 2020; 59
Huang (ref_61) 2018; 28
Voronina (ref_43) 2022; 12
Li (ref_62) 2021; 32
Wang (ref_28) 2022; 15
Kim (ref_74) 2023; 20
Zhao (ref_60) 2023; 201
Peng (ref_7) 2022; 34
Qiu (ref_86) 2017; 7
Pi (ref_124) 2021; 413
Chen (ref_77) 2022; 4
Liu (ref_23) 2022; 26
Hwang (ref_24) 2017; 46
Alvin (ref_66) 2021; 411
Sun (ref_78) 2022; 12
Hou (ref_114) 2023; 453
Chen (ref_41) 2022; 12
Fan (ref_48) 2022; 41
Yuan (ref_39) 2023; 2
Li (ref_19) 2022; 625
Dong (ref_112) 2021; 33
Chen (ref_64) 2020; 11
Yan (ref_32) 2021; 13
Yuan (ref_44) 2022; 50
Peng (ref_10) 2022; 22
Stevens (ref_87) 2001; 148
Peng (ref_37) 2021; 11
Wu (ref_101) 2022; 10
Peng (ref_54) 2022; 33
Bai (ref_95) 2018; 8
References_xml – volume: 10
  start-page: 2204083
  year: 2023
  ident: ref_116
  article-title: Dendrite-free sodium metal anodes via solid electrolyte interphase engineering with a covalent organic framework separator
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202204083
– volume: 7
  start-page: 1774
  year: 2022
  ident: ref_3
  article-title: A rising tide of co-free chemistries for li-ion batteries
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00908
– volume: 10
  start-page: 2001274
  year: 2020
  ident: ref_35
  article-title: Sodium-ion batteries paving the way for grid energy storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202001274
– volume: 5
  start-page: e191
  year: 2022
  ident: ref_50
  article-title: Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries
  publication-title: Carbon Energy
  doi: 10.1002/cey2.191
– volume: 26
  start-page: 101002
  year: 2022
  ident: ref_23
  article-title: In situ fragmented and confined CoP nanocrystals into sandwich-structure MXene@CoP@NPC heterostructure for superior sodium-ion storage
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2022.101002
– volume: 59
  start-page: 16725
  year: 2020
  ident: ref_115
  article-title: Polyolefin-based janus separator for rechargeable sodium batteries
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202007008
– volume: 33
  start-page: e2008810
  year: 2021
  ident: ref_112
  article-title: Elucidating the mechanism of fast na storage kinetics in ether electrolytes for hard carbon anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202008810
– volume: 8
  start-page: 1703217
  year: 2018
  ident: ref_95
  article-title: Elucidation of the sodium-storage mechanism in hard carbons
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201703217
– volume: 34
  start-page: 797
  year: 2023
  ident: ref_27
  article-title: U-shaped micropores induced dielectric and piezoelectric tunability in bismuth sodium titanate-based ceramics
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-023-10197-0
– volume: 411
  start-page: 128490
  year: 2021
  ident: ref_66
  article-title: Controlling intercalation sites of hard carbon for enhancing Na and K storage performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.128490
– volume: 9
  start-page: e2201433
  year: 2022
  ident: ref_8
  article-title: High-rate, large capacity, and long life dendrite-free zn metal anode enabled by trifunctional electrolyte additive with a wide temperature range
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201433
– volume: 663
  start-page: 131005
  year: 2023
  ident: ref_11
  article-title: Nano heterojunction of double MOFs for improved CO2 photocatalytic reduction performance
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2023.131005
– volume: 413
  start-page: 127565
  year: 2021
  ident: ref_124
  article-title: Insight into pre-sodiation in Na3V2(PO4)(2)F-3/C @ hard carbon full cells for promoting the development of sodium-ion battery
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127565
– volume: 448
  start-page: 1377742
  year: 2022
  ident: ref_13
  article-title: Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.137742
– volume: 13
  start-page: 14258
  year: 2021
  ident: ref_32
  article-title: Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c00182
– volume: 14
  start-page: 3130
  year: 2021
  ident: ref_20
  article-title: Defect-free-induced Na+ disordering in electrode materials
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00087J
– volume: 54
  start-page: 668
  year: 2022
  ident: ref_71
  article-title: Balance of sulfur doping content and conductivity of hard carbon anode for high-performance K-ion storage
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.11.008
– volume: 11
  start-page: 600
  year: 2016
  ident: ref_65
  article-title: Thermal reduction of graphene oxide mixed with hard carbon and their high performance as lithium ion battery anode
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.01.033
– volume: 9
  start-page: 1803648
  year: 2019
  ident: ref_67
  article-title: Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: A general method
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201803648
– volume: 15
  start-page: 3923
  year: 2022
  ident: ref_28
  article-title: High performance Li-, Na-, and K-ion storage in electrically conducting coordination polymers
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00566B
– volume: 2
  start-page: 1361
  year: 2023
  ident: ref_39
  article-title: Fast-charging cathode materials for lithium & sodium ion batteries
  publication-title: Mater. Today
– volume: 13
  start-page: 98
  year: 2021
  ident: ref_100
  article-title: From micropores to ultra-micropores inside hard carbon: Toward enhanced capacity in room-/low-temperature sodium-ion storage
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-020-00587-y
– volume: 452
  start-page: 139514
  year: 2023
  ident: ref_88
  article-title: Regulation of surface oxygen functional groups and pore structure of bamboo-derived hard carbon for enhanced sodium storage performance
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139514
– volume: 79
  start-page: 373
  year: 2023
  ident: ref_73
  article-title: Ultrasmall CoS nanoparticles embedded in heteroatom-doped carbon for sodium-ion batteries and mechanism explorations via synchrotron X-ray techniques
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2023.01.011
– volume: 8
  start-page: 20486
  year: 2020
  ident: ref_105
  article-title: Phosphorus-doped hard carbon with controlled active groups and microstructure for high-performance sodium-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA06910H
– volume: 31
  start-page: 2100278
  year: 2021
  ident: ref_108
  article-title: Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202100278
– volume: 27
  start-page: 43
  year: 2020
  ident: ref_126
  article-title: Surface-dominated storage of heteroatoms-doping hard carbon for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.01.014
– volume: 20
  start-page: 2207638
  year: 2023
  ident: ref_83
  article-title: Boosting the reversible, high-rate Na+ storage capability of the hard carbon anode via the synergistic structural tailoring and controlled presodiation
  publication-title: Small
  doi: 10.1002/smll.202207638
– volume: 4
  start-page: 11080
  year: 2021
  ident: ref_117
  article-title: Interconnected porous poly(ether imide) separator for thermally stable sodium ion battery
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c01949
– volume: 8
  start-page: 1434
  year: 2023
  ident: ref_40
  article-title: In situ plastic-crystal-coated cathode toward high-performance na-ion batteries
  publication-title: Acs Energy Lett.
  doi: 10.1021/acsenergylett.3c00009
– volume: 566
  start-page: 257
  year: 2020
  ident: ref_97
  article-title: Pore structure regulation of hard carbon: Towards fast and high-capacity sodium-ion storage
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.01.085
– volume: 404
  start-page: 535
  year: 2023
  ident: ref_25
  article-title: The role of an elastic interphase in suppressing gas evolution and promoting uniform electroplating in sodium metal anodes
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE02606F
– volume: 6
  start-page: 1600659
  year: 2016
  ident: ref_96
  article-title: Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600659
– volume: 1
  start-page: e9120025
  year: 2022
  ident: ref_16
  article-title: A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120025
– volume: 51
  start-page: 159
  year: 2022
  ident: ref_45
  article-title: In-situ X-ray studies of high-entropy layered oxide cathode for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.06.035
– volume: 186
  start-page: 55
  year: 2022
  ident: ref_79
  article-title: Changes of porosity of hard carbons during mechanical treatment and the relevance for sodium-ion anodes
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.09.063
– volume: 41
  start-page: 3421
  year: 2022
  ident: ref_31
  article-title: Sn nanoparticles embedded into porous hydrogel-derived pyrolytic carbon as composite anode materials for lithium-ion batteries
  publication-title: Rare Met.
