Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure

Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 28; no. 7; p. 2960
Main Authors Belosludov, Rodion V, Gets, Kirill V, Zhdanov, Ravil K, Bozhko, Yulia Y, Belosludov, Vladimir R, Chen, Li-Jen, Kawazoe, Yoshiyuki
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.03.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.
AbstractList Using molecular dynamics, the evolution of a metastable solution for “methane + water” was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of “blobs” and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0–1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule’s tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.
Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol% methane at 270 K and 1 bar during 100 ns. We have found the intriguing behavior of the system containing over 10,000 water molecules: the formation of hydrate-like structures is observed at 6.5 and 9.45 mol% concentrations throughout the entire solution volume. This formation of "blobs" and the following amorphous hydrate were studied. The creation of a metastable methane solution through supersaturation is the key to triggering the collective process of hydrate formation under low pressure. Even the first stage (0-1 ns), before the first fluctuating cavities appear, is a collective process of H-bond network reorganization. The formation of fluctuation cavities appears before steady hydrate growth begins and is associated with a preceding uniform increase in the water molecule's tetrahedrality. Later, the constantly presented hydrate cavities become the foundation for a few independent hydrate nucleation centers, this evolution is consistent with the labile cluster and local structure hypotheses. This new mechanism of hydrogen-bond network reorganization depends on the entropy of the cavity arrangement of the guest molecules in the hydrate lattice and leads to hydrate growth.
Audience Academic
Author Belosludov, Vladimir R
Chen, Li-Jen
Kawazoe, Yoshiyuki
Belosludov, Rodion V
Gets, Kirill V
Bozhko, Yulia Y
Zhdanov, Ravil K
AuthorAffiliation 1 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
2 Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
4 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
5 New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
7 School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
6 Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankurathur 603203, India
3 Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
AuthorAffiliation_xml – name: 3 Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
– name: 1 Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
– name: 6 Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankurathur 603203, India
– name: 2 Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia
– name: 5 New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
– name: 7 School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
– name: 4 Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
Author_xml – sequence: 1
  givenname: Rodion V
  surname: Belosludov
  fullname: Belosludov, Rodion V
  organization: Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
– sequence: 2
  givenname: Kirill V
  orcidid: 0000-0003-2452-5170
  surname: Gets
  fullname: Gets, Kirill V
  organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
– sequence: 3
  givenname: Ravil K
  orcidid: 0000-0002-0464-9435
  surname: Zhdanov
  fullname: Zhdanov, Ravil K
  organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
– sequence: 4
  givenname: Yulia Y
  surname: Bozhko
  fullname: Bozhko, Yulia Y
  organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
– sequence: 5
  givenname: Vladimir R
  surname: Belosludov
  fullname: Belosludov, Vladimir R
  organization: Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
– sequence: 6
  givenname: Li-Jen
  surname: Chen
  fullname: Chen, Li-Jen
  organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
– sequence: 7
  givenname: Yoshiyuki
  surname: Kawazoe
  fullname: Kawazoe, Yoshiyuki
  organization: School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37049727$$D View this record in MEDLINE/PubMed
BookMark eNplUstuEzEUHaEi-oAPYIMssWGT4uc4XqEqUKiUqkgBsbQ89p3EYWKntocqf49DStWCvLB17rnnPnxOm6MQAzTNa4LPGVP4_SYOYMcBMp1iSVWLnzUnhFM8YZiro0fv4-Y05zXGlHAiXjTHTFZQUnnSxOuDhkno4y6YjbcZLcrodij2aDaYskqmwGTwPwHdJAfJh-U-9KOiCfmAFuMWUjZl3PMcuoayMgHQIg5j8TEgU9A83qGvCXIeE7xsnvdmyPDq_j5rvl9--jb7MpnffL6aXcwnVjBWJlRRYrkihBvctbjre9ZL4hi3CgRMqcSCgnK9dIYIgyVI6gjpDQXGueskO2uuDroumrXeJr8xaaej8foPENNSm1S8HUC3Fhx0jFJrFBdKmqnqCJWcGCtqcahaHw5a27HbgLMQSjLDE9GnkeBXehl_aYKxErXZqvDuXiHF2xFy0RufLQxDXVUcs67_h1sqWiEq9e0_1HUcU6i70lQq1crptMWVdX5gLU2dwIc-1sK2Hgf1C6tLel_xC8lbxSUVvCaQQ4JNMecE_UP7BOu9mfR_Zqo5bx7P_ZDx1z3sNyC_ylw
CitedBy_id crossref_primary_10_1051_e3sconf_202345905005
crossref_primary_10_1051_e3sconf_202452403017
crossref_primary_10_1051_e3sconf_202345908004
crossref_primary_10_1063_5_0204109
Cites_doi 10.1021/jp064271t
10.1063/1.437241
10.1006/jcph.1995.1039
10.1021/ja806211r
10.1016/0019-1035(91)90078-8
10.1021/acs.iecr.0c04389
10.1007/s11814-016-0032-7
10.1080/002689797171788
10.1021/acs.jpcc.6b07995
10.1039/b807455k
10.1080/00268979909482943
10.1021/ja973029k
10.1021/je00014a035
10.1063/1.4996132
10.1021/acssuschemeng.7b03238
10.1021/jp3117215
10.1021/jp994261a
10.1016/j.coche.2012.12.002
10.1016/j.molliq.2021.118025
10.1039/c1cp21899a
10.3389/fchem.2020.00480
10.1021/jp5052479
10.1016/0021-9991(77)90098-5
10.1063/1.4920971
10.2320/matertrans.48.704
10.1103/PhysRevA.31.1695
10.1201/9781439822050
10.1080/08927029308022505
10.1016/S0196-8904(96)00285-3
10.1021/jp412692d
10.1021/jp972543+
10.1021/acs.chemrev.5b00744
10.1039/c1cp20070d
10.1063/1.1931662
10.1021/jp206483q
10.1166/jnn.2017.13383
10.1039/c0cp00551g
10.1111/j.1749-6632.1994.tb38833.x
10.1073/pnas.1906502116
10.1051/jphyscol:1984702
10.1063/1.480133
10.1039/c1sc00021g
10.1039/b913898f
10.1201/9781420008494
10.1016/0009-2614(93)89024-C
10.1063/1.1352645
10.1016/j.cossms.2016.03.005
10.1039/a608381a
10.1038/ncomms7432
10.1038/s41598-020-64210-1
10.1103/PhysRevB.80.134306
10.1021/ie050464b
10.1016/0009-2509(95)00370-3
10.1063/1.465634
10.1021/acs.jpcc.0c02246
10.1103/PhysRevLett.79.1293
10.1039/D1NR00751C
10.1063/1.1288818
10.1103/PhysRevLett.81.4164
10.1103/PhysRevLett.46.597
10.1021/jp102584d
10.1021/jp5002012
10.1021/ja028537v
10.1063/1.5008478
10.1126/science.1174010
10.1021/ja00465a002
10.1021/jp107269q
10.1016/0378-3812(95)02903-6
10.1134/S0021364022030031
10.1080/00268978400101201
10.1063/1.466848
10.1021/jp308224v
10.1002/aic.690370902
10.1021/jz3012113
10.1016/j.fuel.2021.122607
10.1111/j.1749-6632.2000.tb06802.x
10.1021/acs.jpcc.5b05393
10.1063/1.3582897
10.1039/C5CP06419H
10.1021/acs.jpcb.8b11172
10.1016/j.ces.2014.07.047
10.1039/a806899b
10.1021/ja00486a020
10.1039/ft9908603785
10.1063/1.1485962
10.1007/s11630-019-1181-x
10.1021/acs.jpcc.7b05754
10.1021/jp9536209
10.1016/j.jcrysgro.2012.11.022
10.1016/j.apsusc.2019.143644
10.1021/ja1051445
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
7X8
5PM
DOA
DOI 10.3390/molecules28072960
DatabaseName PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
Publicly Available Content Database
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1420-3049
ExternalDocumentID oai_doaj_org_article_6cedeb322ca94597a89b12741ac50b6e
A746947254
10_3390_molecules28072960
37049727
Genre Journal Article
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GrantInformation_xml – fundername: Russian Foundation for Basic Research
  grantid: 21-52-52001
– fundername: the Ministry of Science and Technology of Taiwan
  grantid: 110-2923-E-002-008-MY3
– fundername: Ministry of Science and Technology of Taiwan
  grantid: 110-2923-E-002-008-MY3
GroupedDBID ---
0R~
123
2WC
3V.
53G
5VS
7X7
88E
8FE
8FG
8FH
8FI
8FJ
A8Z
AADQD
AAFWJ
AAHBH
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACPRK
AEGXH
AENEX
AFKRA
AFPKN
AFRAH
AFZYC
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
D1I
DIK
DU5
E3Z
EBD
EMOBN
ESTFP
ESX
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
HZ~
I09
IAO
ITC
KB.
KQ8
LK8
M1P
M7P
MODMG
M~E
NPM
O-U
O9-
OK1
P2P
PDBOC
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RPM
SV3
TR2
TUS
UKHRP
~8M
AAYXX
CITATION
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c533t-2921c49114a0b60bff3f71d34c9e5e827052e9df7da15a07e72d11fa2e344db73
IEDL.DBID RPM
ISSN 1420-3049
IngestDate Tue Oct 22 15:14:22 EDT 2024
Tue Sep 17 21:33:03 EDT 2024
Thu Dec 05 22:22:36 EST 2024
Thu Oct 10 17:45:27 EDT 2024
Tue Nov 12 23:36:30 EST 2024
Fri Dec 06 01:56:57 EST 2024
Sat Nov 02 11:56:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords nucleation mechanism
computer simulation
gas hydrates
amorphous hydrate
intramolecular hydrogen bonds
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c533t-2921c49114a0b60bff3f71d34c9e5e827052e9df7da15a07e72d11fa2e344db73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2452-5170
0000-0002-0464-9435
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10095827/
PMID 37049727
PQID 2799678860
PQPubID 2032355
ParticipantIDs doaj_primary_oai_doaj_org_article_6cedeb322ca94597a89b12741ac50b6e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10095827
proquest_miscellaneous_2800625655
proquest_journals_2799678860
gale_infotracacademiconefile_A746947254
crossref_primary_10_3390_molecules28072960
pubmed_primary_37049727
PublicationCentury 2000
PublicationDate 20230326
PublicationDateYYYYMMDD 2023-03-26
PublicationDate_xml – month: 3
  year: 2023
  text: 20230326
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Molecules (Basel, Switzerland)
PublicationTitleAlternate Molecules
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Sosso (ref_6) 2016; 116
Khurana (ref_2) 2017; 5
Jacobson (ref_34) 2010; 132
Belosludov (ref_5) 2020; 10
Ripmeester (ref_54) 2016; 20
Koh (ref_26) 2000; 113
English (ref_91) 2009; 80
Wilson (ref_25) 1997; 91
Bagherzadeh (ref_48) 2015; 142
Knott (ref_49) 2011; 134
Abascal (ref_85) 2005; 122
Mancera (ref_15) 1997; 93
Geiger (ref_10) 1979; 70
Geiger (ref_4) 1984; 45
Lauricella (ref_70) 2017; 121
Mackie (ref_23) 2001; 114
Uchida (ref_71) 2020; 8
(ref_81) 1984; 52
Wu (ref_66) 2016; 18
Both (ref_75) 2021; 13
Guo (ref_43) 2007; 111
Casco (ref_76) 2015; 6
Rodger (ref_40) 2000; 912
Paulus (ref_74) 2009; 131
Ryckaert (ref_84) 1977; 23
Belosludov (ref_68) 2022; 115
Zhang (ref_51) 2019; 28
Firoozabadi (ref_60) 2014; 118
Makogon (ref_78) 1994; 39
Mi (ref_88) 2022; 311
Guo (ref_39) 2013; 117
Walsh (ref_56) 2011; 13
Long (ref_13) 1993; 11
Liang (ref_57) 2010; 114
Plimpton (ref_80) 1995; 117
Bosio (ref_3) 1981; 46
Hawtin (ref_33) 2008; 10
Yagasaki (ref_47) 2014; 118
Radhakrishnan (ref_31) 2002; 117
Guo (ref_44) 2009; 11
Owicki (ref_8) 1977; 99
ref_63
Kang (ref_87) 2017; 17
Liang (ref_58) 2011; 2
Uchida (ref_52) 2016; 33
Chau (ref_12) 1999; 96
Hoover (ref_82) 1985; 31
Uchida (ref_53) 2016; 120
Mancera (ref_18) 1998; 94
Hallbrucker (ref_42) 1991; 90
Meng (ref_22) 1996; 100
Choudhary (ref_61) 2020; 59
Moon (ref_32) 2003; 125
Vatamanu (ref_35) 2010; 12
Lauricella (ref_62) 2014; 118
Sloan (ref_30) 1991; 37
English (ref_7) 2015; 121
Conde (ref_92) 2017; 147
Skipper (ref_14) 1993; 207
Filipponi (ref_27) 1997; 79
Tung (ref_89) 2012; 116
Guo (ref_36) 2011; 13
Swaminathan (ref_9) 1978; 100
Yu (ref_77) 2020; 124
Matsumoto (ref_50) 2013; 373
Broadbent (ref_24) 1994; 100
Bowron (ref_28) 1998; 81
Walsh (ref_38) 2009; 326
Silverstein (ref_16) 1999; 111
Bolhuis (ref_21) 2019; 116
Jacobson (ref_37) 2010; 114
Hallbrucker (ref_41) 1990; 86
Baez (ref_45) 1994; 715
Wu (ref_65) 2015; 119
ref_83
Guillot (ref_11) 1993; 99
Gets (ref_67) 2020; 499
Lazaridis (ref_19) 2000; 104
Gao (ref_29) 2005; 44
Sarupria (ref_59) 2012; 3
Hirai (ref_79) 1997; 38
Martin (ref_86) 1998; 102
Silverstein (ref_17) 1998; 120
Lederhos (ref_20) 1996; 51
Rodger (ref_46) 1996; 116
Walsh (ref_55) 2011; 115
Das (ref_73) 2022; 348
ref_1
Barnes (ref_64) 2013; 2
DeFever (ref_90) 2017; 147
Belosludov (ref_72) 2007; 48
Parui (ref_69) 2019; 123
References_xml – volume: 111
  start-page: 2595
  year: 2007
  ident: ref_43
  article-title: Effect of Methane Adsorption on the Lifetime of a Dodecahedral Water Cluster Immersed in Liquid Water: A Molecular Dynamics Study on the Hydrate Nucleation Mechanisms
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp064271t
  contributor:
    fullname: Guo
– volume: 70
  start-page: 263
  year: 1979
  ident: ref_10
  article-title: Molecular dynamics study of the hydration of Lennard-Jones solutes
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.437241
  contributor:
    fullname: Geiger
– volume: 117
  start-page: 1
  year: 1995
  ident: ref_80
  article-title: Fast parallel algorithms for short-range molecular dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
  contributor:
    fullname: Plimpton
– volume: 131
  start-page: 585
  year: 2009
  ident: ref_74
  article-title: The carbon dioxide−water interface at conditions of gas hydrate formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806211r
  contributor:
    fullname: Paulus
– volume: 90
  start-page: 176
  year: 1991
  ident: ref_42
  article-title: Unexpectedly stable clathrate hydrates formed from microporous vapor-deposited amorphous solid water at low “external” guest pressures and their astrophysical implications
  publication-title: Icarus
  doi: 10.1016/0019-1035(91)90078-8
  contributor:
    fullname: Hallbrucker
– volume: 59
  start-page: 20591
  year: 2020
  ident: ref_61
  article-title: Macro and Molecular Level Insights on Gas Hydrate Growth in the Presence of Hofmeister Salts
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c04389
  contributor:
    fullname: Choudhary
– volume: 33
  start-page: 1749
  year: 2016
  ident: ref_52
  article-title: Generation of micro-and nano-bubbles in water by dissociation of gas hydrates
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-016-0032-7
  contributor:
    fullname: Uchida
– volume: 91
  start-page: 99
  year: 1997
  ident: ref_25
  article-title: Hydrophobic hydration of methane
  publication-title: Mol. Phys.
  doi: 10.1080/002689797171788
  contributor:
    fullname: Wilson
– volume: 120
  start-page: 26620
  year: 2016
  ident: ref_53
  article-title: Gas nanobubbles as nucleation acceleration in the gas-hydrate memory effect
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b07995
  contributor:
    fullname: Uchida
– volume: 10
  start-page: 4853
  year: 2008
  ident: ref_33
  article-title: Gas hydrate nucleation and cage formation at a water/methane interface
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b807455k
  contributor:
    fullname: Hawtin
– volume: 96
  start-page: 109
  year: 1999
  ident: ref_12
  article-title: Computer simulation of structural effect of pressure on the hydrophobic hydration of methane
  publication-title: Mol. Phys.
  doi: 10.1080/00268979909482943
  contributor:
    fullname: Chau
– volume: 120
  start-page: 3166
  year: 1998
  ident: ref_17
  article-title: A simple model of water and the hydrophobic effect
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja973029k
  contributor:
    fullname: Silverstein
– volume: 39
  start-page: 351
  year: 1994
  ident: ref_78
  article-title: Phase equilibrium for methane hydrate from 190 to 262K
  publication-title: J. Chem. Eng. Data
  doi: 10.1021/je00014a035
  contributor:
    fullname: Makogon
– volume: 147
  start-page: 204503
  year: 2017
  ident: ref_90
  article-title: Nucleation mechanism of clathrate hydrates of water-soluble guest molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4996132
  contributor:
    fullname: DeFever
– volume: 5
  start-page: 11176
  year: 2017
  ident: ref_2
  article-title: A Review of Clathrate Hydrate Nucleation
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03238
  contributor:
    fullname: Khurana
– volume: 117
  start-page: 6498
  year: 2013
  ident: ref_39
  article-title: Solubility of Aqueous Methane under Metastable Conditions: Implications for Gas Hydrate Nucleation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp3117215
  contributor:
    fullname: Guo
– volume: 104
  start-page: 4964
  year: 2000
  ident: ref_19
  article-title: Solvent reorganization energy and entropy in hydrophobic hydration
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp994261a
  contributor:
    fullname: Lazaridis
– volume: 2
  start-page: 184
  year: 2013
  ident: ref_64
  article-title: Advances in molecular simulations of clathrate hydrates
  publication-title: Curr. Opin. Chem. Eng.
  doi: 10.1016/j.coche.2012.12.002
  contributor:
    fullname: Barnes
– volume: 348
  start-page: 118025
  year: 2022
  ident: ref_73
  article-title: A review of clathrate hydrate nucleation, growth and decomposition studied using molecular dynamics simulation
  publication-title: J. Mol. Liquid.
  doi: 10.1016/j.molliq.2021.118025
  contributor:
    fullname: Das
– volume: 13
  start-page: 19951
  year: 2011
  ident: ref_56
  article-title: The Cages, Dynamics, and Structuring of Incipient Methane Clathrate Hydrates
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21899a
  contributor:
    fullname: Walsh
– volume: 8
  start-page: 480
  year: 2020
  ident: ref_71
  article-title: Contribution of ultra-fine bubbles to promoting effect on propane hydrate formation
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.00480
  contributor:
    fullname: Uchida
– volume: 118
  start-page: 22847
  year: 2014
  ident: ref_62
  article-title: Methane clathrate hydrate nucleation mechanism by advanced molecular simulations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5052479
  contributor:
    fullname: Lauricella
– volume: 23
  start-page: 327
  year: 1977
  ident: ref_84
  article-title: Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(77)90098-5
  contributor:
    fullname: Ryckaert
– volume: 142
  start-page: 214701
  year: 2015
  ident: ref_48
  article-title: Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4920971
  contributor:
    fullname: Bagherzadeh
– volume: 48
  start-page: 704
  year: 2007
  ident: ref_72
  article-title: Physical and chemical properties of gas hydrates: Theoretical aspects of energy storage application
  publication-title: Mater. Trans.
  doi: 10.2320/matertrans.48.704
  contributor:
    fullname: Belosludov
– volume: 31
  start-page: 1695
  year: 1985
  ident: ref_82
  article-title: Canonical dynamics: Equilibrium phase-space distributions
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.31.1695
  contributor:
    fullname: Hoover
– ident: ref_83
  doi: 10.1201/9781439822050
– volume: 11
  start-page: 145
  year: 1993
  ident: ref_13
  article-title: Quantized water cluster around apolar molecules
  publication-title: Mol. Simul.
  doi: 10.1080/08927029308022505
  contributor:
    fullname: Long
– volume: 38
  start-page: S301
  year: 1997
  ident: ref_79
  article-title: CO2 clathrate-hydrate formation and its mechanism by molecular dynamics simulation
  publication-title: Energy Convers. Manag.
  doi: 10.1016/S0196-8904(96)00285-3
  contributor:
    fullname: Hirai
– volume: 118
  start-page: 1900
  year: 2014
  ident: ref_47
  article-title: Effect of bubble formation on the dissociation of methane hydrate in water: A molecular dynamics study
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp412692d
  contributor:
    fullname: Yagasaki
– volume: 102
  start-page: 2569
  year: 1998
  ident: ref_86
  article-title: Transferable Potentials for Phase Equilibria. 1. United-atom Description of n-Alkanes
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp972543+
  contributor:
    fullname: Martin
– volume: 116
  start-page: 7078
  year: 2016
  ident: ref_6
  article-title: Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00744
  contributor:
    fullname: Sosso
– volume: 13
  start-page: 12048
  year: 2011
  ident: ref_36
  article-title: Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp20070d
  contributor:
    fullname: Guo
– volume: 122
  start-page: 234511
  year: 2005
  ident: ref_85
  article-title: A potential model for the study of ices and amorphous water: TIP4P/Ice
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1931662
  contributor:
    fullname: Abascal
– volume: 115
  start-page: 21241
  year: 2011
  ident: ref_55
  article-title: Methane Hydrate Nucleation Rates from Molecular Dynamics Simulations: Effects of Aqueous Methane Concentration, Interfacial Curvature, and System Size
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp206483q
  contributor:
    fullname: Walsh
– volume: 17
  start-page: 4059
  year: 2017
  ident: ref_87
  article-title: Evaluation of desalination by nanostructured hydrate formation and pellet production process
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2017.13383
  contributor:
    fullname: Kang
– volume: 12
  start-page: 15065
  year: 2010
  ident: ref_35
  article-title: Observation of two-step nucleation in methane hydrates
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00551g
  contributor:
    fullname: Vatamanu
– volume: 715
  start-page: 177
  year: 1994
  ident: ref_45
  article-title: Computer Simulation of the Crystal Growth and Dissolution of Natural Gas Hydrates
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.1994.tb38833.x
  contributor:
    fullname: Baez
– volume: 116
  start-page: 19305
  year: 2019
  ident: ref_21
  article-title: Unbiased atomistic insight in the competing nucleation mechanisms of methane hydrates
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1906502116
  contributor:
    fullname: Bolhuis
– volume: 45
  start-page: C7-13
  year: 1984
  ident: ref_4
  article-title: Structure and dynamics of the hydrogen bond network in water by computer simulations
  publication-title: J. Phys. Colloq.
  doi: 10.1051/jphyscol:1984702
  contributor:
    fullname: Geiger
– volume: 111
  start-page: 8000
  year: 1999
  ident: ref_16
  article-title: Molecular model of hydrophobic solvation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480133
  contributor:
    fullname: Silverstein
– volume: 2
  start-page: 1286
  year: 2011
  ident: ref_58
  article-title: Exploring nucleation of H2S hydrates
  publication-title: Chem. Sci.
  doi: 10.1039/c1sc00021g
  contributor:
    fullname: Liang
– volume: 11
  start-page: 10427
  year: 2009
  ident: ref_44
  article-title: Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b913898f
  contributor:
    fullname: Guo
– ident: ref_1
  doi: 10.1201/9781420008494
– volume: 207
  start-page: 424
  year: 1993
  ident: ref_14
  article-title: Computer simulation of methane-water solutions. Evidence for a temperature-dependent hydrophobic attraction
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(93)89024-C
  contributor:
    fullname: Skipper
– volume: 114
  start-page: 7527
  year: 2001
  ident: ref_23
  article-title: The hydrophobic hydration of methane as a function of temperature from histogram reweighting Monte Carlo simulations
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1352645
  contributor:
    fullname: Mackie
– volume: 20
  start-page: 344
  year: 2016
  ident: ref_54
  article-title: Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect
  publication-title: Curr. Opin. Solid State Mater. Sci.
  doi: 10.1016/j.cossms.2016.03.005
  contributor:
    fullname: Ripmeester
– volume: 93
  start-page: 2263
  year: 1997
  ident: ref_15
  article-title: The aggregation of methane in aqueous solution
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/a608381a
  contributor:
    fullname: Mancera
– volume: 6
  start-page: 6432
  year: 2015
  ident: ref_76
  article-title: Methane hydrate formation in confined nanospace can surpass nature
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7432
  contributor:
    fullname: Casco
– volume: 10
  start-page: 7323
  year: 2020
  ident: ref_5
  article-title: The nano-structural inhomogeneity of dynamic hydrogen bond network of TIP4P/2005 water
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-64210-1
  contributor:
    fullname: Belosludov
– volume: 80
  start-page: 134306
  year: 2009
  ident: ref_91
  article-title: Mechanisms for thermal conduction in various polymorphs of methane hydrate
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.80.134306
  contributor:
    fullname: English
– volume: 44
  start-page: 7373
  year: 2005
  ident: ref_29
  article-title: NMR and Viscosity Investigation of Clathrate Hydrate Formation and Dissociation
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050464b
  contributor:
    fullname: Gao
– volume: 51
  start-page: 1221
  year: 1996
  ident: ref_20
  article-title: Effective kinetic inhibitors for natural gas hydrates
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(95)00370-3
  contributor:
    fullname: Lederhos
– volume: 99
  start-page: 8075
  year: 1993
  ident: ref_11
  article-title: A computer simulation study of the temperature dependence of the hydrophobic hydration
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465634
  contributor:
    fullname: Guillot
– volume: 124
  start-page: 11015
  year: 2020
  ident: ref_77
  article-title: Does confinement enable methane hydrate growth at low pressures? Insights from molecular dynamics simulations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c02246
  contributor:
    fullname: Yu
– volume: 79
  start-page: 1293
  year: 1997
  ident: ref_27
  article-title: Structural determination of hydrophobic hydration shell of Kr
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.79.1293
  contributor:
    fullname: Filipponi
– volume: 13
  start-page: 7447
  year: 2021
  ident: ref_75
  article-title: Gas hydrates in confined space of nanoporous materials: New frontier in gas storage technology
  publication-title: Nanoscale
  doi: 10.1039/D1NR00751C
  contributor:
    fullname: Both
– ident: ref_63
– volume: 113
  start-page: 6390
  year: 2000
  ident: ref_26
  article-title: Water ordering around methane during hydrate formation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1288818
  contributor:
    fullname: Koh
– volume: 81
  start-page: 4164
  year: 1998
  ident: ref_28
  article-title: Hydrophobic hydration and the formation of a clathrate hydrate
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.4164
  contributor:
    fullname: Bowron
– volume: 46
  start-page: 597
  year: 1981
  ident: ref_3
  article-title: Enhanced density fuctuations in supercooled H2O, D2O, and ethanol-water solutions: Evidence from small-angle x-ray scattering
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.597
  contributor:
    fullname: Bosio
– volume: 114
  start-page: 9563
  year: 2010
  ident: ref_57
  article-title: Crystal growth simulations of H2S hydrate
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp102584d
  contributor:
    fullname: Liang
– volume: 118
  start-page: 11310
  year: 2014
  ident: ref_60
  article-title: Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5002012
  contributor:
    fullname: Firoozabadi
– volume: 125
  start-page: 4706
  year: 2003
  ident: ref_32
  article-title: Molecular Dynamics Study of Gas Hydrate Formation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028537v
  contributor:
    fullname: Moon
– volume: 147
  start-page: 244506
  year: 2017
  ident: ref_92
  article-title: High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5008478
  contributor:
    fullname: Conde
– volume: 326
  start-page: 1095
  year: 2009
  ident: ref_38
  article-title: Microsecond simulations of spontaneous methane hydrate nucleation and growth
  publication-title: Science
  doi: 10.1126/science.1174010
  contributor:
    fullname: Walsh
– volume: 99
  start-page: 7413
  year: 1977
  ident: ref_8
  article-title: Monte Carlo calculation in isothermal-isobaric ensemble.2. Dilute aqueous solution of methane
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00465a002
  contributor:
    fullname: Owicki
– volume: 114
  start-page: 13796
  year: 2010
  ident: ref_37
  article-title: Nucleation pathways of clathrate hydrates: Effect of guest size and solubility
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp107269q
  contributor:
    fullname: Jacobson
– volume: 116
  start-page: 326
  year: 1996
  ident: ref_46
  article-title: Simulations of the methane hydrate/methane gas interface near hydrate forming conditions conditions
  publication-title: Fluid Ph. Equilib.
  doi: 10.1016/0378-3812(95)02903-6
  contributor:
    fullname: Rodger
– volume: 115
  start-page: 124
  year: 2022
  ident: ref_68
  article-title: Collective Effect of Transformation of a Hydrogen Bond Network at the Initial State of Growth of Methane Hydrate
  publication-title: JETP Lett.
  doi: 10.1134/S0021364022030031
  contributor:
    fullname: Belosludov
– volume: 52
  start-page: 255
  year: 1984
  ident: ref_81
  article-title: A molecular dynamics method for simulations in the canonical ensemble
  publication-title: Mol. Phys.
  doi: 10.1080/00268978400101201
– volume: 100
  start-page: 7543
  year: 1994
  ident: ref_24
  article-title: The interatomic structure of argon in water
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.466848
  contributor:
    fullname: Broadbent
– volume: 116
  start-page: 14115
  year: 2012
  ident: ref_89
  article-title: Molecular dynamics study on the growth of structure I methane hydrate in aqueous solution of sodium chloride
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp308224v
  contributor:
    fullname: Tung
– volume: 37
  start-page: 1281
  year: 1991
  ident: ref_30
  article-title: A molecular mechanism for gas hydrate nucleation from ice
  publication-title: AIChE J.
  doi: 10.1002/aic.690370902
  contributor:
    fullname: Sloan
– volume: 3
  start-page: 2942
  year: 2012
  ident: ref_59
  article-title: Homogeneous Nucleation of Methane Hydrate in Microsecond Molecular Dynamics Simulations
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3012113
  contributor:
    fullname: Sarupria
– volume: 311
  start-page: 122607
  year: 2022
  ident: ref_88
  article-title: Molecular insights into the effects of surface property and pore size of non-swelling clay on methane hydrate formation
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122607
  contributor:
    fullname: Mi
– volume: 912
  start-page: 474
  year: 2000
  ident: ref_40
  article-title: Methane hydrate: Melting and memory
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1111/j.1749-6632.2000.tb06802.x
  contributor:
    fullname: Rodger
– volume: 119
  start-page: 19883
  year: 2015
  ident: ref_65
  article-title: Molecular dynamics study on the growth mechanism of methane plus tetrahydrofuran mixed hydrates
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.5b05393
  contributor:
    fullname: Wu
– volume: 134
  start-page: 171102
  year: 2011
  ident: ref_49
  article-title: Communication: Bubbles, crystals, and laser-induced nucleation
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3582897
  contributor:
    fullname: Knott
– volume: 18
  start-page: 9935
  year: 2016
  ident: ref_66
  article-title: Molecular dynamics study on the nucleation of methane+ tetrahydrofuran mixed guest hydrate
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06419H
  contributor:
    fullname: Wu
– volume: 123
  start-page: 811
  year: 2019
  ident: ref_69
  article-title: Factors promoting the formation of clathrate-like ordering of water in biomolecular structure at ambient temperature and pressure
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.8b11172
  contributor:
    fullname: Parui
– volume: 121
  start-page: 133
  year: 2015
  ident: ref_7
  article-title: Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.07.047
  contributor:
    fullname: English
– volume: 94
  start-page: 3549
  year: 1998
  ident: ref_18
  article-title: Computer simulation of effect of salt on the hydrophobic effect
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/a806899b
  contributor:
    fullname: Mancera
– volume: 100
  start-page: 5705
  year: 1978
  ident: ref_9
  article-title: Monte Carlo studies on the structure of dilute aqueous solution of methane
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00486a020
  contributor:
    fullname: Swaminathan
– volume: 86
  start-page: 3785
  year: 1990
  ident: ref_41
  article-title: Unexpectedly stable nitrogen, oxygen, carbon monoxide and argon clathrate hydrates from vapour-deposited amorphous solid water: An X-ray and two-step differential scanning calorimetry study
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/ft9908603785
  contributor:
    fullname: Hallbrucker
– volume: 117
  start-page: 1786
  year: 2002
  ident: ref_31
  article-title: A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1485962
  contributor:
    fullname: Radhakrishnan
– volume: 28
  start-page: 948
  year: 2019
  ident: ref_51
  article-title: Effect of Nanobubble Evolution on Hydrate Process: A Review
  publication-title: J. Therm. Sci.
  doi: 10.1007/s11630-019-1181-x
  contributor:
    fullname: Zhang
– volume: 121
  start-page: 24223
  year: 2017
  ident: ref_70
  article-title: Mechanisms and nucleation rate of methane hydrate by dynamical nonequilibrium molecular dynamics
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b05754
  contributor:
    fullname: Lauricella
– volume: 100
  start-page: 11460
  year: 1996
  ident: ref_22
  article-title: Molecular dynamics studies of the properties of water around simple organic solutes
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9536209
  contributor:
    fullname: Meng
– volume: 373
  start-page: 73
  year: 2013
  ident: ref_50
  article-title: Polymorph control of glycine by antisolvent crystallization using nitrogen minute-bubbles
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.11.022
  contributor:
    fullname: Matsumoto
– volume: 499
  start-page: 143644
  year: 2020
  ident: ref_67
  article-title: Transformation of hydrogen bond network during CO2 clathrate hydrate dissociation
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.143644
  contributor:
    fullname: Gets
– volume: 132
  start-page: 11806
  year: 2010
  ident: ref_34
  article-title: Amorphous Precursors in the Nucleation of Clathrate Hydrates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1051445
  contributor:
    fullname: Jacobson
SSID ssj0021415
Score 2.4597647
Snippet Using molecular dynamics, the evolution of a metastable solution for "methane + water" was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol%...
Using molecular dynamics, the evolution of a metastable solution for “methane + water” was studied for concentrations of 3.36, 6.5, 9.45, 12.2, and 14.8 mol%...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2960
SubjectTerms amorphous hydrate
Analysis
Cavities
Clathrate compounds
Clathrates
Computer simulation
Energy storage
gas hydrates
Health aspects
Holes
Hydration
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hypotheses
intramolecular hydrogen bonds
Low pressure
Methane
Methods
Molecular dynamics
nucleation mechanism
Supersaturation
Water chemistry
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBvAkUZCQkJKSoiR-xfSwLVYVYOEBFb5EfE7FqSap9qOq_ZyaPZVc9cOFq-zCZGXu-ccbfMPbWlUlFbWKuhK9yJU3KQ4wxT6qQVoEpdKAL_fnX6vRMfT7X5zutvqgmbKAHHhR3VEVImPAJEb1TiH69daEkzhUfdREq6E_fQkzJ1JhqlRiXhn-YEpP6o99Dq1lYEfeLcD0f5d8o1JP13z6Sd2LSfr3kTgA6ecDuj8iRHw8SP2R3oH3E7s6mhm2PWTefWt3yj0Of-RWnMsEb3jV8dolQj2gh8svFBfBvxLiJUYumfuLoki9a_n1zhWCQmD5xJPE50LU68OnmjPs1_9Jd8-FF4RKesLOTTz9mp_nYTyGPCOrWuXCijApPN-VRc0VoGtmYMkkVHWiwAg0jwKXGJF9qXxgwIpVl4wVIpVIw8ik7aLsWnjOuETYVwTfRCq9cKFyBqyAmqa0EmWTG3k_6ra8G2owa0w0yRn3LGBn7QBbYLiTG634A_aAe_aD-lx9k7B3Zr6Z9iUaKfnxegPISw1V9bFTllMF8OGOHk4nrccOuamEw8TPWkjRvttNoQPp_grruNrjG0otTRMA6Y88Gj9jKLA2mWogFM2b3fGXvo_Zn2sWvns67JJiL2n_xP9Twkt0TCMOoSk5Uh-xgvdzAK4RN6_C63yF_AHT9GYU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOcCl4k2gICMhISFFjR-J4xMqC0uFWDhARW-WYztlRUm2-xDi3zOTx7arSlxtH2zP2PPNePwNwCvDg_K59qkSrkiV1CGtvPdpUJksVdRZXlFAf_alOD5Rn07z0yHgthrSKsc7sbuoQ-spRn4oNCJz9NeK7O3iIqWqUfS6OpTQuAm3uNAFpfSV049bh4ujdepfMiW69oe_-4KzcUUMMMJ0rJSXtqij7L9-MV-xTLtZk1fM0PQu7A_4kR31Ar8HN2JzH25PxrJtD6CdjQVv2fu-2vyKUbLgX9bWbHKOgI_IIdLz-a_IvhLvJtou6vqBrUs2b9i3zQIhIfF9Yktgs0jB9cjG-Blza_a5_cP6f4XL-BBOph--T47ToapC6hHarVNhBPcK7zjlsqrIqrqWteZBKm9iHkuB4hHRhFoHx3OX6ahF4Lx2IkqlQqXlI9hr2iY-AZYjeMoqV_tSOGWqzGQ4Kvog81JGGWQCb8b9tYuePMOi00HCsNeEkcA7ksB2IPFedw3t8swOx8gWPgZ0_4Xwzij0hVxpKk4MPM7nuJqYwGuSn6XTiULybvhkgPMlnit7pFVhlEavOIGDUcR2OLYre6lkCbzcdqMA6RUF97rd4JiS_p0iDs4TeNxrxHbOUqPDhYgwgXJHV3YWtdvTzH92pN6cwC7u_tP_z-sZ3KGC95QFJ4oD2FsvN_E5wqJ19aLT_X8dYhDA
  priority: 102
  providerName: ProQuest
Title Molecular Dynamics Study of Clathrate-like Ordering of Water in Supersaturated Methane Solution at Low Pressure
URI https://www.ncbi.nlm.nih.gov/pubmed/37049727
https://www.proquest.com/docview/2799678860
https://www.proquest.com/docview/2800625655
https://pubmed.ncbi.nlm.nih.gov/PMC10095827
https://doaj.org/article/6cedeb322ca94597a89b12741ac50b6e
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tLge4IN4ElspISEhI2SZ-xPFxt2xZIbqsgBW9RX4FKtqk6kOIf884j7LV3rj0YLuS4xlnvs8ZfwPwRqWOWyFtzKnOYs6ki421NnY8YTn3MhEmHOhPLrOLa_5xKqYHkPV3YZqkfWtmJ9V8cVLNfja5lcuFHfZ5YsOrySgNwCBH0n4Ihxh_e47e0awUY1L7_ZIhoR8u2jKzfh10X6hqtCj_RaBGqP_26_hGPNrPlbwRfMYP4H6HGslpO7uHcOCrR3B31Bdrewz1pC9zS963NebXJKQI_iF1SUZzhHlBEiKez3558jmobWLECl3fsXVFZhX5ul0iEAwqn9jiyMSHI3VP-lMzojfkU_2btLcJV_4JXI_Pv40u4q6WQmwR0G1iqmhqOb7ZuE5MlpiyZKVMHeNWeeFxLRNBvXKldDoVOpFeUpempaaece6MZE_hqKor_xyIQMiUGF3anGquTKISHOWtYyJnnjkWwbt-fYtlK5lRINUIxihuGSOCs2CB3cCgdt001KsfRWfzIrPeIemn1GrFkQHpXJk06O5oK_BpfARvg_2KsCfRSFZ3VwtwvkHdqjiVPFNcIheO4Lg3cdFt1nVBJZI-medhNq933WjA8O0E17re4pg83DZF9CsieNZ6xG7OTCLNQj-MIN_zlb2H2u9Bz26kvHtPfvH_f30J9ygCr5AXR7NjONqstv4VAqWNGeDumEr8zccfBnDn7Pzy6sugOXQYNDvmLxroHJ0
link.rule.ids 230,314,727,780,784,864,885,2102,12056,12765,21388,27924,27925,31719,31720,33373,33374,33744,33745,43310,43600,43805,53791,53793,73745,74035,74302
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BOZQL4k2ggJGQkJCiJrYTxydUFpYFdsuBVvRmObYDK0qy7EOIf89MHtuuKnG1fbD92Z5vxvY3AC916qXLlIslt3kshfJx6ZyLvUxEIYNKspIC-rPjfHIqP51lZ33AbdU_qxzOxPag9o2jGPkhV8jM0V_LkzeL3zFljaLb1T6FxnW4IQWabvopPv6wdbhStE7dTaZA1_7wV5dwNqxIAYbrVpXywha1kv1XD-ZLlmn31eQlMzS-Dbd6_siOOsDvwLVQ34X90ZC27R40syHhLXvXZZtfMXos-Jc1FRudI-EjcYj4fP4zsC-ku4m2i6q-YemSzWv2dbNASkh6n1ji2SxQcD2wIX7G7JpNmz-s-1e4DPfhdPz-ZDSJ-6wKsUNqt4655qmTeMZJm5R5UlaVqFTqhXQ6ZKHgCA8P2lfK2zSziQqK-zStLA9CSl8q8QD26qYOj4BlSJ6S0lau4FbqMtEJtgrOi6wQQXgRwethfs2iE88w6HQQGOYKGBG8JQS2DUn3ui1olt9Nv41M7oJH959zZ7VEX8gWukxJgce6DEcTInhF-BnanQiSs_0nA-wv6VyZIyVzLRV6xREcDBCbftuuzMUii-DFthoBpFsUnOtmg20K-neKPDiL4GG3IrZ9FgodLmSEERQ7a2VnULs19fxHK-qdEtnF2X_8_349h_3JyWxqph-PPz-BmxwpF72I4_kB7K2Xm_AUKdK6fNbug3_vvxOi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BVgIuiGcJFDASEhJStI7txMkJtduuCnSXCqjoLXJsB1aUZNmHEP-emTy2XVXiavtgezwz39jjbwBeZ5FTNtY2VMIkoZLahYW1NnSKy1R5zeOCLvQn0-T4TH04j8-7_Kdll1bZ28TGULva0h35UGhE5hivJXxYdmkRp4fjd_PfIVWQopfWrpzGTdhBr8jFAHYOjqannzfhV4S-qn3XlBjoD3-15Wf9kvhgRNZwVF56pobA_7qZvuKntnMorzil8T2426FJtt-K_z7c8NUDuD3qi7g9hHrSl79lh23t-SWj1MG_rC7Z6ALhH1FFhBezn559IhZO9GTU9Q1bF2xWsS_rOQJEYv_EFscmnq7aPetv05hZsZP6D2t_GS78IzgbH30dHYddjYXQItBbhSITkVVo8ZThRcKLspSljpxUNvOxTwUKS_jMldqZKDZcey1cFJVGeKmUK7R8DIOqrvwTYDFCKV6Y0qbCqKzgGcdR3joZp9JLJwN42-9vPm-pNHIMQUgY-TVhBHBAEtgMJBbspqFefM87pcoT650v0CRZkymMjEyaFRHx8Rgb42p8AG9IfjnpKgrJmu7LAc6XWK_yfa2STGmMkQPY60Wcd0q8zC-PXACvNt0oQHpTwb2u1zgmpV-oiIrjAHbbE7GZs9QYfiE-DCDdOitbi9ruqWY_GorviKAv7v7T_8_rJdxCJchP3k8_PoM7AvEXpceJZA8Gq8XaP0e8tCpedIrwD053GT4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+Dynamics+Study+of+Clathrate-like+Ordering+of+Water+in+Supersaturated+Methane+Solution+at+Low+Pressure&rft.jtitle=Molecules+%28Basel%2C+Switzerland%29&rft.au=Belosludov%2C+Rodion+V&rft.au=Gets%2C+Kirill+V&rft.au=Zhdanov%2C+Ravil+K&rft.au=Bozhko%2C+Yulia+Y&rft.date=2023-03-26&rft.pub=MDPI+AG&rft.issn=1420-3049&rft.eissn=1420-3049&rft.volume=28&rft.issue=7&rft_id=info:doi/10.3390%2Fmolecules28072960&rft.externalDocID=A746947254
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1420-3049&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1420-3049&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1420-3049&client=summon