Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates

[Display omitted] •Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of PASC>arabinoxylan>Avicel.•All expansins showed varying synergy on hydrolysis of tested substrates.•BpEX and CmEX showed the highest synergy of >11...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 176; pp. 129 - 135
Main Authors Bunterngsook, Benjarat, Eurwilaichitr, Lily, Thamchaipenet, Arinthip, Champreda, Verawat
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2014.11.042

Cover

Loading…
Abstract [Display omitted] •Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of PASC>arabinoxylan>Avicel.•All expansins showed varying synergy on hydrolysis of tested substrates.•BpEX and CmEX showed the highest synergy of >11-fold on arabinoxylan.•Binding and synergy were related to types and crystallinity of substrates. Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates.
AbstractList Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (B sub(max)) and affinity (K sub(d)) for different substrates. A common pattern of binding efficiency (B sub(max)/K sub(d)) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates.
Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates.Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates.
[Display omitted] •Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of PASC>arabinoxylan>Avicel.•All expansins showed varying synergy on hydrolysis of tested substrates.•BpEX and CmEX showed the highest synergy of >11-fold on arabinoxylan.•Binding and synergy were related to types and crystallinity of substrates. Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates.
Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates.
Author Champreda, Verawat
Eurwilaichitr, Lily
Thamchaipenet, Arinthip
Bunterngsook, Benjarat
Author_xml – sequence: 1
  givenname: Benjarat
  surname: Bunterngsook
  fullname: Bunterngsook, Benjarat
  organization: Department of Genetics, Faculty of Sciences, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
– sequence: 2
  givenname: Lily
  surname: Eurwilaichitr
  fullname: Eurwilaichitr, Lily
  email: lily@biotec.or.th
  organization: Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
– sequence: 3
  givenname: Arinthip
  surname: Thamchaipenet
  fullname: Thamchaipenet, Arinthip
  organization: Department of Genetics, Faculty of Sciences, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
– sequence: 4
  givenname: Verawat
  surname: Champreda
  fullname: Champreda, Verawat
  organization: Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25460993$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v1DAQxa2qqN0WvkKVI5cEj_8lljgAVQtIlbjA2XKcSderrLPYDqLfHi_blRCX7Wmkp9-bGc28K3Ie5oCE3ABtgIJ6t2l6P8eMbt0wCqIBaKhgZ2QFXctrplt1TlZUK1p3kolLcpXShlLKoWUX5JJJoajWfEXiJx8GHx4rt7bRuozRp-xdqmwYqvQUMD7-FSocR3Q5VfNY9QfOThX-3tmQfChyqBxO0zLNqcB78xq3_h8pLX3K0WZMr8mr0U4J3zzXa_Lj_u777Zf64dvnr7cfH2onOc-1FJ1VLYJQIwfNW8r7gXVaAXNcSWxFL3UnBJWWU6Ylx6FXAIrC0Gmh2MivydtD312cfy6Ystn6tN_IBpyXZKDjSrUgqTiNKlVmqY62L0Ep1xL0S1AuWCs05QW9eUaXfouD2UW_tfHJHB9VgPcHwMU5pYijcT7b7OdQjuonA9Tsc2E25pgLs8-FATAlF8Wu_rMfJ5w0fjgYsXzql8dokvMYHA4-ljyYYfanWvwBAlrVfA
CitedBy_id crossref_primary_10_1007_s00253_015_7071_6
crossref_primary_10_1007_s13562_024_00891_3
crossref_primary_10_1186_s13068_024_02500_w
crossref_primary_10_3168_jds_2018_15334
crossref_primary_10_1002_1873_3468_13528
crossref_primary_10_1016_j_indcrop_2024_119072
crossref_primary_10_1146_annurev_micro_090816_093315
crossref_primary_10_1186_s13068_016_0474_5
crossref_primary_10_3168_jds_2019_16339
crossref_primary_10_3390_catal11111343
crossref_primary_10_1002_pro_4315
crossref_primary_10_3390_ijms20215255
crossref_primary_10_1016_j_biortech_2021_125139
crossref_primary_10_1016_j_plaphy_2021_10_036
crossref_primary_10_1016_j_pbi_2015_05_014
crossref_primary_10_1371_journal_pone_0224381
crossref_primary_10_1007_s00792_023_01290_7
crossref_primary_10_1016_j_plaphy_2020_06_010
crossref_primary_10_1007_s00253_015_6534_0
crossref_primary_10_3390_ijms23105741
crossref_primary_10_1016_j_vas_2021_100228
crossref_primary_10_1016_j_rser_2015_10_132
crossref_primary_10_1016_j_biortech_2015_09_053
crossref_primary_10_3390_d13080378
crossref_primary_10_1186_s12896_016_0312_7
crossref_primary_10_1039_C9NP00011A
crossref_primary_10_1016_j_jbiosc_2019_05_007
crossref_primary_10_3390_antibiotics11081014
crossref_primary_10_1007_s10570_023_05637_3
crossref_primary_10_1007_s10529_015_1842_0
crossref_primary_10_1016_j_procbio_2016_09_010
crossref_primary_10_1016_j_ijbiomac_2024_130993
crossref_primary_10_1111_mpp_12611
crossref_primary_10_1186_s13213_020_01560_1
crossref_primary_10_1007_s11756_022_01274_6
crossref_primary_10_1186_s13068_015_0344_6
crossref_primary_10_1007_s10126_017_9782_4
crossref_primary_10_1186_s13068_025_02618_5
crossref_primary_10_17221_177_2020_PPS
crossref_primary_10_1016_j_biortech_2021_124909
crossref_primary_10_1007_s10265_020_01232_w
crossref_primary_10_1186_s13068_016_0590_2
crossref_primary_10_3389_fphar_2015_00181
Cites_doi 10.1016/j.enzmictec.2007.05.012
10.1128/AEM.02499-09
10.1021/ac60147a030
10.3390/molecules14125027
10.1002/bit.22193
10.1016/S1369-5266(99)00039-4
10.1196/annals.1419.026
10.1016/j.biotechadv.2012.03.002
10.1038/nrm1746
10.1038/nrmicro925
10.2527/jas.53832
10.1002/jctb.1889
10.1016/j.biortech.2014.02.004
10.1105/tpc.4.11.1425
10.1046/j.1365-313x.2000.00742.x
10.5897/AJB2003.000-1115
10.1074/jbc.M111.225037
10.1007/s10059-010-0033-z
10.1046/j.1432-1033.2002.03095.x
10.1016/S0981-9428(00)00164-9
10.1016/j.biortech.2013.09.086
10.1111/j.1574-6968.1999.tb13575.x
10.1105/tpc.9.7.1031
10.1093/ajcn/71.5.1123
10.1016/j.biortech.2012.05.098
10.1016/j.biotechadv.2013.11.005
10.1073/pnas.0605979103
10.1146/annurev.micro.57.030502.091022
10.1186/1472-6750-13-42
10.1186/1475-2859-10-8
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright © 2014 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: Copyright © 2014 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
7QO
7ST
7T7
8FD
C1K
FR3
P64
SOI
7SU
7TB
KR7
7S9
L.6
DOI 10.1016/j.biortech.2014.11.042
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Civil Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
MEDLINE - Academic

MEDLINE
Biotechnology Research Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
EndPage 135
ExternalDocumentID 25460993
10_1016_j_biortech_2014_11_042
S0960852414016447
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QL
7QO
7ST
7T7
8FD
C1K
EFKBS
FR3
P64
SOI
7SU
7TB
KR7
7S9
L.6
ID FETCH-LOGICAL-c533t-548a67e146f3193703bd289612c365e74b5984405a302953edb611601d89462f3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 05 09:59:48 EDT 2025
Fri Jul 11 16:07:26 EDT 2025
Tue Aug 05 10:47:06 EDT 2025
Thu Jul 10 17:29:33 EDT 2025
Thu Apr 03 07:00:59 EDT 2025
Thu Apr 24 22:54:28 EDT 2025
Tue Jul 01 02:06:27 EDT 2025
Fri Feb 23 02:16:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Expansin
Glycosyl hydrolases
Binding kinetics
Synergy
Lignocellulose
Language English
License Copyright © 2014 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-548a67e146f3193703bd289612c365e74b5984405a302953edb611601d89462f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25460993
PQID 1634274903
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1836671504
proquest_miscellaneous_1669846807
proquest_miscellaneous_1660395197
proquest_miscellaneous_1634274903
pubmed_primary_25460993
crossref_citationtrail_10_1016_j_biortech_2014_11_042
crossref_primary_10_1016_j_biortech_2014_11_042
elsevier_sciencedirect_doi_10_1016_j_biortech_2014_11_042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
2015-Jan
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Whitney, Gidley, McQueen-Mason (b0140) 2000; 22
Lee, Kim, Kim, Choi, Kim (b0085) 2013; 149
Doi, Kosugi (b0050) 2004; 2
Zhang, Zhang, Lin, Chen, Zhang, Liu, Li, Ouyang (b0155) 2009; 14
Suwannarangsee, Bunterngsook, Arnthong, Paemanee, Thamchaipenet, Eurwilaichitr, Laosiripojana, Champreda (b0125) 2012; 119
Kang, Wang, Lai, Liu, Xing (b0070) 2013; 13
Yennawar, Li, Dudzinski, Tabuchi, Cosgrove (b0150) 2006; 103
Chen, Ishida, Todaka, Nakamura, Maruyama, Takahashi, Kitamoto (b0020) 2010; 76
McQueen-Mason, Durachko, Cosgrove (b0100) 1992; 4
Han, Y.J., Chen, H.Z., 2007. Synergism between corn stover protein and cellulase. Enzyme Microbial Technol. 41, 638–645.
Bayer, Belaich, Shoham, Lamed (b0010) 2004; 58
Cosgrove (b0035) 2000; 38
Correia, M.A., Mazumder, K.m Brás, J.L., Firbank, S.J., Zhu, Y., Lewis , R.J., York, W.,S., Fontes, C.M., Gilbert, H.J. 2011. Structure and function of an arabinoxylan-specofic xylanase. J Biol Chem 286, 22510-22520.
Howard, Abotsi, Jansen van Rensburg, Howard (b0065) 2003; 2
Lagaert, Pollet, Courtin, Volckaert (b0080) 2014; 32
Pedersen, Azem, Broz, Guggenbuhl, Le, Fojan, Pettersson (b0110) 2012; 90
Saloheimo, Paloheimo, Hakola, Pere, Swanson, Nyyssonen, Bhatia, Ward, Penttila (b0120) 2002; 269
Miller (b0105) 1959; 31
Wilson (b0145) 2008; 1125
Georgelis, Tabuchi, Nikolaidis, Cosgrove (b0055) 2011; 286
Kim, Lee, Bang, Choi, Kim (b0075) 2009; 102
Van Dyk, Pletschke (b0135) 2012; 30
Lee, Lee, Ko, Kim, Choi (b0090) 2010; 29
Quiroz-Castaneda, Martinez-Anaya, Cuervo-Soto, Segovia, Folch-Mallol (b0115) 2011; 10
Bunterngsook, Mhuantong, Champreda, Thamchaiphenet, Eurwilaichitr (b0015) 2014; 159
Cosgrove (b0045) 1997; 9
Cosgrove (b0040) 2000; 3
Lu, Walker, Muir, Mascara, O’Dea (b0095) 2000; 71
Adney, B., Baker, J. 1996. Measurement of cellulase activities, Chemical Analysis and Testing Task. Laboratory Analytical Procedure.
Cosgrove (b0030) 2005; 6
Tatusova, Madden (b0130) 1999; 174
Zhao, Wang, Liu (b0160) 2008; 83
Lee (10.1016/j.biortech.2014.11.042_b0085) 2013; 149
Georgelis (10.1016/j.biortech.2014.11.042_b0055) 2011; 286
Yennawar (10.1016/j.biortech.2014.11.042_b0150) 2006; 103
Zhao (10.1016/j.biortech.2014.11.042_b0160) 2008; 83
Miller (10.1016/j.biortech.2014.11.042_b0105) 1959; 31
Lu (10.1016/j.biortech.2014.11.042_b0095) 2000; 71
Van Dyk (10.1016/j.biortech.2014.11.042_b0135) 2012; 30
Saloheimo (10.1016/j.biortech.2014.11.042_b0120) 2002; 269
Whitney (10.1016/j.biortech.2014.11.042_b0140) 2000; 22
Zhang (10.1016/j.biortech.2014.11.042_b0155) 2009; 14
10.1016/j.biortech.2014.11.042_b0060
Cosgrove (10.1016/j.biortech.2014.11.042_b0035) 2000; 38
Lee (10.1016/j.biortech.2014.11.042_b0090) 2010; 29
Tatusova (10.1016/j.biortech.2014.11.042_b0130) 1999; 174
Howard (10.1016/j.biortech.2014.11.042_b0065) 2003; 2
Kim (10.1016/j.biortech.2014.11.042_b0075) 2009; 102
McQueen-Mason (10.1016/j.biortech.2014.11.042_b0100) 1992; 4
10.1016/j.biortech.2014.11.042_b0025
Quiroz-Castaneda (10.1016/j.biortech.2014.11.042_b0115) 2011; 10
10.1016/j.biortech.2014.11.042_b0005
Suwannarangsee (10.1016/j.biortech.2014.11.042_b0125) 2012; 119
Kang (10.1016/j.biortech.2014.11.042_b0070) 2013; 13
Cosgrove (10.1016/j.biortech.2014.11.042_b0030) 2005; 6
Cosgrove (10.1016/j.biortech.2014.11.042_b0040) 2000; 3
Lagaert (10.1016/j.biortech.2014.11.042_b0080) 2014; 32
Wilson (10.1016/j.biortech.2014.11.042_b0145) 2008; 1125
Bunterngsook (10.1016/j.biortech.2014.11.042_b0015) 2014; 159
Cosgrove (10.1016/j.biortech.2014.11.042_b0045) 1997; 9
Pedersen (10.1016/j.biortech.2014.11.042_b0110) 2012; 90
Chen (10.1016/j.biortech.2014.11.042_b0020) 2010; 76
Doi (10.1016/j.biortech.2014.11.042_b0050) 2004; 2
Bayer (10.1016/j.biortech.2014.11.042_b0010) 2004; 58
References_xml – volume: 102
  start-page: 1342
  year: 2009
  end-page: 1353
  ident: b0075
  article-title: Functional characterization of a bacterial expansin from
  publication-title: Biotechnol. Bioeng.
– volume: 29
  start-page: 379
  year: 2010
  end-page: 385
  ident: b0090
  article-title: An expansin-like protein from
  publication-title: Mol. Cells
– reference: Han, Y.J., Chen, H.Z., 2007. Synergism between corn stover protein and cellulase. Enzyme Microbial Technol. 41, 638–645.
– volume: 13
  start-page: 42
  year: 2013
  ident: b0070
  article-title: Characterization of a novel swollenin from
  publication-title: BMC Biotechnol.
– reference: Adney, B., Baker, J. 1996. Measurement of cellulase activities, Chemical Analysis and Testing Task. Laboratory Analytical Procedure.
– volume: 38
  start-page: 109
  year: 2000
  end-page: 124
  ident: b0035
  article-title: Expansive growth of plant cell walls
  publication-title: Plant Physiol. Biochem.
