Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood
Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknow...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 33; pp. E513 - E518 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
16.08.2011
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.1107759108 |
Cover
Loading…
Abstract | Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. |
---|---|
AbstractList | Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. [PUBLICATION ABSTRACT] Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk.Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. To summarize, this study provides evidence in humans that maternal psychosocial stress exposure during gestation is a significant predictor of the offspring's subsequent leukocyte telomere length, a marker of cellular aging, in young adulthood. This, in turn, suggests that the trajectory of cellular aging in humans may be influenced by stress in intrauterine life, thereby potentially increasing the susceptibility of prenatally stressed individuals for complex, common age-related diseases. Many questions remain concerning the exact mechanisms underlying prenatal programming of telomere length and the directionality of the associations among prenatal stress, telomere length, and later health outcomes. Nonetheless, this study represents an important step, and these results add further evidence to the growing awareness that disease pathways for complex, common age-related disorders may have their foundations very early in life. Our study has a few limitations. First, prenatal stress exposure was assessed retrospectively. Although retrospective assessments of psychosocial factors such as stress are prone to biases such as “after-the-fact” reporting (i.e., individuals who develop health disorders are more prone to retrospectively report higher levels of adverse exposures before the development of the disorder) and those produced by memory and current psychological state (affect/mood), we believe it is unlikely these biases significantly impacted our assessment of prenatal stress in the present study. All subjects were healthy young adults; they received identical information before and upon entering the study, they were not provided any information about the study hypotheses, and they (as well as the experimenters) were blinded to and had no a priori knowledge about the expected direction of study findings. Subjects in the two groups did not differ in their current baseline psychological state (depressive symptoms, perceived stress) or memory performance scores. Moreover, our use of major negative life events to retrospectively assess psychosocial stress exposure provides greater confidence for construct validity than would have been the case for retrospective assessments of other components of stress such as perceived severity of stress appraisals or stress symptoms. Second, men were underrepresented in our study. Some studies have reported sex-specific effects of prenatal stress exposure on certain outcomes. As the effect of prenatal stress on telomere length in the present study was largest in the women only group, this raises the intriguing possibility and speculation regarding potential sex-specific programming effects in this context. However, we did not have the statistical power to examine possible sex-specific programming effects. There are several pathways that may have led to the striking observation in the present study. Exposure to high levels of maternal stress during pregnancy is known to produce deleterious effects on the offspring's developing endocrine, immune, and metabolic systems, and our previously published studies in this cohort have reported that the prenatally stressed individuals exhibited alterations in several of these parameters, including higher stimulated levels of IL-6, a cytokine that has been directly associated with shorter telomere length. Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring ( Fig. P1 ). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, postnatal early-life adversity, and concurrent stress level), and was more pronounced in women. The magnitude of the observed difference in leukocyte telomere length between the prenatal stress exposure group and the comparison group is striking. The leukocyte telomere length of individuals in the prenatally stressed individuals was, on average, 178 bp shorter than that of individuals in the comparison group (and 295 bp shorter in female subjects). This effect equates to a difference of 0.41 SDs in telomere length in the prenatal stress exposure group relative to the comparison group (and 0.68 SDs in female subjects). Based on the most recent and comprehensive review of studies of age-related attrition in telomere length ( 4 ), translating telomere shortening of this observed difference to years of aging indicates that the leukocytes of individuals in the prenatal stress group aged the equivalent of approximately 3.5 additional years (5 additional years in the women-only group) relative to those in the comparison group. The objective of the present study was to test the hypothesis that maternal psychosocial stress exposure during pregnancy is associated with shorter telomeres in their offspring during adult life. Because it is not possible to randomly assign exposure to stress during human pregnancy, we approximated experimental exposure by enrolling young adults whose mothers happened to have experienced a high level of psychosocial stress during pregnancy (a major negative life event; the prenatal stress group) and comparing them with a group of subjects whose mothers had not been exposed to negative life events during pregnancy (comparison group). The potential confounding effects of other sociodemographic, obstetric, medical, and behavioral risk factors were addressed by using a stringent set of exclusionary criteria. Moreover, because prenatal stress exposure may be associated with subsequent conditions that may influence telomere length, such as presence of postnatal early-life adversity, inadequate parental care, or concurrent stress level, we assessed these constructs to statistically account for their possible confounding effects. A rapidly growing body of empirical evidence suggests that the origins of susceptibility for many common age-related disorders can be traced back to the intrauterine period of life (i.e., the concept of fetal, or developmental, origins of health and disease risk) ( 1 ). Exposure to psychosocial stress and/or biological stress mediators during gestation has been identified as one salient condition that may underlie the long-term effects of the intrauterine environment ( 2 ). The link between psychosocial stress exposure and adverse health outcomes is well established, and the elucidation of biological processes underlying this relationship is of ongoing interest. In recent years, accumulating evidence supports an important role for telomere biology as a potential mechanism linking stress and disease risk ( 3 ). Telomeres are DNA–protein complexes that cap chromosomal ends and promote chromosomal stability. They shorten in all replicating somatic cells, including white blood cells, with age and with conditions that produce oxidative stress. Declines in the telomere/telomerase maintenance system serve as a biomarker of cellular integrity and likely play a causal role in aging. One important question that has yet to be addressed is whether exposure to stress during intrauterine development can produce variations in telomere length, thereby potentially setting up a long-term trajectory at birth that contributes to individual susceptibility for age-related common diseases. Evidence linking other adverse conditions during fetal development (e.g., intrauterine growth restriction, poor maternal nutrition during pregnancy) with telomere length provides biological plausibility for this relationship. Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. |
Author | Kumsta, Robert Hellhammer, Dirk H Wadhwa, Pathik D Wüst, Stefan Entringer, Sonja Epel, Elissa S Blackburn, Elizabeth H Lin, Jue |
Author_xml | – sequence: 1 fullname: Entringer, Sonja – sequence: 2 fullname: Epel, Elissa S – sequence: 3 fullname: Kumsta, Robert – sequence: 4 fullname: Lin, Jue – sequence: 5 fullname: Hellhammer, Dirk H – sequence: 6 fullname: Blackburn, Elizabeth H – sequence: 7 fullname: Wüst, Stefan – sequence: 8 fullname: Wadhwa, Pathik D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21813766$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkk1vEzEQhi1URNPAmRusuMBl25n1-mMvlVBVPqRKHAJny_HaiavNOtheoP8ep00JVAIkS7bGzzuedzwn5GgMoyXkOcIpgqBn21GnUyxHwToE-YjMEDqsedvBEZkBNKKWbdMek5OUrgGgYxKekOMGJVLB-YwsFznalCr7YxvSFG3lx7Jy1FO20Y-2GrwrwVTplILxOtu--u7zukrrEAtSZTuEjS3CwY6rEi_6mzCNq0r305DXIfRPyWOnh2Sf7fc5Wby7_Hzxob769P7jxdur2jBKc43OoqAt9Ey3vWhM2_XQWE6X2iyplMYwbJwR1DnZUs5YJ0wjW3AanBOSzsn5XdbttNzY3tidiUFto9_oeKOC9urPm9Gv1Sp8UxSZxFLBnLzeJ4jh62RTVhufjB0GPdowJSVLIwWghEK--SeJnFNGARH_j7ZcUg4NFwV99QC9DlMcS8dun-46fgu9-N3lL3v3H1oAdgeYGFKK1injs84-7Ez7QSGo3eCo3eCow-AU3dkD3X3qvyte7kvZXRxoqShVlwzpgXA6KL2KPqkviwawhdLGpivt-Ql0pdoK |
CitedBy_id | crossref_primary_10_1111_cdep_12403 crossref_primary_10_2217_epi_13_8 crossref_primary_10_1038_490169a crossref_primary_10_1016_j_envint_2018_01_005 crossref_primary_10_1152_physrev_00029_2013 crossref_primary_10_1002_jbmr_1995 crossref_primary_10_1038_s41598_018_31185_z crossref_primary_10_1016_j_bbi_2013_04_005 crossref_primary_10_18632_oncotarget_14793 crossref_primary_10_1016_j_bbr_2019_112145 crossref_primary_10_1002_bies_201800077 crossref_primary_10_1146_annurev_clinpsy_032816_045054 crossref_primary_10_3390_v16050755 crossref_primary_10_1016_j_childyouth_2021_106280 crossref_primary_10_1017_thg_2015_3 crossref_primary_10_1111_cdev_14126 crossref_primary_10_1155_2012_638476 crossref_primary_10_1016_j_bbi_2019_04_021 crossref_primary_10_1371_journal_pone_0136123 crossref_primary_10_3389_fphys_2017_00535 crossref_primary_10_3389_fphys_2018_00602 crossref_primary_10_1016_j_exger_2018_09_008 crossref_primary_10_1152_ajpendo_00354_2020 crossref_primary_10_1098_rstb_2017_0151 crossref_primary_10_1038_s41598_019_46338_x crossref_primary_10_1111_j_1365_294X_2011_05430_x crossref_primary_10_1016_j_earlhumdev_2015_08_008 crossref_primary_10_1016_j_pneurobio_2022_102353 crossref_primary_10_1080_10408363_2018_1504274 crossref_primary_10_1371_journal_pone_0145544 crossref_primary_10_3390_ijerph192113727 crossref_primary_10_1016_j_bbi_2016_02_002 crossref_primary_10_1017_S095457941800038X crossref_primary_10_1027_1016_9040_a000233 crossref_primary_10_1016_j_neuropharm_2021_108518 crossref_primary_10_1016_j_neubiorev_2016_06_003 crossref_primary_10_1111_mec_15694 crossref_primary_10_1093_nar_gky1149 crossref_primary_10_1177_0300985813516642 crossref_primary_10_1016_j_jclinane_2017_03_047 crossref_primary_10_1097_NMD_0000000000000116 crossref_primary_10_31887_DCNS_2015_17_2_rpost crossref_primary_10_1016_j_ajog_2016_01_177 crossref_primary_10_1007_s11920_015_0625_6 crossref_primary_10_1139_cjz_2017_0094 crossref_primary_10_1002_bies_201900227 crossref_primary_10_2105_AJPH_2015_302571 crossref_primary_10_1158_1940_6207_CAPR_12_0370 crossref_primary_10_1016_j_jpsychires_2017_06_002 crossref_primary_10_1073_pnas_1306639110 crossref_primary_10_1038_s41598_020_66729_9 crossref_primary_10_1126_scisignal_2003580 crossref_primary_10_1016_j_jgg_2013_08_001 crossref_primary_10_1016_j_metabol_2012_08_020 crossref_primary_10_5765_jkacap_2013_24_4_183 crossref_primary_10_1111_nyas_12314 crossref_primary_10_1177_1933719118804409 crossref_primary_10_1007_BF03401341 crossref_primary_10_1186_s13039_018_0361_9 crossref_primary_10_1016_j_etap_2021_103718 crossref_primary_10_1093_ije_dyr236 crossref_primary_10_1016_j_aanat_2015_02_006 crossref_primary_10_1111_mec_17064 crossref_primary_10_1073_pnas_1422715112 crossref_primary_10_1159_000363325 crossref_primary_10_3389_fpsyt_2017_00208 crossref_primary_10_1016_j_neubiorev_2017_08_002 crossref_primary_10_1159_000542676 crossref_primary_10_1016_j_psyneuen_2018_12_011 crossref_primary_10_1371_journal_pone_0097102 crossref_primary_10_1016_j_ajpath_2017_06_019 crossref_primary_10_1111_1365_2435_12630 crossref_primary_10_1161_CIRCRESAHA_118_312202 crossref_primary_10_1146_annurev_animal_022513_114204 crossref_primary_10_1007_s10522_023_10060_z crossref_primary_10_1073_pnas_1113306109 crossref_primary_10_3390_nu15214497 crossref_primary_10_1007_s00103_016_2436_2 crossref_primary_10_1016_j_bbacli_2015_04_002 crossref_primary_10_1016_j_psyneuen_2018_01_009 crossref_primary_10_1016_j_jneuroim_2020_577187 crossref_primary_10_51249_hs_v4i02_1966 crossref_primary_10_1097_HJH_0000000000000217 crossref_primary_10_1098_rspb_2022_0868 crossref_primary_10_1111_mec_17291 crossref_primary_10_1111_spc3_12198 crossref_primary_10_1111_and_12008 crossref_primary_10_1016_j_envint_2015_02_008 crossref_primary_10_1055_a_1972_5384 crossref_primary_10_1098_rsbl_2015_0396 crossref_primary_10_1098_rspb_2019_1845 crossref_primary_10_1371_journal_pone_0163824 crossref_primary_10_1017_S002966511300387X crossref_primary_10_1038_s41598_021_91987_6 crossref_primary_10_1038_tp_2016_106 crossref_primary_10_1111_mec_16870 crossref_primary_10_1016_j_arr_2015_08_002 crossref_primary_10_2147_CLEP_S348763 crossref_primary_10_1186_s12958_020_00664_2 crossref_primary_10_1111_j_1751_9004_2012_00465_x crossref_primary_10_1371_journal_pone_0086161 crossref_primary_10_1097_GCO_0000000000000779 crossref_primary_10_1111_mec_17166 crossref_primary_10_1016_j_psyneuen_2019_01_006 crossref_primary_10_1038_s41366_019_0423_z crossref_primary_10_1007_s00125_016_3915_6 crossref_primary_10_1007_s42764_024_00123_x crossref_primary_10_3109_10253890_2015_1017464 crossref_primary_10_1016_j_nbd_2015_12_007 crossref_primary_10_1515_cclm_2019_0235 crossref_primary_10_1016_j_jpsychores_2022_111020 crossref_primary_10_1093_aje_kwu277 crossref_primary_10_1080_00223980_2018_1483311 crossref_primary_10_1155_2012_632548 crossref_primary_10_1111_joim_12083 crossref_primary_10_1007_s10826_022_02299_w crossref_primary_10_1016_j_psyneuen_2019_104537 crossref_primary_10_1016_j_pneurobio_2014_10_001 crossref_primary_10_1111_bjhp_12772 crossref_primary_10_1017_S0033291722003397 crossref_primary_10_1016_j_jaac_2015_04_006 crossref_primary_10_1111_mec_15888 crossref_primary_10_1016_j_gene_2019_01_017 crossref_primary_10_1098_rspb_2020_2190 crossref_primary_10_1016_j_schres_2013_06_043 crossref_primary_10_1016_j_psyneuen_2020_104848 crossref_primary_10_1016_j_neubiorev_2017_11_002 crossref_primary_10_1016_j_nut_2019_05_002 crossref_primary_10_1176_appi_ajp_2020_19101003 crossref_primary_10_1093_nar_gky155 crossref_primary_10_5665_sleep_3328 crossref_primary_10_1016_j_psyneuen_2020_104841 crossref_primary_10_3390_cells11233777 crossref_primary_10_1016_j_yhbeh_2024_105631 crossref_primary_10_1186_1472_6785_12_17 crossref_primary_10_1016_j_psyneuen_2018_05_025 crossref_primary_10_1002_ajhb_22954 crossref_primary_10_1016_j_neubiorev_2019_03_010 crossref_primary_10_3892_mmr_2016_5231 crossref_primary_10_1016_j_jpeds_2015_01_003 crossref_primary_10_3390_genes9050241 crossref_primary_10_1126_science_aab3389 crossref_primary_10_3389_fgene_2024_1264028 crossref_primary_10_1016_j_psyneuen_2014_10_016 crossref_primary_10_3389_fgene_2015_00082 crossref_primary_10_1016_j_ijdevneu_2017_03_007 crossref_primary_10_1038_npp_2017_73 crossref_primary_10_1002_ajhb_22906 crossref_primary_10_1002_ajpa_24338 crossref_primary_10_1016_j_ajog_2012_11_033 crossref_primary_10_1007_s10578_021_01279_3 crossref_primary_10_1016_j_nut_2014_04_001 crossref_primary_10_1146_annurev_publhealth_031912_114447 crossref_primary_10_1177_1099800416672005 crossref_primary_10_1016_j_bbr_2014_12_001 crossref_primary_10_1016_j_placenta_2017_09_007 crossref_primary_10_1016_j_socscimed_2013_02_030 crossref_primary_10_1242_jeb_216176 crossref_primary_10_1097_PSY_0000000000000130 crossref_primary_10_1242_jeb_212373 crossref_primary_10_1002_2211_5463_12006 crossref_primary_10_1038_s41390_022_01933_z crossref_primary_10_1016_j_jad_2023_08_074 crossref_primary_10_1007_s40615_017_0388_3 crossref_primary_10_3390_genes7040015 crossref_primary_10_1027_1016_9040_a000195 crossref_primary_10_1159_000362656 crossref_primary_10_1002_ece3_9144 crossref_primary_10_1016_j_psyneuen_2015_08_019 crossref_primary_10_1017_S0140525X1600234X crossref_primary_10_1111_jcpp_13358 crossref_primary_10_1016_j_placenta_2020_06_022 crossref_primary_10_1111_mec_17114 crossref_primary_10_1177_0002764218796995 crossref_primary_10_1186_s12983_018_0275_8 crossref_primary_10_31887_DCNS_2019_21_4_azannas crossref_primary_10_1007_s00129_020_04623_1 crossref_primary_10_1177_0300060516667132 crossref_primary_10_1016_j_psyneuen_2020_105043 crossref_primary_10_1186_s12967_024_05879_0 crossref_primary_10_1016_j_jad_2024_09_143 crossref_primary_10_1016_j_arr_2018_07_006 crossref_primary_10_3390_antiox12071354 crossref_primary_10_3390_nu14183723 crossref_primary_10_1002_imhj_21753 crossref_primary_10_1098_rspb_2014_2263 crossref_primary_10_1002_dev_22238 crossref_primary_10_1016_j_asieco_2021_101409 crossref_primary_10_3945_ajcn_115_112326 crossref_primary_10_1002_hipo_22034 crossref_primary_10_1136_postgradmedj_2015_133708 crossref_primary_10_1016_j_expneurol_2017_06_001 crossref_primary_10_1016_j_brainres_2014_04_004 crossref_primary_10_1016_j_yhbeh_2022_105232 crossref_primary_10_1111_obr_12126 crossref_primary_10_1186_s12884_022_04464_x crossref_primary_10_1186_s12916_017_0964_8 crossref_primary_10_1017_S2040174420000409 crossref_primary_10_1038_mp_2014_70 crossref_primary_10_3389_fneur_2020_00098 crossref_primary_10_1086_720440 crossref_primary_10_1155_2013_485082 crossref_primary_10_1016_j_jpsychires_2024_04_037 crossref_primary_10_1097_EE9_0000000000000049 crossref_primary_10_3168_jds_2015_10095 crossref_primary_10_1016_j_bpobgyn_2013_08_017 crossref_primary_10_1038_tp_2015_134 crossref_primary_10_1016_j_exger_2013_08_005 crossref_primary_10_1371_journal_pone_0067227 crossref_primary_10_1016_j_jpsychires_2022_01_063 crossref_primary_10_1016_j_nicl_2018_01_033 crossref_primary_10_1016_j_psyneuen_2018_12_222 crossref_primary_10_1016_j_jad_2017_08_022 crossref_primary_10_1017_S2040174424000291 crossref_primary_10_1007_s11011_017_0062_9 crossref_primary_10_1124_pr_111_005207 crossref_primary_10_15406_mojgg_2018_03_00135 crossref_primary_10_4161_epi_21180 crossref_primary_10_1016_j_coi_2012_05_001 crossref_primary_10_1016_j_envpol_2020_115228 crossref_primary_10_3390_cells10061423 crossref_primary_10_1038_srep01542 crossref_primary_10_1371_journal_pone_0143951 crossref_primary_10_1134_S1990519X12050112 crossref_primary_10_1136_bmjopen_2023_071926 crossref_primary_10_1016_j_socscimed_2012_02_019 crossref_primary_10_1073_pnas_1514351113 crossref_primary_10_3390_ijms22073657 crossref_primary_10_1111_mcn_12857 crossref_primary_10_1038_s41598_017_07784_7 crossref_primary_10_1007_s00442_021_04917_8 crossref_primary_10_1016_j_metabol_2011_10_005 crossref_primary_10_3389_fendo_2017_00295 crossref_primary_10_1038_mp_2017_26 crossref_primary_10_1017_S0954579415000280 crossref_primary_10_1016_j_biopsych_2012_06_025 crossref_primary_10_1097_NNR_0000000000000009 crossref_primary_10_1093_carcin_bgaa121 crossref_primary_10_1007_s00125_021_05566_5 crossref_primary_10_1098_rspb_2013_3287 crossref_primary_10_3389_fpsyt_2020_565239 crossref_primary_10_1002_bdrc_21021 crossref_primary_10_4045_tidsskr_14_1194 crossref_primary_10_3390_ijms22147458 crossref_primary_10_1016_j_psyneuen_2023_106058 crossref_primary_10_1177_1745691613513467 crossref_primary_10_1038_s41467_025_57794_7 crossref_primary_10_1016_j_psyneuen_2017_11_008 crossref_primary_10_47671_TVG_78_22_177 crossref_primary_10_1080_15384101_2020_1728016 crossref_primary_10_1007_s15016_013_0461_z crossref_primary_10_1016_j_bbacli_2014_11_002 crossref_primary_10_1038_s41370_022_00474_1 crossref_primary_10_4081_rp_2023_796 crossref_primary_10_1093_ije_dys127 crossref_primary_10_1371_journal_pone_0064762 crossref_primary_10_1210_clinem_dgz145 crossref_primary_10_1016_j_envres_2016_04_037 crossref_primary_10_1016_j_placenta_2022_05_002 crossref_primary_10_1098_rspb_2020_1378 crossref_primary_10_3390_genes11121425 crossref_primary_10_1007_s40572_017_0165_9 crossref_primary_10_1016_j_neubiorev_2017_07_003 crossref_primary_10_1016_j_psyneuen_2013_03_010 crossref_primary_10_1038_s41598_023_37555_6 |
Cites_doi | 10.1073/pnas.95.10.5607 10.1161/01.CIR.0000163550.70487.0B 10.1016/S0140-6736(09)60234-8 10.1186/1742-5573-1-3 10.1530/EJE-10-0241 10.1111/j.1749-6632.1999.tb08107.x 10.1038/nature09603 10.1096/fj.08-122796 10.1016/j.jim.2009.09.012 10.1002/9780470478509.neubb002065 10.1073/pnas.1009838108 10.1126/science.1095292 10.14310/horm.2002.1217 10.1016/j.bbi.2010.02.002 10.1097/MED.0b013e3283405921 10.1002/ajhb.21127 10.1097/00004583-200312000-00022 10.1002/dev.20316 10.1001/jama.298.14.1685 10.1159/000014172 10.1111/j.1365-2796.2007.01890.x 10.1096/fj.07-099523 10.1016/j.bbi.2007.12.004 10.1093/nar/30.10.e47 10.1161/01.RES.0000122141.18795.9C 10.1158/1055-9965.EPI-08-0614 10.1037/0033-2909.130.1.115 10.1038/35040500 10.1073/pnas.1003890107 10.4049/jimmunol.179.6.4249 10.1146/annurev-anthro-091908-164350 10.1016/j.psyneuen.2005.02.004 10.1016/j.reprotox.2006.08.012 10.1001/jama.2009.754 10.1002/1098-2345(200103)53:3<123::AID-AJP3>3.0.CO;2-V 10.1016/j.earlhumdev.2010.06.002 10.1093/aje/kwj346 10.1016/j.yhbeh.2008.11.006 10.1016/S0140-6736(05)66630-5 10.1210/en.2003-1759 10.1203/00006450-200209000-00012 10.1016/S1470-2045(08)70234-1 10.1016/j.biopsych.2010.02.026 10.1016/j.ajog.2008.03.006 10.1016/S0968-0004(02)02110-2 10.1353/hub.2004.0018 10.1186/1742-7622-2-11 10.1056/NEJM199801153380307 10.1093/gerona/glq180 10.1371/journal.pone.0011896 10.1186/1742-5573-6-2 10.1016/S0014-5793(99)00336-1 10.1002/icd.649 10.1016/j.biopsych.2011.01.035 10.1056/NEJM197608122950701 10.1016/j.biopsych.2009.08.014 10.1016/j.yhbeh.2004.11.019 10.1016/S1097-2765(03)00174-6 10.1073/pnas.0407162101 10.1093/ajcn/85.3.845 10.1016/j.psyneuen.2005.08.011 10.1016/S0895-7061(98)00202-7 10.1038/nrendo.2009.195 10.1203/pdr.0b013e318045be53 10.1111/j.1467-8721.2009.01596.x 10.1006/brbi.1996.0020 10.1016/j.pbiomolbio.2010.12.005 10.1016/j.psyneuen.2010.09.010 10.1097/PSY.0b013e31820573b6 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Aug 16, 2011 |
Copyright_xml | – notice: Copyright National Academy of Sciences Aug 16, 2011 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.1107759108 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts AGRICOLA MEDLINE - Academic Nucleic Acids Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | E518 |
ExternalDocumentID | PMC3158153 2429467471 21813766 10_1073_pnas_1107759108 108_33_E513 US201400182911 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: R01 HD-065825 – fundername: NICHD NIH HHS grantid: P01 HD-047609 – fundername: NICHD NIH HHS grantid: R01 HD065825 – fundername: NICHD NIH HHS grantid: R01 HD060628 – fundername: NICHD NIH HHS grantid: R01 HD-06028 – fundername: NICHD NIH HHS grantid: P01 HD047609 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC AAYXX ABXSQ ACHIC ADQXQ ADXHL AQVQM CITATION IPSME CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c533t-1fe17340d5a4d72c49d02e63bacb388cc512fc73ff84365597c2840fa0ff783 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:19:33 EDT 2025 Fri Jul 11 11:08:06 EDT 2025 Fri Jul 11 15:10:57 EDT 2025 Thu Jul 10 18:48:31 EDT 2025 Mon Jun 30 08:26:03 EDT 2025 Mon Jul 21 06:05:05 EDT 2025 Tue Jul 01 00:47:14 EDT 2025 Thu Apr 24 22:55:32 EDT 2025 Wed Nov 11 00:29:38 EST 2020 Wed Dec 27 19:21:35 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Language | English |
License | Freely available online through the PNAS open access option. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c533t-1fe17340d5a4d72c49d02e63bacb388cc512fc73ff84365597c2840fa0ff783 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved July 15, 2011 (received for review June 3, 2011) Author contributions: S.E., D.H.H., S.W., and P.D.W. designed research; S.E. and R.K. performed research; S.E., J.L., and E.H.B. analyzed data; and S.E., E.S.E., E.H.B., and P.D.W. wrote the paper. |
OpenAccessLink | https://www.pnas.org/content/pnas/108/33/E513.full.pdf |
PMID | 21813766 |
PQID | 884299667 |
PQPubID | 42026 |
ParticipantIDs | proquest_journals_884299667 crossref_primary_10_1073_pnas_1107759108 pnas_primary_108_33_E513 fao_agris_US201400182911 proquest_miscellaneous_1468360267 proquest_miscellaneous_884270180 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3158153 proquest_miscellaneous_1663530111 crossref_citationtrail_10_1073_pnas_1107759108 pubmed_primary_21813766 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-08-16 |
PublicationDateYYYYMMDD | 2011-08-16 |
PublicationDate_xml | – month: 08 year: 2011 text: 2011-08-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2011 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 e_1_1_2_18_10_2_2 e_1_3_3_71_2 e_1_1_2_18_10_4_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 Jaffe RB (e_1_3_3_64_2) 2001 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 Hill AB (e_1_3_3_65_2) 1965; 58 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_1_2_18_10_1_2 e_1_1_2_18_10_3_2 e_1_3_3_70_2 Kuzawa CW (e_1_3_3_42_2) 2008 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 Drury SS (e_1_3_3_27_2) 2011 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 21035949 - Psychoneuroendocrinology. 2011 Jun;36(5):664-81 19786987 - Nat Rev Endocrinol. 2009 Nov;5(11):604-10 11081503 - Nature. 2000 Nov 2;408(6808):53-6 12769860 - Mol Cell. 2003 May;11(5):1379-87 14283879 - Proc R Soc Med. 1965 May;58:295-300 21577215 - Mol Psychiatry. 2012 Jul;17(7):719-27 11253847 - Am J Primatol. 2001 Mar;53(3):123-30 18070000 - J Intern Med. 2008 Mar;263(3):302-12 17344508 - Am J Clin Nutr. 2007 Mar;85(3):845-52 18799354 - Lancet Oncol. 2008 Nov;9(11):1048-57 12114022 - Trends Biochem Sci. 2002 Jul;27(7):339-44 15574496 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5 20678755 - Biol Psychiatry. 2010 Sep 15;68(6):e21-2; author reply e23-4 17043079 - Am J Epidemiol. 2007 Jan 1;165(1):14-21 20619976 - Early Hum Dev. 2010 Jul;86(7):451-6 21148804 - Psychosom Med. 2011 Jan;73(1):16-22 21252306 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3011-6 19126595 - FASEB J. 2009 May;23(5):1521-8 17785865 - J Immunol. 2007 Sep 15;179(6):4249-54 20962631 - Curr Opin Endocrinol Diabetes Obes. 2010 Dec;17(6):507-16 18222063 - Brain Behav Immun. 2008 May;22(4):600-5 19190150 - Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):551-60 15507128 - Epidemiol Perspect Innov. 2004 Oct 04;1(1):3 16269083 - Emerg Themes Epidemiol. 2005 Nov 03;2:11 16112303 - Lancet. 2005 Aug 20-26;366(9486):662-4 15851602 - Circulation. 2005 May 3;111(17):2171-7 15222684 - Hum Biol. 2004 Feb;76(1):127-46 20689593 - PLoS One. 2010;5(7):e11896 10232505 - Am J Hypertens. 1999 Apr;12(4 Pt 1):427-32 19491187 - JAMA. 2009 Jun 3;301(21):2252-9 18230683 - FASEB J. 2008 Jun;22(6):2037-44 19427960 - Lancet. 2009 May 9;373(9675):1654-7 19084531 - Horm Behav. 2009 Feb;55(2):292-8 15375258 - Science. 2004 Sep 17;305(5691):1733-6 10217398 - FEBS Lett. 1999 Apr 1;448(1):4-8 15142991 - Endocrinology. 2004 Aug;145(8):3778-87 16298085 - Psychoneuroendocrinology. 2006 Apr;31(3):277-87 17413860 - Pediatr Res. 2007 May;61(5 Pt 1):520-4 12000852 - Nucleic Acids Res. 2002 May 15;30(10):e47 10681890 - Ann N Y Acad Sci. 1999;896:85-95 19837074 - J Immunol Methods. 2010 Jan 31;352(1-2):71-80 20167271 - Brain Behav Immun. 2010 May;24(4):529-30 20442329 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8507-12 12193671 - Pediatr Res. 2002 Sep;52(3):377-81 10516397 - Biol Neonate. 1999 Nov;76(5):301-10 9428819 - N Engl J Med. 1998 Jan 15;338(3):171-9 21147148 - Prog Biophys Mol Biol. 2011 Jul;106(1):323-36 21030466 - J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):202-13 14717652 - Psychol Bull. 2004 Jan;130(1):115-42 9576930 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5607-10 17046196 - Reprod Toxicol. 2007 Apr-May;23(3):297-307 19534788 - Epidemiol Perspect Innov. 2009 Jun 17;6:2 19269917 - Hormones (Athens). 2009 Jan-Mar;8(1):7-22 21113150 - Nature. 2011 Jan 6;469(7328):102-6 18683180 - Dev Psychobiol. 2008 Sep;50(6):579-87 21489410 - Biol Psychiatry. 2011 Sep 1;70(5):465-71 20679357 - Eur J Endocrinol. 2010 Oct;163(4):601-7 19828140 - Biol Psychiatry. 2010 Mar 15;67(6):531-4 21319244 - Am J Hum Biol. 2011 Mar-Apr;23(2):149-67 14627890 - J Am Acad Child Adolesc Psychiatry. 2003 Dec;42(12):1524-9 17925521 - JAMA. 2007 Oct 10;298(14):1685-7 15919579 - Psychoneuroendocrinology. 2005 Sep;30(8):724-43 18448080 - Am J Obstet Gynecol. 2008 Nov;199(5):498.e1-7 934222 - N Engl J Med. 1976 Aug 12;295(7):349-53 8954595 - Brain Behav Immun. 1996 Sep;10(3):221-34 15777808 - Horm Behav. 2005 Apr;47(4):430-8 15031270 - Circ Res. 2004 Mar 19;94(5):575-84 |
References_xml | – ident: e_1_3_3_11_2 doi: 10.1073/pnas.95.10.5607 – ident: e_1_3_3_58_2 doi: 10.1161/01.CIR.0000163550.70487.0B – ident: e_1_3_3_5_2 doi: 10.1016/S0140-6736(09)60234-8 – ident: e_1_3_3_67_2 doi: 10.1186/1742-5573-1-3 – ident: e_1_3_3_60_2 doi: 10.1530/EJE-10-0241 – ident: e_1_3_3_41_2 doi: 10.1111/j.1749-6632.1999.tb08107.x – ident: e_1_3_3_16_2 doi: 10.1038/nature09603 – ident: e_1_3_3_36_2 doi: 10.1096/fj.08-122796 – ident: e_1_3_3_70_2 doi: 10.1016/j.jim.2009.09.012 – ident: e_1_3_3_12_2 doi: 10.1002/9780470478509.neubb002065 – ident: e_1_3_3_46_2 doi: 10.1073/pnas.1009838108 – ident: e_1_1_2_18_10_1_2 doi: 10.1126/science.1095292 – ident: e_1_3_3_62_2 doi: 10.14310/horm.2002.1217 – volume: 58 start-page: 295 year: 1965 ident: e_1_3_3_65_2 article-title: The environment and disease: Association or causation? publication-title: Proc R Soc Med – ident: e_1_1_2_18_10_3_2 doi: 10.1016/j.bbi.2010.02.002 – ident: e_1_3_3_2_2 doi: 10.1097/MED.0b013e3283405921 – volume-title: The Endocrinology of Parturition year: 2001 ident: e_1_3_3_64_2 – ident: e_1_1_2_18_10_4_2 doi: 10.1002/ajhb.21127 – ident: e_1_3_3_71_2 doi: 10.1097/00004583-200312000-00022 – ident: e_1_3_3_33_2 doi: 10.1002/dev.20316 – ident: e_1_3_3_6_2 doi: 10.1001/jama.298.14.1685 – ident: e_1_1_2_18_10_2_2 doi: 10.1097/MED.0b013e3283405921 – ident: e_1_3_3_54_2 doi: 10.1159/000014172 – ident: e_1_3_3_56_2 doi: 10.1111/j.1365-2796.2007.01890.x – ident: e_1_3_3_37_2 doi: 10.1096/fj.07-099523 – ident: e_1_3_3_21_2 doi: 10.1016/j.bbi.2007.12.004 – ident: e_1_3_3_69_2 doi: 10.1093/nar/30.10.e47 – ident: e_1_3_3_14_2 doi: 10.1161/01.RES.0000122141.18795.9C – ident: e_1_3_3_17_2 doi: 10.1158/1055-9965.EPI-08-0614 – ident: e_1_3_3_53_2 doi: 10.1037/0033-2909.130.1.115 – ident: e_1_3_3_13_2 doi: 10.1038/35040500 – ident: e_1_3_3_44_2 doi: 10.1073/pnas.1003890107 – ident: e_1_3_3_18_2 doi: 10.4049/jimmunol.179.6.4249 – year: 2011 ident: e_1_3_3_27_2 article-title: Telomere length and early severe social deprivation: linking early adversity and cellular aging publication-title: Mol Psychiatry – ident: e_1_3_3_43_2 doi: 10.1146/annurev-anthro-091908-164350 – ident: e_1_3_3_52_2 doi: 10.1016/j.psyneuen.2005.02.004 – ident: e_1_3_3_51_2 doi: 10.1016/j.reprotox.2006.08.012 – ident: e_1_3_3_4_2 doi: 10.1001/jama.2009.754 – ident: e_1_3_3_63_2 doi: 10.1002/1098-2345(200103)53:3<123::AID-AJP3>3.0.CO;2-V – ident: e_1_3_3_40_2 doi: 10.1002/ajhb.21127 – ident: e_1_3_3_38_2 doi: 10.1016/j.earlhumdev.2010.06.002 – ident: e_1_3_3_57_2 doi: 10.1093/aje/kwj346 – ident: e_1_3_3_34_2 doi: 10.1016/j.yhbeh.2008.11.006 – ident: e_1_3_3_59_2 doi: 10.1016/S0140-6736(05)66630-5 – ident: e_1_3_3_73_2 doi: 10.1210/en.2003-1759 – ident: e_1_3_3_20_2 doi: 10.1016/j.bbi.2010.02.002 – ident: e_1_3_3_50_2 doi: 10.1203/00006450-200209000-00012 – ident: e_1_3_3_22_2 doi: 10.1016/S1470-2045(08)70234-1 – ident: e_1_3_3_28_2 doi: 10.1016/j.biopsych.2010.02.026 – ident: e_1_3_3_1_2 doi: 10.1126/science.1095292 – ident: e_1_3_3_31_2 doi: 10.1016/j.ajog.2008.03.006 – ident: e_1_3_3_61_2 doi: 10.1016/S0968-0004(02)02110-2 – ident: e_1_3_3_48_2 doi: 10.1353/hub.2004.0018 – ident: e_1_3_3_66_2 doi: 10.1186/1742-7622-2-11 – ident: e_1_3_3_7_2 doi: 10.1056/NEJM199801153380307 – ident: e_1_3_3_15_2 doi: 10.1093/gerona/glq180 – ident: e_1_3_3_29_2 doi: 10.1371/journal.pone.0011896 – ident: e_1_3_3_68_2 doi: 10.1186/1742-5573-6-2 – ident: e_1_3_3_35_2 doi: 10.1016/S0014-5793(99)00336-1 – ident: e_1_3_3_3_2 doi: 10.1002/icd.649 – ident: e_1_3_3_26_2 doi: 10.1016/j.biopsych.2011.01.035 – ident: e_1_3_3_30_2 doi: 10.1056/NEJM197608122950701 – ident: e_1_3_3_24_2 doi: 10.1016/j.biopsych.2009.08.014 – ident: e_1_3_3_72_2 doi: 10.1016/j.yhbeh.2004.11.019 – ident: e_1_3_3_10_2 doi: 10.1016/S1097-2765(03)00174-6 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.0407162101 – ident: e_1_3_3_39_2 doi: 10.1093/ajcn/85.3.845 – start-page: 253 volume-title: Evolution in Health and Disease year: 2008 ident: e_1_3_3_42_2 – ident: e_1_3_3_19_2 doi: 10.1016/j.psyneuen.2005.08.011 – ident: e_1_3_3_47_2 doi: 10.1016/S0895-7061(98)00202-7 – ident: e_1_3_3_45_2 doi: 10.1038/nrendo.2009.195 – ident: e_1_3_3_32_2 doi: 10.1203/pdr.0b013e318045be53 – ident: e_1_3_3_9_2 doi: 10.1111/j.1467-8721.2009.01596.x – ident: e_1_3_3_55_2 doi: 10.1006/brbi.1996.0020 – ident: e_1_3_3_49_2 doi: 10.1016/j.pbiomolbio.2010.12.005 – ident: e_1_3_3_23_2 doi: 10.1016/j.psyneuen.2010.09.010 – ident: e_1_3_3_25_2 doi: 10.1097/PSY.0b013e31820573b6 – reference: 20678755 - Biol Psychiatry. 2010 Sep 15;68(6):e21-2; author reply e23-4 – reference: 9576930 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5607-10 – reference: 18070000 - J Intern Med. 2008 Mar;263(3):302-12 – reference: 12769860 - Mol Cell. 2003 May;11(5):1379-87 – reference: 16112303 - Lancet. 2005 Aug 20-26;366(9486):662-4 – reference: 19786987 - Nat Rev Endocrinol. 2009 Nov;5(11):604-10 – reference: 10232505 - Am J Hypertens. 1999 Apr;12(4 Pt 1):427-32 – reference: 11081503 - Nature. 2000 Nov 2;408(6808):53-6 – reference: 20167271 - Brain Behav Immun. 2010 May;24(4):529-30 – reference: 18230683 - FASEB J. 2008 Jun;22(6):2037-44 – reference: 15375258 - Science. 2004 Sep 17;305(5691):1733-6 – reference: 12114022 - Trends Biochem Sci. 2002 Jul;27(7):339-44 – reference: 20689593 - PLoS One. 2010;5(7):e11896 – reference: 19837074 - J Immunol Methods. 2010 Jan 31;352(1-2):71-80 – reference: 15777808 - Horm Behav. 2005 Apr;47(4):430-8 – reference: 20619976 - Early Hum Dev. 2010 Jul;86(7):451-6 – reference: 15507128 - Epidemiol Perspect Innov. 2004 Oct 04;1(1):3 – reference: 16298085 - Psychoneuroendocrinology. 2006 Apr;31(3):277-87 – reference: 20679357 - Eur J Endocrinol. 2010 Oct;163(4):601-7 – reference: 21252306 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3011-6 – reference: 15851602 - Circulation. 2005 May 3;111(17):2171-7 – reference: 18222063 - Brain Behav Immun. 2008 May;22(4):600-5 – reference: 19828140 - Biol Psychiatry. 2010 Mar 15;67(6):531-4 – reference: 17344508 - Am J Clin Nutr. 2007 Mar;85(3):845-52 – reference: 19534788 - Epidemiol Perspect Innov. 2009 Jun 17;6:2 – reference: 12000852 - Nucleic Acids Res. 2002 May 15;30(10):e47 – reference: 15142991 - Endocrinology. 2004 Aug;145(8):3778-87 – reference: 21148804 - Psychosom Med. 2011 Jan;73(1):16-22 – reference: 17043079 - Am J Epidemiol. 2007 Jan 1;165(1):14-21 – reference: 10217398 - FEBS Lett. 1999 Apr 1;448(1):4-8 – reference: 19427960 - Lancet. 2009 May 9;373(9675):1654-7 – reference: 15222684 - Hum Biol. 2004 Feb;76(1):127-46 – reference: 19190150 - Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):551-60 – reference: 8954595 - Brain Behav Immun. 1996 Sep;10(3):221-34 – reference: 9428819 - N Engl J Med. 1998 Jan 15;338(3):171-9 – reference: 20962631 - Curr Opin Endocrinol Diabetes Obes. 2010 Dec;17(6):507-16 – reference: 12193671 - Pediatr Res. 2002 Sep;52(3):377-81 – reference: 16269083 - Emerg Themes Epidemiol. 2005 Nov 03;2:11 – reference: 19491187 - JAMA. 2009 Jun 3;301(21):2252-9 – reference: 17785865 - J Immunol. 2007 Sep 15;179(6):4249-54 – reference: 19269917 - Hormones (Athens). 2009 Jan-Mar;8(1):7-22 – reference: 19084531 - Horm Behav. 2009 Feb;55(2):292-8 – reference: 17925521 - JAMA. 2007 Oct 10;298(14):1685-7 – reference: 15031270 - Circ Res. 2004 Mar 19;94(5):575-84 – reference: 17413860 - Pediatr Res. 2007 May;61(5 Pt 1):520-4 – reference: 21319244 - Am J Hum Biol. 2011 Mar-Apr;23(2):149-67 – reference: 19126595 - FASEB J. 2009 May;23(5):1521-8 – reference: 11253847 - Am J Primatol. 2001 Mar;53(3):123-30 – reference: 18683180 - Dev Psychobiol. 2008 Sep;50(6):579-87 – reference: 20442329 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8507-12 – reference: 17046196 - Reprod Toxicol. 2007 Apr-May;23(3):297-307 – reference: 14717652 - Psychol Bull. 2004 Jan;130(1):115-42 – reference: 10681890 - Ann N Y Acad Sci. 1999;896:85-95 – reference: 934222 - N Engl J Med. 1976 Aug 12;295(7):349-53 – reference: 21035949 - Psychoneuroendocrinology. 2011 Jun;36(5):664-81 – reference: 15574496 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5 – reference: 14283879 - Proc R Soc Med. 1965 May;58:295-300 – reference: 18799354 - Lancet Oncol. 2008 Nov;9(11):1048-57 – reference: 21577215 - Mol Psychiatry. 2012 Jul;17(7):719-27 – reference: 10516397 - Biol Neonate. 1999 Nov;76(5):301-10 – reference: 18448080 - Am J Obstet Gynecol. 2008 Nov;199(5):498.e1-7 – reference: 15919579 - Psychoneuroendocrinology. 2005 Sep;30(8):724-43 – reference: 21113150 - Nature. 2011 Jan 6;469(7328):102-6 – reference: 21147148 - Prog Biophys Mol Biol. 2011 Jul;106(1):323-36 – reference: 21030466 - J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):202-13 – reference: 14627890 - J Am Acad Child Adolesc Psychiatry. 2003 Dec;42(12):1524-9 – reference: 21489410 - Biol Psychiatry. 2011 Sep 1;70(5):465-71 |
SSID | ssj0009580 |
Score | 2.517026 |
Snippet | Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress... |
SourceID | pubmedcentral proquest pubmed crossref pnas fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E513 |
SubjectTerms | Adult adulthood Adults Age Biological Sciences biomarkers birth weight Case-Control Studies Chromosomes disease resistance Exposure Female Health risks Humans Infant, Newborn Intrauterine devices IUD Leukocytes Male mortality mothers Mothers - psychology Offspring PNAS Plus Pregnancy Pregnancy Complications - psychology Prenatal Exposure Delayed Effects progeny Risk Stress Stress, Psychological Telomere telomeres women Young Adult Young adults |
Title | Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood |
URI | http://www.pnas.org/content/108/33/E513.abstract https://www.ncbi.nlm.nih.gov/pubmed/21813766 https://www.proquest.com/docview/884299667 https://www.proquest.com/docview/1468360267 https://www.proquest.com/docview/1663530111 https://www.proquest.com/docview/884270180 https://pubmed.ncbi.nlm.nih.gov/PMC3158153 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILYtxWBshIPAxVKUnsxsnjhDImKGVSW6lvkZM6a1GXVksqAb-ec-I4SUfH7SWqbMexcr7Y3zk9F0LeuL7iPAVNVcaSW1y6nhUEoKU43EmYrZhyAox3_jzyLqb842ww63TaXkvbIu4nP_bGlfyPVKEN5IpRsv8g2XpSaIDfIF-4goTh-lcyHutAD_Vts0ZDH9oulmisxTINyB5Xy1RhxXJZycC4mucLdLG96RVqtb5WcCOWUylK28d3_Pp1Vo5FVUfecNfL-qzLjWfByJgSz5rAlGq3yHtW73LUlDkOYWGlCbG0t66zr_V5EG60p0C4AhDIxhb7aXttuG3p_m3ah1UBsa1qmyy0DVZHVFa7LJAUy-O6Tmhf7WkzW7PttzDIWGunDQc6hvWXIwD2LKxbnMkcQxyEGARmlp1k26Mv0fl0OIwm4WxyQO65oGVgAYwPM6eVs9nXySyqlZnMUIK9uzX9Dqk5SOUaU-XCkH1qy23v2xadmTwkDyo9hJ5pUB2RjsoekSMjO3papSN_-5jEGmXUoIwuM9pGGUWU0WVOG5RRRBmtUEYNyqhGGd5foozWKHtCxufh5P2FVVXmsBJQDwrLSZUjGLfnA8nnwk14MLdd5bFYJjHz_SQBGpkmgqWpz5mHSmsCNMhOpZ2mwmdPyWG2ztQxoTIIVBAHngC1nJfZ6PgAGKQE0sm8uVBd0jcvNkqqpPVYO2UVlc4TgkX4mqNGEl1yWt-w0fla7h56DJKK5BWcptF07KKtwQZ1G45_6CoHNzP4EWMRYq5LToxIo2oryCPfR1rneaJLXte9sE_jn28yU-ttjio2xku5vx2D9B9PXFgAvWMMPkpg1r0ueaZxVK8S2TrwBa9LxA7C6gGYSn63J1suypTyzBn4wH2e__mxJ-R-80m_IIfFzVa9BF5exK_Kr-cnG8Tj-Q |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+exposure+in+intrauterine+life+is+associated+with+shorter+telomere+length+in+young+adulthood&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Entringer%2C+Sonja&rft.au=Epel%2C+Elissa+S&rft.au=Kumsta%2C+Robert&rft.au=Lin%2C+Jue&rft.date=2011-08-16&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=33&rft.spage=E513&rft_id=info:doi/10.1073%2Fpnas.1107759108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F33.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F33.cover.gif |