  doi: 10.1007/s12598-022-02073-3
– volume: 34
  start-page: e2108384
  year: 2022
  ident: ref_7
  article-title: Prussian blue analogues for sodium-ion batteries: Past, present, and future
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108384
– volume: 626
  start-page: 700
  year: 2022
  ident: ref_21
  article-title: Ultrathin cobalt nickel selenides (Co(0.5)Ni(0.5)Se(2)) nanosheet arrays anchoring on Ti(3)C(2) MXene for high-performance Na(+)/K(+) batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.06.073
– volume: 14
  start-page: 37793
  year: 2022
  ident: ref_111
  article-title: Artificial organo-fluoro-rich anode electrolyte interface and partially sodiated hard carbon anode for improved cycle life and practical sodium-ion batteries
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c09985
– volume: 11
  start-page: 6766
  year: 2019
  ident: ref_4
  article-title: Rational design of few-layer MoSe(2) confined within ZnSe-C hollow porous spheres for high-performance lithium-ion and sodium-ion batteries
  publication-title: Nanoscale
  doi: 10.1039/C9NR00146H
– volume: 32
  start-page: 2106980
  year: 2021
  ident: ref_62
  article-title: Intergrowth of graphite-like crystals in hard carbon for highly reversible na-ion storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202106980
– volume: 148
  start-page: A803
  year: 2001
  ident: ref_87
  article-title: The mechanisms of lithium and sodium insertion in carbon materials
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1379565
– volume: 7
  start-page: 11250
  year: 2019
  ident: ref_2
  article-title: A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA02037C
– volume: 11
  start-page: 2102356
  year: 2021
  ident: ref_37
  article-title: Processing rusty metals into versatile prussian blue for sustainable energy storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102356
– volume: 334
  start-page: 126683
  year: 2023
  ident: ref_30
  article-title: Enhanced cyclic stability of Ga2O3@PDA-C nanospheres as pseudocapacitive anode materials for lithium-ion batteries
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126683
– volume: 5
  start-page: 2100580
  year: 2021
  ident: ref_123
  article-title: Extra sodiation sites in hard carbon for high performance sodium ion batteries
  publication-title: Small Methods
  doi: 10.1002/smtd.202100580
– volume: 4
  start-page: e12272
  year: 2022
  ident: ref_69
  article-title: A review of hard carbon anode: Rational design and advanced characterization in potassium ion batteries
  publication-title: InfoMat
  doi: 10.1002/inf2.12272
– volume: 20
  start-page: e202202070
  year: 2023
  ident: ref_107
  article-title: High Proportion of Active Nitrogen-doped hard carbon based on mannich reaction as anode material for high-performance sodium-ion batteries
  publication-title: ChemSusChem
  doi: 10.1002/cssc.202202070
– volume: 20
  start-page: 2209128
  year: 2023
  ident: ref_74
  article-title: Revisiting lithium- and sodium-ion storage in hard carbon anodes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202209128
– volume: 34
  start-page: 2202673
  year: 2022
  ident: ref_103
  article-title: Integrating Bi@C nanospheres in porous hard carbon frameworks for ultrafast sodium storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202673
– volume: 17
  start-page: e12603
  year: 2023
  ident: ref_72
  article-title: Low-temperature carbonized nitrogen doped hard carbon nanofiber towards high-performance sodium-ion capacitors
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12603
– volume: 7
  start-page: 4417
  year: 2022
  ident: ref_70
  article-title: Fast-charging of hybrid lithium-ion/lithium-metal anodes by nanostructured hard carbon host
  publication-title: Acs Energy Lett.
  doi: 10.1021/acsenergylett.2c02130
– volume: 118
  start-page: e111119118
  year: 2021
  ident: ref_121
  article-title: Ultrafast synthesis of hard carbon anodes for sodium-ion batteries
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2111119118
– volume: 11
  start-page: 5974
  year: 2022
  ident: ref_109
  article-title: Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive
  publication-title: Nano Res.
– volume: 4
  start-page: 1182
  year: 2022
  ident: ref_52
  article-title: Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries
  publication-title: Carbon Energy
  doi: 10.1002/cey2.221
– volume: 11
  start-page: 5974
  year: 2022
  ident: ref_120
  article-title: Self-supported hard carbon anode from fungus-treated basswood towards sodium-ion batteries
  publication-title: Nano Res.
– volume: 425
  start-page: 131656
  year: 2021
  ident: ref_93
  article-title: Manipulating free-standing, flexible and scalable microfiber carbon papers unlocking ultra-high initial Coulombic efficiency and storage sodium behavior
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.131656
– volume: 4
  start-page: 1133
  year: 2022
  ident: ref_77
  article-title: Understanding of the sodium storage mechanism in hard carbon anodes
  publication-title: Carbon Energy
  doi: 10.1002/cey2.196
– volume: 41
  start-page: 1294
  year: 2022
  ident: ref_48
  article-title: NiS2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01890-2
– volume: 5
  start-page: 498
  year: 2023
  ident: ref_14
  article-title: Self-powered electronic skin for remote human–machine synchronization
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c01476
– volume: 33
  start-page: e00446
  year: 2022
  ident: ref_119
  article-title: Hard carbon derived from hazelnut shell with facile HCl treatment as high-initial-coulombic-efficiency anode for sodium ion batteries
  publication-title: Sustain. Mater. Technol.
– volume: 201
  start-page: 864
  year: 2023
  ident: ref_60
  article-title: Lychee seed-derived microporous carbon for high-performance sodium-sulfur batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.09.075
– volume: 432
  start-page: 133257
  year: 2022
  ident: ref_127
  article-title: In-Situ graphene-coated carbon microsphere as high initial coulombic efficiency anode for superior Na/K-ion full cell
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133257
– ident: ref_75
  doi: 10.1002/adma.202210447
– volume: 14
  start-page: 5
  year: 2021
  ident: ref_1
  article-title: Porous Co(2)VO(4) nanodisk as a high-energy and fast-charging anode for lithium-ion batteries
  publication-title: Nanomicro Lett.
– volume: 7
  start-page: 1700403
  year: 2017
  ident: ref_86
  article-title: Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700403
– volume: 46
  start-page: 3529
  year: 2017
  ident: ref_24
  article-title: Sodium-ion batteries: Present and future
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00776G
– volume: 22
  start-page: 1302
  year: 2022
  ident: ref_10
  article-title: Ice-assisted synthesis of highly crystallized prussian blue analogues for all-climate and long-calendar-life sodium ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.1c04492
– volume: 625
  start-page: 41
  year: 2022
  ident: ref_19
  article-title: Rational design of heterostructured bimetallic sulfides (CoS(2)/NC@VS(4)) with VS(4) nanodots decorated on CoS(2) dodecahedron for high-performance sodium and potassium ion batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2022.05.155
– volume: 12
  start-page: 2201734
  year: 2022
  ident: ref_51
  article-title: Unraveling the key atomic interactions in determining the varying li/na/k storage mechanism of hard carbon anodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201734
– volume: 51
  start-page: 620
  year: 2022
  ident: ref_94
  article-title: Towards enhanced sodium storage of hard carbon anodes: Regulating the oxygen content in precursor by low-temperature hydrogen reduction
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.07.005
– volume: 11
  start-page: 2003336
  year: 2020
  ident: ref_64
  article-title: Enabling 6C fast charging of li-ion batteries with graphite/hard carbon hybrid anodes
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003336
– volume: 79
  start-page: 459
  year: 2023
  ident: ref_113
  article-title: Innovative discontinuous-SEI constructed in ether-based electrolyte to maximize the capacity of hard carbon anode
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2022.12.044
– volume: 139
  start-page: e53069
  year: 2022
  ident: ref_55
  article-title: Insights into concomitant enhancements of dielectric properties and thermal conductivity of PVDF composites filled with core@ double-shell structured Zn@ZnO@PS particles
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.53069
– volume: 1
  start-page: e9120026
  year: 2022
  ident: ref_6
  article-title: Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120026
– volume: 122
  start-page: 14405
  year: 2022
  ident: ref_42
  article-title: Fluorinated materials as positive electrodes for li- and na-ion batteries
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00247
– volume: 47
  start-page: 515
  year: 2022
  ident: ref_46
  article-title: Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.02.043
– volume: 451
  start-page: 138882
  year: 2023
  ident: ref_18
  article-title: Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138882
– volume: 60
  start-page: 5114
  year: 2021
  ident: ref_125
  article-title: MgO-template synthesis of extremely high capacity hard carbon for na-ion battery
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202013951
– volume: 13
  start-page: 47671
  year: 2021
  ident: ref_99
  article-title: Boosting sodium storage performance of hard carbon anodes by pore architecture engineering
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c14738
– volume: 11
  start-page: 2100757
  year: 2021
  ident: ref_26
  article-title: Architecting amorphous vanadium oxide/mxene nanohybrid via tunable anodic oxidation for high-performance sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100757
– volume: 12
  start-page: 3783
  year: 2012
  ident: ref_89
  article-title: Sodium ion insertion in hollow carbon nanowires for battery applications
  publication-title: Nano Lett.
  doi: 10.1021/nl3016957
– volume: 3
  start-page: 18013
  year: 2018
  ident: ref_34
  article-title: A cost and resource analysis of sodium-ion batteries
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.13
– volume: 33
  start-page: 14735
  year: 2022
  ident: ref_54
  article-title: Towards inhibiting conductivity of Mo/PVDF composites through building MoO3 shell as an interlayer for enhanced dielectric properties
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-022-08393-5
– volume: 12
  start-page: 2200715
  year: 2022
  ident: ref_78
  article-title: Understanding of sodium storage mechanism in hard carbons: Ongoing development under debate
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200715
– volume: 138
  start-page: 14915
  year: 2016
  ident: ref_63
  article-title: Ion-Catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06673
– volume: 13
  start-page: 12059
  year: 2021
  ident: ref_104
  article-title: Regulate phosphorus configuration in high p-doped hard carbon as a superanode for sodium storage
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c23165
– volume: 34
  start-page: 2109282
  year: 2022
  ident: ref_98
  article-title: Enabling fast na+ transfer kinetics in the whole-voltage-region of hard-carbon anodes for ultrahigh-rate sodium storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109282
– volume: 453
  start-page: 139932
  year: 2023
  ident: ref_114
  article-title: Weak coulomb interaction between anions and Na plus during solvation enabling desirable solid electrolyte interphase and superior kinetics for HC-based sodium ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.139932
– volume: 11
  start-page: 2003911
  year: 2021
  ident: ref_106
  article-title: Ultrahigh phosphorus doping of carbon for high-rate sodium ion batteries anode
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202003911
– volume: 7
  start-page: 145
  year: 2022
  ident: ref_49
  article-title: Hard carbon anode with a sodium carborane electrolyte for fast-charging all-solid-state sodium-ion batteries
  publication-title: Acs Energy Lett.
  doi: 10.1021/acsenergylett.1c02307
– volume: 12
  start-page: 2200647
  year: 2022
  ident: ref_76
  article-title: Combining experimental and theoretical techniques to gain an atomic level understanding of the defect binding mechanism in hard carbon anodes for sodium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202200647
– volume: 12
  start-page: 2201834
  year: 2022
  ident: ref_41
  article-title: Toward high-areal-capacity electrodes for lithium and sodium ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202201834
– volume: 28
  start-page: 1706294
  year: 2018
  ident: ref_61
  article-title: N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706294
– volume: 55
  start-page: 499
  year: 2021
  ident: ref_80
  article-title: Insight to defects regulation on sugarcane waste-derived hard carbon anode for sodium-ion batteries
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2020.07.025
– volume: 12
  start-page: 10544
  year: 2020
  ident: ref_102
  article-title: Hyperaccumulation route to ca-rich hard carbon materials with cation self-incorporation and interlayer spacing optimization for high-performance sodium-ion batteries
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22745
– volume: 41
  start-page: 1616
  year: 2022
  ident: ref_47
  article-title: Surface engineering based on in situ electro-polymerization to boost the initial Coulombic efficiency of hard carbon anode for sodium-ion battery
  publication-title: Rare Met.
  doi: 10.1007/s12598-021-01893-z
– volume: 11
  start-page: 2002704
  year: 2020
  ident: ref_57
  article-title: Hard carbon anodes: Fundamental understanding and commercial perspectives for na-ion batteries beyond li-ion and k-ion counterparts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002704
– volume: 14
  start-page: 2108092
  year: 2018
  ident: ref_90
  article-title: Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method
  publication-title: Small
  doi: 10.1002/smll.201802694
– volume: 18
  start-page: 2108092
  year: 2022
  ident: ref_91
  article-title: Introducing the solvent co-intercalation mechanism for hard carbon with ultrafast sodium storage
  publication-title: Small
  doi: 10.1002/smll.202108092
– volume: 1
  start-page: 9120037
  year: 2022
  ident: ref_29
  article-title: The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120037
– volume: 1
  start-page: e9120031
  year: 2022
  ident: ref_33
  article-title: Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy
  publication-title: Nano Res. Energy
  doi: 10.26599/NRE.2022.9120031
– volume: 12
  start-page: 2103939
  year: 2022
  ident: ref_43
  article-title: Hysteresis-suppressed reversible oxygen-redox cathodes for sodium-ion batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103939
– volume: 119
  start-page: e2210203119
  year: 2022
  ident: ref_59
  article-title: Step-by-step desolvation enables high-rate and ultra-stable sodium storage in hard carbon anodes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2210203119
– volume: 205
  start-page: 353
  year: 2023
  ident: ref_122
  article-title: Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.01.048
– volume: 10
  start-page: 1039
  year: 2023
  ident: ref_84
  article-title: Sodiation energetics in pore size controlled hard carbons determined via entropy profiling
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1702856
  year: 2018
  ident: ref_22
  article-title: A dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702856
– volume: 14
  start-page: 54662
  year: 2022
  ident: ref_68
  article-title: Three-dimensional honeycomb-like carbon as sulfur host for sodium-sulfur batteries without the shuttle effect
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c13862
– volume: 417
  start-page: 128104
  year: 2021
  ident: ref_82
  article-title: Tuning microstructures of hard carbon for high capacity and rate sodium storage
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.128104
– volume: 10
  start-page: 17225
  year: 2022
  ident: ref_101
  article-title: Multi-scale structure optimization of boron-doped hard carbon nanospheres boosting the plateau capacity for high performance sodium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA04194D
– volume: 10
  start-page: 2000283
  year: 2020
  ident: ref_81
  article-title: Revealing the intercalation mechanisms of lithium, sodium, and potassium in hard carbon
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000283
– volume: 61
  start-page: e202202518
  year: 2022
  ident: ref_15
  article-title: Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202202518
– volume: 35
  start-page: e2207829
  year: 2023
  ident: ref_12
  article-title: Core-shell engineering of conductive fillers toward enhanced dielectric properties: A universal polarization mechanism in polymer conductor composites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207829
– volume: 147
  start-page: 1271
  year: 2000
  ident: ref_85
  article-title: High capacity anode materials for rechargeable sodium-ion batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1393348
– volume: 5
  start-page: e220
  year: 2023
  ident: ref_58
  article-title: Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries
  publication-title: Carbon Energy
  doi: 10.1002/cey2.220
– volume: 558
  start-page: 232649
  year: 2023
  ident: ref_118
  article-title: Cellulose filter papers derived separator featuring effective ion transferring channels for sodium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232649
– volume: 34
  start-page: 3489
  year: 2022
  ident: ref_92
  article-title: Sodium storage mechanism of nongraphitic carbons: A general model and the function of accessible closed pores
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c00405
– volume: 404
  start-page: 123430
  year: 2021
  ident: ref_5
  article-title: In situ simultaneous encapsulation of defective MoS2 nanolayers and sulfur nanodots into SPAN fibers for high rate sodium-ion batteries
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126430
– volume: 559
  start-page: e912002617
  year: 2023
  ident: ref_9
  article-title: Defect engineering on VO2(B) nanoleaves/graphene oxide for the high performance of cathodes of zinc-ion batteries with a wide temperature range
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2023.232688
– volume: 32
  start-page: 2111720
  year: 2022
  ident: ref_38
  article-title: The emerging electrochemical activation tactic for aqueous energy storage: Fundamentals, applications, and future
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202111720
– volume: 82
  start-page: 105738
  year: 2021
  ident: ref_56
  article-title: Boost sodium-ion batteries to commercialization: Strategies to enhance initial Coulombic efficiency of hard carbon anode
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105738
– volume: 62
  start-page: e202215865
  year: 2023
  ident: ref_17
  article-title: A disordered rubik’s cube-inspired framework for sodium-ion batteries with ultralong cycle lifespan
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.202215865
– volume: 11
  start-page: 2000974
  year: 2020
  ident: ref_36
  article-title: Materials design for high-safety sodium-ion battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202000974
– volume: 5
  start-page: 3212
  year: 2020
  ident: ref_110
  article-title: Highly reversible sodium ion batteries enabled by stable electrolyte-electrode interphases
  publication-title: Acs Energy Lett
  doi: 10.1021/acsenergylett.0c01712
– volume: 32
  start-page: 2203117
  year: 2022
  ident: ref_53
  article-title: Advances in carbon materials for sodium and potassium storage
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202203117
– volume: 50
  start-page: 760
  year: 2022
  ident: ref_44
  article-title: Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2022.06.008
SSID ssj0021415
Score 2.5849283
SecondaryResourceType review_article
Snippet When compared to expensive lithium metal, the metal sodium resources on Earth are abundant and evenly distributed. Therefore, low-cost sodium-ion batteries are...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3134
SubjectTerms Adsorption
Carbon
Chemical properties
Electric properties
electrochemical performance
Energy storage
Graphite
hard carbon anode
Ions
Lithium
Morphology
Review
Sodium
Sodium compounds
sodium-ion battery
sodium-ion storage
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFA7SF30R7462EkEQhKGTyf2xXSyrUBG00LeQ2-CCnSnd3f_vOZPZZYeCvvg6yUByLjnnIyffIeRD7AJkHSLUMqlUC-5DbYMQdWOCFCJ1IY3dGi6_qeWV-Hotrw9afWFNWKEHLoI7jZFr7rvUmo6JjPzoMgrFuRQp6JhH4AMxbwemJqjFIC6VO0wOoP70prSazWvkfuGMi1kUGsn67x_JBzFpXi95EIAunpDHU-ZIz8qKn5IHuX9GHi52DduekyWonH7Heis4vejQUbyVpwt_F4ae-jX1PQWwnzK99JvR7uiqpz-GtNre1F9gSqHaBOT8glxdfP65WNZTo4Q6Qra2qaXOBnYVBMhKdz5JozrNk8oICHJoEvMQx5XFWtJWSxljsFkk02SmQSmBvyRH_dDn14TybBQzvk02e8E6a0PWylt02wTe2lak2QnOxYlFHJtZ_HaAJlDW7p6sK_Jp_8ttodD42-Rz1MZ-IrJfjx_AJtxkE-5fNlGRj6hLhz4Ki4t-emoAW0S2K3emBQgDonJTkeOdut3kvGvXagCBSLPPK_J-PwzKxLsU3-dhC3MMvj4VVpmKvCrWsV8z1wC7jNUVMTO7mW1qPtKvfo3U3gxTXs3km_8hhrfkUQspWXlBeUyONnfbfAIp1Ca8G73lDwBeGcM
  priority: 102
  providerName: Directory of Open Access Journals
Title The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/37049897
https://www.proquest.com/docview/2799678813
https://www.proquest.com/docview/2800624968
https://pubmed.ncbi.nlm.nih.gov/PMC10095715
https://doaj.org/article/cc373afd28f14e43805c463354db7ce1
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7a5NBeSt91mi4qFAoFk5UlWfKpJEu220JCaBvYm9HL7UJjp_v4_5mxvZuYQC4-2DJI8x6N9A3AJ185jDqkS1XIQyqFdWnhpEzHxikpQ-VC263h7DyfXcofczXvN9xW_bHKrU1sDXVoPO2RH2UaI3PCPhdfr_-n1DWKqqt9C43HsE_QZSTVen6bcHH0Tl0lU2Bqf3TVNZyNK0KAEVzIgS9qIfvvG-Y7nml4avKOG5o-h2d9_MiOO4a_gEexfglPJtu2ba9ghoxnF3TqCm0YaypGtXk2sUvX1MyumK0ZpvwhsjO7bqWPLWr2qwmLzVX6HYd0gJuYP7-Gy-np78ks7dslpB5jtnWqdDS4Kie90LqyQZm80iLkkdKC6MaBW_TmeUEnSjOtlPeuiDKYceQaWePEG9irmzq-AyaiybmxWSiilbwqChd1bgtS3oA6myUw3hKu9D2WOLW0-FdiTkG0Lu_ROoEvu1-uOyCNhwafEDd2AwkDu33RLP-UvUqVHtcpbBUyU3EZCTlfeZkLoWRw2keewGfiZUmaipPztr9wgEskzKvyWEskBvrmcQKHW3aXvQqvyluBS-Dj7jMykyoqto7NBscYuoMqi9wk8LaTjt2chcbkyxQ6ATOQm8Gihl_qxd8W4JtT4Ku5Onh4Xu_haYYhV3dD8hD21stN_IAh0tqNWj3Ap5l-G8H-yen5xc9Ru91wA-VBFNA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxJtAASOBkJCiJrETOweEloVll3YrJFqpt9SvwEo0KfsQ4k_xG5nJY-mqUm-9xt6NPTOeRzzzDcArWxr0OoQJU5e5UHBtwtwIEUbKpEK40rimW8P0MBsfiy8n6ckW_O1rYSitsteJjaJ2taVv5HuJRM-csM_5-_NfIXWNotvVvoVGKxb7_s9vDNkW7yYfkb-vk2T06Wg4DruuAqFF12YZptIrHnMjLJey1C5VWSm5yzx5z95ELtZo9LKcEi8TmabWmtwLpyIfS9yB4fi_N-Cm4GjJqTJ99Hkd4MVoDdubUxyM9s7aBrd-QYgz-EqxYfuaFgGXDcEFS7iZpXnB7I3uwO3OX2WDVsDuwpav7sHOsG8Tdx_GKGjsK2V5oc5kdckoF4AN9dzUFdMLpis2qGrn2VQvG2lns4p9q91sdRZOcEoL8Inx-gM4vhZCPoTtqq78Y2DcqyxWOnG51yIu89x4memclIVDHZEEEPWEK2yHXU4tNH4WGMMQrYtLtA7g7fon5y1wx1WTPxA31hMJc7t5UM-_F90RLizuk-vSJaqMhSek_tSKjPNUOCOtjwN4Q7wsSDPg4qzuChxwi4SxVQykQGKgLxAFsNuzu-hUxqL4L-ABvFwPIzPpBkdXvl7hHEU1ryLPVACPWulYr5lLDPZULgNQG3KzsanNkWr2owEUj8nRlnH65Op1vYCd8dH0oDiYHO4_hVsJunttdeYubC_nK_8M3bOled6cCQan130I_wGbs0zz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAIuiDeGAosEQkKyYnvXXvuAUJo2SiiNIqBSb2ZfhkjULnkI8df4dcz4ERpV6q3XeJPszszOfOOd_QbgtSk0og6h_dgm1hdcaT_TQvhBqmMhbKFt3a3heJqMT8TH0_h0B_52d2GorLLzibWjtpWhd-T9SCIyJ-5z3i_asojZwejD-S-fOkjRSWvXTqMxkSP35zemb8v3kwPU9ZsoGh1-HY79tsOAbxDmrPxYupSHXAvDpSyUjdOkkNwmjpC004ENFQbAJKMizEjGsTE6c8KmgQslrkZz_N0bsCspK-rB7v7hdPZ5k-6FGBubc1TOs6B_1rS7dUvin8E_FVuRsG4YcDksXIiL2zWbF4Lg6C7cadErGzTmdg92XHkfbg27pnEPYIxmx2ZU84UelFUFo8oANlQLXZVMLZkq2aCsrGPHalXbPpuX7Etl5-szf4JDGrpPzN4fwsm1iPIR9MqqdE-AcZcmYaoimzklwiLLtJOJysh1WPQYkQdBJ7jctEzm1FDjZ44ZDck6vyRrD95tvnLe0HhcNXiftLEZSAzc9QfV4nvebujc4Dq5KmyUFqFwxNsfG5FwHgurpXGhB29Jlzn5CZycUe11B1wiMW7lAylQGIgMAg_2OnXnrQNZ5v_N3YNXm8eoTDrPUaWr1jgmpRuwIktSDx431rGZM5eY-qWZ9CDdsputRW0_Kec_anrxkGC3DOOnV8_rJdzEDZh_mkyPnsHtCLFfc1VzD3qrxdo9R6y20i_aTcHg23Xvw3-py1KF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Progress+of+Hard+Carbon+as+an+Anode+Material+in+Sodium-Ion+Batteries&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Tan%2C+Suchong&rft.au=Yang%2C+Han&rft.au=Zhang%2C+Zhen&rft.au=Xu%2C+Xiangyu&rft.date=2023-03-31&rft.pub=MDPI&rft.eissn=1420-3049&rft.volume=28&rft.issue=7&rft_id=info:doi/10.3390%2Fmolecules28073134&rft.externalDocID=PMC10095715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon