Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood

Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknow...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 108; no. 33; pp. E513 - E518
Main Authors Entringer, Sonja, Epel, Elissa S, Kumsta, Robert, Lin, Jue, Hellhammer, Dirk H, Blackburn, Elizabeth H, Wüst, Stefan, Wadhwa, Pathik D
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 16.08.2011
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1107759108

Cover

Loading…
Abstract Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk.
AbstractList Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. [PUBLICATION ABSTRACT]
Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk.
Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk.Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk.
Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk. To summarize, this study provides evidence in humans that maternal psychosocial stress exposure during gestation is a significant predictor of the offspring's subsequent leukocyte telomere length, a marker of cellular aging, in young adulthood. This, in turn, suggests that the trajectory of cellular aging in humans may be influenced by stress in intrauterine life, thereby potentially increasing the susceptibility of prenatally stressed individuals for complex, common age-related diseases. Many questions remain concerning the exact mechanisms underlying prenatal programming of telomere length and the directionality of the associations among prenatal stress, telomere length, and later health outcomes. Nonetheless, this study represents an important step, and these results add further evidence to the growing awareness that disease pathways for complex, common age-related disorders may have their foundations very early in life. Our study has a few limitations. First, prenatal stress exposure was assessed retrospectively. Although retrospective assessments of psychosocial factors such as stress are prone to biases such as “after-the-fact” reporting (i.e., individuals who develop health disorders are more prone to retrospectively report higher levels of adverse exposures before the development of the disorder) and those produced by memory and current psychological state (affect/mood), we believe it is unlikely these biases significantly impacted our assessment of prenatal stress in the present study. All subjects were healthy young adults; they received identical information before and upon entering the study, they were not provided any information about the study hypotheses, and they (as well as the experimenters) were blinded to and had no a priori knowledge about the expected direction of study findings. Subjects in the two groups did not differ in their current baseline psychological state (depressive symptoms, perceived stress) or memory performance scores. Moreover, our use of major negative life events to retrospectively assess psychosocial stress exposure provides greater confidence for construct validity than would have been the case for retrospective assessments of other components of stress such as perceived severity of stress appraisals or stress symptoms. Second, men were underrepresented in our study. Some studies have reported sex-specific effects of prenatal stress exposure on certain outcomes. As the effect of prenatal stress on telomere length in the present study was largest in the women only group, this raises the intriguing possibility and speculation regarding potential sex-specific programming effects in this context. However, we did not have the statistical power to examine possible sex-specific programming effects. There are several pathways that may have led to the striking observation in the present study. Exposure to high levels of maternal stress during pregnancy is known to produce deleterious effects on the offspring's developing endocrine, immune, and metabolic systems, and our previously published studies in this cohort have reported that the prenatally stressed individuals exhibited alterations in several of these parameters, including higher stimulated levels of IL-6, a cytokine that has been directly associated with shorter telomere length. Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring ( Fig. P1 ). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, postnatal early-life adversity, and concurrent stress level), and was more pronounced in women. The magnitude of the observed difference in leukocyte telomere length between the prenatal stress exposure group and the comparison group is striking. The leukocyte telomere length of individuals in the prenatally stressed individuals was, on average, 178 bp shorter than that of individuals in the comparison group (and 295 bp shorter in female subjects). This effect equates to a difference of 0.41 SDs in telomere length in the prenatal stress exposure group relative to the comparison group (and 0.68 SDs in female subjects). Based on the most recent and comprehensive review of studies of age-related attrition in telomere length ( 4 ), translating telomere shortening of this observed difference to years of aging indicates that the leukocytes of individuals in the prenatal stress group aged the equivalent of approximately 3.5 additional years (5 additional years in the women-only group) relative to those in the comparison group. The objective of the present study was to test the hypothesis that maternal psychosocial stress exposure during pregnancy is associated with shorter telomeres in their offspring during adult life. Because it is not possible to randomly assign exposure to stress during human pregnancy, we approximated experimental exposure by enrolling young adults whose mothers happened to have experienced a high level of psychosocial stress during pregnancy (a major negative life event; the prenatal stress group) and comparing them with a group of subjects whose mothers had not been exposed to negative life events during pregnancy (comparison group). The potential confounding effects of other sociodemographic, obstetric, medical, and behavioral risk factors were addressed by using a stringent set of exclusionary criteria. Moreover, because prenatal stress exposure may be associated with subsequent conditions that may influence telomere length, such as presence of postnatal early-life adversity, inadequate parental care, or concurrent stress level, we assessed these constructs to statistically account for their possible confounding effects. A rapidly growing body of empirical evidence suggests that the origins of susceptibility for many common age-related disorders can be traced back to the intrauterine period of life (i.e., the concept of fetal, or developmental, origins of health and disease risk) ( 1 ). Exposure to psychosocial stress and/or biological stress mediators during gestation has been identified as one salient condition that may underlie the long-term effects of the intrauterine environment ( 2 ). The link between psychosocial stress exposure and adverse health outcomes is well established, and the elucidation of biological processes underlying this relationship is of ongoing interest. In recent years, accumulating evidence supports an important role for telomere biology as a potential mechanism linking stress and disease risk ( 3 ). Telomeres are DNA–protein complexes that cap chromosomal ends and promote chromosomal stability. They shorten in all replicating somatic cells, including white blood cells, with age and with conditions that produce oxidative stress. Declines in the telomere/telomerase maintenance system serve as a biomarker of cellular integrity and likely play a causal role in aging. One important question that has yet to be addressed is whether exposure to stress during intrauterine development can produce variations in telomere length, thereby potentially setting up a long-term trajectory at birth that contributes to individual susceptibility for age-related common diseases. Evidence linking other adverse conditions during fetal development (e.g., intrauterine growth restriction, poor maternal nutrition during pregnancy) with telomere length provides biological plausibility for this relationship.
Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress biomarkers with LTL suggests telomere biology may represent a possible underlying mechanism linking stress and health outcomes. It is, however, unknown whether stress exposure in intrauterine life can produce variations in LTL, thereby potentially setting up a long-term trajectory for disease susceptibility. We, therefore, as a first step, tested the hypothesis that stress exposure during intrauterine life is associated with shorter telomeres in adult life after accounting for the effects of other factors on LTL. LTL was assessed in 94 healthy young adults. Forty-five subjects were offspring of mothers who had experienced a severe stressor in the index pregnancy (prenatal stress group; PSG), and 49 subjects were offspring of mothers who had a healthy, uneventful index pregnancy (comparison group; CG). Prenatal stress exposure was a significant predictor of subsequent adult telomere length in the offspring (178-bp difference between prenatal stress and CG; d = 0.41 SD units; P < 0.05). The effect was substantially unchanged after adjusting for potential confounders (subject characteristics, birth weight percentile, and early-life and concurrent stress level), and was more pronounced in women (295-bp difference; d = 0.68 SD units; P < 0.01). To the best of our knowledge, this study provides the first evidence in humans of an association between prenatal stress exposure and subsequent shorter telomere length. This observation may help shed light on an important biological pathway underlying the developmental origins of adult health and disease risk.
Author Kumsta, Robert
Hellhammer, Dirk H
Wadhwa, Pathik D
Wüst, Stefan
Entringer, Sonja
Epel, Elissa S
Blackburn, Elizabeth H
Lin, Jue
Author_xml – sequence: 1
  fullname: Entringer, Sonja
– sequence: 2
  fullname: Epel, Elissa S
– sequence: 3
  fullname: Kumsta, Robert
– sequence: 4
  fullname: Lin, Jue
– sequence: 5
  fullname: Hellhammer, Dirk H
– sequence: 6
  fullname: Blackburn, Elizabeth H
– sequence: 7
  fullname: Wüst, Stefan
– sequence: 8
  fullname: Wadhwa, Pathik D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21813766$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1vEzEQhi1URNPAmRusuMBl25n1-mMvlVBVPqRKHAJny_HaiavNOtheoP8ep00JVAIkS7bGzzuedzwn5GgMoyXkOcIpgqBn21GnUyxHwToE-YjMEDqsedvBEZkBNKKWbdMek5OUrgGgYxKekOMGJVLB-YwsFznalCr7YxvSFG3lx7Jy1FO20Y-2GrwrwVTplILxOtu--u7zukrrEAtSZTuEjS3CwY6rEi_6mzCNq0r305DXIfRPyWOnh2Sf7fc5Wby7_Hzxob769P7jxdur2jBKc43OoqAt9Ey3vWhM2_XQWE6X2iyplMYwbJwR1DnZUs5YJ0wjW3AanBOSzsn5XdbttNzY3tidiUFto9_oeKOC9urPm9Gv1Sp8UxSZxFLBnLzeJ4jh62RTVhufjB0GPdowJSVLIwWghEK--SeJnFNGARH_j7ZcUg4NFwV99QC9DlMcS8dun-46fgu9-N3lL3v3H1oAdgeYGFKK1injs84-7Ez7QSGo3eCo3eCow-AU3dkD3X3qvyte7kvZXRxoqShVlwzpgXA6KL2KPqkviwawhdLGpivt-Ql0pdoK
CitedBy_id crossref_primary_10_1111_cdep_12403
crossref_primary_10_2217_epi_13_8
crossref_primary_10_1038_490169a
crossref_primary_10_1016_j_envint_2018_01_005
crossref_primary_10_1152_physrev_00029_2013
crossref_primary_10_1002_jbmr_1995
crossref_primary_10_1038_s41598_018_31185_z
crossref_primary_10_1016_j_bbi_2013_04_005
crossref_primary_10_18632_oncotarget_14793
crossref_primary_10_1016_j_bbr_2019_112145
crossref_primary_10_1002_bies_201800077
crossref_primary_10_1146_annurev_clinpsy_032816_045054
crossref_primary_10_3390_v16050755
crossref_primary_10_1016_j_childyouth_2021_106280
crossref_primary_10_1017_thg_2015_3
crossref_primary_10_1111_cdev_14126
crossref_primary_10_1155_2012_638476
crossref_primary_10_1016_j_bbi_2019_04_021
crossref_primary_10_1371_journal_pone_0136123
crossref_primary_10_3389_fphys_2017_00535
crossref_primary_10_3389_fphys_2018_00602
crossref_primary_10_1016_j_exger_2018_09_008
crossref_primary_10_1152_ajpendo_00354_2020
crossref_primary_10_1098_rstb_2017_0151
crossref_primary_10_1038_s41598_019_46338_x
crossref_primary_10_1111_j_1365_294X_2011_05430_x
crossref_primary_10_1016_j_earlhumdev_2015_08_008
crossref_primary_10_1016_j_pneurobio_2022_102353
crossref_primary_10_1080_10408363_2018_1504274
crossref_primary_10_1371_journal_pone_0145544
crossref_primary_10_3390_ijerph192113727
crossref_primary_10_1016_j_bbi_2016_02_002
crossref_primary_10_1017_S095457941800038X
crossref_primary_10_1027_1016_9040_a000233
crossref_primary_10_1016_j_neuropharm_2021_108518
crossref_primary_10_1016_j_neubiorev_2016_06_003
crossref_primary_10_1111_mec_15694
crossref_primary_10_1093_nar_gky1149
crossref_primary_10_1177_0300985813516642
crossref_primary_10_1016_j_jclinane_2017_03_047
crossref_primary_10_1097_NMD_0000000000000116
crossref_primary_10_31887_DCNS_2015_17_2_rpost
crossref_primary_10_1016_j_ajog_2016_01_177
crossref_primary_10_1007_s11920_015_0625_6
crossref_primary_10_1139_cjz_2017_0094
crossref_primary_10_1002_bies_201900227
crossref_primary_10_2105_AJPH_2015_302571
crossref_primary_10_1158_1940_6207_CAPR_12_0370
crossref_primary_10_1016_j_jpsychires_2017_06_002
crossref_primary_10_1073_pnas_1306639110
crossref_primary_10_1038_s41598_020_66729_9
crossref_primary_10_1126_scisignal_2003580
crossref_primary_10_1016_j_jgg_2013_08_001
crossref_primary_10_1016_j_metabol_2012_08_020
crossref_primary_10_5765_jkacap_2013_24_4_183
crossref_primary_10_1111_nyas_12314
crossref_primary_10_1177_1933719118804409
crossref_primary_10_1007_BF03401341
crossref_primary_10_1186_s13039_018_0361_9
crossref_primary_10_1016_j_etap_2021_103718
crossref_primary_10_1093_ije_dyr236
crossref_primary_10_1016_j_aanat_2015_02_006
crossref_primary_10_1111_mec_17064
crossref_primary_10_1073_pnas_1422715112
crossref_primary_10_1159_000363325
crossref_primary_10_3389_fpsyt_2017_00208
crossref_primary_10_1016_j_neubiorev_2017_08_002
crossref_primary_10_1159_000542676
crossref_primary_10_1016_j_psyneuen_2018_12_011
crossref_primary_10_1371_journal_pone_0097102
crossref_primary_10_1016_j_ajpath_2017_06_019
crossref_primary_10_1111_1365_2435_12630
crossref_primary_10_1161_CIRCRESAHA_118_312202
crossref_primary_10_1146_annurev_animal_022513_114204
crossref_primary_10_1007_s10522_023_10060_z
crossref_primary_10_1073_pnas_1113306109
crossref_primary_10_3390_nu15214497
crossref_primary_10_1007_s00103_016_2436_2
crossref_primary_10_1016_j_bbacli_2015_04_002
crossref_primary_10_1016_j_psyneuen_2018_01_009
crossref_primary_10_1016_j_jneuroim_2020_577187
crossref_primary_10_51249_hs_v4i02_1966
crossref_primary_10_1097_HJH_0000000000000217
crossref_primary_10_1098_rspb_2022_0868
crossref_primary_10_1111_mec_17291
crossref_primary_10_1111_spc3_12198
crossref_primary_10_1111_and_12008
crossref_primary_10_1016_j_envint_2015_02_008
crossref_primary_10_1055_a_1972_5384
crossref_primary_10_1098_rsbl_2015_0396
crossref_primary_10_1098_rspb_2019_1845
crossref_primary_10_1371_journal_pone_0163824
crossref_primary_10_1017_S002966511300387X
crossref_primary_10_1038_s41598_021_91987_6
crossref_primary_10_1038_tp_2016_106
crossref_primary_10_1111_mec_16870
crossref_primary_10_1016_j_arr_2015_08_002
crossref_primary_10_2147_CLEP_S348763
crossref_primary_10_1186_s12958_020_00664_2
crossref_primary_10_1111_j_1751_9004_2012_00465_x
crossref_primary_10_1371_journal_pone_0086161
crossref_primary_10_1097_GCO_0000000000000779
crossref_primary_10_1111_mec_17166
crossref_primary_10_1016_j_psyneuen_2019_01_006
crossref_primary_10_1038_s41366_019_0423_z
crossref_primary_10_1007_s00125_016_3915_6
crossref_primary_10_1007_s42764_024_00123_x
crossref_primary_10_3109_10253890_2015_1017464
crossref_primary_10_1016_j_nbd_2015_12_007
crossref_primary_10_1515_cclm_2019_0235
crossref_primary_10_1016_j_jpsychores_2022_111020
crossref_primary_10_1093_aje_kwu277
crossref_primary_10_1080_00223980_2018_1483311
crossref_primary_10_1155_2012_632548
crossref_primary_10_1111_joim_12083
crossref_primary_10_1007_s10826_022_02299_w
crossref_primary_10_1016_j_psyneuen_2019_104537
crossref_primary_10_1016_j_pneurobio_2014_10_001
crossref_primary_10_1111_bjhp_12772
crossref_primary_10_1017_S0033291722003397
crossref_primary_10_1016_j_jaac_2015_04_006
crossref_primary_10_1111_mec_15888
crossref_primary_10_1016_j_gene_2019_01_017
crossref_primary_10_1098_rspb_2020_2190
crossref_primary_10_1016_j_schres_2013_06_043
crossref_primary_10_1016_j_psyneuen_2020_104848
crossref_primary_10_1016_j_neubiorev_2017_11_002
crossref_primary_10_1016_j_nut_2019_05_002
crossref_primary_10_1176_appi_ajp_2020_19101003
crossref_primary_10_1093_nar_gky155
crossref_primary_10_5665_sleep_3328
crossref_primary_10_1016_j_psyneuen_2020_104841
crossref_primary_10_3390_cells11233777
crossref_primary_10_1016_j_yhbeh_2024_105631
crossref_primary_10_1186_1472_6785_12_17
crossref_primary_10_1016_j_psyneuen_2018_05_025
crossref_primary_10_1002_ajhb_22954
crossref_primary_10_1016_j_neubiorev_2019_03_010
crossref_primary_10_3892_mmr_2016_5231
crossref_primary_10_1016_j_jpeds_2015_01_003
crossref_primary_10_3390_genes9050241
crossref_primary_10_1126_science_aab3389
crossref_primary_10_3389_fgene_2024_1264028
crossref_primary_10_1016_j_psyneuen_2014_10_016
crossref_primary_10_3389_fgene_2015_00082
crossref_primary_10_1016_j_ijdevneu_2017_03_007
crossref_primary_10_1038_npp_2017_73
crossref_primary_10_1002_ajhb_22906
crossref_primary_10_1002_ajpa_24338
crossref_primary_10_1016_j_ajog_2012_11_033
crossref_primary_10_1007_s10578_021_01279_3
crossref_primary_10_1016_j_nut_2014_04_001
crossref_primary_10_1146_annurev_publhealth_031912_114447
crossref_primary_10_1177_1099800416672005
crossref_primary_10_1016_j_bbr_2014_12_001
crossref_primary_10_1016_j_placenta_2017_09_007
crossref_primary_10_1016_j_socscimed_2013_02_030
crossref_primary_10_1242_jeb_216176
crossref_primary_10_1097_PSY_0000000000000130
crossref_primary_10_1242_jeb_212373
crossref_primary_10_1002_2211_5463_12006
crossref_primary_10_1038_s41390_022_01933_z
crossref_primary_10_1016_j_jad_2023_08_074
crossref_primary_10_1007_s40615_017_0388_3
crossref_primary_10_3390_genes7040015
crossref_primary_10_1027_1016_9040_a000195
crossref_primary_10_1159_000362656
crossref_primary_10_1002_ece3_9144
crossref_primary_10_1016_j_psyneuen_2015_08_019
crossref_primary_10_1017_S0140525X1600234X
crossref_primary_10_1111_jcpp_13358
crossref_primary_10_1016_j_placenta_2020_06_022
crossref_primary_10_1111_mec_17114
crossref_primary_10_1177_0002764218796995
crossref_primary_10_1186_s12983_018_0275_8
crossref_primary_10_31887_DCNS_2019_21_4_azannas
crossref_primary_10_1007_s00129_020_04623_1
crossref_primary_10_1177_0300060516667132
crossref_primary_10_1016_j_psyneuen_2020_105043
crossref_primary_10_1186_s12967_024_05879_0
crossref_primary_10_1016_j_jad_2024_09_143
crossref_primary_10_1016_j_arr_2018_07_006
crossref_primary_10_3390_antiox12071354
crossref_primary_10_3390_nu14183723
crossref_primary_10_1002_imhj_21753
crossref_primary_10_1098_rspb_2014_2263
crossref_primary_10_1002_dev_22238
crossref_primary_10_1016_j_asieco_2021_101409
crossref_primary_10_3945_ajcn_115_112326
crossref_primary_10_1002_hipo_22034
crossref_primary_10_1136_postgradmedj_2015_133708
crossref_primary_10_1016_j_expneurol_2017_06_001
crossref_primary_10_1016_j_brainres_2014_04_004
crossref_primary_10_1016_j_yhbeh_2022_105232
crossref_primary_10_1111_obr_12126
crossref_primary_10_1186_s12884_022_04464_x
crossref_primary_10_1186_s12916_017_0964_8
crossref_primary_10_1017_S2040174420000409
crossref_primary_10_1038_mp_2014_70
crossref_primary_10_3389_fneur_2020_00098
crossref_primary_10_1086_720440
crossref_primary_10_1155_2013_485082
crossref_primary_10_1016_j_jpsychires_2024_04_037
crossref_primary_10_1097_EE9_0000000000000049
crossref_primary_10_3168_jds_2015_10095
crossref_primary_10_1016_j_bpobgyn_2013_08_017
crossref_primary_10_1038_tp_2015_134
crossref_primary_10_1016_j_exger_2013_08_005
crossref_primary_10_1371_journal_pone_0067227
crossref_primary_10_1016_j_jpsychires_2022_01_063
crossref_primary_10_1016_j_nicl_2018_01_033
crossref_primary_10_1016_j_psyneuen_2018_12_222
crossref_primary_10_1016_j_jad_2017_08_022
crossref_primary_10_1017_S2040174424000291
crossref_primary_10_1007_s11011_017_0062_9
crossref_primary_10_1124_pr_111_005207
crossref_primary_10_15406_mojgg_2018_03_00135
crossref_primary_10_4161_epi_21180
crossref_primary_10_1016_j_coi_2012_05_001
crossref_primary_10_1016_j_envpol_2020_115228
crossref_primary_10_3390_cells10061423
crossref_primary_10_1038_srep01542
crossref_primary_10_1371_journal_pone_0143951
crossref_primary_10_1134_S1990519X12050112
crossref_primary_10_1136_bmjopen_2023_071926
crossref_primary_10_1016_j_socscimed_2012_02_019
crossref_primary_10_1073_pnas_1514351113
crossref_primary_10_3390_ijms22073657
crossref_primary_10_1111_mcn_12857
crossref_primary_10_1038_s41598_017_07784_7
crossref_primary_10_1007_s00442_021_04917_8
crossref_primary_10_1016_j_metabol_2011_10_005
crossref_primary_10_3389_fendo_2017_00295
crossref_primary_10_1038_mp_2017_26
crossref_primary_10_1017_S0954579415000280
crossref_primary_10_1016_j_biopsych_2012_06_025
crossref_primary_10_1097_NNR_0000000000000009
crossref_primary_10_1093_carcin_bgaa121
crossref_primary_10_1007_s00125_021_05566_5
crossref_primary_10_1098_rspb_2013_3287
crossref_primary_10_3389_fpsyt_2020_565239
crossref_primary_10_1002_bdrc_21021
crossref_primary_10_4045_tidsskr_14_1194
crossref_primary_10_3390_ijms22147458
crossref_primary_10_1016_j_psyneuen_2023_106058
crossref_primary_10_1177_1745691613513467
crossref_primary_10_1038_s41467_025_57794_7
crossref_primary_10_1016_j_psyneuen_2017_11_008
crossref_primary_10_47671_TVG_78_22_177
crossref_primary_10_1080_15384101_2020_1728016
crossref_primary_10_1007_s15016_013_0461_z
crossref_primary_10_1016_j_bbacli_2014_11_002
crossref_primary_10_1038_s41370_022_00474_1
crossref_primary_10_4081_rp_2023_796
crossref_primary_10_1093_ije_dys127
crossref_primary_10_1371_journal_pone_0064762
crossref_primary_10_1210_clinem_dgz145
crossref_primary_10_1016_j_envres_2016_04_037
crossref_primary_10_1016_j_placenta_2022_05_002
crossref_primary_10_1098_rspb_2020_1378
crossref_primary_10_3390_genes11121425
crossref_primary_10_1007_s40572_017_0165_9
crossref_primary_10_1016_j_neubiorev_2017_07_003
crossref_primary_10_1016_j_psyneuen_2013_03_010
crossref_primary_10_1038_s41598_023_37555_6
Cites_doi 10.1073/pnas.95.10.5607
10.1161/01.CIR.0000163550.70487.0B
10.1016/S0140-6736(09)60234-8
10.1186/1742-5573-1-3
10.1530/EJE-10-0241
10.1111/j.1749-6632.1999.tb08107.x
10.1038/nature09603
10.1096/fj.08-122796
10.1016/j.jim.2009.09.012
10.1002/9780470478509.neubb002065
10.1073/pnas.1009838108
10.1126/science.1095292
10.14310/horm.2002.1217
10.1016/j.bbi.2010.02.002
10.1097/MED.0b013e3283405921
10.1002/ajhb.21127
10.1097/00004583-200312000-00022
10.1002/dev.20316
10.1001/jama.298.14.1685
10.1159/000014172
10.1111/j.1365-2796.2007.01890.x
10.1096/fj.07-099523
10.1016/j.bbi.2007.12.004
10.1093/nar/30.10.e47
10.1161/01.RES.0000122141.18795.9C
10.1158/1055-9965.EPI-08-0614
10.1037/0033-2909.130.1.115
10.1038/35040500
10.1073/pnas.1003890107
10.4049/jimmunol.179.6.4249
10.1146/annurev-anthro-091908-164350
10.1016/j.psyneuen.2005.02.004
10.1016/j.reprotox.2006.08.012
10.1001/jama.2009.754
10.1002/1098-2345(200103)53:3<123::AID-AJP3>3.0.CO;2-V
10.1016/j.earlhumdev.2010.06.002
10.1093/aje/kwj346
10.1016/j.yhbeh.2008.11.006
10.1016/S0140-6736(05)66630-5
10.1210/en.2003-1759
10.1203/00006450-200209000-00012
10.1016/S1470-2045(08)70234-1
10.1016/j.biopsych.2010.02.026
10.1016/j.ajog.2008.03.006
10.1016/S0968-0004(02)02110-2
10.1353/hub.2004.0018
10.1186/1742-7622-2-11
10.1056/NEJM199801153380307
10.1093/gerona/glq180
10.1371/journal.pone.0011896
10.1186/1742-5573-6-2
10.1016/S0014-5793(99)00336-1
10.1002/icd.649
10.1016/j.biopsych.2011.01.035
10.1056/NEJM197608122950701
10.1016/j.biopsych.2009.08.014
10.1016/j.yhbeh.2004.11.019
10.1016/S1097-2765(03)00174-6
10.1073/pnas.0407162101
10.1093/ajcn/85.3.845
10.1016/j.psyneuen.2005.08.011
10.1016/S0895-7061(98)00202-7
10.1038/nrendo.2009.195
10.1203/pdr.0b013e318045be53
10.1111/j.1467-8721.2009.01596.x
10.1006/brbi.1996.0020
10.1016/j.pbiomolbio.2010.12.005
10.1016/j.psyneuen.2010.09.010
10.1097/PSY.0b013e31820573b6
ContentType Journal Article
Copyright Copyright National Academy of Sciences Aug 16, 2011
Copyright_xml – notice: Copyright National Academy of Sciences Aug 16, 2011
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.1107759108
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
AGRICOLA

MEDLINE - Academic
Nucleic Acids Abstracts

CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage E518
ExternalDocumentID PMC3158153
2429467471
21813766
10_1073_pnas_1107759108
108_33_E513
US201400182911
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R01 HD-065825
– fundername: NICHD NIH HHS
  grantid: P01 HD-047609
– fundername: NICHD NIH HHS
  grantid: R01 HD065825
– fundername: NICHD NIH HHS
  grantid: R01 HD060628
– fundername: NICHD NIH HHS
  grantid: R01 HD-06028
– fundername: NICHD NIH HHS
  grantid: P01 HD047609
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
AAYXX
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
CITATION
IPSME
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c533t-1fe17340d5a4d72c49d02e63bacb388cc512fc73ff84365597c2840fa0ff783
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:19:33 EDT 2025
Fri Jul 11 11:08:06 EDT 2025
Fri Jul 11 15:10:57 EDT 2025
Thu Jul 10 18:48:31 EDT 2025
Mon Jun 30 08:26:03 EDT 2025
Mon Jul 21 06:05:05 EDT 2025
Tue Jul 01 00:47:14 EDT 2025
Thu Apr 24 22:55:32 EDT 2025
Wed Nov 11 00:29:38 EST 2020
Wed Dec 27 19:21:35 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
License Freely available online through the PNAS open access option.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c533t-1fe17340d5a4d72c49d02e63bacb388cc512fc73ff84365597c2840fa0ff783
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved July 15, 2011 (received for review June 3, 2011)
Author contributions: S.E., D.H.H., S.W., and P.D.W. designed research; S.E. and R.K. performed research; S.E., J.L., and E.H.B. analyzed data; and S.E., E.S.E., E.H.B., and P.D.W. wrote the paper.
OpenAccessLink https://www.pnas.org/content/pnas/108/33/E513.full.pdf
PMID 21813766
PQID 884299667
PQPubID 42026
ParticipantIDs proquest_journals_884299667
crossref_primary_10_1073_pnas_1107759108
pnas_primary_108_33_E513
fao_agris_US201400182911
proquest_miscellaneous_1468360267
proquest_miscellaneous_884270180
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3158153
proquest_miscellaneous_1663530111
crossref_citationtrail_10_1073_pnas_1107759108
pubmed_primary_21813766
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-08-16
PublicationDateYYYYMMDD 2011-08-16
PublicationDate_xml – month: 08
  year: 2011
  text: 2011-08-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2011
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
e_1_1_2_18_10_2_2
e_1_3_3_71_2
e_1_1_2_18_10_4_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
Jaffe RB (e_1_3_3_64_2) 2001
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
Hill AB (e_1_3_3_65_2) 1965; 58
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_1_2_18_10_1_2
e_1_1_2_18_10_3_2
e_1_3_3_70_2
Kuzawa CW (e_1_3_3_42_2) 2008
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
Drury SS (e_1_3_3_27_2) 2011
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
21035949 - Psychoneuroendocrinology. 2011 Jun;36(5):664-81
19786987 - Nat Rev Endocrinol. 2009 Nov;5(11):604-10
11081503 - Nature. 2000 Nov 2;408(6808):53-6
12769860 - Mol Cell. 2003 May;11(5):1379-87
14283879 - Proc R Soc Med. 1965 May;58:295-300
21577215 - Mol Psychiatry. 2012 Jul;17(7):719-27
11253847 - Am J Primatol. 2001 Mar;53(3):123-30
18070000 - J Intern Med. 2008 Mar;263(3):302-12
17344508 - Am J Clin Nutr. 2007 Mar;85(3):845-52
18799354 - Lancet Oncol. 2008 Nov;9(11):1048-57
12114022 - Trends Biochem Sci. 2002 Jul;27(7):339-44
15574496 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5
20678755 - Biol Psychiatry. 2010 Sep 15;68(6):e21-2; author reply e23-4
17043079 - Am J Epidemiol. 2007 Jan 1;165(1):14-21
20619976 - Early Hum Dev. 2010 Jul;86(7):451-6
21148804 - Psychosom Med. 2011 Jan;73(1):16-22
21252306 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3011-6
19126595 - FASEB J. 2009 May;23(5):1521-8
17785865 - J Immunol. 2007 Sep 15;179(6):4249-54
20962631 - Curr Opin Endocrinol Diabetes Obes. 2010 Dec;17(6):507-16
18222063 - Brain Behav Immun. 2008 May;22(4):600-5
19190150 - Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):551-60
15507128 - Epidemiol Perspect Innov. 2004 Oct 04;1(1):3
16269083 - Emerg Themes Epidemiol. 2005 Nov 03;2:11
16112303 - Lancet. 2005 Aug 20-26;366(9486):662-4
15851602 - Circulation. 2005 May 3;111(17):2171-7
15222684 - Hum Biol. 2004 Feb;76(1):127-46
20689593 - PLoS One. 2010;5(7):e11896
10232505 - Am J Hypertens. 1999 Apr;12(4 Pt 1):427-32
19491187 - JAMA. 2009 Jun 3;301(21):2252-9
18230683 - FASEB J. 2008 Jun;22(6):2037-44
19427960 - Lancet. 2009 May 9;373(9675):1654-7
19084531 - Horm Behav. 2009 Feb;55(2):292-8
15375258 - Science. 2004 Sep 17;305(5691):1733-6
10217398 - FEBS Lett. 1999 Apr 1;448(1):4-8
15142991 - Endocrinology. 2004 Aug;145(8):3778-87
16298085 - Psychoneuroendocrinology. 2006 Apr;31(3):277-87
17413860 - Pediatr Res. 2007 May;61(5 Pt 1):520-4
12000852 - Nucleic Acids Res. 2002 May 15;30(10):e47
10681890 - Ann N Y Acad Sci. 1999;896:85-95
19837074 - J Immunol Methods. 2010 Jan 31;352(1-2):71-80
20167271 - Brain Behav Immun. 2010 May;24(4):529-30
20442329 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8507-12
12193671 - Pediatr Res. 2002 Sep;52(3):377-81
10516397 - Biol Neonate. 1999 Nov;76(5):301-10
9428819 - N Engl J Med. 1998 Jan 15;338(3):171-9
21147148 - Prog Biophys Mol Biol. 2011 Jul;106(1):323-36
21030466 - J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):202-13
14717652 - Psychol Bull. 2004 Jan;130(1):115-42
9576930 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5607-10
17046196 - Reprod Toxicol. 2007 Apr-May;23(3):297-307
19534788 - Epidemiol Perspect Innov. 2009 Jun 17;6:2
19269917 - Hormones (Athens). 2009 Jan-Mar;8(1):7-22
21113150 - Nature. 2011 Jan 6;469(7328):102-6
18683180 - Dev Psychobiol. 2008 Sep;50(6):579-87
21489410 - Biol Psychiatry. 2011 Sep 1;70(5):465-71
20679357 - Eur J Endocrinol. 2010 Oct;163(4):601-7
19828140 - Biol Psychiatry. 2010 Mar 15;67(6):531-4
21319244 - Am J Hum Biol. 2011 Mar-Apr;23(2):149-67
14627890 - J Am Acad Child Adolesc Psychiatry. 2003 Dec;42(12):1524-9
17925521 - JAMA. 2007 Oct 10;298(14):1685-7
15919579 - Psychoneuroendocrinology. 2005 Sep;30(8):724-43
18448080 - Am J Obstet Gynecol. 2008 Nov;199(5):498.e1-7
934222 - N Engl J Med. 1976 Aug 12;295(7):349-53
8954595 - Brain Behav Immun. 1996 Sep;10(3):221-34
15777808 - Horm Behav. 2005 Apr;47(4):430-8
15031270 - Circ Res. 2004 Mar 19;94(5):575-84
References_xml – ident: e_1_3_3_11_2
  doi: 10.1073/pnas.95.10.5607
– ident: e_1_3_3_58_2
  doi: 10.1161/01.CIR.0000163550.70487.0B
– ident: e_1_3_3_5_2
  doi: 10.1016/S0140-6736(09)60234-8
– ident: e_1_3_3_67_2
  doi: 10.1186/1742-5573-1-3
– ident: e_1_3_3_60_2
  doi: 10.1530/EJE-10-0241
– ident: e_1_3_3_41_2
  doi: 10.1111/j.1749-6632.1999.tb08107.x
– ident: e_1_3_3_16_2
  doi: 10.1038/nature09603
– ident: e_1_3_3_36_2
  doi: 10.1096/fj.08-122796
– ident: e_1_3_3_70_2
  doi: 10.1016/j.jim.2009.09.012
– ident: e_1_3_3_12_2
  doi: 10.1002/9780470478509.neubb002065
– ident: e_1_3_3_46_2
  doi: 10.1073/pnas.1009838108
– ident: e_1_1_2_18_10_1_2
  doi: 10.1126/science.1095292
– ident: e_1_3_3_62_2
  doi: 10.14310/horm.2002.1217
– volume: 58
  start-page: 295
  year: 1965
  ident: e_1_3_3_65_2
  article-title: The environment and disease: Association or causation?
  publication-title: Proc R Soc Med
– ident: e_1_1_2_18_10_3_2
  doi: 10.1016/j.bbi.2010.02.002
– ident: e_1_3_3_2_2
  doi: 10.1097/MED.0b013e3283405921
– volume-title: The Endocrinology of Parturition
  year: 2001
  ident: e_1_3_3_64_2
– ident: e_1_1_2_18_10_4_2
  doi: 10.1002/ajhb.21127
– ident: e_1_3_3_71_2
  doi: 10.1097/00004583-200312000-00022
– ident: e_1_3_3_33_2
  doi: 10.1002/dev.20316
– ident: e_1_3_3_6_2
  doi: 10.1001/jama.298.14.1685
– ident: e_1_1_2_18_10_2_2
  doi: 10.1097/MED.0b013e3283405921
– ident: e_1_3_3_54_2
  doi: 10.1159/000014172
– ident: e_1_3_3_56_2
  doi: 10.1111/j.1365-2796.2007.01890.x
– ident: e_1_3_3_37_2
  doi: 10.1096/fj.07-099523
– ident: e_1_3_3_21_2
  doi: 10.1016/j.bbi.2007.12.004
– ident: e_1_3_3_69_2
  doi: 10.1093/nar/30.10.e47
– ident: e_1_3_3_14_2
  doi: 10.1161/01.RES.0000122141.18795.9C
– ident: e_1_3_3_17_2
  doi: 10.1158/1055-9965.EPI-08-0614
– ident: e_1_3_3_53_2
  doi: 10.1037/0033-2909.130.1.115
– ident: e_1_3_3_13_2
  doi: 10.1038/35040500
– ident: e_1_3_3_44_2
  doi: 10.1073/pnas.1003890107
– ident: e_1_3_3_18_2
  doi: 10.4049/jimmunol.179.6.4249
– year: 2011
  ident: e_1_3_3_27_2
  article-title: Telomere length and early severe social deprivation: linking early adversity and cellular aging
  publication-title: Mol Psychiatry
– ident: e_1_3_3_43_2
  doi: 10.1146/annurev-anthro-091908-164350
– ident: e_1_3_3_52_2
  doi: 10.1016/j.psyneuen.2005.02.004
– ident: e_1_3_3_51_2
  doi: 10.1016/j.reprotox.2006.08.012
– ident: e_1_3_3_4_2
  doi: 10.1001/jama.2009.754
– ident: e_1_3_3_63_2
  doi: 10.1002/1098-2345(200103)53:3<123::AID-AJP3>3.0.CO;2-V
– ident: e_1_3_3_40_2
  doi: 10.1002/ajhb.21127
– ident: e_1_3_3_38_2
  doi: 10.1016/j.earlhumdev.2010.06.002
– ident: e_1_3_3_57_2
  doi: 10.1093/aje/kwj346
– ident: e_1_3_3_34_2
  doi: 10.1016/j.yhbeh.2008.11.006
– ident: e_1_3_3_59_2
  doi: 10.1016/S0140-6736(05)66630-5
– ident: e_1_3_3_73_2
  doi: 10.1210/en.2003-1759
– ident: e_1_3_3_20_2
  doi: 10.1016/j.bbi.2010.02.002
– ident: e_1_3_3_50_2
  doi: 10.1203/00006450-200209000-00012
– ident: e_1_3_3_22_2
  doi: 10.1016/S1470-2045(08)70234-1
– ident: e_1_3_3_28_2
  doi: 10.1016/j.biopsych.2010.02.026
– ident: e_1_3_3_1_2
  doi: 10.1126/science.1095292
– ident: e_1_3_3_31_2
  doi: 10.1016/j.ajog.2008.03.006
– ident: e_1_3_3_61_2
  doi: 10.1016/S0968-0004(02)02110-2
– ident: e_1_3_3_48_2
  doi: 10.1353/hub.2004.0018
– ident: e_1_3_3_66_2
  doi: 10.1186/1742-7622-2-11
– ident: e_1_3_3_7_2
  doi: 10.1056/NEJM199801153380307
– ident: e_1_3_3_15_2
  doi: 10.1093/gerona/glq180
– ident: e_1_3_3_29_2
  doi: 10.1371/journal.pone.0011896
– ident: e_1_3_3_68_2
  doi: 10.1186/1742-5573-6-2
– ident: e_1_3_3_35_2
  doi: 10.1016/S0014-5793(99)00336-1
– ident: e_1_3_3_3_2
  doi: 10.1002/icd.649
– ident: e_1_3_3_26_2
  doi: 10.1016/j.biopsych.2011.01.035
– ident: e_1_3_3_30_2
  doi: 10.1056/NEJM197608122950701
– ident: e_1_3_3_24_2
  doi: 10.1016/j.biopsych.2009.08.014
– ident: e_1_3_3_72_2
  doi: 10.1016/j.yhbeh.2004.11.019
– ident: e_1_3_3_10_2
  doi: 10.1016/S1097-2765(03)00174-6
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.0407162101
– ident: e_1_3_3_39_2
  doi: 10.1093/ajcn/85.3.845
– start-page: 253
  volume-title: Evolution in Health and Disease
  year: 2008
  ident: e_1_3_3_42_2
– ident: e_1_3_3_19_2
  doi: 10.1016/j.psyneuen.2005.08.011
– ident: e_1_3_3_47_2
  doi: 10.1016/S0895-7061(98)00202-7
– ident: e_1_3_3_45_2
  doi: 10.1038/nrendo.2009.195
– ident: e_1_3_3_32_2
  doi: 10.1203/pdr.0b013e318045be53
– ident: e_1_3_3_9_2
  doi: 10.1111/j.1467-8721.2009.01596.x
– ident: e_1_3_3_55_2
  doi: 10.1006/brbi.1996.0020
– ident: e_1_3_3_49_2
  doi: 10.1016/j.pbiomolbio.2010.12.005
– ident: e_1_3_3_23_2
  doi: 10.1016/j.psyneuen.2010.09.010
– ident: e_1_3_3_25_2
  doi: 10.1097/PSY.0b013e31820573b6
– reference: 20678755 - Biol Psychiatry. 2010 Sep 15;68(6):e21-2; author reply e23-4
– reference: 9576930 - Proc Natl Acad Sci U S A. 1998 May 12;95(10):5607-10
– reference: 18070000 - J Intern Med. 2008 Mar;263(3):302-12
– reference: 12769860 - Mol Cell. 2003 May;11(5):1379-87
– reference: 16112303 - Lancet. 2005 Aug 20-26;366(9486):662-4
– reference: 19786987 - Nat Rev Endocrinol. 2009 Nov;5(11):604-10
– reference: 10232505 - Am J Hypertens. 1999 Apr;12(4 Pt 1):427-32
– reference: 11081503 - Nature. 2000 Nov 2;408(6808):53-6
– reference: 20167271 - Brain Behav Immun. 2010 May;24(4):529-30
– reference: 18230683 - FASEB J. 2008 Jun;22(6):2037-44
– reference: 15375258 - Science. 2004 Sep 17;305(5691):1733-6
– reference: 12114022 - Trends Biochem Sci. 2002 Jul;27(7):339-44
– reference: 20689593 - PLoS One. 2010;5(7):e11896
– reference: 19837074 - J Immunol Methods. 2010 Jan 31;352(1-2):71-80
– reference: 15777808 - Horm Behav. 2005 Apr;47(4):430-8
– reference: 20619976 - Early Hum Dev. 2010 Jul;86(7):451-6
– reference: 15507128 - Epidemiol Perspect Innov. 2004 Oct 04;1(1):3
– reference: 16298085 - Psychoneuroendocrinology. 2006 Apr;31(3):277-87
– reference: 20679357 - Eur J Endocrinol. 2010 Oct;163(4):601-7
– reference: 21252306 - Proc Natl Acad Sci U S A. 2011 Feb 15;108(7):3011-6
– reference: 15851602 - Circulation. 2005 May 3;111(17):2171-7
– reference: 18222063 - Brain Behav Immun. 2008 May;22(4):600-5
– reference: 19828140 - Biol Psychiatry. 2010 Mar 15;67(6):531-4
– reference: 17344508 - Am J Clin Nutr. 2007 Mar;85(3):845-52
– reference: 19534788 - Epidemiol Perspect Innov. 2009 Jun 17;6:2
– reference: 12000852 - Nucleic Acids Res. 2002 May 15;30(10):e47
– reference: 15142991 - Endocrinology. 2004 Aug;145(8):3778-87
– reference: 21148804 - Psychosom Med. 2011 Jan;73(1):16-22
– reference: 17043079 - Am J Epidemiol. 2007 Jan 1;165(1):14-21
– reference: 10217398 - FEBS Lett. 1999 Apr 1;448(1):4-8
– reference: 19427960 - Lancet. 2009 May 9;373(9675):1654-7
– reference: 15222684 - Hum Biol. 2004 Feb;76(1):127-46
– reference: 19190150 - Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):551-60
– reference: 8954595 - Brain Behav Immun. 1996 Sep;10(3):221-34
– reference: 9428819 - N Engl J Med. 1998 Jan 15;338(3):171-9
– reference: 20962631 - Curr Opin Endocrinol Diabetes Obes. 2010 Dec;17(6):507-16
– reference: 12193671 - Pediatr Res. 2002 Sep;52(3):377-81
– reference: 16269083 - Emerg Themes Epidemiol. 2005 Nov 03;2:11
– reference: 19491187 - JAMA. 2009 Jun 3;301(21):2252-9
– reference: 17785865 - J Immunol. 2007 Sep 15;179(6):4249-54
– reference: 19269917 - Hormones (Athens). 2009 Jan-Mar;8(1):7-22
– reference: 19084531 - Horm Behav. 2009 Feb;55(2):292-8
– reference: 17925521 - JAMA. 2007 Oct 10;298(14):1685-7
– reference: 15031270 - Circ Res. 2004 Mar 19;94(5):575-84
– reference: 17413860 - Pediatr Res. 2007 May;61(5 Pt 1):520-4
– reference: 21319244 - Am J Hum Biol. 2011 Mar-Apr;23(2):149-67
– reference: 19126595 - FASEB J. 2009 May;23(5):1521-8
– reference: 11253847 - Am J Primatol. 2001 Mar;53(3):123-30
– reference: 18683180 - Dev Psychobiol. 2008 Sep;50(6):579-87
– reference: 20442329 - Proc Natl Acad Sci U S A. 2010 May 11;107(19):8507-12
– reference: 17046196 - Reprod Toxicol. 2007 Apr-May;23(3):297-307
– reference: 14717652 - Psychol Bull. 2004 Jan;130(1):115-42
– reference: 10681890 - Ann N Y Acad Sci. 1999;896:85-95
– reference: 934222 - N Engl J Med. 1976 Aug 12;295(7):349-53
– reference: 21035949 - Psychoneuroendocrinology. 2011 Jun;36(5):664-81
– reference: 15574496 - Proc Natl Acad Sci U S A. 2004 Dec 7;101(49):17312-5
– reference: 14283879 - Proc R Soc Med. 1965 May;58:295-300
– reference: 18799354 - Lancet Oncol. 2008 Nov;9(11):1048-57
– reference: 21577215 - Mol Psychiatry. 2012 Jul;17(7):719-27
– reference: 10516397 - Biol Neonate. 1999 Nov;76(5):301-10
– reference: 18448080 - Am J Obstet Gynecol. 2008 Nov;199(5):498.e1-7
– reference: 15919579 - Psychoneuroendocrinology. 2005 Sep;30(8):724-43
– reference: 21113150 - Nature. 2011 Jan 6;469(7328):102-6
– reference: 21147148 - Prog Biophys Mol Biol. 2011 Jul;106(1):323-36
– reference: 21030466 - J Gerontol A Biol Sci Med Sci. 2011 Feb;66(2):202-13
– reference: 14627890 - J Am Acad Child Adolesc Psychiatry. 2003 Dec;42(12):1524-9
– reference: 21489410 - Biol Psychiatry. 2011 Sep 1;70(5):465-71
SSID ssj0009580
Score 2.517026
Snippet Leukocyte telomere length (LTL) is a predictor of age-related disease onset and mortality. The association in adults of psychosocial stress or stress...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E513
SubjectTerms Adult
adulthood
Adults
Age
Biological Sciences
biomarkers
birth weight
Case-Control Studies
Chromosomes
disease resistance
Exposure
Female
Health risks
Humans
Infant, Newborn
Intrauterine devices
IUD
Leukocytes
Male
mortality
mothers
Mothers - psychology
Offspring
PNAS Plus
Pregnancy
Pregnancy Complications - psychology
Prenatal Exposure Delayed Effects
progeny
Risk
Stress
Stress, Psychological
Telomere
telomeres
women
Young Adult
Young adults
Title Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood
URI http://www.pnas.org/content/108/33/E513.abstract
https://www.ncbi.nlm.nih.gov/pubmed/21813766
https://www.proquest.com/docview/884299667
https://www.proquest.com/docview/1468360267
https://www.proquest.com/docview/1663530111
https://www.proquest.com/docview/884270180
https://pubmed.ncbi.nlm.nih.gov/PMC3158153
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa68cILYtxWBshIPAxVKUnsxsnjhDImKGVSW6lvkZM6a1GXVksqAb-ec-I4SUfH7SWqbMexcr7Y3zk9F0LeuL7iPAVNVcaSW1y6nhUEoKU43EmYrZhyAox3_jzyLqb842ww63TaXkvbIu4nP_bGlfyPVKEN5IpRsv8g2XpSaIDfIF-4goTh-lcyHutAD_Vts0ZDH9oulmisxTINyB5Xy1RhxXJZycC4mucLdLG96RVqtb5WcCOWUylK28d3_Pp1Vo5FVUfecNfL-qzLjWfByJgSz5rAlGq3yHtW73LUlDkOYWGlCbG0t66zr_V5EG60p0C4AhDIxhb7aXttuG3p_m3ah1UBsa1qmyy0DVZHVFa7LJAUy-O6Tmhf7WkzW7PttzDIWGunDQc6hvWXIwD2LKxbnMkcQxyEGARmlp1k26Mv0fl0OIwm4WxyQO65oGVgAYwPM6eVs9nXySyqlZnMUIK9uzX9Dqk5SOUaU-XCkH1qy23v2xadmTwkDyo9hJ5pUB2RjsoekSMjO3papSN_-5jEGmXUoIwuM9pGGUWU0WVOG5RRRBmtUEYNyqhGGd5foozWKHtCxufh5P2FVVXmsBJQDwrLSZUjGLfnA8nnwk14MLdd5bFYJjHz_SQBGpkmgqWpz5mHSmsCNMhOpZ2mwmdPyWG2ztQxoTIIVBAHngC1nJfZ6PgAGKQE0sm8uVBd0jcvNkqqpPVYO2UVlc4TgkX4mqNGEl1yWt-w0fla7h56DJKK5BWcptF07KKtwQZ1G45_6CoHNzP4EWMRYq5LToxIo2oryCPfR1rneaJLXte9sE_jn28yU-ttjio2xku5vx2D9B9PXFgAvWMMPkpg1r0ueaZxVK8S2TrwBa9LxA7C6gGYSn63J1suypTyzBn4wH2e__mxJ-R-80m_IIfFzVa9BF5exK_Kr-cnG8Tj-Q
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress+exposure+in+intrauterine+life+is+associated+with+shorter+telomere+length+in+young+adulthood&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Entringer%2C+Sonja&rft.au=Epel%2C+Elissa+S&rft.au=Kumsta%2C+Robert&rft.au=Lin%2C+Jue&rft.date=2011-08-16&rft.issn=1091-6490&rft.eissn=1091-6490&rft.volume=108&rft.issue=33&rft.spage=E513&rft_id=info:doi/10.1073%2Fpnas.1107759108&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F33.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F108%2F33.cover.gif