Classification of Long Non-Coding RNAs s Between Early and Late Stage of Liver Cancers From Non-coding RNA Profiles Using Machine-Learning Approach

Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics and biology insights Vol. 18; p. 11779322241258586
Main Authors Anuntakarun, Songtham, Khamjerm, Jakkrit, Tangkijvanich, Pisit, Chuaypen, Natthaya
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2024
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably in Thailand. Although machine learning has been extensively used in analyzing RNA-sequencing data for advanced knowledge, the identification of potential lncRNA biomarkers for cancer, particularly focusing on lncRNAs as molecular biomarkers in liver cancer, remains comparatively limited. In this study, our objective was to identify candidate lncRNAs in liver cancer. We employed an expression data set of lncRNAs from patients with liver cancer, which comprised 40 699 lncRNAs sourced from The CancerLivER database. Various feature selection methods and machine-learning approaches were used to identify these candidate lncRNAs. The results showed that the random forest algorithm could predict lncRNAs using features extracted from the database, which achieved an area under the curve (AUC) of 0.840 for classifying lncRNAs between early (stage 1) and late stages (stages 2, 3, and 4) of liver cancer. Five of 23 significant lncRNAs (WAC-AS1, MAPKAPK5-AS1, ARRDC1-AS1, AC133528.2, and RP11-1094M14.11) were differentially expressed between early and late stage of liver cancer. Based on the Gene Expression Profiling Interactive Analysis (GEPIA) database, higher expression of WAC-AS1, MAPKAPK5-AS1, and ARRDC1-AS1 was associated with shorter overall survival. In conclusion, the classification model could predict the early and late stages of liver cancer using the signature expression of lncRNA genes. The identified lncRNAs might be used as early diagnostic and prognostic biomarkers for patients with liver cancer.
AbstractList Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably in Thailand. Although machine learning has been extensively used in analyzing RNA-sequencing data for advanced knowledge, the identification of potential lncRNA biomarkers for cancer, particularly focusing on lncRNAs as molecular biomarkers in liver cancer, remains comparatively limited. In this study, our objective was to identify candidate lncRNAs in liver cancer. We employed an expression data set of lncRNAs from patients with liver cancer, which comprised 40 699 lncRNAs sourced from The CancerLivER database. Various feature selection methods and machine-learning approaches were used to identify these candidate lncRNAs. The results showed that the random forest algorithm could predict lncRNAs using features extracted from the database, which achieved an area under the curve (AUC) of 0.840 for classifying lncRNAs between early (stage 1) and late stages (stages 2, 3, and 4) of liver cancer. Five of 23 significant lncRNAs (WAC-AS1, MAPKAPK5-AS1, ARRDC1-AS1, AC133528.2, and RP11-1094M14.11) were differentially expressed between early and late stage of liver cancer. Based on the Gene Expression Profiling Interactive Analysis (GEPIA) database, higher expression of WAC-AS1, MAPKAPK5-AS1, and ARRDC1-AS1 was associated with shorter overall survival. In conclusion, the classification model could predict the early and late stages of liver cancer using the signature expression of lncRNA genes. The identified lncRNAs might be used as early diagnostic and prognostic biomarkers for patients with liver cancer.Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably in Thailand. Although machine learning has been extensively used in analyzing RNA-sequencing data for advanced knowledge, the identification of potential lncRNA biomarkers for cancer, particularly focusing on lncRNAs as molecular biomarkers in liver cancer, remains comparatively limited. In this study, our objective was to identify candidate lncRNAs in liver cancer. We employed an expression data set of lncRNAs from patients with liver cancer, which comprised 40 699 lncRNAs sourced from The CancerLivER database. Various feature selection methods and machine-learning approaches were used to identify these candidate lncRNAs. The results showed that the random forest algorithm could predict lncRNAs using features extracted from the database, which achieved an area under the curve (AUC) of 0.840 for classifying lncRNAs between early (stage 1) and late stages (stages 2, 3, and 4) of liver cancer. Five of 23 significant lncRNAs (WAC-AS1, MAPKAPK5-AS1, ARRDC1-AS1, AC133528.2, and RP11-1094M14.11) were differentially expressed between early and late stage of liver cancer. Based on the Gene Expression Profiling Interactive Analysis (GEPIA) database, higher expression of WAC-AS1, MAPKAPK5-AS1, and ARRDC1-AS1 was associated with shorter overall survival. In conclusion, the classification model could predict the early and late stages of liver cancer using the signature expression of lncRNA genes. The identified lncRNAs might be used as early diagnostic and prognostic biomarkers for patients with liver cancer.
Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably in Thailand. Although machine learning has been extensively used in analyzing RNA-sequencing data for advanced knowledge, the identification of potential lncRNA biomarkers for cancer, particularly focusing on lncRNAs as molecular biomarkers in liver cancer, remains comparatively limited. In this study, our objective was to identify candidate lncRNAs in liver cancer. We employed an expression data set of lncRNAs from patients with liver cancer, which comprised 40 699 lncRNAs sourced from The CancerLivER database. Various feature selection methods and machine-learning approaches were used to identify these candidate lncRNAs. The results showed that the random forest algorithm could predict lncRNAs using features extracted from the database, which achieved an area under the curve (AUC) of 0.840 for classifying lncRNAs between early (stage 1) and late stages (stages 2, 3, and 4) of liver cancer. Five of 23 significant lncRNAs (WAC-AS1, MAPKAPK5-AS1, ARRDC1-AS1, AC133528.2, and RP11-1094M14.11) were differentially expressed between early and late stage of liver cancer. Based on the Gene Expression Profiling Interactive Analysis (GEPIA) database, higher expression of WAC-AS1, MAPKAPK5-AS1, and ARRDC1-AS1 was associated with shorter overall survival. In conclusion, the classification model could predict the early and late stages of liver cancer using the signature expression of lncRNA genes. The identified lncRNAs might be used as early diagnostic and prognostic biomarkers for patients with liver cancer.
Author Anuntakarun, Songtham
Chuaypen, Natthaya
Tangkijvanich, Pisit
Khamjerm, Jakkrit
AuthorAffiliation 2 Biomedical Engineering Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
1 Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
AuthorAffiliation_xml – name: 2 Biomedical Engineering Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
– name: 1 Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
Author_xml – sequence: 1
  givenname: Songtham
  surname: Anuntakarun
  fullname: Anuntakarun, Songtham
– sequence: 2
  givenname: Jakkrit
  surname: Khamjerm
  fullname: Khamjerm, Jakkrit
– sequence: 3
  givenname: Pisit
  surname: Tangkijvanich
  fullname: Tangkijvanich, Pisit
– sequence: 4
  givenname: Natthaya
  surname: Chuaypen
  fullname: Chuaypen, Natthaya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38846329$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1uEzEUhUeoiP7AA7BBltiwmTL-t1coRC1UCgUBXVs3Hk_qaGIHe1LU5-CF8SRtaYtgY1vH53w6su9htRdicFX1EjfHGEv5dlw0JYQwTLjiSjypDkatHsW9e-f96jDnZdMIrKR4Vu1TpZigRB9Uv6Y95Ow7b2HwMaDYoVkMC3QeQz2NrS_Hr-eTjDJ674afzgV0Aqm_RhBaNIPBoW8DLNw25q9cQlMI1qWMTlNcbSH2DoK-pNj53mV0kUfpE9hLH1w9c5DCKEzW6xSL-Lx62kGf3Yub_ai6OD35Pv1Yzz5_OJtOZrXllA41U0Jh0lIlO0LmXBHQDWghBOV0TiW1lnNgvBWEak5keYZy5dpGgLaaak2PqrMdt42wNOvkV5CuTQRvtkJMCwNp8LZ3huOWyg4IkY1ijDBFJMyZwphr7BiWhfVux1pv5ivXWheGBP0D6MOb4C_NIl4ZXBicclUIb24IKf7YuDyYlc_W9T0EFzfZ0EZwLTXnTbG-fmRdxk0K5a0MxUxLUfqx4np1v9Jdl9vPLwa5M9gUc06uM9YP2zEoDX1vcGPGCTJ_jVlJ4kfJW_j_Mse7TC4D86fwvwO_Acso3MU
CitedBy_id crossref_primary_10_61189_568091unpkqk
Cites_doi 10.1038/s41580-021-00407-0
10.3390/cancers14164056
10.1016/j.canlet.2020.11.048
10.1093/nar/gkx247
10.1016/j.tranon.2023.101639
10.1038/s41598-021-92692-0
10.3389/fgene.2020.613162
10.18632/oncotarget.20153
10.1016/j.ncrna.2023.10.010
10.1186/s12860-022-00420-x
10.3389/fcell.2021.675555
10.1186/s12967-018-1732-z
10.1080/21655979.2021.1882164
10.3390/genes10060414
10.3390/ht7040033
10.1007/s10552-020-01386-x
10.1200/JCO.2018.36.15_suppl.2557
10.18632/oncotarget.7828
10.1613/jair.953
10.24976/Discov.Med.202335179.96
10.1038/nm.3981
10.1016/j.bbrc.2020.11.051
10.1016/j.bbrc.2015.05.124
10.1200/CCI.19.00117
10.3389/fimmu.2022.859323
10.1016/j.trsl.2015.10.002
10.3389/fgene.2022.824451
10.1016/j.jhep.2017.04.009
10.2147/CMAR.S286205
10.1186/s12943-020-01188-4
10.1155/2022/2466006
10.1158/2159-8290.CD-12-0095
10.3389/fonc.2021.733595
10.3389/fcell.2022.779269
10.1111/jcmm.16167
10.1186/s12885-021-08704-9
10.4251/wjgo.v15.i11.1974
10.1038/s41598-022-21050-5
10.1186/s12935-021-02272-5
10.1158/0008-5472.CAN-13-3338
10.3390/s23063080
10.3349/ymj.2019.60.8.727
10.3934/mbe.2021443
10.1016/j.apsb.2022.12.005
10.1186/s13039-014-0081-8
10.1186/s12943-019-0942-1
10.1371/journal.pone.0095216
10.5114/ceh.2022.116820
10.3390/cancers11122007
10.3389/fcell.2023.1174183
10.1093/biomet/70.1.163
10.1186/s13046-021-01868-z
10.1016/j.heliyon.2023.e22087
10.1101/gad.17446611
10.1016/j.jhep.2022.01.023
10.3389/fgene.2021.632620
10.1093/database/bav019
10.1155/2020/4737969
10.1093/database/baaa012
10.1111/cas.13838
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024.
The Author(s) 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2024 2024 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024.
– notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2024 2024 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses
DBID AFRWT
AAYXX
CITATION
NPM
3V.
7QO
7XB
8AL
8FD
8FE
8FG
8FH
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AYAGU
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
LK8
M0N
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1177/11779322241258586
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
Australia & New Zealand Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Biological Science Collection
Computing Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Biotechnology Research Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Australia & New Zealand Database
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1177-9322
ExternalDocumentID oai_doaj_org_article_51d37fa227084424827ab4811591e417
PMC11155358
38846329
10_1177_11779322241258586
10.1177_11779322241258586
Genre Journal Article
GrantInformation_xml – fundername: NSRF via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation
  grantid: PMU-B, Grant no. B36G660004
– fundername: Ratchadapisek Somphot Fund for Postdoctoral Fellowship, Chulalongkorn University, Thailand, Bangkok
– fundername: ;
– fundername: ;
  grantid: PMU-B, Grant no. B36G660004
GroupedDBID ---
0R~
188
2UF
2WC
53G
54M
5VS
8FE
8FG
8FH
AASGM
ABDBF
ABQXT
ABUWG
ABVFX
ACARO
ACGFS
ACROE
ACUHS
ADBBV
ADOGD
ADRAZ
AEUYN
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AUTPY
AYAGU
AYAKG
AZQEC
BAWUL
BBNVY
BCNDV
BDDNI
BENPR
BGLVJ
BHPHI
BPHCQ
BSEHC
C1A
CCPQU
CEFSP
CNMHZ
DC.
DIK
DWQXO
E3Z
EBD
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IGS
IHR
IPNFZ
ITC
J8X
K.F
K6V
K7-
KQ8
LK8
M48
M7P
MK~
ML0
M~E
O5R
O5S
O9-
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
RIG
ROL
RPM
SAUOL
SCDPB
SCNPE
SFC
TR2
TUS
UZ5
AAYXX
ACHEB
CITATION
NPM
PQGLB
3V.
7QO
7XB
8AL
8FD
8FK
FR3
JQ2
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c533t-486812d387f22b582a90a9666353b373cc55a45d6239527322663ed06a9c93993
IEDL.DBID BENPR
ISSN 1177-9322
IngestDate Wed Aug 27 01:23:53 EDT 2025
Thu Aug 21 18:33:39 EDT 2025
Fri Jul 11 09:34:54 EDT 2025
Fri Jul 25 12:09:16 EDT 2025
Mon Jul 21 06:01:52 EDT 2025
Tue Jul 01 04:22:14 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Tue Jun 17 22:31:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords lncRNAs
liver cancer
machine learning
data mining
Language English
License This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
The Author(s) 2024.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-486812d387f22b582a90a9666353b373cc55a45d6239527322663ed06a9c93993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/3149764824?pq-origsite=%requestingapplication%
PMID 38846329
PQID 3149764824
PQPubID 1036453
ParticipantIDs doaj_primary_oai_doaj_org_article_51d37fa227084424827ab4811591e417
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11155358
proquest_miscellaneous_3065979550
proquest_journals_3149764824
pubmed_primary_38846329
crossref_citationtrail_10_1177_11779322241258586
crossref_primary_10_1177_11779322241258586
sage_journals_10_1177_11779322241258586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: United States
– name: London
– name: Sage UK: London, England
PublicationTitle Bioinformatics and biology insights
PublicationTitleAlternate Bioinform Biol Insights
PublicationYear 2024
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References El-Shendidi, Ghazala, Hassouna 2022; 8
Hammad, Elshaer, Tang 2021; 18
Kent 1983; 70
Yu, Chen, Quan, Li, Li, Gao 2021; 25
Zheng, Zhou, Qiu 2021; 9
Cerami, Gao, Dogrusoz 2012; 2
Jiang, Ni, Cui, Wang, Zhuo 2019; 9
Chawla, Bowyer, Hall, Kegelmeyer 2002; 16
Zhao, Chen, Bai 2019; 60
Tang, Li, Kang, Gao, Li, Zhang 2017; 45
Gupta, Kleinjans, Caiment 2021; 21
Wang, Sun, Liu 2021; 40
Tao, Yuan, Wang 2023; 15
Wang, Zhang, Jian 2019; 18
Ji, Hui, Wang 2019; 110
Wang, Su, Li 2022; 12
Chen, Chen, Li 2017; 8
Wan, Dingerdissen, Fan 2015; 2015
Yu, Zheng, Mao 2015; 463
Liu, Zhou, Yeh 2014; 7
Källberg, Vidman, Rydén 2021; 12
Pudova, Krasnov, Kobelyatskaya 2020; 11
Li, Lin, Cai 2023; 31
Li, Yuan, Yan, Liu, Liu 2023; 16
Yin, Huang, Yang 2023; 11
Dhawan, Aggarwal, Boyd 2018; 36
Huang, Zhou, Peng, He, Huang 2020; 19
Negishi, Wongpalee, Sarkar 2014; 9
Liu, Wu, Liu, Dai 2021; 13
Xia, Zhang, Xia 2021; 11
Chen, Dong, Liu 2017; 9
Zhang, Yang, Wang 2022; 2022
Mallela, Rajtmajerová, Trailin, Liška, Hemminki, Ambrozkiewicz 2024; 9
Nandwani, Rathore, Datta 2021; 501
Liu, Xing, Zhang, Zhang 2019; 10
Domany 2014; 74
Quan, Liu, Yao 2023; 13
Singal, Zhang, Narasimman 2022; 77
Kaur, Bhalla, Kaur, Raghava 2020; 2020
Wang, Yang, Sun 2022; 10
Arjmand, Hamidpour, Tayanloo-Beik 2022; 13
Cabili, Trapnell, Goff 2011; 25
Peng, Ouyang, Wang, Fan 2022; 23
Klingenberg, Matsuda, Diederichs, Patel 2017; 67
Huarte 2015; 21
Kamel, Matboli, Sallam, Montasser, Saad, El-Tawdi 2016; 168
Yu, Wang, Yu, Zhang 2020; 2020
Zhou, He, Wang, Gu 2023; 9
Zou, Zang, Zhang, Lu, Jin, Wu 2021; 534
Gupta, Chiang, Sahoo 2019; 11
Shi, Shen, Yu 2021; 12
Geng, Chen, Zhong, Ni, Bai, Liu 2022; 14
Tong, Sun, Fang 2022; 13
Greener, Kandathil, Moffat, Jones 2022; 23
Zhang, Li, Yu 2023; 9
Liu, Li, Koirala 2016; 7
Jiang, Dong, Zhang 2023; 35
Khan, Zhang 2022; 9
Zhang, El-Serag, Thrift 2021; 32
Bostanci, Kocak, Unal, Guzel, Acici, Asuroglu 2023; 23
Han, Chen, Huang 2023; 13
Li, Peng, Xue 2018; 16
Gallo Cantafio, Grillone, Caracciolo 2018; 7
Maurya, Kushwaha, Chawade, Mani 2021; 11
Dingerdissen, Bastian, Vijay-Shanker 2020; 4
Sun, Ni 2021; 21
bibr65-11779322241258586
bibr52-11779322241258586
bibr1-11779322241258586
bibr45-11779322241258586
bibr17-11779322241258586
bibr12-11779322241258586
bibr37-11779322241258586
bibr20-11779322241258586
bibr66-11779322241258586
bibr29-11779322241258586
bibr46-11779322241258586
bibr16-11779322241258586
bibr53-11779322241258586
bibr6-11779322241258586
bibr33-11779322241258586
Chen X (bibr39-11779322241258586) 2017; 9
bibr60-11779322241258586
bibr40-11779322241258586
bibr13-11779322241258586
bibr26-11779322241258586
bibr36-11779322241258586
Quan B (bibr56-11779322241258586) 2023; 13
bibr64-11779322241258586
bibr44-11779322241258586
Jiang MC (bibr7-11779322241258586) 2019; 9
bibr5-11779322241258586
bibr24-11779322241258586
bibr15-11779322241258586
bibr25-11779322241258586
Khan A (bibr4-11779322241258586) 2022; 9
bibr42-11779322241258586
bibr68-11779322241258586
bibr55-11779322241258586
bibr35-11779322241258586
bibr62-11779322241258586
bibr27-11779322241258586
bibr14-11779322241258586
bibr22-11779322241258586
bibr47-11779322241258586
bibr9-11779322241258586
bibr63-11779322241258586
bibr19-11779322241258586
bibr3-11779322241258586
bibr43-11779322241258586
bibr10-11779322241258586
bibr30-11779322241258586
bibr23-11779322241258586
bibr50-11779322241258586
bibr49-11779322241258586
bibr59-11779322241258586
bibr8-11779322241258586
bibr41-11779322241258586
bibr51-11779322241258586
bibr61-11779322241258586
bibr67-11779322241258586
Zhang R (bibr57-11779322241258586) 2023; 9
bibr2-11779322241258586
bibr21-11779322241258586
bibr31-11779322241258586
bibr38-11779322241258586
bibr28-11779322241258586
bibr11-11779322241258586
bibr18-11779322241258586
Chen X-w (bibr34-11779322241258586)
Jungjit S (bibr32-11779322241258586)
bibr48-11779322241258586
bibr58-11779322241258586
Li Z (bibr54-11779322241258586) 2023; 16
References_xml – volume: 25
  start-page: 1024
  year: 2021
  end-page: 1034
  article-title: CD63 negatively regulates hepatocellular carcinoma development through suppression of inflammatory cytokine-induced STAT3 activation
  publication-title: J Cell Mol Med
– volume: 2
  start-page: 401
  year: 2012
  end-page: 404
  article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data
  publication-title: Cancer Discov
– volume: 35
  start-page: 995
  year: 2023
  end-page: 1014
  article-title: LncRNA SLC1A5-AS/MZF1/ASCT2 axis contributes to malignant progression of hepatocellular carcinoma
  publication-title: Discov Med
– volume: 4
  start-page: 210
  year: 2020
  end-page: 220
  article-title: OncoMX: a knowledgebase for exploring cancer biomarkers in the context of related cancer and healthy data
  publication-title: JCO Clin Cancer Inform
– volume: 21
  start-page: 558
  year: 2021
  article-title: Long non-coding RNA HEIH: a novel tumor activator in multiple cancers
  publication-title: Cancer Cell Int
– volume: 70
  start-page: 10
  year: 1983
  article-title: Information gain and a general measure of correlation
  publication-title: Biometrika
– volume: 77
  start-page: 128
  year: 2022
  end-page: 139
  article-title: HCC surveillance improves early detection, curative treatment receipt, and survival in patients with cirrhosis: a meta-analysis
  publication-title: J Hepatol
– volume: 501
  start-page: 162
  year: 2021
  end-page: 171
  article-title: LncRNAs in cancer: regulatory and therapeutic implications
  publication-title: Cancer Lett
– volume: 463
  start-page: 679
  year: 2015
  end-page: 685
  article-title: Long non-coding RNA APTR promotes the activation of hepatic stellate cells and the progression of liver fibrosis
  publication-title: Biochem Biophys Res Commun
– volume: 9
  start-page: 8
  year: 2022
  article-title: Function of the long noncoding RNAs in hepatocellular carcinoma: classification, molecular mechanisms, and significant therapeutic potentials
  publication-title: Bioengineering (Basel)
– volume: 10
  start-page: 779269
  year: 2022
  article-title: The pyroptosis-related long noncoding RNA signature predicts prognosis and indicates immunotherapeutic efficiency in hepatocellular carcinoma
  publication-title: Front Cell Dev Biol
– volume: 12
  start-page: 16693
  year: 2022
  article-title: Identidication of novel biomarkers in non-small-cell lung cancer using machine learning
  publication-title: Sci Rep
– volume: 9
  start-page: 1354
  year: 2019
  end-page: 1366
  article-title: Emerging roles of lncRNA in cancer and therapeutic opportunities
  publication-title: Am J Cancer Res
– volume: 11
  start-page: 14304
  year: 2021
  article-title: Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer
  publication-title: Sci Rep
– volume: 23
  start-page: 6
  year: 2023
  article-title: Machine learning analysis of RNA-seq Data for diagnostic and prognostic prediction of colon cancer
  publication-title: Sensors (Basel)
– volume: 9
  start-page: 90
  year: 2017
  end-page: 102
  article-title: Long noncoding RNA MHENCR promotes melanoma progression via regulating miR-425/489-mediated PI3K-Akt pathway
  publication-title: Am J Transl Res
– volume: 2020
  year: 2020
  article-title: CancerLivER: a database of liver cancer gene expression resources and biomarkers
  publication-title: Database (Oxford)
– volume: 23
  start-page: 40
  year: 2022
  end-page: 55
  article-title: A guide to machine learning for biologists
  publication-title: Nat Rev Mol Cell Biol
– volume: 8
  start-page: 139
  year: 2022
  end-page: 146
  article-title: Circulating HOTAIR potentially predicts hepatocellular carcinoma in cirrhotic liver and prefigures the tumor stage
  publication-title: Clin Exp Hepatol
– volume: 13
  start-page: 824451
  year: 2022
  article-title: Machine learning: a new prospect in multi-omics data analysis of cancer
  publication-title: Front Genet
– volume: 25
  start-page: 1915
  year: 2011
  end-page: 1927
  article-title: Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
  publication-title: Genes Dev
– volume: 31
  start-page: 101639
  year: 2023
  article-title: Breast cancer stem cell-derived extracellular vesicles transfer ARRDC1-AS1 to promote breast carcinogenesis via a miR-4731-5p/AKT1 axis-dependent mechanism
  publication-title: Transl Oncol
– volume: 12
  start-page: 632620
  year: 2021
  article-title: Comparison of methods for feature selection in clustering of high-dimensional RNA-sequencing data to identify cancer subtypes
  publication-title: Front Genet
– volume: 13
  start-page: 1371
  year: 2023
  end-page: 1382
  article-title: The tumor therapeutic potential of long non-coding RNA delivery and targeting
  publication-title: Acta Pharm Sin B
– volume: 534
  start-page: 511
  year: 2021
  end-page: 518
  article-title: Long noncoding RNA ARRDC1-AS1 is activated by STAT1 and exerts oncogenic properties by sponging miR-432-5p/PRMT5 axis in glioma
  publication-title: Biochem Biophys Res Commun
– volume: 67
  start-page: 603
  year: 2017
  end-page: 618
  article-title: Non-coding RNA in hepatocellular carcinoma: mechanisms, biomarkers and therapeutic targets
  publication-title: J Hepatol
– volume: 16
  start-page: 332
  year: 2023
  end-page: 343
  article-title: Long noncoding RNA LINC00665 is a diagnostic biomarker that enhances cell proliferation and migration in hepatocellular carcinoma
  publication-title: Int J Clin Exp Pathol
– volume: 9
  start-page: 24
  year: 2024
  end-page: 32
  article-title: MiRNA and lncRNA as potential tissue biomarkers in hepatocellular carcinoma
  publication-title: Noncoding RNA Res
– volume: 11
  start-page: 1174183
  year: 2023
  article-title: LncRNA model predicts liver cancer drug resistance and validate in vitro experiments
  publication-title: Front Cell Dev Biol
– volume: 13
  start-page: 5590
  year: 2023
  end-page: 5609
  article-title: LINC02362/hsa-miR-18a-5p/FDX1 axis suppresses proliferation and drives cuproptosis and oxaliplatin sensitivity of hepatocellular carcinoma
  publication-title: Am J Cancer Res
– volume: 16
  start-page: 372
  year: 2018
  article-title: Integrated analysis of dysregulated long non-coding RNAs/microRNAs/mRNAs in metastasis of lung adenocarcinoma
  publication-title: J Transl Med
– volume: 60
  start-page: 727
  year: 2019
  end-page: 734
  article-title: Long noncoding RNA MALAT1 regulates hepatocellular carcinoma growth under hypoxia via sponging microRNA-200a
  publication-title: Yonsei Med J
– volume: 10
  start-page: 6
  year: 2019
  article-title: A four-pseudogene classifier identified by machine learning serves as a novel prognostic marker for survival of osteosarcoma
  publication-title: Genes (Basel)
– volume: 13
  start-page: 859323
  year: 2022
  article-title: A machine learning model based on PET/CT radiomics and clinical characteristics predicts tumor immune profiles in non-small-cell lung cancer: a retrospective multicohort study
  publication-title: Front Immunol
– volume: 32
  start-page: 317
  year: 2021
  end-page: 325
  article-title: Predictors of five-year survival among patients with hepatocellular carcinoma in the United States: an analysis of SEER-Medicare
  publication-title: Cancer Causes Control
– volume: 7
  start-page: 33
  year: 2018
  article-title: From single level analysis to multi-omics integrative approaches: a powerful strategy towards the precision oncology
  publication-title: High Throughput
– volume: 74
  start-page: 4612
  year: 2014
  end-page: 4621
  article-title: Using high-throughput transcriptomic data for prognosis: a critical overview and perspectives
  publication-title: Cancer Res
– volume: 9
  start-page: 675555
  year: 2021
  article-title: A prognostic ferroptosis-related lncRNAs signature associated with immune landscape and radiotherapy response in glioma
  publication-title: Front Cell Dev Biol
– volume: 40
  start-page: 72
  year: 2021
  article-title: Long non-coding RNA MAPKAPK5-AS1/PLAGL2/HIF-1alpha signaling loop promotes hepatocellular carcinoma progression
  publication-title: J Exp Clin Cancer Res
– volume: 21
  start-page: 1253
  year: 2015
  end-page: 1261
  article-title: The emerging role of lncRNAs in cancer
  publication-title: Nat Med
– volume: 18
  start-page: 15
  year: 2019
  article-title: Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/beta-catenin signaling pathway
  publication-title: Mol Cancer
– volume: 13
  start-page: 547
  year: 2021
  end-page: 558
  article-title: Long non-coding RNA TRIM52-AS1 promotes growth and metastasis via miR-218-5p/ROBO1 in hepatocellular carcinoma
  publication-title: Cancer Manag Res
– volume: 12
  start-page: 627
  year: 2021
  end-page: 639
  article-title: Long non-coding RNA LINC00997 silencing inhibits the progression and metastasis of colorectal cancer by sponging miR-512-3p
  publication-title: Bioengineered
– volume: 9
  year: 2023
  article-title: LncRNA-HANR exacerbates malignant behaviors of cholangiocarcinoma cells through activating Notch pathway
  publication-title: Heliyon
– volume: 18
  start-page: 8997
  year: 2021
  end-page: 9015
  article-title: Identification of potential biomarkers with colorectal cancer based on bioinformatics analysis and machine learning
  publication-title: Math Biosci Eng
– volume: 110
  start-page: 72
  year: 2019
  end-page: 85
  article-title: Long noncoding RNA MAPKAPK5-AS1 promotes colorectal cancer proliferation by partly silencing p21 expression
  publication-title: Cancer Sci
– volume: 7
  start-page: 81
  year: 2014
  article-title: Recurrent genetic alterations in hepatitis C-associated hepatocellular carcinoma detected by genomic microarray: a genetic, clinical and pathological correlation study
  publication-title: Mol Cytogenet
– volume: 2022
  start-page: 2466006
  year: 2022
  article-title: The systematic analyses of RING finger gene signature for predicting the prognosis of patients with hepatocellular carcinoma
  publication-title: J Oncol
– volume: 16
  start-page: 6
  year: 2002
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J Artif Intell Res
– volume: 15
  start-page: 1974
  year: 2023
  end-page: 1987
  article-title: Long non-coding RNA CDKN2B-AS1 promotes hepatocellular carcinoma progression via E2F transcription factor 1/G protein subunit alpha Z axis
  publication-title: World J Gastrointest Oncol
– volume: 36
  start-page: 15
  year: 2018
  article-title: Phase 1 study of ANDES-1537: a novel antisense oligonucleotide against non-coding mitochondrial DNA in advanced solid tumors
  publication-title: J Clin Oncol
– volume: 9
  year: 2014
  article-title: A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins
  publication-title: PLoS ONE
– volume: 14
  start-page: 16
  year: 2022
  article-title: The m6A-related long noncoding RNA signature predicts prognosis and indicates tumor immune infiltration in ovarian cancer
  publication-title: Cancers (Basel)
– volume: 11
  start-page: 613162
  year: 2020
  article-title: Gene expression changes and associated pathways involved in the progression of prostate cancer advanced stages
  publication-title: Front Genet
– volume: 45
  year: 2017
  article-title: GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses
  publication-title: Nucleic Acids Res
– volume: 23
  start-page: 21
  year: 2022
  article-title: MAPKAPK5-AS1 drives the progression of hepatocellular carcinoma via regulating miR-429/ZEB1 axis
  publication-title: BMC Mol Cell Biol
– volume: 21
  start-page: 962
  year: 2021
  article-title: Identifying novel transcript biomarkers for hepatocellular carcinoma (HCC) using RNA-Seq datasets and machine learning
  publication-title: BMC Cancer
– volume: 2020
  start-page: 4737969
  year: 2020
  article-title: RNA-seq-based breast cancer subtypes classification using machine learning approaches
  publication-title: Comput Intell Neurosci
– volume: 9
  year: 2023
  article-title: Integrating bulk and single-cell RNA sequencing data to establish necroptosis-related lncRNA risk model and analyze the immune microenvironment in hepatocellular carcinoma
  publication-title: Heliyon
– volume: 168
  start-page: 134
  year: 2016
  end-page: 145
  article-title: Investigation of long noncoding RNAs expression profile as potential serum biomarkers in patients with hepatocellular carcinoma
  publication-title: Transl Res
– volume: 8
  start-page: 90390
  year: 2017
  end-page: 90401
  article-title: Combining des-gamma-carboxyprothrombin and alpha-fetoprotein for hepatocellular carcinoma diagnosing: an update meta-analysis and validation study
  publication-title: Oncotarget
– volume: 2015
  year: 2015
  article-title: BioXpress: an integrated RNA-seq-derived gene expression database for pan-cancer analysis
  publication-title: Database (Oxford)
– volume: 19
  start-page: 77
  year: 2020
  article-title: The role of long noncoding RNAs in hepatocellular carcinoma
  publication-title: Mol Cancer
– volume: 7
  start-page: 20584
  year: 2016
  end-page: 20596
  article-title: Long non-coding RNAs as prognostic markers in human breast cancer
  publication-title: Oncotarget
– volume: 11
  start-page: 733595
  year: 2021
  article-title: Identification of glycolysis-related lncRNAs and the novel lncRNA WAC-AS1 promotes glycolysis and tumor progression in hepatocellular carcinoma
  publication-title: Front Oncol
– volume: 11
  start-page: 12
  year: 2019
  article-title: Prediction of colon cancer stages and survival period with machine learning approach
  publication-title: Cancers (Basel)
– ident: bibr17-11779322241258586
  doi: 10.1038/s41580-021-00407-0
– ident: bibr63-11779322241258586
  doi: 10.3390/cancers14164056
– ident: bibr8-11779322241258586
  doi: 10.1016/j.canlet.2020.11.048
– ident: bibr36-11779322241258586
  doi: 10.1093/nar/gkx247
– ident: bibr48-11779322241258586
  doi: 10.1016/j.tranon.2023.101639
– volume: 9
  year: 2023
  ident: bibr57-11779322241258586
  publication-title: Heliyon
– ident: bibr20-11779322241258586
  doi: 10.1038/s41598-021-92692-0
– ident: bibr60-11779322241258586
  doi: 10.3389/fgene.2020.613162
– ident: bibr3-11779322241258586
  doi: 10.18632/oncotarget.20153
– ident: bibr59-11779322241258586
  doi: 10.1016/j.ncrna.2023.10.010
– ident: bibr45-11779322241258586
  doi: 10.1186/s12860-022-00420-x
– ident: bibr64-11779322241258586
  doi: 10.3389/fcell.2021.675555
– ident: bibr42-11779322241258586
  doi: 10.1186/s12967-018-1732-z
– ident: bibr62-11779322241258586
  doi: 10.1080/21655979.2021.1882164
– ident: bibr49-11779322241258586
  doi: 10.3390/genes10060414
– ident: bibr52-11779322241258586
  doi: 10.3390/ht7040033
– volume: 9
  start-page: 8
  year: 2022
  ident: bibr4-11779322241258586
  publication-title: Bioengineering (Basel)
– ident: bibr1-11779322241258586
  doi: 10.1007/s10552-020-01386-x
– ident: bibr16-11779322241258586
  doi: 10.1200/JCO.2018.36.15_suppl.2557
– ident: bibr67-11779322241258586
  doi: 10.18632/oncotarget.7828
– ident: bibr31-11779322241258586
  doi: 10.1613/jair.953
– ident: bibr55-11779322241258586
  doi: 10.24976/Discov.Med.202335179.96
– ident: bibr6-11779322241258586
  doi: 10.1038/nm.3981
– volume-title: Paper presented at: Sixth International Conference on Machine Learning and Applications (ICMLA 2007)
  ident: bibr34-11779322241258586
– ident: bibr68-11779322241258586
  doi: 10.1016/j.bbrc.2020.11.051
– volume: 9
  start-page: 90
  year: 2017
  ident: bibr39-11779322241258586
  publication-title: Am J Transl Res
– ident: bibr47-11779322241258586
  doi: 10.1016/j.bbrc.2015.05.124
– ident: bibr29-11779322241258586
  doi: 10.1200/CCI.19.00117
– ident: bibr23-11779322241258586
  doi: 10.3389/fimmu.2022.859323
– ident: bibr13-11779322241258586
  doi: 10.1016/j.trsl.2015.10.002
– ident: bibr18-11779322241258586
  doi: 10.3389/fgene.2022.824451
– ident: bibr14-11779322241258586
  doi: 10.1016/j.jhep.2017.04.009
– volume: 13
  start-page: 5590
  year: 2023
  ident: bibr56-11779322241258586
  publication-title: Am J Cancer Res
– ident: bibr38-11779322241258586
  doi: 10.2147/CMAR.S286205
– ident: bibr9-11779322241258586
  doi: 10.1186/s12943-020-01188-4
– ident: bibr41-11779322241258586
  doi: 10.1155/2022/2466006
– ident: bibr27-11779322241258586
  doi: 10.1158/2159-8290.CD-12-0095
– ident: bibr44-11779322241258586
  doi: 10.3389/fonc.2021.733595
– ident: bibr40-11779322241258586
  doi: 10.3389/fcell.2022.779269
– ident: bibr43-11779322241258586
  doi: 10.1111/jcmm.16167
– volume: 9
  start-page: 1354
  year: 2019
  ident: bibr7-11779322241258586
  publication-title: Am J Cancer Res
– ident: bibr26-11779322241258586
  doi: 10.1186/s12885-021-08704-9
– ident: bibr10-11779322241258586
  doi: 10.4251/wjgo.v15.i11.1974
– ident: bibr21-11779322241258586
  doi: 10.1038/s41598-022-21050-5
– ident: bibr50-11779322241258586
  doi: 10.1186/s12935-021-02272-5
– ident: bibr51-11779322241258586
  doi: 10.1158/0008-5472.CAN-13-3338
– ident: bibr22-11779322241258586
  doi: 10.3390/s23063080
– ident: bibr11-11779322241258586
  doi: 10.3349/ymj.2019.60.8.727
– ident: bibr19-11779322241258586
  doi: 10.3934/mbe.2021443
– volume-title: Paper presented at: 2013 IEEE International Conference on Systems, Man, and Cybernetics
  ident: bibr32-11779322241258586
– ident: bibr15-11779322241258586
  doi: 10.1016/j.apsb.2022.12.005
– ident: bibr46-11779322241258586
  doi: 10.1186/s13039-014-0081-8
– ident: bibr37-11779322241258586
  doi: 10.1186/s12943-019-0942-1
– ident: bibr61-11779322241258586
  doi: 10.1371/journal.pone.0095216
– ident: bibr12-11779322241258586
  doi: 10.5114/ceh.2022.116820
– ident: bibr24-11779322241258586
  doi: 10.3390/cancers11122007
– ident: bibr25-11779322241258586
  doi: 10.3389/fcell.2023.1174183
– ident: bibr33-11779322241258586
  doi: 10.1093/biomet/70.1.163
– ident: bibr66-11779322241258586
  doi: 10.1186/s13046-021-01868-z
– ident: bibr35-11779322241258586
  doi: 10.1016/j.heliyon.2023.e22087
– ident: bibr5-11779322241258586
  doi: 10.1101/gad.17446611
– ident: bibr2-11779322241258586
  doi: 10.1016/j.jhep.2022.01.023
– ident: bibr58-11779322241258586
  doi: 10.3389/fgene.2021.632620
– volume: 16
  start-page: 332
  year: 2023
  ident: bibr54-11779322241258586
  publication-title: Int J Clin Exp Pathol
– ident: bibr28-11779322241258586
  doi: 10.1093/database/bav019
– ident: bibr53-11779322241258586
  doi: 10.1155/2020/4737969
– ident: bibr30-11779322241258586
  doi: 10.1093/database/baaa012
– ident: bibr65-11779322241258586
  doi: 10.1111/cas.13838
SSID ssj0061876
Score 2.2756014
Snippet Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11779322241258586
SubjectTerms Algorithms
Biological activity
Biomarkers
Classification
Feature extraction
Gene expression
Gene sequencing
Learning algorithms
Liver cancer
Machine learning
Non-coding RNA
Nucleotides
Original
Ribonucleic acid
RNA
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA6yIPgi3q2uEkEQhOA0lyZ5nB0cFtkdRFzYt9KmyShoK9PZB3-Hf9hzkkydYb28-NKHNgkh-dLzneTkO4S85LrTwUnPNNBfJrlTrDFBMQ_kQPoQlPO433G-qk4v5LtLdbmX6gtjwpI8cBq4N6rshA4N53pmpOSoWtm00gCRsaWXZbxHDjZv50ylf3BVwiLPZ5gor4QPi2cKEuy5UXhxes8KRbH-3zHM64GSe9Fe0QAt75DbmTnSeerxXXLD9_fIzZRL8vt98iOmt8TAnzjWdAj0bOjXdDX0bDGghaIfVvORjvQkhWbRqG1Mm76jZ0A4KdDOtY_VMFSDLhAOm5EuN8PX2IibGqHvU6LvkcaAA3oeAzI9y1qtazrPQuUPyMXy7cfFKcsZF5gD2rdl0qAcWSeMDpy3yvDGzhpwiICViFZo4ZxSjVQdcCaLym3A3Srhu1nVWGeR6jwkR_3Q-8eEljK4ttPWKdNKqGmMRVdQtuBym64KBZntZqB2WY4cs2J8qcusQH5t0gryeqryLWlx_K3wCU7rVBBltOMLAFedwVX_C1wFOd6Bos5re6wFOJW6grKyIC-mz7Aq8ail6f1wBWXwuFpbwH9BHiUMTT0RBjif4LYg5gBdB109_NJ__hSVv8EwKSWUKcgrBOKvPv1xGJ78j2F4Sm5x4HJp5-mYHG03V_4ZcLFt-zwuu59IUSZ_
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZpQqGX0nedpkWFQqGgZq2HJZ3KZukSSrKUkNDcjC3Lm0LXDvs45Hf0D3dGlt0uSUsvPtgjS0gznk-a8TeEvOO60rWTnmmAv0xyp1hhasU8gAPp61o5j-cdp7Ps-EJ-uVSXO6Tt_4WJM7j6iGlVMKLwsUbrxtPowxhkPMSLxRiBBP9slMk-bdaLvDvu7qtq4B2MT28WGNp2mBB5w_rf2-6RPa4zBZa8N56efTvvP95ZakI9OuyAYQ8xEHpnp1uuLDD-3wVTb2db_pEyFrzY9BF5GOEnHXf68pjs-OYJud8VpLx5Sn6GGpmYPRQWjLY1PWmbOZ21DZu06Obo2Wy8oit61OV30UCQTIumoieAWilg17kPzTDfg05Qp5YrOl22i_ASN7yEfu2qha9oyFqgpyGr07NI-Dqn48h2_oxcTD-fT45ZLNvAHGDHNZMGOc0qYXTNeakML-yogF0VQBtRCi2cU6qQqgLgZZH-DQBgJnw1ygrrLOKl52S3aRv_ktBU1q6stHXKlBJaGmNxPylL2LebKqsTMupXIHeR0xxLa_zI00hjfmvREvJhaHLdEXr8S_gIl3UQRC7ucKNdzvNo2rlKK6HrgnM9MlJy5FUtSmkAatvUy1Qn5KBXirxX71zAzlRnICsT8nZ4DKaN8Zqi8e0GZDDmrS0YUUJedDo0jEQYAI6C24SYLe3aGur2k-b7VaAPB--mlFAmIe9REX-P6a_TsP_fkq_IAw6orzujOiC76-XGvwbUti7fREv7BQ6QNbQ
  priority: 102
  providerName: SAGE Publications
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ta9RAEB5qRfCL-G60ygqCIEQv-5Ld_SByPTyK9A4RD_otJJvNVahJe7mC_R3-YWc2uejRs19CSHaXzc4M80xmeAbgDdelrpz0sUb4G0vuVJybSsUewYH0VaWcp_8ds3l6tJBfTtTJHmzaW_UH2O4M7aif1GJ19v7XxdUnNPiPfcrxA10sZQwkemujTHoLbuO9JjudySGpkCZo-X1ic-e0LdcUGPx3wc7r1ZP_lIAFrzS9D_d6OMnGnfwfwJ6vH8KdrsHk1SP4HXpeUjVQEABrKnbc1Es2b-p40pDbYt_m45a17LCr12KB8JjldcmOEYUyxKJLH6ZR_QabkI6sWjZdNT_DIm5YhH3tun-3LFQhsFmo0vRxT-C6ZOOevfwxLKafv0-O4r4NQ-wQC65jaYijrBRGV5wXyvDcjnKMkhCqiEJo4ZxSuVQlAilLdG4I6FLhy1GaW2cJ_zyB_bqp_TNgiaxcUWrrlCkkzjTGUnwoC4zDTZlWEYw2Eshcz1FOrTLOsqSnJb8mtAjeDVPOO4KOmwYfkliHgcStHR40q2XWm2qmklLoKudcj4yUnHhS80IahM428ahWERxslCLb6GsmMNLUKY6VEbweXqOpUv4lr31ziWMoh60tGkUETzsdGnYiDAJBwW0EZku7tra6_ab-cRrowNFbKSWUieAtKeLfPf33GJ7f_AUv4C5H6Nb9aDqA_fXq0r9E6LUuXgWD-gPaLiMQ
  priority: 102
  providerName: Scholars Portal
Title Classification of Long Non-Coding RNAs s Between Early and Late Stage of Liver Cancers From Non-coding RNA Profiles Using Machine-Learning Approach
URI https://journals.sagepub.com/doi/full/10.1177/11779322241258586
https://www.ncbi.nlm.nih.gov/pubmed/38846329
https://www.proquest.com/docview/3149764824
https://www.proquest.com/docview/3065979550
https://pubmed.ncbi.nlm.nih.gov/PMC11155358
https://doaj.org/article/51d37fa227084424827ab4811591e417
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7WhsFeyn7PWxc0GAwGZrEsWfLTSELTMppQQsvyZmxZTgeb3cbpw_6O_cO7k5W0oVtf9GBLRrbudJ_uzt8BfOSqVJURNlQIf0PBjQxzXcnQIjgQtqqkseTvmM6SkwvxbSEX3uHW-rTKzZ7oNuqyMeQj_xIjlFeJ0Fx8vboOqWoURVd9CY096OEWrPHw1Rsdzc7mm704iVDZfSyTaJaoSSm2INCua0k_UN-xRo60_19I837C5J2sL2eIJk_hwCNINuyW_Bk8svVzeNzVlPz9Av64MpeUAOS-OWsqdtrUSzZr6nDckKVi89mwZS0bdSlazHEcs7wu2SkCT4bwc2ndMErZYGMSi1XLJqvml3uI2T6EnXUFv1vmEg_Y1CVm2tBzti7Z0BOWv4SLydH5-CT0lRdCg_BvHQpNtGRlrFXFeSE1z9NBjgcjRCdxEavYGClzIUvETikxuCGGS2JbDpI8NSlBnlewXze1fQMsEpUpSpUaqQuBI7VO6UgoCjx66zKpAhhsViAznpacqmP8zCLPRH5v0QL4vB1y1XFyPNR5RMu67Uh02u5Cs1pmXjszGZWxqnLO1UALwYkaNS-ERrScRlZEKoDDjVBkXsfb7FYiA_iwvY3aSSGXvLbNDfahsLVKUQ8CeN3J0HYmsUbsF_M0AL0jXTtT3b1T_7h0DOBooKSMpQ7gEwni7Zz--xnePvwG7-AJR7TW-ZYOYX-9urHvEW2tiz7s6clxH3rDyfz7ed8rWN_5LrA9XkTYToX-CzFWJu0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Nb9MwGH41NiG48A0LDDASCAkpo3HsxD5w6AqlY22F0CqNU0gcp0NAgppWaPwNjvwVfhyvHadbGew2iR56aOzIcd-Px_aT5wV4TOM8LhTTfozw12dUcT8VBfc1ggOmi4IrbfY7RuNoMGFvDvjBGvxs34UxtMo2JtpAnVfK7JE_DxHKxxETlDkG5Z4--obrs_rF7kv8M59Q2n-13xv4roSArxDHzH0mjL5WHoq4oDTjgqaykyLCxzQbZmEcKsV5yniOIEAaKTIEI1Go806USiVN7sb7XoANNGqJTrTRfd99PWkDfRRgJHEHpUbDyXxJc3DBEDQIbt7OPpHqbEWAv8HY02zME5Qym-X6V-FXOz8NueXT9mKebavvf0hH_qcTeA2uOHRNuo07XIc1Xd6Ai029zaOb8MOWADXkKGuPpCrIsCqnZFyVfq8yWZy8G3drUpOdhr5GrP4zScucDBGUE4TmU227GToL6RmXmdWkP6u-2Juo5U3I26YYek0sKYOMLGlV-07Pdkq6Tsz9FkzOZUZuw3pZlXoTSMAKleWxVFxkDHsKIc1ymWUCP3lUeNBpDShRTrLdVA75nAROpf2UzXnwbNnla6NXclbjHWOVy4ZGatz-UM2miYtcCQ_yMC5SSuOOYIwa2dg0YwJXEjLQLIg92GrtLXHxr06Ojc2DR8vLGLnMcVRa6mqBbcyRfiwxRnhwp3GB5UhCgbg4pNIDseIcK0NdvVJ-PLTq6Ji8OQ-58OCp8aPjMf1zGu6e_QQP4dJgfzRMhrvjvXtwmSKqbfbgtmB9Plvo-4hK59kDFx0IfDhvf_oNgl-Mwg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED5BJxAviN8EBhgJCQkprHHs2HnsCtWArpqmTewtShy7IEEyNd0Dfwf_MHeOG6g2EC99aO4sy77LffZdvgN4xVWtnBE2Vgh_Y8GNjEvtZGwRHAjrnDSW7jsOF9nBqfh4Js_ChRt9CxNWsHtLZVU4I_-yJu8-r91eyDHu0U9OKQKB4VlLnV2HHSEwNo5gZzI7_nyyeRdnifbt5UghJo2Q17xykK3I5An8r0Kdl4sn_6gA80FpdgduBzTJJv3234VrtrkHN_r-kj_uw0_f8pKKgfz6s9axedss2aJt4mlLUYsdLyYd69h-X67FPN8xK5uazRGEMoSiS-vVqHyDTclEVh2brdrvfhAzDMKO-ubfHfNFCOzQF2naOPC3LtkkkJc_gNPZ-5PpQRy6MMQGoeA6FpooyupUK8d5JTUv83GJhyREKmmVqtQYKUsha8RRObG5IZ7LUluPszI3OcGfhzBq2sY-BpYIZ6pa5UbqSqCm1jkdD0WFx3BdZy6C8WYHChMoyqlTxrciCazklzYtgjeDynnPz_Ev4X3a1kGQqLX9H-1qWQRPLWRSp8qVnKuxFoITTWpZCY3IOU-sSFQEuxujKDbWWqR40FQZyooIXg6P0VMp_VI2tr1AGUphqxx9IoJHvQ0NM0k14sCU5xHoLevamur2k-brF88GjsFKylTqCF6TIf6e01-X4cl_S76Am0fvZsX8w-LTU7jFEc_1t0-7MFqvLuwzxGPr6nlwul-huSQt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Long+Non-Coding+RNAs+s+Between+Early+and+Late+Stage+of+Liver+Cancers+From+Non-coding+RNA+Profiles+Using+Machine-Learning+Approach&rft.jtitle=Bioinformatics+and+biology+insights&rft.au=Anuntakarun%2C+Songtham&rft.au=Khamjerm%2C+Jakkrit&rft.au=Tangkijvanich%2C+Pisit&rft.au=Chuaypen%2C+Natthaya&rft.date=2024-01-01&rft.pub=Sage+Publications+Ltd&rft.eissn=1177-9322&rft.volume=18&rft_id=info:doi/10.1177%2F11779322241258586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1177-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1177-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1177-9322&client=summon