– reference: Correia, M.A., Mazumder, K.m Brás, J.L., Firbank, S.J., Zhu, Y., Lewis , R.J., York, W.,S., Fontes, C.M., Gilbert, H.J. 2011. Structure and function of an arabinoxylan-specofic xylanase. J Biol Chem 286, 22510-22520.
– volume: 103
  start-page: 14664
  year: 2006
  end-page: 14671
  ident: b0150
  article-title: Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 6
  start-page: 850
  year: 2005
  end-page: 861
  ident: b0030
  article-title: Growth of the plant cell wall
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 159
  start-page: 64
  year: 2014
  end-page: 71
  ident: b0015
  article-title: Identification of novel bacterial expansins and their synergistic actions on cellulose degradation
  publication-title: Bioresour. Technol.
– volume: 3
  start-page: 73
  year: 2000
  end-page: 78
  ident: b0040
  article-title: New genes and new biological roles for expansins
  publication-title: Curr. Opin. Plant Biol.
– volume: 14
  start-page: 5027
  year: 2009
  end-page: 5041
  ident: b0155
  article-title: Dissolution of microcrystalline cellulose in phosphoric acid – molecular changes and kinetics
  publication-title: Molecules
– volume: 76
  start-page: 2556
  year: 2010
  end-page: 2561
  ident: b0020
  article-title: Promotion of efficient Saccharification of crystalline cellulose by
  publication-title: Appl. Environ. Microbiol.
– volume: 22
  start-page: 327
  year: 2000
  end-page: 334
  ident: b0140
  article-title: Probing expansin action using cellulose/hemicellulose composites
  publication-title: Plant J.
– volume: 269
  start-page: 4202
  year: 2002
  end-page: 4211
  ident: b0120
  article-title: Swollenin, a
  publication-title: Eur. J. Biochem.
– volume: 32
  start-page: 316
  year: 2014
  end-page: 332
  ident: b0080
  article-title: β-Xylosidases and α-
  publication-title: Biotechnol. Adv.
– volume: 149
  start-page: 516
  year: 2013
  end-page: 519
  ident: b0085
  article-title: An expansin from the marine bacterium
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 1425
  year: 1992
  end-page: 1433
  ident: b0100
  article-title: Two endogenous proteins that induce cell wall extension in plants
  publication-title: Plant Cell
– volume: 10
  start-page: 1
  year: 2011
  end-page: 9
  ident: b0115
  article-title: Loosenin, a novel protein with cellulose-disrupting activity from
  publication-title: Microb. Cell Fact.
– volume: 1125
  start-page: 289
  year: 2008
  end-page: 297
  ident: b0145
  article-title: Three microbial strategies for plant cell wall degradation
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 2
  start-page: 602
  year: 2003
  end-page: 619
  ident: b0065
  article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production
  publication-title: Afr. J. Biotechnol.
– volume: 71
  year: 2000
  ident: b0095
  article-title: Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects
  publication-title: Am. J. Clin. Nutr.
– volume: 83
  start-page: 950
  year: 2008
  end-page: 956
  ident: b0160
  article-title: Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 286
  start-page: 16814
  year: 2011
  end-page: 16823
  ident: b0055
  article-title: Structure–function analysis of the bacterial expansin EXLX1
  publication-title: J. Biol. Chem.
– volume: 174
  start-page: 247
  year: 1999
  end-page: 250
  ident: b0130
  article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences
  publication-title: FEMS Microbiol. Lett.
– volume: 2
  start-page: 541
  year: 2004
  end-page: 551
  ident: b0050
  article-title: Cellulosomes: plant-cell-wall-degrading enzyme complexes
  publication-title: Nat. Rev. Microbiol.
– volume: 30
  start-page: 1458
  year: 2012
  end-page: 1480
  ident: b0135
  article-title: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy
  publication-title: Biotechnol. Adv.
– volume: 58
  start-page: 521
  year: 2004
  end-page: 554
  ident: b0010
  article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides
  publication-title: Annu. Rev. Microbiol.
– volume: 9
  start-page: 1031
  year: 1997
  end-page: 1041
  ident: b0045
  article-title: Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement
  publication-title: Plant Cell
– volume: 119
  start-page: 252
  year: 2012
  end-page: 261
  ident: b0125
  article-title: Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design
  publication-title: Bioresour. Technol.
– volume: 90
  start-page: 149
  year: 2012
  end-page: 151
  ident: b0110
  article-title: The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase
  publication-title: J. Anim. Sci.
– volume: 31
  start-page: 426
  year: 1959
  end-page: 428
  ident: b0105
  article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar
  publication-title: Anal. Chem.
– ident: 10.1016/j.biortech.2014.11.042_b0060
  doi: 10.1016/j.enzmictec.2007.05.012
– volume: 76
  start-page: 2556
  year: 2010
  ident: 10.1016/j.biortech.2014.11.042_b0020
  article-title: Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02499-09
– volume: 31
  start-page: 426
  year: 1959
  ident: 10.1016/j.biortech.2014.11.042_b0105
  article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar
  publication-title: Anal. Chem.
  doi: 10.1021/ac60147a030
– volume: 14
  start-page: 5027
  year: 2009
  ident: 10.1016/j.biortech.2014.11.042_b0155
  article-title: Dissolution of microcrystalline cellulose in phosphoric acid – molecular changes and kinetics
  publication-title: Molecules
  doi: 10.3390/molecules14125027
– volume: 102
  start-page: 1342
  year: 2009
  ident: 10.1016/j.biortech.2014.11.042_b0075
  article-title: Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22193
– volume: 3
  start-page: 73
  year: 2000
  ident: 10.1016/j.biortech.2014.11.042_b0040
  article-title: New genes and new biological roles for expansins
  publication-title: Curr. Opin. Plant Biol.
  doi: 10.1016/S1369-5266(99)00039-4
– volume: 1125
  start-page: 289
  year: 2008
  ident: 10.1016/j.biortech.2014.11.042_b0145
  article-title: Three microbial strategies for plant cell wall degradation
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1419.026
– volume: 30
  start-page: 1458
  year: 2012
  ident: 10.1016/j.biortech.2014.11.042_b0135
  article-title: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2012.03.002
– ident: 10.1016/j.biortech.2014.11.042_b0025
– volume: 6
  start-page: 850
  year: 2005
  ident: 10.1016/j.biortech.2014.11.042_b0030
  article-title: Growth of the plant cell wall
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm1746
– volume: 2
  start-page: 541
  year: 2004
  ident: 10.1016/j.biortech.2014.11.042_b0050
  article-title: Cellulosomes: plant-cell-wall-degrading enzyme complexes
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro925
– volume: 90
  start-page: 149
  year: 2012
  ident: 10.1016/j.biortech.2014.11.042_b0110
  article-title: The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase
  publication-title: J. Anim. Sci.
  doi: 10.2527/jas.53832
– volume: 83
  start-page: 950
  year: 2008
  ident: 10.1016/j.biortech.2014.11.042_b0160
  article-title: Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.1889
– volume: 159
  start-page: 64
  year: 2014
  ident: 10.1016/j.biortech.2014.11.042_b0015
  article-title: Identification of novel bacterial expansins and their synergistic actions on cellulose degradation
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2014.02.004
– volume: 4
  start-page: 1425
  year: 1992
  ident: 10.1016/j.biortech.2014.11.042_b0100
  article-title: Two endogenous proteins that induce cell wall extension in plants
  publication-title: Plant Cell
  doi: 10.1105/tpc.4.11.1425
– volume: 22
  start-page: 327
  year: 2000
  ident: 10.1016/j.biortech.2014.11.042_b0140
  article-title: Probing expansin action using cellulose/hemicellulose composites
  publication-title: Plant J.
  doi: 10.1046/j.1365-313x.2000.00742.x
– volume: 2
  start-page: 602
  year: 2003
  ident: 10.1016/j.biortech.2014.11.042_b0065
  article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production
  publication-title: Afr. J. Biotechnol.
  doi: 10.5897/AJB2003.000-1115
– volume: 286
  start-page: 16814
  year: 2011
  ident: 10.1016/j.biortech.2014.11.042_b0055
  article-title: Structure–function analysis of the bacterial expansin EXLX1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.225037
– volume: 29
  start-page: 379
  year: 2010
  ident: 10.1016/j.biortech.2014.11.042_b0090
  article-title: An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity
  publication-title: Mol. Cells
  doi: 10.1007/s10059-010-0033-z
– ident: 10.1016/j.biortech.2014.11.042_b0005
– volume: 269
  start-page: 4202
  year: 2002
  ident: 10.1016/j.biortech.2014.11.042_b0120
  article-title: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials
  publication-title: Eur. J. Biochem.
  doi: 10.1046/j.1432-1033.2002.03095.x
– volume: 38
  start-page: 109
  year: 2000
  ident: 10.1016/j.biortech.2014.11.042_b0035
  article-title: Expansive growth of plant cell walls
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/S0981-9428(00)00164-9
– volume: 149
  start-page: 516
  year: 2013
  ident: 10.1016/j.biortech.2014.11.042_b0085
  article-title: An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.09.086
– volume: 174
  start-page: 247
  year: 1999
  ident: 10.1016/j.biortech.2014.11.042_b0130
  article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.1999.tb13575.x
– volume: 9
  start-page: 1031
  year: 1997
  ident: 10.1016/j.biortech.2014.11.042_b0045
  article-title: Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement
  publication-title: Plant Cell
  doi: 10.1105/tpc.9.7.1031
– volume: 71
  year: 2000
  ident: 10.1016/j.biortech.2014.11.042_b0095
  article-title: Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/71.5.1123
– volume: 119
  start-page: 252
  year: 2012
  ident: 10.1016/j.biortech.2014.11.042_b0125
  article-title: Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.05.098
– volume: 32
  start-page: 316
  year: 2014
  ident: 10.1016/j.biortech.2014.11.042_b0080
  article-title: β-Xylosidases and α-l-arabinofuranosidases: accessory enzymes for arabinoxylan degradation
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2013.11.005
– volume: 103
  start-page: 14664
  year: 2006
  ident: 10.1016/j.biortech.2014.11.042_b0150
  article-title: Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0605979103
– volume: 58
  start-page: 521
  year: 2004
  ident: 10.1016/j.biortech.2014.11.042_b0010
  article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.57.030502.091022
– volume: 13
  start-page: 42
  year: 2013
  ident: 10.1016/j.biortech.2014.11.042_b0070
  article-title: Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose
  publication-title: BMC Biotechnol.
  doi: 10.1186/1472-6750-13-42
– volume: 10
  start-page: 1
  year: 2011
  ident: 10.1016/j.biortech.2014.11.042_b0115
  article-title: Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta
  publication-title: Microb. Cell Fact.
  doi: 10.1186/1475-2859-10-8
SSID ssj0003172
Score 2.3545208
Snippet [Display omitted] •Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of...
Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 129
SubjectTerms arabinoxylan
Arabinoxylans
Bacillus pumilus
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding
binding capacity
Binding kinetics
cell walls
Cellulose
Cellulose - metabolism
Clavibacter michiganensis
Cloning, Molecular
Degradation
endo-1,4-beta-glucanase
enzymatic reactions
Enzymes
Expansin
expansins
Genetic Vectors - genetics
Glycosyl hydrolases
hemicellulose
Hydrolysis
Hypocrea jecorina
Kinetics
Lignocellulose
Polysaccharides
Polysaccharides - metabolism
Protein Binding
reducing sugars
Rosaniline Dyes
synergism
Synergy
Trichoderma reesei
Walls
X-Ray Diffraction
Xylans - metabolism
Title Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates
URI https://dx.doi.org/10.1016/j.biortech.2014.11.042
https://www.ncbi.nlm.nih.gov/pubmed/25460993
https://www.proquest.com/docview/1634274903
https://www.proquest.com/docview/1660395197
https://www.proquest.com/docview/1669846807
https://www.proquest.com/docview/1836671504
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4E6dB2KNr05T4CFugqWxYflkbXaOC2aJY2QDZCFMlCQSAHlg20S357PlJSHkOcoYsA03eQxKPuvpPuPhJ9znwqvPJZUorKJgIBIzFTmyW29HmJFeKtC43CP4_V8kR8P5Wne7QYemFCWWXv-zufHr11PzLpZ3NyUdeTXwF85xIRSASaKBE6ynEM_Pnjy5syD8TH-CUBwkmQvtUlfDY2dahojR8lpmIc2DxFdl-Aug-AxkB09Jye9QiSzbuLfEF7rjmgp_M_655Fwx3Q48WwjRv-ucU4-JLWX-rYxsKqu0TNrGwsa_-FRsA4wPo6D7byzHRyOKf7C9_R1g2GGxZe-W_PV7ByVI7EAzdDLRxSJL5tX9HJ0dffi2XSb7uQVMB-mwQ5TKlmDi7U4_nkcAnGIi0DFKq4km4mjCxyAaBX8jQrJHfWqOkUiZ3NC6Eyz1_TfrNq3FtipfAFtFMjZCWc50VeecsB6rmVxhs7IjnMta56TvKwNca5HorPzvRgIx1shIRFw0YjmlzrXXSsHA9qFIMp9Z31pRE6HtT9NNhew3hhLsvGrbatBpgVSOuLlO-SUSkvQn_wThlMqcrTXTI5V2oG_C5G9KZbgNf3HjY1ANTn7_7jLt_TE_yS3eulD7S_WW_dRwCujTmMT9QhPZp_-7E8vgLwvCz1
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMAeVrzpLgtG4hqaxo8mx261qLx6ASRuVhzbKAilqGml3X-_Y8fpwoFy2KszoyQee-Yb2_MZ4CyxMbPCJlHOCh0xDBiR6ukk0rlNcxwhVhtXKHw7FqMHdvXIH1dg2NbCuGOVwfc3Pt1769DSDb3ZfS3L7p0D3ynHCMQcTRTrr8K6Y6fCwb4-uLwejRcOGUOk30xA-cgpvCkUfj5XpTvU6vcleuzcEXqy5KMY9REG9bHoYgu-BhBJBs13bsOKqXbgy-BpGog0zA5sDNub3PDJG9LBXZj-LH0lCyneczWTvNKk_uNqAX0DCUc9yMQS1cjhO81vdB91WWFzRdyq__xlgob2yp574F9TjT7Jc9_We_Bw8et-OIrCzQtRgfBvFmEak4u-QS9qcYpS9ApKY2aGaKiggps-UzxLGWK9nMZJxqnRSvR6mNvpNGMisXQf1qpJZQ6B5MxmqB0rxgtmLM3SwmqKuJ5qrqzSHeBtX8si0JK72zFeZHv-7Fm2NpLORpizSLRRB7oLvdeGmONTjaw1pXw3xCRGj091T1vbSzSe68u8MpN5LRHPMszss5gukxExzVyJ8FIZ7FKRxstkUipEHyE868BBMwAX_-7uNUC0T7_9x1-ewMbo_vZG3lyOr7_DJj7hzWrTEazNpnPzA_HXTB2H-fUXI2ovpg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+characteristics+and+synergistic+effects+of+bacterial+expansins+on+cellulosic+and+hemicellulosic+substrates&rft.jtitle=Bioresource+technology&rft.au=Bunterngsook%2C+Benjarat&rft.au=Eurwilaichitr%2C+Lily&rft.au=Thamchaipenet%2C+Arinthip&rft.au=Champreda%2C+Verawat&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=176&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1016%2Fj.biortech.2014.11.042&rft.externalDocID=S0960852414016447
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon