Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates
[Display omitted] •Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of PASC>arabinoxylan>Avicel.•All expansins showed varying synergy on hydrolysis of tested substrates.•BpEX and CmEX showed the highest synergy of >11...
Saved in:
Published in | Bioresource technology Vol. 176; pp. 129 - 135 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0960-8524 1873-2976 1873-2976 |
DOI | 10.1016/j.biortech.2014.11.042 |
Cover
Loading…
Abstract | [Display omitted]
•Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of PASC>arabinoxylan>Avicel.•All expansins showed varying synergy on hydrolysis of tested substrates.•BpEX and CmEX showed the highest synergy of >11-fold on arabinoxylan.•Binding and synergy were related to types and crystallinity of substrates.
Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates. |
---|---|
AbstractList | Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (B sub(max)) and affinity (K sub(d)) for different substrates. A common pattern of binding efficiency (B sub(max)/K sub(d)) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates. Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates.Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates. [Display omitted] •Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of PASC>arabinoxylan>Avicel.•All expansins showed varying synergy on hydrolysis of tested substrates.•BpEX and CmEX showed the highest synergy of >11-fold on arabinoxylan.•Binding and synergy were related to types and crystallinity of substrates. Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates. Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins on cellulosic and hemicellulosic polysaccharides were studied. The expansins differed in binding capacity (Bmax) and affinity (Kd) for different substrates. A common pattern of binding efficiency (Bmax/Kd) was found among the expansins tested, in which efficiency was greatest for the phosphoric acid-swollen cellulose (PASC), then the hemicellulose arabinoxylan followed by the microcrystalline cellulose (Avicel PH101). The expansins enhanced the action of Trichoderma reesei cellulase/hemicellulase mixture for degrading all three substrates to varying degrees. Among the substrates and expansins tested, BpEX from Bacillus pumilus and CmEX from Clavibacter michiganensis showed the greatest enhancement effect on arabinoxylan with 11.4 and 12.2-fold greater reducing sugar yield than the reaction with enzyme alone. The work gives insights into the wider application of expansins on enhancing polysaccharide hydrolysis, particularly on hemicellulosic substrates. |
Author | Champreda, Verawat Eurwilaichitr, Lily Thamchaipenet, Arinthip Bunterngsook, Benjarat |
Author_xml | – sequence: 1 givenname: Benjarat surname: Bunterngsook fullname: Bunterngsook, Benjarat organization: Department of Genetics, Faculty of Sciences, Kasetsart University, Chatuchak, Bangkok 10900, Thailand – sequence: 2 givenname: Lily surname: Eurwilaichitr fullname: Eurwilaichitr, Lily email: lily@biotec.or.th organization: Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand – sequence: 3 givenname: Arinthip surname: Thamchaipenet fullname: Thamchaipenet, Arinthip organization: Department of Genetics, Faculty of Sciences, Kasetsart University, Chatuchak, Bangkok 10900, Thailand – sequence: 4 givenname: Verawat surname: Champreda fullname: Champreda, Verawat organization: Enzyme Technology Laboratory, Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology, Thailand Science Park, Khlong Luang, Pathum Thani 12120, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25460993$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v1DAQxa2qqN0WvkKVI5cEj_8lljgAVQtIlbjA2XKcSderrLPYDqLfHi_blRCX7Wmkp9-bGc28K3Ie5oCE3ABtgIJ6t2l6P8eMbt0wCqIBaKhgZ2QFXctrplt1TlZUK1p3kolLcpXShlLKoWUX5JJJoajWfEXiJx8GHx4rt7bRuozRp-xdqmwYqvQUMD7-FSocR3Q5VfNY9QfOThX-3tmQfChyqBxO0zLNqcB78xq3_h8pLX3K0WZMr8mr0U4J3zzXa_Lj_u777Zf64dvnr7cfH2onOc-1FJ1VLYJQIwfNW8r7gXVaAXNcSWxFL3UnBJWWU6Ylx6FXAIrC0Gmh2MivydtD312cfy6Ystn6tN_IBpyXZKDjSrUgqTiNKlVmqY62L0Ep1xL0S1AuWCs05QW9eUaXfouD2UW_tfHJHB9VgPcHwMU5pYijcT7b7OdQjuonA9Tsc2E25pgLs8-FATAlF8Wu_rMfJ5w0fjgYsXzql8dokvMYHA4-ljyYYfanWvwBAlrVfA |
CitedBy_id | crossref_primary_10_1007_s00253_015_7071_6 crossref_primary_10_1007_s13562_024_00891_3 crossref_primary_10_1186_s13068_024_02500_w crossref_primary_10_3168_jds_2018_15334 crossref_primary_10_1002_1873_3468_13528 crossref_primary_10_1016_j_indcrop_2024_119072 crossref_primary_10_1146_annurev_micro_090816_093315 crossref_primary_10_1186_s13068_016_0474_5 crossref_primary_10_3168_jds_2019_16339 crossref_primary_10_3390_catal11111343 crossref_primary_10_1002_pro_4315 crossref_primary_10_3390_ijms20215255 crossref_primary_10_1016_j_biortech_2021_125139 crossref_primary_10_1016_j_plaphy_2021_10_036 crossref_primary_10_1016_j_pbi_2015_05_014 crossref_primary_10_1371_journal_pone_0224381 crossref_primary_10_1007_s00792_023_01290_7 crossref_primary_10_1016_j_plaphy_2020_06_010 crossref_primary_10_1007_s00253_015_6534_0 crossref_primary_10_3390_ijms23105741 crossref_primary_10_1016_j_vas_2021_100228 crossref_primary_10_1016_j_rser_2015_10_132 crossref_primary_10_1016_j_biortech_2015_09_053 crossref_primary_10_3390_d13080378 crossref_primary_10_1186_s12896_016_0312_7 crossref_primary_10_1039_C9NP00011A crossref_primary_10_1016_j_jbiosc_2019_05_007 crossref_primary_10_3390_antibiotics11081014 crossref_primary_10_1007_s10570_023_05637_3 crossref_primary_10_1007_s10529_015_1842_0 crossref_primary_10_1016_j_procbio_2016_09_010 crossref_primary_10_1016_j_ijbiomac_2024_130993 crossref_primary_10_1111_mpp_12611 crossref_primary_10_1186_s13213_020_01560_1 crossref_primary_10_1007_s11756_022_01274_6 crossref_primary_10_1186_s13068_015_0344_6 crossref_primary_10_1007_s10126_017_9782_4 crossref_primary_10_1186_s13068_025_02618_5 crossref_primary_10_17221_177_2020_PPS crossref_primary_10_1016_j_biortech_2021_124909 crossref_primary_10_1007_s10265_020_01232_w crossref_primary_10_1186_s13068_016_0590_2 crossref_primary_10_3389_fphar_2015_00181 |
Cites_doi | 10.1016/j.enzmictec.2007.05.012 10.1128/AEM.02499-09 10.1021/ac60147a030 10.3390/molecules14125027 10.1002/bit.22193 10.1016/S1369-5266(99)00039-4 10.1196/annals.1419.026 10.1016/j.biotechadv.2012.03.002 10.1038/nrm1746 10.1038/nrmicro925 10.2527/jas.53832 10.1002/jctb.1889 10.1016/j.biortech.2014.02.004 10.1105/tpc.4.11.1425 10.1046/j.1365-313x.2000.00742.x 10.5897/AJB2003.000-1115 10.1074/jbc.M111.225037 10.1007/s10059-010-0033-z 10.1046/j.1432-1033.2002.03095.x 10.1016/S0981-9428(00)00164-9 10.1016/j.biortech.2013.09.086 10.1111/j.1574-6968.1999.tb13575.x 10.1105/tpc.9.7.1031 10.1093/ajcn/71.5.1123 10.1016/j.biortech.2012.05.098 10.1016/j.biotechadv.2013.11.005 10.1073/pnas.0605979103 10.1146/annurev.micro.57.030502.091022 10.1186/1472-6750-13-42 10.1186/1475-2859-10-8 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd Copyright © 2014 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: Copyright © 2014 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QL 7QO 7ST 7T7 8FD C1K FR3 P64 SOI 7SU 7TB KR7 7S9 L.6 |
DOI | 10.1016/j.biortech.2014.11.042 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Civil Engineering Abstracts Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Civil Engineering Abstracts MEDLINE - Academic MEDLINE Biotechnology Research Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
EndPage | 135 |
ExternalDocumentID | 25460993 10_1016_j_biortech_2014_11_042 S0960852414016447 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7QL 7QO 7ST 7T7 8FD C1K EFKBS FR3 P64 SOI 7SU 7TB KR7 7S9 L.6 |
ID | FETCH-LOGICAL-c533t-548a67e146f3193703bd289612c365e74b5984405a302953edb611601d89462f3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Tue Aug 05 09:59:48 EDT 2025 Fri Jul 11 16:07:26 EDT 2025 Tue Aug 05 10:47:06 EDT 2025 Thu Jul 10 17:29:33 EDT 2025 Thu Apr 03 07:00:59 EDT 2025 Thu Apr 24 22:54:28 EDT 2025 Tue Jul 01 02:06:27 EDT 2025 Fri Feb 23 02:16:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Expansin Glycosyl hydrolases Binding kinetics Synergy Lignocellulose |
Language | English |
License | Copyright © 2014 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-548a67e146f3193703bd289612c365e74b5984405a302953edb611601d89462f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25460993 |
PQID | 1634274903 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1836671504 proquest_miscellaneous_1669846807 proquest_miscellaneous_1660395197 proquest_miscellaneous_1634274903 pubmed_primary_25460993 crossref_citationtrail_10_1016_j_biortech_2014_11_042 crossref_primary_10_1016_j_biortech_2014_11_042 elsevier_sciencedirect_doi_10_1016_j_biortech_2014_11_042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 2015-Jan 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Whitney, Gidley, McQueen-Mason (b0140) 2000; 22 Lee, Kim, Kim, Choi, Kim (b0085) 2013; 149 Doi, Kosugi (b0050) 2004; 2 Zhang, Zhang, Lin, Chen, Zhang, Liu, Li, Ouyang (b0155) 2009; 14 Suwannarangsee, Bunterngsook, Arnthong, Paemanee, Thamchaipenet, Eurwilaichitr, Laosiripojana, Champreda (b0125) 2012; 119 Kang, Wang, Lai, Liu, Xing (b0070) 2013; 13 Yennawar, Li, Dudzinski, Tabuchi, Cosgrove (b0150) 2006; 103 Chen, Ishida, Todaka, Nakamura, Maruyama, Takahashi, Kitamoto (b0020) 2010; 76 McQueen-Mason, Durachko, Cosgrove (b0100) 1992; 4 Han, Y.J., Chen, H.Z., 2007. Synergism between corn stover protein and cellulase. Enzyme Microbial Technol. 41, 638–645. Bayer, Belaich, Shoham, Lamed (b0010) 2004; 58 Cosgrove (b0035) 2000; 38 Correia, M.A., Mazumder, K.m Brás, J.L., Firbank, S.J., Zhu, Y., Lewis , R.J., York, W.,S., Fontes, C.M., Gilbert, H.J. 2011. Structure and function of an arabinoxylan-specofic xylanase. J Biol Chem 286, 22510-22520. Howard, Abotsi, Jansen van Rensburg, Howard (b0065) 2003; 2 Lagaert, Pollet, Courtin, Volckaert (b0080) 2014; 32 Pedersen, Azem, Broz, Guggenbuhl, Le, Fojan, Pettersson (b0110) 2012; 90 Saloheimo, Paloheimo, Hakola, Pere, Swanson, Nyyssonen, Bhatia, Ward, Penttila (b0120) 2002; 269 Miller (b0105) 1959; 31 Wilson (b0145) 2008; 1125 Georgelis, Tabuchi, Nikolaidis, Cosgrove (b0055) 2011; 286 Kim, Lee, Bang, Choi, Kim (b0075) 2009; 102 Van Dyk, Pletschke (b0135) 2012; 30 Lee, Lee, Ko, Kim, Choi (b0090) 2010; 29 Quiroz-Castaneda, Martinez-Anaya, Cuervo-Soto, Segovia, Folch-Mallol (b0115) 2011; 10 Bunterngsook, Mhuantong, Champreda, Thamchaiphenet, Eurwilaichitr (b0015) 2014; 159 Cosgrove (b0045) 1997; 9 Cosgrove (b0040) 2000; 3 Lu, Walker, Muir, Mascara, O’Dea (b0095) 2000; 71 Adney, B., Baker, J. 1996. Measurement of cellulase activities, Chemical Analysis and Testing Task. Laboratory Analytical Procedure. Cosgrove (b0030) 2005; 6 Tatusova, Madden (b0130) 1999; 174 Zhao, Wang, Liu (b0160) 2008; 83 Lee (10.1016/j.biortech.2014.11.042_b0085) 2013; 149 Georgelis (10.1016/j.biortech.2014.11.042_b0055) 2011; 286 Yennawar (10.1016/j.biortech.2014.11.042_b0150) 2006; 103 Zhao (10.1016/j.biortech.2014.11.042_b0160) 2008; 83 Miller (10.1016/j.biortech.2014.11.042_b0105) 1959; 31 Lu (10.1016/j.biortech.2014.11.042_b0095) 2000; 71 Van Dyk (10.1016/j.biortech.2014.11.042_b0135) 2012; 30 Saloheimo (10.1016/j.biortech.2014.11.042_b0120) 2002; 269 Whitney (10.1016/j.biortech.2014.11.042_b0140) 2000; 22 Zhang (10.1016/j.biortech.2014.11.042_b0155) 2009; 14 10.1016/j.biortech.2014.11.042_b0060 Cosgrove (10.1016/j.biortech.2014.11.042_b0035) 2000; 38 Lee (10.1016/j.biortech.2014.11.042_b0090) 2010; 29 Tatusova (10.1016/j.biortech.2014.11.042_b0130) 1999; 174 Howard (10.1016/j.biortech.2014.11.042_b0065) 2003; 2 Kim (10.1016/j.biortech.2014.11.042_b0075) 2009; 102 McQueen-Mason (10.1016/j.biortech.2014.11.042_b0100) 1992; 4 10.1016/j.biortech.2014.11.042_b0025 Quiroz-Castaneda (10.1016/j.biortech.2014.11.042_b0115) 2011; 10 10.1016/j.biortech.2014.11.042_b0005 Suwannarangsee (10.1016/j.biortech.2014.11.042_b0125) 2012; 119 Kang (10.1016/j.biortech.2014.11.042_b0070) 2013; 13 Cosgrove (10.1016/j.biortech.2014.11.042_b0030) 2005; 6 Cosgrove (10.1016/j.biortech.2014.11.042_b0040) 2000; 3 Lagaert (10.1016/j.biortech.2014.11.042_b0080) 2014; 32 Wilson (10.1016/j.biortech.2014.11.042_b0145) 2008; 1125 Bunterngsook (10.1016/j.biortech.2014.11.042_b0015) 2014; 159 Cosgrove (10.1016/j.biortech.2014.11.042_b0045) 1997; 9 Pedersen (10.1016/j.biortech.2014.11.042_b0110) 2012; 90 Chen (10.1016/j.biortech.2014.11.042_b0020) 2010; 76 Doi (10.1016/j.biortech.2014.11.042_b0050) 2004; 2 Bayer (10.1016/j.biortech.2014.11.042_b0010) 2004; 58 |
References_xml | – volume: 102 start-page: 1342 year: 2009 end-page: 1353 ident: b0075 article-title: Functional characterization of a bacterial expansin from publication-title: Biotechnol. Bioeng. – volume: 29 start-page: 379 year: 2010 end-page: 385 ident: b0090 article-title: An expansin-like protein from publication-title: Mol. Cells – reference: Han, Y.J., Chen, H.Z., 2007. Synergism between corn stover protein and cellulase. Enzyme Microbial Technol. 41, 638–645. – volume: 13 start-page: 42 year: 2013 ident: b0070 article-title: Characterization of a novel swollenin from publication-title: BMC Biotechnol. – reference: Adney, B., Baker, J. 1996. Measurement of cellulase activities, Chemical Analysis and Testing Task. Laboratory Analytical Procedure. – volume: 38 start-page: 109 year: 2000 end-page: 124 ident: b0035 article-title: Expansive growth of plant cell walls publication-title: Plant Physiol. Biochem. – reference: Correia, M.A., Mazumder, K.m Brás, J.L., Firbank, S.J., Zhu, Y., Lewis , R.J., York, W.,S., Fontes, C.M., Gilbert, H.J. 2011. Structure and function of an arabinoxylan-specofic xylanase. J Biol Chem 286, 22510-22520. – volume: 103 start-page: 14664 year: 2006 end-page: 14671 ident: b0150 article-title: Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 6 start-page: 850 year: 2005 end-page: 861 ident: b0030 article-title: Growth of the plant cell wall publication-title: Nat. Rev. Mol. Cell Biol. – volume: 159 start-page: 64 year: 2014 end-page: 71 ident: b0015 article-title: Identification of novel bacterial expansins and their synergistic actions on cellulose degradation publication-title: Bioresour. Technol. – volume: 3 start-page: 73 year: 2000 end-page: 78 ident: b0040 article-title: New genes and new biological roles for expansins publication-title: Curr. Opin. Plant Biol. – volume: 14 start-page: 5027 year: 2009 end-page: 5041 ident: b0155 article-title: Dissolution of microcrystalline cellulose in phosphoric acid – molecular changes and kinetics publication-title: Molecules – volume: 76 start-page: 2556 year: 2010 end-page: 2561 ident: b0020 article-title: Promotion of efficient Saccharification of crystalline cellulose by publication-title: Appl. Environ. Microbiol. – volume: 22 start-page: 327 year: 2000 end-page: 334 ident: b0140 article-title: Probing expansin action using cellulose/hemicellulose composites publication-title: Plant J. – volume: 269 start-page: 4202 year: 2002 end-page: 4211 ident: b0120 article-title: Swollenin, a publication-title: Eur. J. Biochem. – volume: 32 start-page: 316 year: 2014 end-page: 332 ident: b0080 article-title: β-Xylosidases and α- publication-title: Biotechnol. Adv. – volume: 149 start-page: 516 year: 2013 end-page: 519 ident: b0085 article-title: An expansin from the marine bacterium publication-title: Bioresour. Technol. – volume: 4 start-page: 1425 year: 1992 end-page: 1433 ident: b0100 article-title: Two endogenous proteins that induce cell wall extension in plants publication-title: Plant Cell – volume: 10 start-page: 1 year: 2011 end-page: 9 ident: b0115 article-title: Loosenin, a novel protein with cellulose-disrupting activity from publication-title: Microb. Cell Fact. – volume: 1125 start-page: 289 year: 2008 end-page: 297 ident: b0145 article-title: Three microbial strategies for plant cell wall degradation publication-title: Ann. N. Y. Acad. Sci. – volume: 2 start-page: 602 year: 2003 end-page: 619 ident: b0065 article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production publication-title: Afr. J. Biotechnol. – volume: 71 year: 2000 ident: b0095 article-title: Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects publication-title: Am. J. Clin. Nutr. – volume: 83 start-page: 950 year: 2008 end-page: 956 ident: b0160 article-title: Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work publication-title: J. Chem. Technol. Biotechnol. – volume: 286 start-page: 16814 year: 2011 end-page: 16823 ident: b0055 article-title: Structure–function analysis of the bacterial expansin EXLX1 publication-title: J. Biol. Chem. – volume: 174 start-page: 247 year: 1999 end-page: 250 ident: b0130 article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences publication-title: FEMS Microbiol. Lett. – volume: 2 start-page: 541 year: 2004 end-page: 551 ident: b0050 article-title: Cellulosomes: plant-cell-wall-degrading enzyme complexes publication-title: Nat. Rev. Microbiol. – volume: 30 start-page: 1458 year: 2012 end-page: 1480 ident: b0135 article-title: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy publication-title: Biotechnol. Adv. – volume: 58 start-page: 521 year: 2004 end-page: 554 ident: b0010 article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides publication-title: Annu. Rev. Microbiol. – volume: 9 start-page: 1031 year: 1997 end-page: 1041 ident: b0045 article-title: Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement publication-title: Plant Cell – volume: 119 start-page: 252 year: 2012 end-page: 261 ident: b0125 article-title: Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design publication-title: Bioresour. Technol. – volume: 90 start-page: 149 year: 2012 end-page: 151 ident: b0110 article-title: The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase publication-title: J. Anim. Sci. – volume: 31 start-page: 426 year: 1959 end-page: 428 ident: b0105 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal. Chem. – ident: 10.1016/j.biortech.2014.11.042_b0060 doi: 10.1016/j.enzmictec.2007.05.012 – volume: 76 start-page: 2556 year: 2010 ident: 10.1016/j.biortech.2014.11.042_b0020 article-title: Promotion of efficient Saccharification of crystalline cellulose by Aspergillus fumigatus Swo1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02499-09 – volume: 31 start-page: 426 year: 1959 ident: 10.1016/j.biortech.2014.11.042_b0105 article-title: Use of dinitrosalicylic acid reagent for determination of reducing sugar publication-title: Anal. Chem. doi: 10.1021/ac60147a030 – volume: 14 start-page: 5027 year: 2009 ident: 10.1016/j.biortech.2014.11.042_b0155 article-title: Dissolution of microcrystalline cellulose in phosphoric acid – molecular changes and kinetics publication-title: Molecules doi: 10.3390/molecules14125027 – volume: 102 start-page: 1342 year: 2009 ident: 10.1016/j.biortech.2014.11.042_b0075 article-title: Functional characterization of a bacterial expansin from Bacillus subtilis for enhanced enzymatic hydrolysis of cellulose publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22193 – volume: 3 start-page: 73 year: 2000 ident: 10.1016/j.biortech.2014.11.042_b0040 article-title: New genes and new biological roles for expansins publication-title: Curr. Opin. Plant Biol. doi: 10.1016/S1369-5266(99)00039-4 – volume: 1125 start-page: 289 year: 2008 ident: 10.1016/j.biortech.2014.11.042_b0145 article-title: Three microbial strategies for plant cell wall degradation publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1419.026 – volume: 30 start-page: 1458 year: 2012 ident: 10.1016/j.biortech.2014.11.042_b0135 article-title: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes–factors affecting enzymes, conversion and synergy publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2012.03.002 – ident: 10.1016/j.biortech.2014.11.042_b0025 – volume: 6 start-page: 850 year: 2005 ident: 10.1016/j.biortech.2014.11.042_b0030 article-title: Growth of the plant cell wall publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1746 – volume: 2 start-page: 541 year: 2004 ident: 10.1016/j.biortech.2014.11.042_b0050 article-title: Cellulosomes: plant-cell-wall-degrading enzyme complexes publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro925 – volume: 90 start-page: 149 year: 2012 ident: 10.1016/j.biortech.2014.11.042_b0110 article-title: The degradation of arabinoxylan-rich cell walls in digesta obtained from piglets fed wheat-based diets varies depending on digesta collection site, type of cereal, and source of exogenous xylanase publication-title: J. Anim. Sci. doi: 10.2527/jas.53832 – volume: 83 start-page: 950 year: 2008 ident: 10.1016/j.biortech.2014.11.042_b0160 article-title: Peracetic acid pretreatment of sugarcane bagasse for enzymatic hydrolysis: a continued work publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.1889 – volume: 159 start-page: 64 year: 2014 ident: 10.1016/j.biortech.2014.11.042_b0015 article-title: Identification of novel bacterial expansins and their synergistic actions on cellulose degradation publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2014.02.004 – volume: 4 start-page: 1425 year: 1992 ident: 10.1016/j.biortech.2014.11.042_b0100 article-title: Two endogenous proteins that induce cell wall extension in plants publication-title: Plant Cell doi: 10.1105/tpc.4.11.1425 – volume: 22 start-page: 327 year: 2000 ident: 10.1016/j.biortech.2014.11.042_b0140 article-title: Probing expansin action using cellulose/hemicellulose composites publication-title: Plant J. doi: 10.1046/j.1365-313x.2000.00742.x – volume: 2 start-page: 602 year: 2003 ident: 10.1016/j.biortech.2014.11.042_b0065 article-title: Lignocellulose biotechnology: issues of bioconversion and enzyme production publication-title: Afr. J. Biotechnol. doi: 10.5897/AJB2003.000-1115 – volume: 286 start-page: 16814 year: 2011 ident: 10.1016/j.biortech.2014.11.042_b0055 article-title: Structure–function analysis of the bacterial expansin EXLX1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.225037 – volume: 29 start-page: 379 year: 2010 ident: 10.1016/j.biortech.2014.11.042_b0090 article-title: An expansin-like protein from Hahella chejuensis binds cellulose and enhances cellulase activity publication-title: Mol. Cells doi: 10.1007/s10059-010-0033-z – ident: 10.1016/j.biortech.2014.11.042_b0005 – volume: 269 start-page: 4202 year: 2002 ident: 10.1016/j.biortech.2014.11.042_b0120 article-title: Swollenin, a Trichoderma reesei protein with sequence similarity to the plant expansins, exhibits disruption activity on cellulosic materials publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2002.03095.x – volume: 38 start-page: 109 year: 2000 ident: 10.1016/j.biortech.2014.11.042_b0035 article-title: Expansive growth of plant cell walls publication-title: Plant Physiol. Biochem. doi: 10.1016/S0981-9428(00)00164-9 – volume: 149 start-page: 516 year: 2013 ident: 10.1016/j.biortech.2014.11.042_b0085 article-title: An expansin from the marine bacterium Hahella chejuensis acts synergistically with xylanase and enhances xylan hydrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.09.086 – volume: 174 start-page: 247 year: 1999 ident: 10.1016/j.biortech.2014.11.042_b0130 article-title: BLAST 2 sequences, a new tool for comparing protein and nucleotide sequences publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.1999.tb13575.x – volume: 9 start-page: 1031 year: 1997 ident: 10.1016/j.biortech.2014.11.042_b0045 article-title: Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement publication-title: Plant Cell doi: 10.1105/tpc.9.7.1031 – volume: 71 year: 2000 ident: 10.1016/j.biortech.2014.11.042_b0095 article-title: Arabinoxylan fiber, a byproduct of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/71.5.1123 – volume: 119 start-page: 252 year: 2012 ident: 10.1016/j.biortech.2014.11.042_b0125 article-title: Optimisation of synergistic biomass-degrading enzyme systems for efficient rice straw hydrolysis using an experimental mixture design publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.05.098 – volume: 32 start-page: 316 year: 2014 ident: 10.1016/j.biortech.2014.11.042_b0080 article-title: β-Xylosidases and α-l-arabinofuranosidases: accessory enzymes for arabinoxylan degradation publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.11.005 – volume: 103 start-page: 14664 year: 2006 ident: 10.1016/j.biortech.2014.11.042_b0150 article-title: Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0605979103 – volume: 58 start-page: 521 year: 2004 ident: 10.1016/j.biortech.2014.11.042_b0010 article-title: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.57.030502.091022 – volume: 13 start-page: 42 year: 2013 ident: 10.1016/j.biortech.2014.11.042_b0070 article-title: Characterization of a novel swollenin from Penicillium oxalicum in facilitating enzymatic saccharification of cellulose publication-title: BMC Biotechnol. doi: 10.1186/1472-6750-13-42 – volume: 10 start-page: 1 year: 2011 ident: 10.1016/j.biortech.2014.11.042_b0115 article-title: Loosenin, a novel protein with cellulose-disrupting activity from Bjerkandera adusta publication-title: Microb. Cell Fact. doi: 10.1186/1475-2859-10-8 |
SSID | ssj0003172 |
Score | 2.3545208 |
Snippet | [Display omitted]
•Binding kinetics of five bacterial expansins on polysaccharides was studied.•Binding efficiency (Bmax/Kd) was in the order of... Expansins are non-catalytic proteins which loosen plant cell wall structure. In this study, binding kinetics and synergistic action of five bacterial expansins... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 129 |
SubjectTerms | arabinoxylan Arabinoxylans Bacillus pumilus Bacteria Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding binding capacity Binding kinetics cell walls Cellulose Cellulose - metabolism Clavibacter michiganensis Cloning, Molecular Degradation endo-1,4-beta-glucanase enzymatic reactions Enzymes Expansin expansins Genetic Vectors - genetics Glycosyl hydrolases hemicellulose Hydrolysis Hypocrea jecorina Kinetics Lignocellulose Polysaccharides Polysaccharides - metabolism Protein Binding reducing sugars Rosaniline Dyes synergism Synergy Trichoderma reesei Walls X-Ray Diffraction Xylans - metabolism |
Title | Binding characteristics and synergistic effects of bacterial expansins on cellulosic and hemicellulosic substrates |
URI | https://dx.doi.org/10.1016/j.biortech.2014.11.042 https://www.ncbi.nlm.nih.gov/pubmed/25460993 https://www.proquest.com/docview/1634274903 https://www.proquest.com/docview/1660395197 https://www.proquest.com/docview/1669846807 https://www.proquest.com/docview/1836671504 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swED4E6dB2KNr05T4CFugqWxYflkbXaOC2aJY2QDZCFMlCQSAHlg20S357PlJSHkOcoYsA03eQxKPuvpPuPhJ9znwqvPJZUorKJgIBIzFTmyW29HmJFeKtC43CP4_V8kR8P5Wne7QYemFCWWXv-zufHr11PzLpZ3NyUdeTXwF85xIRSASaKBE6ynEM_Pnjy5syD8TH-CUBwkmQvtUlfDY2dahojR8lpmIc2DxFdl-Aug-AxkB09Jye9QiSzbuLfEF7rjmgp_M_655Fwx3Q48WwjRv-ucU4-JLWX-rYxsKqu0TNrGwsa_-FRsA4wPo6D7byzHRyOKf7C9_R1g2GGxZe-W_PV7ByVI7EAzdDLRxSJL5tX9HJ0dffi2XSb7uQVMB-mwQ5TKlmDi7U4_nkcAnGIi0DFKq4km4mjCxyAaBX8jQrJHfWqOkUiZ3NC6Eyz1_TfrNq3FtipfAFtFMjZCWc50VeecsB6rmVxhs7IjnMta56TvKwNca5HorPzvRgIx1shIRFw0YjmlzrXXSsHA9qFIMp9Z31pRE6HtT9NNhew3hhLsvGrbatBpgVSOuLlO-SUSkvQn_wThlMqcrTXTI5V2oG_C5G9KZbgNf3HjY1ANTn7_7jLt_TE_yS3eulD7S_WW_dRwCujTmMT9QhPZp_-7E8vgLwvCz1 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xOMAeVrzpLgtG4hqaxo8mx261qLx6ASRuVhzbKAilqGml3X-_Y8fpwoFy2KszoyQee-Yb2_MZ4CyxMbPCJlHOCh0xDBiR6ukk0rlNcxwhVhtXKHw7FqMHdvXIH1dg2NbCuGOVwfc3Pt1769DSDb3ZfS3L7p0D3ynHCMQcTRTrr8K6Y6fCwb4-uLwejRcOGUOk30xA-cgpvCkUfj5XpTvU6vcleuzcEXqy5KMY9REG9bHoYgu-BhBJBs13bsOKqXbgy-BpGog0zA5sDNub3PDJG9LBXZj-LH0lCyneczWTvNKk_uNqAX0DCUc9yMQS1cjhO81vdB91WWFzRdyq__xlgob2yp574F9TjT7Jc9_We_Bw8et-OIrCzQtRgfBvFmEak4u-QS9qcYpS9ApKY2aGaKiggps-UzxLGWK9nMZJxqnRSvR6mNvpNGMisXQf1qpJZQ6B5MxmqB0rxgtmLM3SwmqKuJ5qrqzSHeBtX8si0JK72zFeZHv-7Fm2NpLORpizSLRRB7oLvdeGmONTjaw1pXw3xCRGj091T1vbSzSe68u8MpN5LRHPMszss5gukxExzVyJ8FIZ7FKRxstkUipEHyE868BBMwAX_-7uNUC0T7_9x1-ewMbo_vZG3lyOr7_DJj7hzWrTEazNpnPzA_HXTB2H-fUXI2ovpg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binding+characteristics+and+synergistic+effects+of+bacterial+expansins+on+cellulosic+and+hemicellulosic+substrates&rft.jtitle=Bioresource+technology&rft.au=Bunterngsook%2C+Benjarat&rft.au=Eurwilaichitr%2C+Lily&rft.au=Thamchaipenet%2C+Arinthip&rft.au=Champreda%2C+Verawat&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=176&rft.spage=129&rft.epage=135&rft_id=info:doi/10.1016%2Fj.biortech.2014.11.042&rft.externalDocID=S0960852414016447 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |