Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit
Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Fruits of...
Saved in:
Published in | BMC plant biology Vol. 15; no. 1; p. 76 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
06.03.2015
BioMed Central |
Subjects | |
Online Access | Get full text |
ISSN | 1471-2229 1471-2229 |
DOI | 10.1186/s12870-015-0466-9 |
Cover
Loading…
Abstract | Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit.
Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced.
We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit. |
---|---|
AbstractList | Background Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Result Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced. Conclusion We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit. Keywords: Apocarotenoid volatiles, Carotenoids, Sesquiterpene synthase, Citrus, Gene expression Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced. We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit. BACKGROUNDAlthough many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit.RESULTFruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced.CONCLUSIONWe showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit. Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile production are very limited. Our aim was to understand mechanisms of flavor volatile production and regulation in mandarin fruit. Fruits of two mandarin hybrids, Temple and Murcott with contrasting volatile and non- volatile profiles, were collected at three developmental stages. A combination of methods, including the isobaric tags for relative and absolute quantification (iTRAQ), quantitative real-time polymerase chain reaction, gas chromatography, and high-performance liquid chromatography, was used to identify proteins, measure gene expression levels, volatiles, sugars, organic acids and carotenoids. Two thirds of differentially expressed proteins were identified in the pathways of glycolysis, citric acid cycle, amino acid, sugar and starch metabolism. An enzyme encoding valencene synthase gene (Cstps1) was more abundant in Temple than in Murcott. Valencene accounted for 9.4% of total volatile content in Temple, whereas no valencene was detected in Murcott fruit. Murcott expression of Cstps1 is severely reduced. We showed that the diversion of valencene and other sesquiterpenes into the terpenoid pathway together with high production of apocarotenoid volatiles might have resulted in the lower concentration of carotenoids in Temple fruit. |
ArticleNumber | 76 |
Audience | Academic |
Author | Bai, Jinhe Huang, Ming Gmitter, Frederick G Yu, Qibin Baldwin, Elizabeth A Dhaliwal, Harvinder S Plotto, Anne Yu, Yuan |
Author_xml | – sequence: 1 givenname: Qibin surname: Yu fullname: Yu, Qibin – sequence: 2 givenname: Anne surname: Plotto fullname: Plotto, Anne – sequence: 3 givenname: Elizabeth A surname: Baldwin fullname: Baldwin, Elizabeth A – sequence: 4 givenname: Jinhe surname: Bai fullname: Bai, Jinhe – sequence: 5 givenname: Ming surname: Huang fullname: Huang, Ming – sequence: 6 givenname: Yuan surname: Yu fullname: Yu, Yuan – sequence: 7 givenname: Harvinder S surname: Dhaliwal fullname: Dhaliwal, Harvinder S – sequence: 8 givenname: Frederick G surname: Gmitter fullname: Gmitter, Frederick G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25848837$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkstu3CAUhq0qUXNpH6CbylI36cIJmPumUhT1EilSol7WCDCeocJmCnjUeYU-dXFnOspUVSsWwOH7D4fDf1YdjWG0VfUCgksIOb1KsOUMNACSBmBKG_GkOoWYwaZtW3H0aH1SnaX0FQDIOBZPq5OWcMw5YqfVj4cYsg2DM7Uau3qwWengd3vlN8mmehXD2nW2dmNyi2Uucw5zsJtMdmGsQ1-vg1fZefsrSamy2Qd6r9Yh1iYMq1L8mFOR10PBVCyL5UZH19V9nFx-Vh33yif7fDefV1_evf1886G5u39_e3N91xiCUG5gxzVpOeECG22sQgYASloEgegYM7oXtNWYs14QRIXmPQVacKOZ1gJhTdB59WabdzXpwXamFBWVl6voBhU3MignD09Gt5SLsJYYEQoRLwkudgli-DbZlOXgkrHeq9GGKckWAEAIJoT8F4WUtYAzTEVBX23RhfJWurEP5XIz4_KaYIgYKQ8r1OVfqDI6W_6sdLgvTT8UvD4QFCbb73mhppTk7aePh-zLx53Zt-S3XQoAt4CJIaVo-z0CgZwtKbeWlMWScraknN_F_tAYl9VsnFK58_9Q_gSpL-am |
CitedBy_id | crossref_primary_10_1016_j_postharvbio_2025_113491 crossref_primary_10_1021_acsomega_3c01364 crossref_primary_10_3389_fpls_2016_00932 crossref_primary_10_3389_fpls_2019_01167 crossref_primary_10_3390_foods5010004 crossref_primary_10_1002_bmc_5133 crossref_primary_10_3389_fpls_2021_787049 crossref_primary_10_1186_s12864_017_4043_5 crossref_primary_10_3390_foods12040713 crossref_primary_10_1016_j_foodchem_2021_131265 crossref_primary_10_1016_j_foodchem_2023_136026 crossref_primary_10_1021_acs_jafc_2c03870 crossref_primary_10_1186_s12870_017_0988_4 crossref_primary_10_1590_fst_33017 crossref_primary_10_1016_j_foodres_2023_112531 crossref_primary_10_1155_2020_2526956 crossref_primary_10_1016_j_plantsci_2020_110422 crossref_primary_10_1016_j_scienta_2020_109816 crossref_primary_10_1038_s41598_020_70385_4 crossref_primary_10_1186_s12870_019_1701_6 crossref_primary_10_1186_s12870_024_05677_2 crossref_primary_10_1111_1750_3841_15116 crossref_primary_10_1007_s00128_020_03048_9 crossref_primary_10_1155_2018_8084032 |
Cites_doi | 10.1074/mcp.M800343-MCP200 10.1038/nbt1312 10.1111/nph.12145 10.1104/pp.104.042580 10.1093/bioinformatics/bti610 10.1002/jsfa.4663 10.1093/jxb/ern329 10.1111/j.1365-313X.2011.04493.x 10.1016/j.plaphy.2009.01.002 10.1186/1471-2164-13-19 10.1111/j.1750-3841.2004.tb18023.x 10.1002/jsfa.4205 10.1074/mcp.M700251-MCP200 10.1139/G10-068 10.1016/j.phytochem.2004.08.017 10.1021/jf104614s 10.1016/j.cub.2010.02.052 10.1007/s00425-007-0545-8 10.21273/JASHS.123.5.906 10.1002/jsfa.5587 10.1021/jf100172e 10.1111/pce.12314 10.1186/1477-5956-8-68 10.1105/tpc.12.5.647 10.1080/07352680600899973 10.1111/j.1750-3841.2008.00825.x 10.1002/pmic.200900092 10.1002/ffj.1974 10.1016/j.jprot.2012.03.016 10.1111/j.1365-313X.2008.03446.x 10.1081/FBT-120026338 10.1016/j.cub.2012.04.016 10.1016/j.tifs.2005.04.004 10.1111/j.1469-8137.2010.03281.x 10.1079/PAVSNNR20094051 10.1002/jsfa.4146 10.1046/j.1365-313X.2003.01910.x 10.1016/j.tplants.2005.10.005 10.1002/pmic.200600143 10.1126/science.1112614 10.1021/jf9031958 10.4141/CJPS07170 10.1016/j.postharvbio.2010.01.002 10.1186/1471-2229-11-165 10.1021/jf047927t 10.1021/jf00006a029 10.1021/pr060474i |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 BioMed Central Ltd. Yu et al.; licensee BioMed Central. 2015 |
Copyright_xml | – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Yu et al.; licensee BioMed Central. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ISR 7X8 7S9 L.6 5PM |
DOI | 10.1186/s12870-015-0466-9 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Science MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1471-2229 |
EndPage | 76 |
ExternalDocumentID | PMC4356138 A541375962 25848837 10_1186_s12870_015_0466_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 23N 2WC 2XV 4.4 53G 5GY 5VS 6J9 7X2 7X7 88E 8FE 8FH 8FI 8FJ A8Z AAFWJ AAHBH AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS APEBS ATCPS BAPOH BAWUL BBNVY BCNDV BENPR BFQNJ BHPHI BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAG IAO IEP IGH IGS IHR INH INR ISR ITC KQ8 LK8 M0K M1P M48 M7P M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS U2A UKHRP WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY PQGLB 7S9 L.6 5PM PJZUB |
ID | FETCH-LOGICAL-c533t-1d8b5285894cbcea3c006523109d77cbf962b487f95369b8f60b98cb7bb934b53 |
IEDL.DBID | M48 |
ISSN | 1471-2229 |
IngestDate | Thu Aug 21 18:32:51 EDT 2025 Fri Jul 11 17:23:23 EDT 2025 Fri Jul 11 04:35:26 EDT 2025 Tue Jun 17 22:04:57 EDT 2025 Tue Jun 10 21:02:04 EDT 2025 Fri Jun 27 05:58:46 EDT 2025 Thu Apr 03 07:01:12 EDT 2025 Tue Jul 01 03:01:15 EDT 2025 Thu Apr 24 22:53:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c533t-1d8b5285894cbcea3c006523109d77cbf962b487f95369b8f60b98cb7bb934b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12870-015-0466-9 |
PMID | 25848837 |
PQID | 1672087469 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4356138 proquest_miscellaneous_2000554555 proquest_miscellaneous_1672087469 gale_infotracmisc_A541375962 gale_infotracacademiconefile_A541375962 gale_incontextgauss_ISR_A541375962 pubmed_primary_25848837 crossref_primary_10_1186_s12870_015_0466_9 crossref_citationtrail_10_1186_s12870_015_0466_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-03-06 |
PublicationDateYYYYMMDD | 2015-03-06 |
PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | BMC plant biology |
PublicationTitleAlternate | BMC Plant Biol |
PublicationYear | 2015 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | A Conesa (466_CR48) 2005; 21 CS Gan (466_CR25) 2007; 6 C Feng (466_CR28) 2012; 13 EA Baldwin (466_CR46) 2012; 92 A Aharoni (466_CR33) 2005; 10 A Pierce (466_CR26) 2008; 7 N Dudareva (466_CR39) 2006; 25 A Aharoni (466_CR10) 2000; 12 ZY Pan (466_CR30) 2009; 9 J Fan (466_CR35) 2010; 53 T Miyazaki (466_CR4) 2011; 91 J Beekwilder (466_CR9) 2004; 135 M Gonzalez Aguero (466_CR12) 2009; 47 Z Tietel (466_CR16) 2011; 59 W Schwab (466_CR27) 2008; 54 SA Goff (466_CR6) 2006; 311 EA Baldwin (466_CR8) 2008; 73 HJ Klee (466_CR18) 2010; 187 Z Yun (466_CR29) 2010; 56 J Song (466_CR38) 2008; 88 EA Baldwin (466_CR44) 1998; 123 L Sharon-Asa (466_CR15) 2003; 36 466_CR22 E Lewinsohn (466_CR41) 2005; 53 IT Baldwin (466_CR1) 2010; 20 J Lucker (466_CR14) 2004; 65 E Katz (466_CR20) 2010; 8 D Tieman (466_CR7) 2012; 22 E Katz (466_CR21) 2007; 226 E Baldwin (466_CR42) 2010; 58 JK Muhlemann (466_CR17) 2014; 37 M Oke (466_CR36) 2003; 17 B Zhang (466_CR13) 2010; 58 N Dudareva (466_CR5) 2013; 198 Z Pan (466_CR19) 2012; 75 Q Liu (466_CR32) 2009; 60 Z Tietel (466_CR2) 2011; 91 H Trindade (466_CR31) 2010; 25 S Chen (466_CR24) 2006; 6 E Lewinsohn (466_CR40) 2005; 16 J Saunt (466_CR23) 2000 J Pirrello (466_CR37) 2009; 4 EA Baldwin (466_CR45) 2004; 69 M Zhu (466_CR47) 2009; 8 K Yonekura-Sakakibara (466_CR34) 2011; 66 T Miyazaki (466_CR3) 2012; 92 R Davidovich-Rikanati (466_CR11) 2007; 25 EA Baldwin (466_CR43) 1991; 39 22472342 - J Proteomics. 2012 May 17;75(9):2670-84 19834898 - Proteomics. 2009 Dec;9(24):5455-70 19233665 - Plant Physiol Biochem. 2009 May;47(5):435-40 14617067 - Plant J. 2003 Dec;36(5):664-74 19218315 - J Exp Bot. 2009;60(3):801-13 15326278 - Plant Physiol. 2004 Aug;135(4):1865-78 21162737 - Proteome Sci. 2010 Dec 16;8:68 15826071 - J Agric Food Chem. 2005 Apr 20;53(8):3142-8 22244270 - BMC Genomics. 2012;13:19 20456053 - New Phytol. 2010 Jul;187(1):44-56 19241574 - J Food Sci. 2008 Aug;73(6):S294-307 20462477 - Curr Biol. 2010 May 11;20(9):R392-7 22413143 - J Sci Food Agric. 2012 Mar 15;92(4):727-35 17951628 - Mol Cell Proteomics. 2008 May;7(5):853-63 20415420 - J Agric Food Chem. 2010 May 26;58(10):6157-65 18476874 - Plant J. 2008 May;54(4):712-32 22290491 - J Sci Food Agric. 2012 Aug 15;92(10):2029-42 16972296 - Proteomics. 2006 Oct;6(20):5504-16 17592476 - Nat Biotechnol. 2007 Aug;25(8):899-901 22633806 - Curr Biol. 2012 Jun 5;22(11):1035-9 15464152 - Phytochemistry. 2004 Oct;65(19):2649-59 21443631 - Plant J. 2011 Apr;66(1):182-93 20962888 - Genome. 2010 Oct;53(10):816-23 23383981 - New Phytol. 2013 Apr;198(1):16-32 22098939 - BMC Plant Biol. 2011;11:165 20030384 - J Agric Food Chem. 2010 Jan 27;58(2):1247-62 16469919 - Science. 2006 Feb 10;311(5762):815-9 10810141 - Plant Cell. 2000 May;12(5):647-62 17541628 - Planta. 2007 Sep;226(4):989-1005 17269738 - J Proteome Res. 2007 Feb;6(2):821-7 16290212 - Trends Plant Sci. 2005 Dec;10(12):594-602 24588567 - Plant Cell Environ. 2014 Aug;37(8):1936-49 20812381 - J Sci Food Agric. 2011 Jan 15;91(1):14-23 21401120 - J Agric Food Chem. 2011 Apr 27;59(8):3819-27 21218478 - J Sci Food Agric. 2011 Feb;91(3):449-60 19106087 - Mol Cell Proteomics. 2009 Apr;8(4):752-66 16081474 - Bioinformatics. 2005 Sep 15;21(18):3674-6 |
References_xml | – volume: 8 start-page: 752 issue: 4 year: 2009 ident: 466_CR47 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M800343-MCP200 – volume: 25 start-page: 899 issue: 8 year: 2007 ident: 466_CR11 publication-title: Nat Biotechnol doi: 10.1038/nbt1312 – volume: 198 start-page: 16 issue: 1 year: 2013 ident: 466_CR5 publication-title: New Phytol doi: 10.1111/nph.12145 – volume: 135 start-page: 1865 issue: 4 year: 2004 ident: 466_CR9 publication-title: Plant Physiol doi: 10.1104/pp.104.042580 – volume: 21 start-page: 3674 issue: 18 year: 2005 ident: 466_CR48 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti610 – volume: 92 start-page: 727 issue: 4 year: 2012 ident: 466_CR3 publication-title: J Sci Food Agric doi: 10.1002/jsfa.4663 – volume: 60 start-page: 801 issue: 3 year: 2009 ident: 466_CR32 publication-title: J Exp Bot doi: 10.1093/jxb/ern329 – volume: 66 start-page: 182 issue: 1 year: 2011 ident: 466_CR34 publication-title: Plant J doi: 10.1111/j.1365-313X.2011.04493.x – volume: 47 start-page: 435 issue: 5 year: 2009 ident: 466_CR12 publication-title: Plant Physiol Bioch doi: 10.1016/j.plaphy.2009.01.002 – volume: 13 start-page: 19 year: 2012 ident: 466_CR28 publication-title: BMC Genomics doi: 10.1186/1471-2164-13-19 – volume: 69 start-page: S310 issue: 8 year: 2004 ident: 466_CR45 publication-title: J Food Sci doi: 10.1111/j.1750-3841.2004.tb18023.x – volume: 91 start-page: 449 issue: 3 year: 2011 ident: 466_CR4 publication-title: J Sci Food Agric doi: 10.1002/jsfa.4205 – volume: 7 start-page: 853 issue: 5 year: 2008 ident: 466_CR26 publication-title: Mol Cell Proteomics doi: 10.1074/mcp.M700251-MCP200 – volume: 53 start-page: 816 issue: 10 year: 2010 ident: 466_CR35 publication-title: Genome doi: 10.1139/G10-068 – volume: 65 start-page: 2649 issue: 19 year: 2004 ident: 466_CR14 publication-title: Phytochemistry doi: 10.1016/j.phytochem.2004.08.017 – volume: 59 start-page: 3819 issue: 8 year: 2011 ident: 466_CR16 publication-title: J Agric Food Chem doi: 10.1021/jf104614s – volume: 20 start-page: 392 issue: 9 year: 2010 ident: 466_CR1 publication-title: Curr Biol doi: 10.1016/j.cub.2010.02.052 – volume: 226 start-page: 989 issue: 4 year: 2007 ident: 466_CR21 publication-title: Planta doi: 10.1007/s00425-007-0545-8 – volume: 123 start-page: 906 issue: 5 year: 1998 ident: 466_CR44 publication-title: J Am Soc Hortic Sci doi: 10.21273/JASHS.123.5.906 – volume: 92 start-page: 2029 issue: 10 year: 2012 ident: 466_CR46 publication-title: J Sci Food Agric doi: 10.1002/jsfa.5587 – volume: 58 start-page: 6157 issue: 10 year: 2010 ident: 466_CR13 publication-title: J Agric Food Chem doi: 10.1021/jf100172e – volume-title: Citrus Varieties of the World: an Illustrated Guide year: 2000 ident: 466_CR23 – volume: 37 start-page: 1936 issue: 8 year: 2014 ident: 466_CR17 publication-title: Plant Cell Environ doi: 10.1111/pce.12314 – volume: 8 start-page: 68 year: 2010 ident: 466_CR20 publication-title: Proteome Sci doi: 10.1186/1477-5956-8-68 – volume: 12 start-page: 647 issue: 5 year: 2000 ident: 466_CR10 publication-title: Plant Cell doi: 10.1105/tpc.12.5.647 – volume: 25 start-page: 417 issue: 5 year: 2006 ident: 466_CR39 publication-title: Crit Rev Plant Sci doi: 10.1080/07352680600899973 – volume: 73 start-page: S294 issue: 6 year: 2008 ident: 466_CR8 publication-title: J Food Sci doi: 10.1111/j.1750-3841.2008.00825.x – volume: 9 start-page: 5455 issue: 24 year: 2009 ident: 466_CR30 publication-title: Proteomics doi: 10.1002/pmic.200900092 – volume: 25 start-page: 272 issue: 5 year: 2010 ident: 466_CR31 publication-title: A Rev Flavour Frag J doi: 10.1002/ffj.1974 – volume: 75 start-page: 2670 issue: 9 year: 2012 ident: 466_CR19 publication-title: J Proteomics doi: 10.1016/j.jprot.2012.03.016 – volume: 54 start-page: 712 issue: 4 year: 2008 ident: 466_CR27 publication-title: Plant J doi: 10.1111/j.1365-313X.2008.03446.x – volume: 17 start-page: 163 issue: 3 year: 2003 ident: 466_CR36 publication-title: Food Biotechnol doi: 10.1081/FBT-120026338 – volume: 22 start-page: 1035 issue: 11 year: 2012 ident: 466_CR7 publication-title: Curr Biol doi: 10.1016/j.cub.2012.04.016 – volume: 16 start-page: 407 issue: 9 year: 2005 ident: 466_CR40 publication-title: Trends Food Sci Tech doi: 10.1016/j.tifs.2005.04.004 – volume: 187 start-page: 44 issue: 1 year: 2010 ident: 466_CR18 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03281.x – volume: 4 start-page: 1 issue: 051 year: 2009 ident: 466_CR37 publication-title: CAB Reviews doi: 10.1079/PAVSNNR20094051 – volume: 91 start-page: 14 issue: 1 year: 2011 ident: 466_CR2 publication-title: J Sci Food Agric doi: 10.1002/jsfa.4146 – volume: 36 start-page: 664 issue: 5 year: 2003 ident: 466_CR15 publication-title: Plant J doi: 10.1046/j.1365-313X.2003.01910.x – volume: 10 start-page: 594 issue: 12 year: 2005 ident: 466_CR33 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2005.10.005 – volume: 6 start-page: 5504 issue: 20 year: 2006 ident: 466_CR24 publication-title: Proteomics doi: 10.1002/pmic.200600143 – volume: 311 start-page: 815 issue: 5762 year: 2006 ident: 466_CR6 publication-title: Science doi: 10.1126/science.1112614 – volume: 58 start-page: 1247 issue: 2 year: 2010 ident: 466_CR42 publication-title: J Agric Food Chem doi: 10.1021/jf9031958 – volume: 88 start-page: 537 issue: 3 year: 2008 ident: 466_CR38 publication-title: Canadian J Plant Sci doi: 10.4141/CJPS07170 – volume: 56 start-page: 189 issue: 3 year: 2010 ident: 466_CR29 publication-title: Postharvest Biol Tec doi: 10.1016/j.postharvbio.2010.01.002 – ident: 466_CR22 doi: 10.1186/1471-2229-11-165 – volume: 53 start-page: 3142 issue: 8 year: 2005 ident: 466_CR41 publication-title: J Agric Food Chem doi: 10.1021/jf047927t – volume: 39 start-page: 1135 issue: 6 year: 1991 ident: 466_CR43 publication-title: J Agric Food Chem doi: 10.1021/jf00006a029 – volume: 6 start-page: 821 issue: 2 year: 2007 ident: 466_CR25 publication-title: J Proteome Res doi: 10.1021/pr060474i – reference: 21401120 - J Agric Food Chem. 2011 Apr 27;59(8):3819-27 – reference: 15464152 - Phytochemistry. 2004 Oct;65(19):2649-59 – reference: 16081474 - Bioinformatics. 2005 Sep 15;21(18):3674-6 – reference: 21162737 - Proteome Sci. 2010 Dec 16;8:68 – reference: 20462477 - Curr Biol. 2010 May 11;20(9):R392-7 – reference: 19233665 - Plant Physiol Biochem. 2009 May;47(5):435-40 – reference: 10810141 - Plant Cell. 2000 May;12(5):647-62 – reference: 18476874 - Plant J. 2008 May;54(4):712-32 – reference: 20812381 - J Sci Food Agric. 2011 Jan 15;91(1):14-23 – reference: 19241574 - J Food Sci. 2008 Aug;73(6):S294-307 – reference: 17541628 - Planta. 2007 Sep;226(4):989-1005 – reference: 17951628 - Mol Cell Proteomics. 2008 May;7(5):853-63 – reference: 15826071 - J Agric Food Chem. 2005 Apr 20;53(8):3142-8 – reference: 19218315 - J Exp Bot. 2009;60(3):801-13 – reference: 22098939 - BMC Plant Biol. 2011;11:165 – reference: 15326278 - Plant Physiol. 2004 Aug;135(4):1865-78 – reference: 16290212 - Trends Plant Sci. 2005 Dec;10(12):594-602 – reference: 21218478 - J Sci Food Agric. 2011 Feb;91(3):449-60 – reference: 17592476 - Nat Biotechnol. 2007 Aug;25(8):899-901 – reference: 16469919 - Science. 2006 Feb 10;311(5762):815-9 – reference: 22472342 - J Proteomics. 2012 May 17;75(9):2670-84 – reference: 19106087 - Mol Cell Proteomics. 2009 Apr;8(4):752-66 – reference: 16972296 - Proteomics. 2006 Oct;6(20):5504-16 – reference: 22244270 - BMC Genomics. 2012;13:19 – reference: 20962888 - Genome. 2010 Oct;53(10):816-23 – reference: 23383981 - New Phytol. 2013 Apr;198(1):16-32 – reference: 20456053 - New Phytol. 2010 Jul;187(1):44-56 – reference: 20030384 - J Agric Food Chem. 2010 Jan 27;58(2):1247-62 – reference: 22633806 - Curr Biol. 2012 Jun 5;22(11):1035-9 – reference: 22413143 - J Sci Food Agric. 2012 Mar 15;92(4):727-35 – reference: 22290491 - J Sci Food Agric. 2012 Aug 15;92(10):2029-42 – reference: 20415420 - J Agric Food Chem. 2010 May 26;58(10):6157-65 – reference: 19834898 - Proteomics. 2009 Dec;9(24):5455-70 – reference: 24588567 - Plant Cell Environ. 2014 Aug;37(8):1936-49 – reference: 17269738 - J Proteome Res. 2007 Feb;6(2):821-7 – reference: 21443631 - Plant J. 2011 Apr;66(1):182-93 – reference: 14617067 - Plant J. 2003 Dec;36(5):664-74 |
SSID | ssj0017849 |
Score | 2.2527993 |
Snippet | Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation of volatile... Background Although many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation... BACKGROUNDAlthough many of the volatile constituents of flavor and aroma in citrus have been identified, the knowledge of molecular mechanisms and regulation... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 76 |
SubjectTerms | amino acids Analysis Carbohydrates - analysis Carboxylic Acids - analysis carotenoids Carotenoids - analysis Citrus Citrus - metabolism enzymes flavor Fruit - genetics Fruit - metabolism fruits gas chromatography gene expression Gene Expression Profiling gene expression regulation Gene Expression Regulation, Plant genes Genes, Plant Genetic aspects Glucose metabolism glycolysis High performance liquid chromatography Hybridization, Genetic hybrids Metabolic Networks and Pathways metabolomics Metabolomics - methods Odorants odors Physiological aspects Plant Proteins - metabolism proteomics Proteomics - methods quantitative polymerase chain reaction Real-Time Polymerase Chain Reaction sesquiterpenoids starch sugars Taste tricarboxylic acid cycle Volatile Organic Compounds - metabolism |
Title | Proteomic and metabolomic analyses provide insight into production of volatile and non-volatile flavor components in mandarin hybrid fruit |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25848837 https://www.proquest.com/docview/1672087469 https://www.proquest.com/docview/2000554555 https://pubmed.ncbi.nlm.nih.gov/PMC4356138 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2wQMviO-FjcogJCQkQ-Imsf2A0Io2DaRNU6FSxYsVOzar1CWsSRH9F_iruUvSsqCBeOlHfEnrnM_-XXz3O0JewEDh3Oc5k4Y7FoPzxWQccZZ5brkPjbcGE4VPz9KTSfxxmky3yLq8VXcDqxtdO6wnNVnMX_-4Wr0Dg3_bGLxM31QR7taBU5xgoGLK1DbZhYVJoJ2exr83FYRs0HAE8zHDMtbdJueNl-gtU39O1tdWq34k5bWl6fguudNhSnrYDoJ7ZMsV98mtUQm4b_WA_DxHKgZMPqZZkdNLV4Pe5913ZCRxFe3y8eisqNBZh_e6xIN5yy1LS09hGgMlzl1zkaIs2OaAn2ffywXF4PSywLgMOJ1eNk8o4MPFCnPCqF8sZ_VDMjk--vz-hHUVGJgFGFizKJcm4TKRKrbGumxoEbIgJFS5ENZ4lXIDLo_HTWBlpE9Do6Q1whg1jE0yfER24B-5PUJV6HLklkOGrTixcYZFgi0Haat8xtOAhOsbrm1HT45VMua6cVNkqlsdadCRRh1pFZBXm1O-tdwc_xJ-jlrUyHlRYFDN12xZVfrDp7E-TGAlF1iGKCAvOyFfwo_brMtRgC4gTVZP8qAnCUZpe83P1oNFYxNGshWuXFY6SgUPpYhT9XcZTJ8CmJckSUAetwNs00EOiFHKoQiI6A29jQDyhfdbitlFwxsOyBjAm3zy353cJ7d5YxJYAOSA7NSLpXsKGKw2A7ItpmJAdkdHZ-fjQfMkY9BYG7yOR19-AVJeM2U |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proteomic+and+metabolomic+analyses+provide+insight+into+production+of+volatile+and+non-volatile+flavor+components+in+mandarin+hybrid+fruit&rft.jtitle=BMC+plant+biology&rft.au=Yu%2C+Qibin&rft.au=Plotto%2C+Anne&rft.au=Baldwin%2C+Elizabeth+A&rft.au=Bai%2C+Jinhe&rft.date=2015-03-06&rft.pub=BioMed+Central+Ltd&rft.issn=1471-2229&rft.eissn=1471-2229&rft.volume=15&rft_id=info:doi/10.1186%2Fs12870-015-0466-9&rft.externalDocID=A541375962 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2229&client=summon |