Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure
Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules...
Saved in:
Published in | Molecules (Basel, Switzerland) Vol. 28; no. 7; p. 2960 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.03.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth. |
---|---|
AbstractList | Using molecular dynamics, the evolution of a metastable solution for “methane + water” was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of “blobs” and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0–1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule’s tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth. Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth. |
Audience | Academic |
Author | Belosludov, Vladimir R Chen, Li-Jen Kawazoe, Yoshiyuki Belosludov, Rodion V Gets, Kirill V Bozhko, Yulia Y Zhdanov, Ravil K |
AuthorAffiliation | 1 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan 2 Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia 4 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan 5 New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan 7 School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand 6 Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankurathur 603203, India 3 Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia |
AuthorAffiliation_xml | – name: 3 Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia – name: 1 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan – name: 6 Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankurathur 603203, India – name: 2 Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia – name: 5 New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan – name: 7 School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand – name: 4 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan |
Author_xml | – sequence: 1 givenname: Rodion V surname: Belosludov fullname: Belosludov, Rodion V organization: Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan – sequence: 2 givenname: Kirill V orcidid: 0000-0003-2452-5170 surname: Gets fullname: Gets, Kirill V organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia – sequence: 3 givenname: Ravil K orcidid: 0000-0002-0464-9435 surname: Zhdanov fullname: Zhdanov, Ravil K organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia – sequence: 4 givenname: Yulia Y surname: Bozhko fullname: Bozhko, Yulia Y organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia – sequence: 5 givenname: Vladimir R surname: Belosludov fullname: Belosludov, Vladimir R organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia – sequence: 6 givenname: Li-Jen surname: Chen fullname: Chen, Li-Jen organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan – sequence: 7 givenname: Yoshiyuki surname: Kawazoe fullname: Kawazoe, Yoshiyuki organization: School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37049727$$D View this record in MEDLINE/PubMed |
BookMark | eNplUstuEzEUHaEi-oAPYIMssWGT4uc4XqEqUKiUqkgBsbQ89p3EYWKntocqf49DStWCvLB17rnnPnxOm6MQAzTNa4LPGVP4_SYOYMcBMp1iSVWLnzUnhFM8YZiro0fv4-Y05zXGlHAiXjTHTFZQUnnSxOuDhkno4y6YjbcZLcrodij2aDaYskqmwGTwPwHdJAfJh-U-9KOiCfmAFuMWUjZl3PMcuoayMgHQIg5j8TEgU9A83qGvCXIeE7xsnvdmyPDq_j5rvl9--jb7MpnffL6aXcwnVjBWJlRRYrkihBvctbjre9ZL4hi3CgRMqcSCgnK9dIYIgyVI6gjpDQXGueskO2uuDroumrXeJr8xaaej8foPENNSm1S8HUC3Fhx0jFJrFBdKmqnqCJWcGCtqcahaHw5a27HbgLMQSjLDE9GnkeBXehl_aYKxErXZqvDuXiHF2xFy0RufLQxDXVUcs67_h1sqWiEq9e0_1HUcU6i70lQq1crptMWVdX5gLU2dwIc-1sK2Hgf1C6tLel_xC8lbxSUVvCaQQ4JNMecE_UP7BOu9mfR_Zqo5bx7P_ZDx1z3sNyC_ylw |
CitedBy_id | crossref_primary_10_1051_e3sconf_202345905005 crossref_primary_10_1051_e3sconf_202452403017 crossref_primary_10_1051_e3sconf_202345908004 crossref_primary_10_1063_5_0204109 |
Cites_doi | 10.1021/jp064271t 10.1063/1.437241 10.1006/jcph.1995.1039 10.1021/ja806211r 10.1016/0019-1035(91)90078-8 10.1021/acs.iecr.0c04389 10.1007/s11814-016-0032-7 10.1080/002689797171788 10.1021/acs.jpcc.6b07995 10.1039/b807455k 10.1080/00268979909482943 10.1021/ja973029k 10.1021/je00014a035 10.1063/1.4996132 10.1021/acssuschemeng.7b03238 10.1021/jp3117215 10.1021/jp994261a 10.1016/j.coche.2012.12.002 10.1016/j.molliq.2021.118025 10.1039/c1cp21899a 10.3389/fchem.2020.00480 10.1021/jp5052479 10.1016/0021-9991(77)90098-5 10.1063/1.4920971 10.2320/matertrans.48.704 10.1103/PhysRevA.31.1695 10.1201/9781439822050 10.1080/08927029308022505 10.1016/S0196-8904(96)00285-3 10.1021/jp412692d 10.1021/jp972543+ 10.1021/acs.chemrev.5b00744 10.1039/c1cp20070d 10.1063/1.1931662 10.1021/jp206483q 10.1166/jnn.2017.13383 10.1039/c0cp00551g 10.1111/j.1749-6632.1994.tb38833.x 10.1073/pnas.1906502116 10.1051/jphyscol:1984702 10.1063/1.480133 10.1039/c1sc00021g 10.1039/b913898f 10.1201/9781420008494 10.1016/0009-2614(93)89024-C 10.1063/1.1352645 10.1016/j.cossms.2016.03.005 10.1039/a608381a 10.1038/ncomms7432 10.1038/s41598-020-64210-1 10.1103/PhysRevB.80.134306 10.1021/ie050464b 10.1016/0009-2509(95)00370-3 10.1063/1.465634 10.1021/acs.jpcc.0c02246 10.1103/PhysRevLett.79.1293 10.1039/D1NR00751C 10.1063/1.1288818 10.1103/PhysRevLett.81.4164 10.1103/PhysRevLett.46.597 10.1021/jp102584d 10.1021/jp5002012 10.1021/ja028537v 10.1063/1.5008478 10.1126/science.1174010 10.1021/ja00465a002 10.1021/jp107269q 10.1016/0378-3812(95)02903-6 10.1134/S0021364022030031 10.1080/00268978400101201 10.1063/1.466848 10.1021/jp308224v 10.1002/aic.690370902 10.1021/jz3012113 10.1016/j.fuel.2021.122607 10.1111/j.1749-6632.2000.tb06802.x 10.1021/acs.jpcc.5b05393 10.1063/1.3582897 10.1039/C5CP06419H 10.1021/acs.jpcb.8b11172 10.1016/j.ces.2014.07.047 10.1039/a806899b 10.1021/ja00486a020 10.1039/ft9908603785 10.1063/1.1485962 10.1007/s11630-019-1181-x 10.1021/acs.jpcc.7b05754 10.1021/jp9536209 10.1016/j.jcrysgro.2012.11.022 10.1016/j.apsusc.2019.143644 10.1021/ja1051445 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PIMPY PQEST PQQKQ PQUKI 7X8 5PM DOA |
DOI | 10.3390/molecules28072960 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database Publicly Available Content (ProQuest) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest One Academic ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1420-3049 |
ExternalDocumentID | oai_doaj_org_article_6cedeb322ca94597a89b12741ac50b6e A746947254 10_3390_molecules28072960 37049727 |
Genre | Journal Article |
GeographicLocations | Russia |
GeographicLocations_xml | – name: Russia |
GrantInformation_xml | – fundername: Russian Foundation for Basic Research grantid: 21-52-52001 – fundername: the Ministry of Science and Technology of Taiwan grantid: 110-2923-E-002-008-MY3 – fundername: Ministry of Science and Technology of Taiwan grantid: 110-2923-E-002-008-MY3 |
GroupedDBID | --- 0R~ 123 2WC 3V. 53G 5VS 7X7 88E 8FE 8FG 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH ABDBF ABJCF ABUWG ACGFO ACIWK ACPRK AEGXH AENEX AFKRA AFPKN AFRAH AFZYC AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI BPHCQ BVXVI CCPQU CS3 D1I DIK DU5 E3Z EBD EMOBN ESTFP ESX FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE HZ~ I09 IAO ITC KB. KQ8 LK8 M1P M7P MODMG M~E NPM O-U O9- OK1 P2P PDBOC PIMPY PQQKQ PROAC PSQYO RIG RPM SV3 TR2 TUS UKHRP ~8M AAYXX CITATION 7XB 8FK AZQEC DWQXO K9. PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c533t-2921c49114a0b60bff3f71d34c9e5e827052e9df7da15a07e72d11fa2e344db73 |
IEDL.DBID | RPM |
ISSN | 1420-3049 |
IngestDate | Tue Oct 22 15:14:22 EDT 2024 Tue Sep 17 21:33:03 EDT 2024 Thu Dec 05 22:22:36 EST 2024 Thu Oct 10 17:45:27 EDT 2024 Tue Nov 12 23:36:30 EST 2024 Fri Dec 06 01:56:57 EST 2024 Sat Nov 02 11:56:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | nucleation mechanism computer simulation gas hydrates amorphous hydrate intramolecular hydrogen bonds |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-2921c49114a0b60bff3f71d34c9e5e827052e9df7da15a07e72d11fa2e344db73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2452-5170 0000-0002-0464-9435 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095827/ |
PMID | 37049727 |
PQID | 2799678860 |
PQPubID | 2032355 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6cedeb322ca94597a89b12741ac50b6e pubmedcentral_primary_oai_pubmedcentral_nih_gov_10095827 proquest_miscellaneous_2800625655 proquest_journals_2799678860 gale_infotracacademiconefile_A746947254 crossref_primary_10_3390_molecules28072960 pubmed_primary_37049727 |
PublicationCentury | 2000 |
PublicationDate | 20230326 |
PublicationDateYYYYMMDD | 2023-03-26 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230326 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Molecules (Basel, Switzerland) |
PublicationTitleAlternate | Molecules |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Sosso (ref_6) 2016; 116 Khurana (ref_2) 2017; 5 Jacobson (ref_34) 2010; 132 Belosludov (ref_5) 2020; 10 Ripmeester (ref_54) 2016; 20 Koh (ref_26) 2000; 113 English (ref_91) 2009; 80 Wilson (ref_25) 1997; 91 Bagherzadeh (ref_48) 2015; 142 Knott (ref_49) 2011; 134 Abascal (ref_85) 2005; 122 Mancera (ref_15) 1997; 93 Geiger (ref_10) 1979; 70 Geiger (ref_4) 1984; 45 Lauricella (ref_70) 2017; 121 Mackie (ref_23) 2001; 114 Uchida (ref_71) 2020; 8 (ref_81) 1984; 52 Wu (ref_66) 2016; 18 Both (ref_75) 2021; 13 Guo (ref_43) 2007; 111 Casco (ref_76) 2015; 6 Rodger (ref_40) 2000; 912 Paulus (ref_74) 2009; 131 Ryckaert (ref_84) 1977; 23 Belosludov (ref_68) 2022; 115 Zhang (ref_51) 2019; 28 Firoozabadi (ref_60) 2014; 118 Makogon (ref_78) 1994; 39 Mi (ref_88) 2022; 311 Guo (ref_39) 2013; 117 Walsh (ref_56) 2011; 13 Long (ref_13) 1993; 11 Liang (ref_57) 2010; 114 Plimpton (ref_80) 1995; 117 Bosio (ref_3) 1981; 46 Hawtin (ref_33) 2008; 10 Yagasaki (ref_47) 2014; 118 Radhakrishnan (ref_31) 2002; 117 Guo (ref_44) 2009; 11 Owicki (ref_8) 1977; 99 ref_63 Kang (ref_87) 2017; 17 Liang (ref_58) 2011; 2 Uchida (ref_52) 2016; 33 Chau (ref_12) 1999; 96 Hoover (ref_82) 1985; 31 Uchida (ref_53) 2016; 120 Mancera (ref_18) 1998; 94 Hallbrucker (ref_42) 1991; 90 Meng (ref_22) 1996; 100 Choudhary (ref_61) 2020; 59 Moon (ref_32) 2003; 125 Vatamanu (ref_35) 2010; 12 Lauricella (ref_62) 2014; 118 Sloan (ref_30) 1991; 37 English (ref_7) 2015; 121 Conde (ref_92) 2017; 147 Skipper (ref_14) 1993; 207 Filipponi (ref_27) 1997; 79 Tung (ref_89) 2012; 116 Guo (ref_36) 2011; 13 Swaminathan (ref_9) 1978; 100 Yu (ref_77) 2020; 124 Matsumoto (ref_50) 2013; 373 Broadbent (ref_24) 1994; 100 Bowron (ref_28) 1998; 81 Walsh (ref_38) 2009; 326 Silverstein (ref_16) 1999; 111 Bolhuis (ref_21) 2019; 116 Jacobson (ref_37) 2010; 114 Hallbrucker (ref_41) 1990; 86 Baez (ref_45) 1994; 715 Wu (ref_65) 2015; 119 ref_83 Guillot (ref_11) 1993; 99 Gets (ref_67) 2020; 499 Lazaridis (ref_19) 2000; 104 Gao (ref_29) 2005; 44 Sarupria (ref_59) 2012; 3 Hirai (ref_79) 1997; 38 Martin (ref_86) 1998; 102 Silverstein (ref_17) 1998; 120 Lederhos (ref_20) 1996; 51 Rodger (ref_46) 1996; 116 Walsh (ref_55) 2011; 115 Das (ref_73) 2022; 348 ref_1 Barnes (ref_64) 2013; 2 DeFever (ref_90) 2017; 147 Belosludov (ref_72) 2007; 48 Parui (ref_69) 2019; 123 |
References_xml | – volume: 111 start-page: 2595 year: 2007 ident: ref_43 article-title: Effect of Methane Adsorption on the Lifetime of a Dodecahedral Water Cluster Immersed in Liquid Water: A Molecular Dynamics Study on the Hydrate Nucleation Mechanisms publication-title: J. Phys. Chem. C doi: 10.1021/jp064271t contributor: fullname: Guo – volume: 70 start-page: 263 year: 1979 ident: ref_10 article-title: Molecular dynamics study of the hydration of Lennard-Jones solutes publication-title: J. Chem. Phys. doi: 10.1063/1.437241 contributor: fullname: Geiger – volume: 117 start-page: 1 year: 1995 ident: ref_80 article-title: Fast parallel algorithms for short-range molecular dynamics publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 contributor: fullname: Plimpton – volume: 131 start-page: 585 year: 2009 ident: ref_74 article-title: The carbon dioxide−water interface at conditions of gas hydrate formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806211r contributor: fullname: Paulus – volume: 90 start-page: 176 year: 1991 ident: ref_42 article-title: Unexpectedly stable clathrate hydrates formed from microporous vapor-deposited amorphous solid water at low “external” guest pressures and their astrophysical implications publication-title: Icarus doi: 10.1016/0019-1035(91)90078-8 contributor: fullname: Hallbrucker – volume: 59 start-page: 20591 year: 2020 ident: ref_61 article-title: Macro and Molecular Level Insights on Gas Hydrate Growth in the Presence of Hofmeister Salts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c04389 contributor: fullname: Choudhary – volume: 33 start-page: 1749 year: 2016 ident: ref_52 article-title: Generation of micro-and nano-bubbles in water by dissociation of gas hydrates publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-016-0032-7 contributor: fullname: Uchida – volume: 91 start-page: 99 year: 1997 ident: ref_25 article-title: Hydrophobic hydration of methane publication-title: Mol. Phys. doi: 10.1080/002689797171788 contributor: fullname: Wilson – volume: 120 start-page: 26620 year: 2016 ident: ref_53 article-title: Gas nanobubbles as nucleation acceleration in the gas-hydrate memory effect publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b07995 contributor: fullname: Uchida – volume: 10 start-page: 4853 year: 2008 ident: ref_33 article-title: Gas hydrate nucleation and cage formation at a water/methane interface publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b807455k contributor: fullname: Hawtin – volume: 96 start-page: 109 year: 1999 ident: ref_12 article-title: Computer simulation of structural effect of pressure on the hydrophobic hydration of methane publication-title: Mol. Phys. doi: 10.1080/00268979909482943 contributor: fullname: Chau – volume: 120 start-page: 3166 year: 1998 ident: ref_17 article-title: A simple model of water and the hydrophobic effect publication-title: J. Am. Chem. Soc. doi: 10.1021/ja973029k contributor: fullname: Silverstein – volume: 39 start-page: 351 year: 1994 ident: ref_78 article-title: Phase equilibrium for methane hydrate from 190 to 262K publication-title: J. Chem. Eng. Data doi: 10.1021/je00014a035 contributor: fullname: Makogon – volume: 147 start-page: 204503 year: 2017 ident: ref_90 article-title: Nucleation mechanism of clathrate hydrates of water-soluble guest molecules publication-title: J. Chem. Phys. doi: 10.1063/1.4996132 contributor: fullname: DeFever – volume: 5 start-page: 11176 year: 2017 ident: ref_2 article-title: A Review of Clathrate Hydrate Nucleation publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b03238 contributor: fullname: Khurana – volume: 117 start-page: 6498 year: 2013 ident: ref_39 article-title: Solubility of Aqueous Methane under Metastable Conditions: Implications for Gas Hydrate Nucleation publication-title: J. Phys. Chem. B doi: 10.1021/jp3117215 contributor: fullname: Guo – volume: 104 start-page: 4964 year: 2000 ident: ref_19 article-title: Solvent reorganization energy and entropy in hydrophobic hydration publication-title: J. Phys. Chem. B doi: 10.1021/jp994261a contributor: fullname: Lazaridis – volume: 2 start-page: 184 year: 2013 ident: ref_64 article-title: Advances in molecular simulations of clathrate hydrates publication-title: Curr. Opin. Chem. Eng. doi: 10.1016/j.coche.2012.12.002 contributor: fullname: Barnes – volume: 348 start-page: 118025 year: 2022 ident: ref_73 article-title: A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation publication-title: J. Mol. Liquid. doi: 10.1016/j.molliq.2021.118025 contributor: fullname: Das – volume: 13 start-page: 19951 year: 2011 ident: ref_56 article-title: The Cages, Dynamics, and Structuring of Incipient Methane Clathrate Hydrates publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp21899a contributor: fullname: Walsh – volume: 8 start-page: 480 year: 2020 ident: ref_71 article-title: Contribution of ultra-fine bubbles to promoting effect on propane hydrate formation publication-title: Front. Chem. doi: 10.3389/fchem.2020.00480 contributor: fullname: Uchida – volume: 118 start-page: 22847 year: 2014 ident: ref_62 article-title: Methane clathrate hydrate nucleation mechanism by advanced molecular simulations publication-title: J. Phys. Chem. C doi: 10.1021/jp5052479 contributor: fullname: Lauricella – volume: 23 start-page: 327 year: 1977 ident: ref_84 article-title: Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(77)90098-5 contributor: fullname: Ryckaert – volume: 142 start-page: 214701 year: 2015 ident: ref_48 article-title: Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth publication-title: J. Chem. Phys. doi: 10.1063/1.4920971 contributor: fullname: Bagherzadeh – volume: 48 start-page: 704 year: 2007 ident: ref_72 article-title: Physical and chemical properties of gas hydrates: Theoretical aspects of energy storage application publication-title: Mater. Trans. doi: 10.2320/matertrans.48.704 contributor: fullname: Belosludov – volume: 31 start-page: 1695 year: 1985 ident: ref_82 article-title: Canonical dynamics: Equilibrium phase-space distributions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.31.1695 contributor: fullname: Hoover – ident: ref_83 doi: 10.1201/9781439822050 – volume: 11 start-page: 145 year: 1993 ident: ref_13 article-title: Quantized water cluster around apolar molecules publication-title: Mol. Simul. doi: 10.1080/08927029308022505 contributor: fullname: Long – volume: 38 start-page: S301 year: 1997 ident: ref_79 article-title: CO2 clathrate-hydrate formation and its mechanism by molecular dynamics simulation publication-title: Energy Convers. Manag. doi: 10.1016/S0196-8904(96)00285-3 contributor: fullname: Hirai – volume: 118 start-page: 1900 year: 2014 ident: ref_47 article-title: Effect of bubble formation on the dissociation of methane hydrate in water: A molecular dynamics study publication-title: J. Phys. Chem. B doi: 10.1021/jp412692d contributor: fullname: Yagasaki – volume: 102 start-page: 2569 year: 1998 ident: ref_86 article-title: Transferable Potentials for Phase Equilibria. 1. United-atom Description of n-Alkanes publication-title: J. Phys. Chem. B doi: 10.1021/jp972543+ contributor: fullname: Martin – volume: 116 start-page: 7078 year: 2016 ident: ref_6 article-title: Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00744 contributor: fullname: Sosso – volume: 13 start-page: 12048 year: 2011 ident: ref_36 article-title: Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c1cp20070d contributor: fullname: Guo – volume: 122 start-page: 234511 year: 2005 ident: ref_85 article-title: A potential model for the study of ices and amorphous water: TIP4P/Ice publication-title: J. Chem. Phys. doi: 10.1063/1.1931662 contributor: fullname: Abascal – volume: 115 start-page: 21241 year: 2011 ident: ref_55 article-title: Methane Hydrate Nucleation Rates from Molecular Dynamics Simulations: Effects of Aqueous Methane Concentration, Interfacial Curvature, and System Size publication-title: J. Phys. Chem. C doi: 10.1021/jp206483q contributor: fullname: Walsh – volume: 17 start-page: 4059 year: 2017 ident: ref_87 article-title: Evaluation of desalination by nanostructured hydrate formation and pellet production process publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2017.13383 contributor: fullname: Kang – volume: 12 start-page: 15065 year: 2010 ident: ref_35 article-title: Observation of two-step nucleation in methane hydrates publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp00551g contributor: fullname: Vatamanu – volume: 715 start-page: 177 year: 1994 ident: ref_45 article-title: Computer Simulation of the Crystal Growth and Dissolution of Natural Gas Hydrates publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.1994.tb38833.x contributor: fullname: Baez – volume: 116 start-page: 19305 year: 2019 ident: ref_21 article-title: Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1906502116 contributor: fullname: Bolhuis – volume: 45 start-page: C7-13 year: 1984 ident: ref_4 article-title: Structure and dynamics of the hydrogen bond network in water by computer simulations publication-title: J. Phys. Colloq. doi: 10.1051/jphyscol:1984702 contributor: fullname: Geiger – volume: 111 start-page: 8000 year: 1999 ident: ref_16 article-title: Molecular model of hydrophobic solvation publication-title: J. Chem. Phys. doi: 10.1063/1.480133 contributor: fullname: Silverstein – volume: 2 start-page: 1286 year: 2011 ident: ref_58 article-title: Exploring nucleation of H2S hydrates publication-title: Chem. Sci. doi: 10.1039/c1sc00021g contributor: fullname: Liang – volume: 11 start-page: 10427 year: 2009 ident: ref_44 article-title: Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b913898f contributor: fullname: Guo – ident: ref_1 doi: 10.1201/9781420008494 – volume: 207 start-page: 424 year: 1993 ident: ref_14 article-title: Computer simulation of methane-water solutions. Evidence for a temperature-dependent hydrophobic attraction publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(93)89024-C contributor: fullname: Skipper – volume: 114 start-page: 7527 year: 2001 ident: ref_23 article-title: The hydrophobic hydration of methane as a function of temperature from histogram reweighting Monte Carlo simulations publication-title: J. Chem. Phys. doi: 10.1063/1.1352645 contributor: fullname: Mackie – volume: 20 start-page: 344 year: 2016 ident: ref_54 article-title: Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect publication-title: Curr. Opin. Solid State Mater. Sci. doi: 10.1016/j.cossms.2016.03.005 contributor: fullname: Ripmeester – volume: 93 start-page: 2263 year: 1997 ident: ref_15 article-title: The aggregation of methane in aqueous solution publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/a608381a contributor: fullname: Mancera – volume: 6 start-page: 6432 year: 2015 ident: ref_76 article-title: Methane hydrate formation in confined nanospace can surpass nature publication-title: Nat. Commun. doi: 10.1038/ncomms7432 contributor: fullname: Casco – volume: 10 start-page: 7323 year: 2020 ident: ref_5 article-title: The nano-structural inhomogeneity of dynamic hydrogen bond network of TIP4P/2005 water publication-title: Sci. Rep. doi: 10.1038/s41598-020-64210-1 contributor: fullname: Belosludov – volume: 80 start-page: 134306 year: 2009 ident: ref_91 article-title: Mechanisms for thermal conduction in various polymorphs of methane hydrate publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.134306 contributor: fullname: English – volume: 44 start-page: 7373 year: 2005 ident: ref_29 article-title: NMR and Viscosity Investigation of Clathrate Hydrate Formation and Dissociation publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050464b contributor: fullname: Gao – volume: 51 start-page: 1221 year: 1996 ident: ref_20 article-title: Effective kinetic inhibitors for natural gas hydrates publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(95)00370-3 contributor: fullname: Lederhos – volume: 99 start-page: 8075 year: 1993 ident: ref_11 article-title: A computer simulation study of the temperature dependence of the hydrophobic hydration publication-title: J. Chem. Phys. doi: 10.1063/1.465634 contributor: fullname: Guillot – volume: 124 start-page: 11015 year: 2020 ident: ref_77 article-title: Does confinement enable methane hydrate growth at low pressures? Insights from molecular dynamics simulations publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c02246 contributor: fullname: Yu – volume: 79 start-page: 1293 year: 1997 ident: ref_27 article-title: Structural determination of hydrophobic hydration shell of Kr publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.79.1293 contributor: fullname: Filipponi – volume: 13 start-page: 7447 year: 2021 ident: ref_75 article-title: Gas hydrates in confined space of nanoporous materials: New frontier in gas storage technology publication-title: Nanoscale doi: 10.1039/D1NR00751C contributor: fullname: Both – ident: ref_63 – volume: 113 start-page: 6390 year: 2000 ident: ref_26 article-title: Water ordering around methane during hydrate formation publication-title: J. Chem. Phys. doi: 10.1063/1.1288818 contributor: fullname: Koh – volume: 81 start-page: 4164 year: 1998 ident: ref_28 article-title: Hydrophobic hydration and the formation of a clathrate hydrate publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.4164 contributor: fullname: Bowron – volume: 46 start-page: 597 year: 1981 ident: ref_3 article-title: Enhanced density fuctuations in supercooled H2O, D2O, and ethanol-water solutions: Evidence from small-angle x-ray scattering publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.597 contributor: fullname: Bosio – volume: 114 start-page: 9563 year: 2010 ident: ref_57 article-title: Crystal growth simulations of H2S hydrate publication-title: J. Phys. Chem. B doi: 10.1021/jp102584d contributor: fullname: Liang – volume: 118 start-page: 11310 year: 2014 ident: ref_60 article-title: Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations publication-title: J. Phys. Chem. C doi: 10.1021/jp5002012 contributor: fullname: Firoozabadi – volume: 125 start-page: 4706 year: 2003 ident: ref_32 article-title: Molecular Dynamics Study of Gas Hydrate Formation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja028537v contributor: fullname: Moon – volume: 147 start-page: 244506 year: 2017 ident: ref_92 article-title: High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique publication-title: J. Chem. Phys. doi: 10.1063/1.5008478 contributor: fullname: Conde – volume: 326 start-page: 1095 year: 2009 ident: ref_38 article-title: Microsecond simulations of spontaneous methane hydrate nucleation and growth publication-title: Science doi: 10.1126/science.1174010 contributor: fullname: Walsh – volume: 99 start-page: 7413 year: 1977 ident: ref_8 article-title: Monte Carlo calculation in isothermal-isobaric ensemble.2. Dilute aqueous solution of methane publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00465a002 contributor: fullname: Owicki – volume: 114 start-page: 13796 year: 2010 ident: ref_37 article-title: Nucleation pathways of clathrate hydrates: Effect of guest size and solubility publication-title: J. Phys. Chem. B doi: 10.1021/jp107269q contributor: fullname: Jacobson – volume: 116 start-page: 326 year: 1996 ident: ref_46 article-title: Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions publication-title: Fluid Ph. Equilib. doi: 10.1016/0378-3812(95)02903-6 contributor: fullname: Rodger – volume: 115 start-page: 124 year: 2022 ident: ref_68 article-title: Collective Effect of Transformation of a Hydrogen Bond Network at the Initial State of Growth of Methane Hydrate publication-title: JETP Lett. doi: 10.1134/S0021364022030031 contributor: fullname: Belosludov – volume: 52 start-page: 255 year: 1984 ident: ref_81 article-title: A molecular dynamics method for simulations in the canonical ensemble publication-title: Mol. Phys. doi: 10.1080/00268978400101201 – volume: 100 start-page: 7543 year: 1994 ident: ref_24 article-title: The interatomic structure of argon in water publication-title: J. Chem. Phys. doi: 10.1063/1.466848 contributor: fullname: Broadbent – volume: 116 start-page: 14115 year: 2012 ident: ref_89 article-title: Molecular dynamics study on the growth of structure I methane hydrate in aqueous solution of sodium chloride publication-title: J. Phys. Chem. B doi: 10.1021/jp308224v contributor: fullname: Tung – volume: 37 start-page: 1281 year: 1991 ident: ref_30 article-title: A molecular mechanism for gas hydrate nucleation from ice publication-title: AIChE J. doi: 10.1002/aic.690370902 contributor: fullname: Sloan – volume: 3 start-page: 2942 year: 2012 ident: ref_59 article-title: Homogeneous Nucleation of Methane Hydrate in Microsecond Molecular Dynamics Simulations publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3012113 contributor: fullname: Sarupria – volume: 311 start-page: 122607 year: 2022 ident: ref_88 article-title: Molecular insights into the effects of surface property and pore size of non-swelling clay on methane hydrate formation publication-title: Fuel doi: 10.1016/j.fuel.2021.122607 contributor: fullname: Mi – volume: 912 start-page: 474 year: 2000 ident: ref_40 article-title: Methane hydrate: Melting and memory publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2000.tb06802.x contributor: fullname: Rodger – volume: 119 start-page: 19883 year: 2015 ident: ref_65 article-title: Molecular dynamics study on the growth mechanism of methane plus tetrahydrofuran mixed hydrates publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b05393 contributor: fullname: Wu – volume: 134 start-page: 171102 year: 2011 ident: ref_49 article-title: Communication: Bubbles, crystals, and laser-induced nucleation publication-title: J. Chem. Phys. doi: 10.1063/1.3582897 contributor: fullname: Knott – volume: 18 start-page: 9935 year: 2016 ident: ref_66 article-title: Molecular dynamics study on the nucleation of methane+ tetrahydrofuran mixed guest hydrate publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06419H contributor: fullname: Wu – volume: 123 start-page: 811 year: 2019 ident: ref_69 article-title: Factors promoting the formation of clathrate-like ordering of water in biomolecular structure at ambient temperature and pressure publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.8b11172 contributor: fullname: Parui – volume: 121 start-page: 133 year: 2015 ident: ref_7 article-title: Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.07.047 contributor: fullname: English – volume: 94 start-page: 3549 year: 1998 ident: ref_18 article-title: Computer simulation of effect of salt on the hydrophobic effect publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/a806899b contributor: fullname: Mancera – volume: 100 start-page: 5705 year: 1978 ident: ref_9 article-title: Monte Carlo studies on the structure of dilute aqueous solution of methane publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00486a020 contributor: fullname: Swaminathan – volume: 86 start-page: 3785 year: 1990 ident: ref_41 article-title: Unexpectedly stable nitrogen, oxygen, carbon monoxide and argon clathrate hydrates from vapour-deposited amorphous solid water: An X-ray and two-step differential scanning calorimetry study publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/ft9908603785 contributor: fullname: Hallbrucker – volume: 117 start-page: 1786 year: 2002 ident: ref_31 article-title: A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates publication-title: J. Chem. Phys. doi: 10.1063/1.1485962 contributor: fullname: Radhakrishnan – volume: 28 start-page: 948 year: 2019 ident: ref_51 article-title: Effect of Nanobubble Evolution on Hydrate Process: A Review publication-title: J. Therm. Sci. doi: 10.1007/s11630-019-1181-x contributor: fullname: Zhang – volume: 121 start-page: 24223 year: 2017 ident: ref_70 article-title: Mechanisms and nucleation rate of methane hydrate by dynamical nonequilibrium molecular dynamics publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b05754 contributor: fullname: Lauricella – volume: 100 start-page: 11460 year: 1996 ident: ref_22 article-title: Molecular dynamics studies of the properties of water around simple organic solutes publication-title: J. Phys. Chem. doi: 10.1021/jp9536209 contributor: fullname: Meng – volume: 373 start-page: 73 year: 2013 ident: ref_50 article-title: Polymorph control of glycine by antisolvent crystallization using nitrogen minute-bubbles publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.11.022 contributor: fullname: Matsumoto – volume: 499 start-page: 143644 year: 2020 ident: ref_67 article-title: Transformation of hydrogen bond network during CO2 clathrate hydrate dissociation publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.143644 contributor: fullname: Gets – volume: 132 start-page: 11806 year: 2010 ident: ref_34 article-title: Amorphous Precursors in the Nucleation of Clathrate Hydrates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1051445 contributor: fullname: Jacobson |
SSID | ssj0021415 |
Score | 2.4597647 |
Snippet | Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol%... Using molecular dynamics, the evolution of a metastable solution for “methane + water” was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol%... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 2960 |
SubjectTerms | amorphous hydrate Analysis Cavities Clathrate compounds Clathrates Computer simulation Energy storage gas hydrates Health aspects Holes Hydration Hydrogen Hydrogen bonding Hydrogen bonds Hypotheses intramolecular hydrogen bonds Low pressure Methane Methods Molecular dynamics nucleation mechanism Supersaturation Water chemistry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvAkUZCQkJKSoiR-xfSwLVYVYOEBFb5EfE7FqSap9qOq_ZyaPZVc9cOFq-zCZGXu-ccbfMPbWlUlFbWKuhK9yJU3KQ4wxT6qQVoEpdKAL_fnX6vRMfT7X5zutvqgmbKAHHhR3VEVImPAJEb1TiH69daEkzhUfdREq6E_fQkzJ1JhqlRiXhn-YEpP6o99Dq1lYEfeLcD0f5d8o1JP13z6Sd2LSfr3kTgA6ecDuj8iRHw8SP2R3oH3E7s6mhm2PWTefWt3yj0Of-RWnMsEb3jV8dolQj2gh8svFBfBvxLiJUYumfuLoki9a_n1zhWCQmD5xJPE50LU68OnmjPs1_9Jd8-FF4RKesLOTTz9mp_nYTyGPCOrWuXCijApPN-VRc0VoGtmYMkkVHWiwAg0jwKXGJF9qXxgwIpVl4wVIpVIw8ik7aLsWnjOuETYVwTfRCq9cKFyBqyAmqa0EmWTG3k_6ra8G2owa0w0yRn3LGBn7QBbYLiTG634A_aAe_aD-lx9k7B3Zr6Z9iUaKfnxegPISw1V9bFTllMF8OGOHk4nrccOuamEw8TPWkjRvttNoQPp_grruNrjG0otTRMA6Y88Gj9jKLA2mWogFM2b3fGXvo_Zn2sWvns67JJiL2n_xP9Twkt0TCMOoSk5Uh-xgvdzAK4RN6_C63yF_AHT9GYU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcCl4k2gICMhISFFjR-J4xMqC0uFWDhARW-WYztlRUm2-xDi3zOTx7arSlxtH2zP2PPNePwNwCvDg_K59qkSrkiV1CGtvPdpUJksVdRZXlFAf_alOD5Rn07z0yHgthrSKsc7sbuoQ-spRn4oNCJz9NeK7O3iIqWqUfS6OpTQuAm3uNAFpfSV049bh4ujdepfMiW69oe_-4KzcUUMMMJ0rJSXtqij7L9-MV-xTLtZk1fM0PQu7A_4kR31Ar8HN2JzH25PxrJtD6CdjQVv2fu-2vyKUbLgX9bWbHKOgI_IIdLz-a_IvhLvJtou6vqBrUs2b9i3zQIhIfF9Yktgs0jB9cjG-Blza_a5_cP6f4XL-BBOph--T47ToapC6hHarVNhBPcK7zjlsqrIqrqWteZBKm9iHkuB4hHRhFoHx3OX6ahF4Lx2IkqlQqXlI9hr2iY-AZYjeMoqV_tSOGWqzGQ4Kvog81JGGWQCb8b9tYuePMOi00HCsNeEkcA7ksB2IPFedw3t8swOx8gWPgZ0_4Xwzij0hVxpKk4MPM7nuJqYwGuSn6XTiULybvhkgPMlnit7pFVhlEavOIGDUcR2OLYre6lkCbzcdqMA6RUF97rd4JiS_p0iDs4TeNxrxHbOUqPDhYgwgXJHV3YWtdvTzH92pN6cwC7u_tP_z-sZ3KGC95QFJ4oD2FsvN_E5wqJ19aLT_X8dYhDA priority: 102 providerName: ProQuest |
Title | Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37049727 https://www.proquest.com/docview/2799678860 https://www.proquest.com/docview/2800625655 https://pubmed.ncbi.nlm.nih.gov/PMC10095827 https://doaj.org/article/6cedeb322ca94597a89b12741ac50b6e |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tLge4IN4ElspISEhI2SZ-xPFxt2xZIbqsgBW9RX4FKtqk6kOIf884j7LV3rj0YLuS4xlnvs8ZfwPwRqWOWyFtzKnOYs6ki421NnY8YTn3MhEmHOhPLrOLa_5xKqYHkPV3YZqkfWtmJ9V8cVLNfja5lcuFHfZ5YsOrySgNwCBH0n4Ihxh_e47e0awUY1L7_ZIhoR8u2jKzfh10X6hqtCj_RaBGqP_26_hGPNrPlbwRfMYP4H6HGslpO7uHcOCrR3B31Bdrewz1pC9zS963NebXJKQI_iF1SUZzhHlBEiKez3558jmobWLECl3fsXVFZhX5ul0iEAwqn9jiyMSHI3VP-lMzojfkU_2btLcJV_4JXI_Pv40u4q6WQmwR0G1iqmhqOb7ZuE5MlpiyZKVMHeNWeeFxLRNBvXKldDoVOpFeUpempaaece6MZE_hqKor_xyIQMiUGF3anGquTKISHOWtYyJnnjkWwbt-fYtlK5lRINUIxihuGSOCs2CB3cCgdt001KsfRWfzIrPeIemn1GrFkQHpXJk06O5oK_BpfARvg_2KsCfRSFZ3VwtwvkHdqjiVPFNcIheO4Lg3cdFt1nVBJZI-medhNq933WjA8O0E17re4pg83DZF9CsieNZ6xG7OTCLNQj-MIN_zlb2H2u9Bz26kvHtPfvH_f30J9ygCr5AXR7NjONqstv4VAqWNGeDumEr8zccfBnDn7Pzy6sugOXQYNDvmLxroHJ0 |
link.rule.ids | 230,314,727,780,784,864,885,2102,12056,12765,21388,27924,27925,31719,31720,33373,33374,33744,33745,43310,43600,43805,53791,53793,73745,74035,74302 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOZQL4k2ggJGQkJCiJrYTxydUFpYFdsuBVvRmObYDK0qy7EOIf89MHtuuKnG1fbD92Z5vxvY3AC916qXLlIslt3kshfJx6ZyLvUxEIYNKspIC-rPjfHIqP51lZ33AbdU_qxzOxPag9o2jGPkhV8jM0V_LkzeL3zFljaLb1T6FxnW4IQWabvopPv6wdbhStE7dTaZA1_7wV5dwNqxIAYbrVpXywha1kv1XD-ZLlmn31eQlMzS-Dbd6_siOOsDvwLVQ34X90ZC27R40syHhLXvXZZtfMXos-Jc1FRudI-EjcYj4fP4zsC-ku4m2i6q-YemSzWv2dbNASkh6n1ji2SxQcD2wIX7G7JpNmz-s-1e4DPfhdPz-ZDSJ-6wKsUNqt4655qmTeMZJm5R5UlaVqFTqhXQ6ZKHgCA8P2lfK2zSziQqK-zStLA9CSl8q8QD26qYOj4BlSJ6S0lau4FbqMtEJtgrOi6wQQXgRwethfs2iE88w6HQQGOYKGBG8JQS2DUn3ui1olt9Nv41M7oJH959zZ7VEX8gWukxJgce6DEcTInhF-BnanQiSs_0nA-wv6VyZIyVzLRV6xREcDBCbftuuzMUii-DFthoBpFsUnOtmg20K-neKPDiL4GG3IrZ9FgodLmSEERQ7a2VnULs19fxHK-qdEtnF2X_8_349h_3JyWxqph-PPz-BmxwpF72I4_kB7K2Xm_AUKdK6fNbug3_vvxOi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgIuiGcJFDASEhJStI7txMkJtduuCnSXCqjoLXJsB1aUZNmHEP-emTy2XVXiavtgezwz39jjbwBeZ5FTNtY2VMIkoZLahYW1NnSKy1R5zeOCLvQn0-T4TH04j8-7_Kdll1bZ28TGULva0h35UGhE5hivJXxYdmkRp4fjd_PfIVWQopfWrpzGTdhBr8jFAHYOjqannzfhV4S-qn3XlBjoD3-15Wf9kvhgRNZwVF56pobA_7qZvuKntnMorzil8T2426FJtt-K_z7c8NUDuD3qi7g9hHrSl79lh23t-SWj1MG_rC7Z6ALhH1FFhBezn559IhZO9GTU9Q1bF2xWsS_rOQJEYv_EFscmnq7aPetv05hZsZP6D2t_GS78IzgbH30dHYddjYXQItBbhSITkVVo8ZThRcKLspSljpxUNvOxTwUKS_jMldqZKDZcey1cFJVGeKmUK7R8DIOqrvwTYDFCKV6Y0qbCqKzgGcdR3joZp9JLJwN42-9vPm-pNHIMQUgY-TVhBHBAEtgMJBbspqFefM87pcoT650v0CRZkymMjEyaFRHx8Rgb42p8AG9IfjnpKgrJmu7LAc6XWK_yfa2STGmMkQPY60Wcd0q8zC-PXACvNt0oQHpTwb2u1zgmpV-oiIrjAHbbE7GZs9QYfiE-DCDdOitbi9ruqWY_GorviKAv7v7T_8_rJdxCJchP3k8_PoM7AvEXpceJZA8Gq8XaP0e8tCpedIrwD053GT4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Dynamics+Study+of+Clathrate-like+Ordering+of+Water+in+Supersaturated+Methane+Solution+at+Low+Pressure&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Belosludov%2C+Rodion+V&rft.au=Gets%2C+Kirill+V&rft.au=Zhdanov%2C+Ravil+K&rft.au=Bozhko%2C+Yulia+Y&rft.date=2023-03-26&rft.pub=MDPI+AG&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=7&rft_id=info:doi/10.3390%2Fmolecules28072960&rft.externalDocID=A746947254 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon |