Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra‐Low Iridium Loadings

Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity,...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science Vol. 8; no. 21; pp. e2102950 - n/a
Main Authors Peng, Xiong, Satjaritanun, Pongsarun, Taie, Zachary, Wiles, Luke, Keane, Alex, Capuano, Christopher, Zenyuk, Iryna V., Danilovic, Nemanja
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.11.2021
Wiley
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. The effect of interfacial and bulk properties of porous transport layers (PTL) on proton exchange membrane water electrolyzers (PEMWEs) performance, mass, and charge transport limitations at ultra‐low iridium catalyst loadings is explored. The result provides insights into optimal PTL design: high porosity and low tortuosity in the bulk and intermediate porosity at the interface for PEMWEs operations.
AbstractList Abstract Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.
Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mgIr cm-2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra-low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL-induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr -1 ), respectively, while a nonnegligible 35 mV (at 3 A cm-2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mgIr cm-2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra-low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL-induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr -1 ), respectively, while a nonnegligible 35 mV (at 3 A cm-2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.
Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mgIr cm-2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra-low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL-induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr -1), respectively, while a nonnegligible 35 mV (at 3 A cm-2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.
Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. The effect of interfacial and bulk properties of porous transport layers (PTL) on proton exchange membrane water electrolyzers (PEMWEs) performance, mass, and charge transport limitations at ultra‐low iridium catalyst loadings is explored. The result provides insights into optimal PTL design: high porosity and low tortuosity in the bulk and intermediate porosity at the interface for PEMWEs operations.
Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.
Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mg Ir cm −2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mg Ir −1 ), respectively, while a nonnegligible 35 mV (at 3 A cm −2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. The effect of interfacial and bulk properties of porous transport layers (PTL) on proton exchange membrane water electrolyzers (PEMWEs) performance, mass, and charge transport limitations at ultra‐low iridium catalyst loadings is explored. The result provides insights into optimal PTL design: high porosity and low tortuosity in the bulk and intermediate porosity at the interface for PEMWEs operations.
Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mg Ir cm −2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mg Ir −1 ), respectively, while a nonnegligible 35 mV (at 3 A cm −2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.
Author Capuano, Christopher
Satjaritanun, Pongsarun
Keane, Alex
Taie, Zachary
Danilovic, Nemanja
Wiles, Luke
Zenyuk, Iryna V.
Peng, Xiong
AuthorAffiliation 2 Department of Material Science and Engineering University of California Irvine Irvine CA 92697 USA
3 Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Bend OR 97702 USA
1 Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
4 Nel Hydrogen/Proton Onsite Wallingford CT 06492 USA
AuthorAffiliation_xml – name: 2 Department of Material Science and Engineering University of California Irvine Irvine CA 92697 USA
– name: 1 Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
– name: 3 Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Bend OR 97702 USA
– name: 4 Nel Hydrogen/Proton Onsite Wallingford CT 06492 USA
Author_xml – sequence: 1
  givenname: Xiong
  orcidid: 0000-0001-8737-5830
  surname: Peng
  fullname: Peng, Xiong
  organization: Lawrence Berkeley National Laboratory
– sequence: 2
  givenname: Pongsarun
  orcidid: 0000-0001-6458-2845
  surname: Satjaritanun
  fullname: Satjaritanun, Pongsarun
  organization: University of California Irvine
– sequence: 3
  givenname: Zachary
  orcidid: 0000-0003-2629-4468
  surname: Taie
  fullname: Taie, Zachary
  organization: School of Mechanical, Industrial, and Manufacturing Engineering
– sequence: 4
  givenname: Luke
  orcidid: 0000-0001-9189-7797
  surname: Wiles
  fullname: Wiles, Luke
  organization: Nel Hydrogen/Proton Onsite
– sequence: 5
  givenname: Alex
  surname: Keane
  fullname: Keane, Alex
  organization: Nel Hydrogen/Proton Onsite
– sequence: 6
  givenname: Christopher
  surname: Capuano
  fullname: Capuano, Christopher
  organization: Nel Hydrogen/Proton Onsite
– sequence: 7
  givenname: Iryna V.
  orcidid: 0000-0002-1612-0475
  surname: Zenyuk
  fullname: Zenyuk, Iryna V.
  email: iryna.zenyuk@uci.edu
  organization: University of California Irvine
– sequence: 8
  givenname: Nemanja
  orcidid: 0000-0003-2036-6977
  surname: Danilovic
  fullname: Danilovic, Nemanja
  email: ndanilovic@lbl.gov
  organization: Lawrence Berkeley National Laboratory
BackLink https://www.osti.gov/servlets/purl/1829216$$D View this record in Osti.gov
BookMark eNqFkstuEzEUhkeoiJbSLWsLNmwSfJ2MN0ilBIgURCRaWFoe25M4eOxge1rCikdgyfPxJDikqmg3Xdk-_v_vXHQeVwc-eFNVTxEcIwjxS6kv0xhDjCDmDD6ojjDizYg0lB78dz-sTlJaQwgRIxOKmkfVIaGs5ojXR9XvmU92ucoJWJ8DmPlsYieVlQ5Ir8HrwX0F51H6tAkxg8XK-NAbL8Fp1xmVrV-CRQw5eDD9rlbSLw34YPq2GAz4IgsLTF3RxeC2P8pjUeAh9tIrA2QGFy5H-efnr3m4ArNotR16MA9SF2x6Uj3spEvm5Po8ri7eTs_P3o_mH9_Nzk7nI8UIoSPCpISt1AoTCmvFNJ4whojqsNambSkkjVY17yZYS8VaRTmmjHQaUzqpJdbkuJrtuTrItdhE28u4FUFa8S8Q4lLImK1yRhCoOOqaFqIaUzxBnLWwox2seV1DxFFhvdqzNkPbG62ML_25W9DbP96uxDJciobVlDJcAM_2gJCyFUnZbNRKBe_LDAVqMMeoLqIX11li-DaYlEVvkzLOlaGHIQnMOIEE0smuoOd3pOswRF_muVNhCBnnpKjGe5WKIaVoupuKERS7RRO7RRM3i1YM9I6hVCqzDbuurLvXdmWd2d6TRJy--fyp9EHJX0PJ6hM
CitedBy_id crossref_primary_10_1002_advs_202401652
crossref_primary_10_1002_advs_202405658
crossref_primary_10_1149_1945_7111_ad5d9f
crossref_primary_10_1039_D3YA00492A
crossref_primary_10_1002_anie_202304230
crossref_primary_10_1595_205651324X17055018154113
crossref_primary_10_1016_j_ijhydene_2024_02_020
crossref_primary_10_1021_acs_chemmater_3c01524
crossref_primary_10_1021_acs_chemrev_3c00904
crossref_primary_10_1021_jacsau_4c00199
crossref_primary_10_1021_acs_iecr_3c03546
crossref_primary_10_1149_1945_7111_acee25
crossref_primary_10_1149_1945_7111_ad54f1
crossref_primary_10_1016_j_jpowsour_2023_233448
crossref_primary_10_1038_s41467_023_40375_x
crossref_primary_10_3390_pr10112417
crossref_primary_10_1021_acssuschemeng_3c06209
crossref_primary_10_1149_1945_7111_ad1165
crossref_primary_10_1002_smsc_202300055
crossref_primary_10_1002_cey2_679
crossref_primary_10_1016_j_ijhydene_2025_03_235
crossref_primary_10_1016_j_jpowsour_2024_235908
crossref_primary_10_1002_ange_202302950
crossref_primary_10_1016_j_apcatb_2022_121213
crossref_primary_10_1002_smtd_202401842
crossref_primary_10_1002_ange_202304230
crossref_primary_10_1002_celc_202400377
crossref_primary_10_3390_app15031495
crossref_primary_10_1039_D4CY00031E
crossref_primary_10_1002_aenm_202103670
crossref_primary_10_1002_aenm_202203636
crossref_primary_10_1016_j_pmatsci_2024_101294
crossref_primary_10_1038_s41467_022_35603_9
crossref_primary_10_1016_j_apenergy_2024_123621
crossref_primary_10_1002_adem_202402462
crossref_primary_10_1021_acsami_3c12345
crossref_primary_10_1016_j_ces_2024_120814
crossref_primary_10_1016_j_apenergy_2023_120853
crossref_primary_10_1016_j_cej_2024_155901
crossref_primary_10_1002_anie_202302950
crossref_primary_10_1016_j_jpowsour_2023_232967
crossref_primary_10_1016_j_ijhydene_2025_02_442
crossref_primary_10_1002_advs_202205540
crossref_primary_10_1039_D3EE00142C
crossref_primary_10_1039_D3EY00193H
crossref_primary_10_1016_j_ijhydene_2025_02_443
crossref_primary_10_1021_acsaem_4c01866
crossref_primary_10_1039_D4TA08669D
crossref_primary_10_1021_acssuschemeng_3c05256
crossref_primary_10_1002_adma_202416012
crossref_primary_10_1016_j_coelec_2023_101340
crossref_primary_10_1021_acscatal_3c05162
crossref_primary_10_1016_j_apcatb_2024_123738
crossref_primary_10_1016_j_etran_2024_100365
crossref_primary_10_1016_j_joule_2024_06_005
crossref_primary_10_1002_smll_202411704
crossref_primary_10_1016_j_jpowsour_2024_234554
crossref_primary_10_1039_D3EY00279A
crossref_primary_10_1088_2515_7655_acccb1
crossref_primary_10_1002_sus2_230
crossref_primary_10_1016_j_ces_2024_120083
crossref_primary_10_1021_acsami_3c04151
crossref_primary_10_1002_adma_202404806
crossref_primary_10_1002_smll_202304636
crossref_primary_10_1016_j_ijhydene_2025_03_041
crossref_primary_10_1177_09506608231216665
crossref_primary_10_1149_1945_7111_ad0662
crossref_primary_10_1149_1945_7111_ad3497
crossref_primary_10_1021_acscentsci_4c00037
crossref_primary_10_1002_aenm_202302786
crossref_primary_10_1016_j_jpowsour_2022_232606
crossref_primary_10_1021_acssuschemeng_4c06540
Cites_doi 10.1016/j.ijhydene.2019.12.204
10.1016/j.xcrp.2020.100147
10.1146/annurev-chembioeng-060718-030241
10.1021/acsami.0c15687
10.1016/j.apenergy.2016.09.011
10.1016/j.apcatb.2015.09.011
10.1063/1.555839
10.1149/2.F04181if
10.1039/C7TA05681H
10.1016/j.isci.2020.101783
10.1016/j.nanoen.2019.01.043
10.1126/sciadv.1600690
10.1149/1945-7111/ab7f87
10.1016/j.apcatb.2015.05.027
10.1016/j.ijhydene.2017.11.115
10.1016/S1872-2067(17)62949-8
10.1149/2.0231915jes
10.1149/1945-7111/ab68c8
10.1002/aenm.202101438
10.1016/j.apenergy.2017.09.004
10.1149/2.0341904jes
10.1016/j.ijhydene.2011.08.057
10.1126/science.aas9793
10.1016/j.ijhydene.2013.01.151
10.1016/j.apenergy.2017.02.063
10.1126/science.aah3443
10.1149/2.0641805jes
10.1002/anie.201406455
10.1021/acsami.0c12111
10.1016/j.elecom.2018.10.021
10.1039/C4EE04041D
10.1039/C9TA12127G
10.1021/acsaem.0c00735
10.1002/aenm.201903216
10.1016/j.jpowsour.2015.12.139
10.1038/s41467-017-01734-7
ContentType Journal Article
Copyright 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
Copyright_xml – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH.
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FK
8G5
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
OIOZB
OTOTI
5PM
DOA
DOI 10.1002/advs.202102950
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Research Library
Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic


Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
EndPage n/a
ExternalDocumentID oai_doaj_org_article_30c91f8b0162427195b0f4f069660191
PMC8564452
1829216
10_1002_advs_202102950
ADVS3034
Genre article
GrantInformation_xml – fundername: Hydrogen and Fuel Cell Technologies Office, US Dept of Energy
– fundername: fuel cell technologies program
  funderid: DE‐AC02‐05CH11231
– fundername: department of energy, office of science, office of workforce development for teachers and scientists
  funderid: DE‐SC0014664
– fundername: u.s. department of energy (doe) office of science user facility
  funderid: DE‐AC02‐06CH11357
– fundername: fuel cell technologies program
  grantid: DE‐AC02‐05CH11231
– fundername: department of energy, office of science, office of workforce development for teachers and scientists
  grantid: DE‐SC0014664
– fundername: u.s. department of energy (doe) office of science user facility
  grantid: DE‐AC02‐06CH11357
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAZKR
ABDBF
ABUWG
ACCFJ
ACCMX
ACGFS
ACUHS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
ITC
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
AAYXX
ADMLS
AFPKN
CITATION
EJD
IGS
PHGZM
PHGZT
3V.
7XB
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
AEUQT
OIOZB
OTOTI
5PM
PUEGO
ID FETCH-LOGICAL-c5334-35aa0badc23406c5d275513cf2ddebb4038dc69f72dac5bc492453fd24476a2d3
IEDL.DBID 24P
ISSN 2198-3844
IngestDate Wed Aug 27 00:58:02 EDT 2025
Thu Aug 21 13:59:07 EDT 2025
Thu May 18 22:32:17 EDT 2023
Fri Jul 11 08:32:43 EDT 2025
Mon Jul 14 09:39:58 EDT 2025
Tue Jul 01 03:59:32 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Wed Jan 22 16:28:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Attribution
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5334-35aa0badc23406c5d275513cf2ddebb4038dc69f72dac5bc492453fd24476a2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office
AC02-05CH11231; SC0014664; AC02-06CH11357
USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS)
ORCID 0000-0001-6458-2845
0000-0003-2629-4468
0000-0003-2036-6977
0000-0001-9189-7797
0000-0001-8737-5830
0000-0002-1612-0475
0000000164582845
0000000191897797
0000000187375830
0000000326294468
0000000216120475
0000000320366977
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102950
PMID 34569196
PQID 2592005993
PQPubID 4365299
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_30c91f8b0162427195b0f4f069660191
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8564452
osti_scitechconnect_1829216
proquest_miscellaneous_2593030471
proquest_journals_2592005993
crossref_primary_10_1002_advs_202102950
crossref_citationtrail_10_1002_advs_202102950
wiley_primary_10_1002_advs_202102950_ADVS3034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
– name: Hoboken
PublicationTitle Advanced science
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
– name: John Wiley and Sons Inc
References 2017; 5
2017; 8
2018; 165
2018; 360
2019; 10
2016; 309
2019; 58
2017; 192
2017; 193
2020; 12
2020; 167
2020; 10
2011; 36
2016; 182
2017; 355
2015; 8
2018; 43
2018; 27
2019; 166
2020; 8
2018; 39
2020; 3
2016; 2
2013; 38
2021; 11
2020; 1
2015; 179
2020; 23
2020; 45
2018; 97
2017; 206
2014; 53
1989; 18
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_1_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 1938
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 53
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1449
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 1
  year: 2020
  publication-title: Cell Rep. Phys. Sci.
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 10
  start-page: 219
  year: 2019
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 182
  start-page: 123
  year: 2016
  publication-title: Appl. Catal., B
– volume: 206
  start-page: 983
  year: 2017
  publication-title: Appl. Energy
– volume: 18
  year: 1989
  publication-title: J. Phys. Chem. Ref. Data
– volume: 45
  start-page: 6047
  year: 2020
  publication-title: Int. J. Hydrogen Energy
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 3
  start-page: 8276
  year: 2020
  publication-title: ACS Appl. Energy Mater.
– volume: 193
  start-page: 440
  year: 2017
  publication-title: Appl. Energy
– volume: 97
  start-page: 96
  year: 2018
  publication-title: Electrochem. Commun.
– volume: 167
  year: 2020
  publication-title: J. Electrochem. Soc.
– volume: 58
  start-page: 158
  year: 2019
  publication-title: Nano Energy
– volume: 309
  start-page: 127
  year: 2016
  publication-title: J. Power Sources
– volume: 179
  start-page: 285
  year: 2015
  publication-title: Appl. Catal., B
– volume: 165
  start-page: F305
  year: 2018
  publication-title: J. Electrochem. Soc.
– volume: 36
  year: 2011
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 4898
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 11
  year: 2021
  publication-title: Adv. Energy Mater.
– volume: 38
  start-page: 4901
  year: 2013
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 390
  year: 2018
  publication-title: Chin. J. Catal.
– volume: 192
  start-page: 477
  year: 2017
  publication-title: Appl. Energy
– volume: 166
  start-page: F214
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 355
  start-page: 1269
  year: 2017
  publication-title: Science
– volume: 23
  year: 2020
  publication-title: iScience
– volume: 360
  year: 2018
  publication-title: Science
– volume: 43
  start-page: 1209
  year: 2018
  publication-title: Int. J. Hydrogen Energy
– volume: 27
  start-page: 47
  year: 2018
  publication-title: Electrochem. Soc. Interface
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
– ident: e_1_2_10_22_1
  doi: 10.1016/j.ijhydene.2019.12.204
– ident: e_1_2_10_34_1
  doi: 10.1016/j.xcrp.2020.100147
– ident: e_1_2_10_3_1
  doi: 10.1146/annurev-chembioeng-060718-030241
– ident: e_1_2_10_5_1
  doi: 10.1021/acsami.0c15687
– ident: e_1_2_10_26_1
  doi: 10.1016/j.apenergy.2016.09.011
– ident: e_1_2_10_32_1
  doi: 10.1016/j.apcatb.2015.09.011
– ident: e_1_2_10_36_1
  doi: 10.1063/1.555839
– ident: e_1_2_10_9_1
  doi: 10.1149/2.F04181if
– ident: e_1_2_10_16_1
  doi: 10.1039/C7TA05681H
– ident: e_1_2_10_20_1
  doi: 10.1016/j.isci.2020.101783
– ident: e_1_2_10_30_1
  doi: 10.1016/j.nanoen.2019.01.043
– ident: e_1_2_10_17_1
  doi: 10.1126/sciadv.1600690
– ident: e_1_2_10_35_1
  doi: 10.1149/1945-7111/ab7f87
– ident: e_1_2_10_28_1
  doi: 10.1016/j.apcatb.2015.05.027
– ident: e_1_2_10_8_1
  doi: 10.1016/j.ijhydene.2017.11.115
– ident: e_1_2_10_10_1
  doi: 10.1016/S1872-2067(17)62949-8
– ident: e_1_2_10_33_1
  doi: 10.1149/2.0231915jes
– ident: e_1_2_10_19_1
  doi: 10.1149/1945-7111/ab68c8
– ident: e_1_2_10_23_1
  doi: 10.1002/aenm.202101438
– ident: e_1_2_10_12_1
  doi: 10.1016/j.apenergy.2017.09.004
– ident: e_1_2_10_24_1
  doi: 10.1149/2.0341904jes
– ident: e_1_2_10_29_1
  doi: 10.1016/j.ijhydene.2011.08.057
– ident: e_1_2_10_1_1
  doi: 10.1126/science.aas9793
– ident: e_1_2_10_4_1
  doi: 10.1016/j.ijhydene.2013.01.151
– ident: e_1_2_10_6_1
  doi: 10.1016/j.apenergy.2017.02.063
– ident: e_1_2_10_2_1
  doi: 10.1126/science.aah3443
– ident: e_1_2_10_15_1
  doi: 10.1149/2.0641805jes
– ident: e_1_2_10_14_1
  doi: 10.1002/anie.201406455
– ident: e_1_2_10_21_1
  doi: 10.1021/acsami.0c12111
– ident: e_1_2_10_11_1
  doi: 10.1016/j.elecom.2018.10.021
– ident: e_1_2_10_7_1
  doi: 10.1039/C4EE04041D
– ident: e_1_2_10_25_1
  doi: 10.1039/C9TA12127G
– ident: e_1_2_10_31_1
  doi: 10.1021/acsaem.0c00735
– ident: e_1_2_10_18_1
  doi: 10.1002/aenm.201903216
– ident: e_1_2_10_27_1
  doi: 10.1016/j.jpowsour.2015.12.139
– ident: e_1_2_10_13_1
  doi: 10.1038/s41467-017-01734-7
SSID ssj0001537418
Score 2.4948478
Snippet Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange...
Abstract Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton...
SourceID doaj
pubmedcentral
osti
proquest
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e2102950
SubjectTerms Capital costs
Electricity
Electrodes
electrolysis
ENERGY STORAGE
Hydrogen
iridium
Kinetics
PEMWE
porous transport layer
Titanium
ultra‐low loading
X‐ray computed tomography
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5SFCCxokJOAQNbHjZH1s0VYtatFKsKI3y49EXbFNqt0srxM_gSO_j1_CjJMNu0ioF06RYytxPOPMN8nMN4w999YVKq9MrIzL4kx5G5sqtTGZJiuUkZmjfOfzt_nJNHtzIS82Sn1RTFhHD9wt3IFInEqrkUVogtakSJW0SZVVSU60kmnIW-d44Q1nqssPFkTLsmZpTPiB8Z-InZs8HEVJ9htWKJD146HBTbUFNP8Ok9yEr8H-HN9ld3rgCIfdhHfZrbK-x3b7rbmElz1_9Kv77OdpvSSXewmzum0gfPOrDH0aB1N7OFrNP8LAaQ6Ty7ImFgYDhyG0A00ZTBYNQkIYf-nSguG8vEKnui7hAyLTBYy70jnzr9-wMfmTeQCmhekcH-LX9x9nzWc4Xcz8bHUFZ00I1F8-YNPj8fvXJ3FfgCF2lKEbC2lMYo13XKDdd9LzgurBuIrjS9HaLBEj73JVFdwbJ63L0JmTovIIGYrccC8esp26qctHDHxuc45I3qRGZcYLmwovDDYLI9CGphGL1wLRrmcnpyIZc93xKnNNAtSDACP2Yhh_3fFy_HPkEcl3GEV82uEEapnutUzfpGUR2yPt0AhLiFvXURCSazU6Z4qnecT210qj-1cATkAqHthvRMSeDd24eemPDIqsWYUxgv5NF3iDYkvZtqa73VPPLgMN-EgilpUcVy6o5Q3LoBHmvMObZY__x3rssdt05S4pc5_ttItV-QTRWWufho34Gwq-N34
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BeuGCKA9hWtAiIQEHq_au148TalCqFrVVBET0Zu3DphGp3dpOeZz4CRz5ffwSZtYbt0ECTpHjjbzx7Mx8szvzDSHPjNJJFpfSz6SO_CgzypdlqHx0TYpnUkQa652PjuP9WfTmRJy4DbfWpVWubKI11KbWuEe-AzCdWTIR_ur8wseuUXi66lpo3CQbYILTdEQ2xpPj6durXRbBkZ5lxdYYsB1pLpGlGyOdDIvtr3kjS9oPHzUo1xrg_DNd8jqMtX5o7w657QAk3e0lvkluFNVdsulUtKUvHI_0y3vk50HVYujd0nnV1dTu_ZUSt8iprAwdLxef6MBtTqenRYVsDJLu2hQPcGl02tQADenkS18eTI-KMwiuq4J-AITa0EnfQmfx9RtcTK8qEKjs6GwBf-LX9x-H9Wd60MzNfHlGD2ubsN_eJ7O9yfvX-75rxOBrrNT1uZAyUNJoxsH_a2FYgn1hdMnAOCoVBTw1Os7KhBmphdIRBHWClwagQxJLZvgDMqrqqnhIqIlVzADRy1BmkTRchdxwCZeJ5OBLQ4_4K4Hk2rGUY7OMRd7zK7McBZgPAvTI82H8ec_P8deRY5TvMAp5te0XdfMxd2qa80BnYZkqAMKAXZIwEyooozKIkcQUQluPbOHqyAGeIMeuxmQk3eUQpGUsjD2yvVo0uTMFMIFh4Xrk6XAblBhPZkBk9dKO4XhGncADkrXFtjbd9TvV_NTSgacCMK1g8ObssvzPa8gB7ryDh0WP_j3ZLXILf9OXXW6TUdcsi8eAvzr1xCnZb3UIMpo
  priority: 102
  providerName: ProQuest
Title Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra‐Low Iridium Loadings
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102950
https://www.proquest.com/docview/2592005993
https://www.proquest.com/docview/2593030471
https://www.osti.gov/servlets/purl/1829216
https://pubmed.ncbi.nlm.nih.gov/PMC8564452
https://doaj.org/article/30c91f8b0162427195b0f4f069660191
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6h9sIFUR4itI0WCQk4WLX3YWePCaRqUVJFlIjerH3YbURqozzK48RP4Mjv45cws3acGgkhTpbtUezs7Ox-M575hpDnzthExbkOlLYiEMqZQOeRCXBrMlxpKSzWO4_P4pOpeHshL25V8Vf8EE3ADS3Dr9do4Nosj7akodrdIN02uiwKnfZdrK_FpD4mJtsoi-RIz4Id5sC7DnhPiA1zY8iO2j_R2pk8gT8cSjC0Fvj8M3XyNqT1e9LxfXKvBpO0X2l_j9zJigdkrzbXJX1Zc0q_ekh-nhZLdMOXdFasSurjgLnGcDnVhaOD9fwjbXjO6eQqK5CZQdO-T_eA7Y1OFiXARDr8UpUK03F2DaNXZPQDoNUFHVbtdOZfv8HJZFuNQPWKTufwJ359_zEqP9PTxczN1td0VPrk_eUjMj0evn99EtRNGQKLVbsBl1qHRjvLOGABKx1LsEeMzRkslMaIkPecjVWeMKetNFaAgyd57gBGJLFmjj8mO0VZZE8IdbGJGaB7HWkltOMm4o5rOE00h3016pBgo5DU1ozl2DhjnlZcyyxFBaaNAjvkRSP_qeLq-KvkAPXbSCHHtr9QLi7T2mRTHloV5T0DoBhwTBIpacJc5GGMhKbg5nbIPs6OFKAK8u1aTEyyqxQcNsWiuEMONpMmrZcFeAGpmGfE4R3yrLkNBo1faUBl5drLcPxencADktZka71u-04xu_LU4D0J-FYyGDk_Lf8xDClAn3N4mHj6n_L75C5erGoyD8jOarHODgGcrUzX21-X7PbfjEfncBwMzybvuj7U8RtSDjnG
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXRHmI0AKLBAIOVu1dP-IDQg2kSmgSRdCI3rb7sGlEapc8KOXET-DIr-BH8UuYWT_aIAGnniLHa3vtmZ35ZnfnG0IeG6WjOEylE0vtO35slCNTTznomhSPZeBrzHceDMPu2H9zEByskZ9VLgxuq6xsojXUJtc4R74NMJ1ZMhH-8uSTg1WjcHW1KqFRqMVecnYKIdv8Re81yPcJY7ud_Vddp6wq4GhMO3V4IKWrpNGMgzPTgWERFjnRKYORrpTv8pbRYZxGzEgdKO1DhBLw1IAfjELJDIf7XiHrPg9d1iDr7c5w9PZ8VifgSAdTsUO6bFuaz8gKjpFVjMn9F7yfLRIAPzkM5hWA--f2zIuw2fq93RvkeglY6U6hYRtkLcluko3SJMzps5K3-vkt8qOXzTHUn9NJtsipnWtMJU7JU5kZ2l5OP9KaS52OjpIM2R8k3bFbSsCF0tEsByhKO1-KdGQ6SI4hmM8S-h4Q8Yx2ipI907OvcDA6z3igckHHU3iJX9--9_NT2ptNzGR5TPu5TRCY3ybjSxHRHdLI8iy5S6gJVcgggpCejH1puPK44RIOI8nBd3tN4lQCEbpkRcfiHFNR8DkzgQIUtQCb5Gnd_qTgA_lryzbKt26FPN72j3z2QZRmQXBXx17aUgC8AStFXhwoN_VTN0TSVAilm2QTtUMAHEJOX42bn_RCQFAYMy9skq1KaURpeqAD9UBpkkf1aTAauBIEIsuXtg3HNfEIHhCtKNtKd1fPZJMjSz_eCgBDBwy-nFXL_3wGAfDqHTzMv_fvzj4kV7v7g77o94Z7m-QaXl-kfG6RxmK2TO4D9luoB-WAo-Twssf4b9Wnb6c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVEJsEOUhQgsMEghYWLFn_IgXCDU0UUPTKAIiupvOw6YRqV3yoJQVn8CSb-Fz-BLuHT_aIAGrriLHk3js-zp3PPdcQh4bpaM4TKUTS-07fmyUI1NPORiaFI9l4Gusd94fhrtj__VBcLBGfla1MLitsvKJ1lGbXOMaeQtgOrNkIryVltsiRju9lyefHOwghW9aq3YahYrsJWenkL7NX_R3QNZPGOt1373adcoOA47GElSHB1K6ShrNOAQ2HRgWYcMTnTKweqV8l7eNDuM0YkbqQGkfspWApwZiYhRKZjj87xWyHmFW1CDrne5w9OZ8hSfgSA1TMUW6rCXNZ2QIxywrxkL_C5HQNgyAjxwMewXs_rlV8yKEtjGwd4NcL8Er3S60bYOsJdlNslG6hzl9VnJYP79FfvSzOab9czrJFjm1646pxOV5KjNDO8vpR1rzqtPRUZIhE4Sk23Z7CYRTOprlAEtp90tRmkz3k2NI7LOEvgd0PKPdon3P9OwrHIzOqx-oXNDxFG7i17fvg_yU9mcTM1ke00FuiwXmt8n4UkR0hzSyPEvuEmpCFTLIJqQnY18arjxuuITDSHKI416TOJVAhC4Z0rFRx1QU3M5MoABFLcAmeVqPPym4Qf46soPyrUchp7f9Ip99EKWLENzVsZe2FYBwwE2RFwfKTf3UDZFAFdLqJtlE7RAAjZDfV-NGKL0QkCDGzAubZKtSGlG6IZhAbTRN8qg-DQ4E3wqByPKlHcPx_XgEF4hWlG1luqtnssmRpSJvB4CnAwZPzqrlfx6DAKj1Fi7m3_v3ZB-Sq2DbYtAf7m2Sa_jzovpzizQWs2VyH2DgQj0o7Y2Sw8s28d_inXPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+Interfacial+and+Bulk+Transport+Phenomena+Affecting+Proton+Exchange+Membrane+Water+Electrolyzer+Performance+at+Ultra-Low+Iridium+Loadings&rft.jtitle=Advanced+science&rft.au=Peng%2C+Xiong&rft.au=Satjaritanun%2C+Pongsarun&rft.au=Taie%2C+Zachary&rft.au=Wiles%2C+Luke&rft.date=2021-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=21&rft.spage=e2102950&rft_id=info:doi/10.1002%2Fadvs.202102950&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon