Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra‐Low Iridium Loadings
Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity,...
Saved in:
Published in | Advanced science Vol. 8; no. 21; pp. e2102950 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.11.2021
Wiley John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.
The effect of interfacial and bulk properties of porous transport layers (PTL) on proton exchange membrane water electrolyzers (PEMWEs) performance, mass, and charge transport limitations at ultra‐low iridium catalyst loadings is explored. The result provides insights into optimal PTL design: high porosity and low tortuosity in the bulk and intermediate porosity at the interface for PEMWEs operations. |
---|---|
AbstractList | Abstract Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mgIr cm-2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra-low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL-induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr -1 ), respectively, while a nonnegligible 35 mV (at 3 A cm-2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts.Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mgIr cm-2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra-low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL-induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr -1 ), respectively, while a nonnegligible 35 mV (at 3 A cm-2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra-low Ir loadings of ≈0.05 mgIr cm-2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra-low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL-induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr -1), respectively, while a nonnegligible 35 mV (at 3 A cm-2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. The effect of interfacial and bulk properties of porous transport layers (PTL) on proton exchange membrane water electrolyzers (PEMWEs) performance, mass, and charge transport limitations at ultra‐low iridium catalyst loadings is explored. The result provides insights into optimal PTL design: high porosity and low tortuosity in the bulk and intermediate porosity at the interface for PEMWEs operations. Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mgIr cm−2. Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mgIr−1), respectively, while a nonnegligible 35 mV (at 3 A cm−2) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mg Ir cm −2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mg Ir −1 ), respectively, while a nonnegligible 35 mV (at 3 A cm −2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. The effect of interfacial and bulk properties of porous transport layers (PTL) on proton exchange membrane water electrolyzers (PEMWEs) performance, mass, and charge transport limitations at ultra‐low iridium catalyst loadings is explored. The result provides insights into optimal PTL design: high porosity and low tortuosity in the bulk and intermediate porosity at the interface for PEMWEs operations. Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange membrane water electrolyzers (PEMWEs), by limiting their mass and charge transport. Using titanium fiber PTLs of varying thickness and porosity, the bulk and interface transport properties are investigated, correlating them to PEMWEs cell performance at ultra‐low Ir loadings of ≈0.05 mg Ir cm −2 . Electrochemical experiments, tomography, and modeling are combined to study the bulk and interfacial impacts of PTLs on PEMWE performance. It is found that the PEMWE performance is largely dependent on the PTL properties at ultra‐low Ir loadings; bulk structural properties are critical to determine the mass transport and Ohmic resistance of PEMWEs while the surface properties of PTLs are critical to govern the catalyst layer utilization and electrode kinetics. The PTL‐induced variation in kinetic and mass transport overpotential are on the order of ≈40 and 60 mV (at 80 A mg Ir −1 ), respectively, while a nonnegligible 35 mV (at 3 A cm −2 ) difference in Ohmic overpotential. Thus at least 150 mV improvement in PEMWE performance can be achieved through PTL structural optimization without membrane thickness reduction or advent of new electrocatalysts. |
Author | Capuano, Christopher Satjaritanun, Pongsarun Keane, Alex Taie, Zachary Danilovic, Nemanja Wiles, Luke Zenyuk, Iryna V. Peng, Xiong |
AuthorAffiliation | 2 Department of Material Science and Engineering University of California Irvine Irvine CA 92697 USA 3 Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Bend OR 97702 USA 1 Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA 4 Nel Hydrogen/Proton Onsite Wallingford CT 06492 USA |
AuthorAffiliation_xml | – name: 2 Department of Material Science and Engineering University of California Irvine Irvine CA 92697 USA – name: 1 Energy Storage and Distributed Resources Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA – name: 3 Oregon State University School of Mechanical, Industrial, and Manufacturing Engineering Bend OR 97702 USA – name: 4 Nel Hydrogen/Proton Onsite Wallingford CT 06492 USA |
Author_xml | – sequence: 1 givenname: Xiong orcidid: 0000-0001-8737-5830 surname: Peng fullname: Peng, Xiong organization: Lawrence Berkeley National Laboratory – sequence: 2 givenname: Pongsarun orcidid: 0000-0001-6458-2845 surname: Satjaritanun fullname: Satjaritanun, Pongsarun organization: University of California Irvine – sequence: 3 givenname: Zachary orcidid: 0000-0003-2629-4468 surname: Taie fullname: Taie, Zachary organization: School of Mechanical, Industrial, and Manufacturing Engineering – sequence: 4 givenname: Luke orcidid: 0000-0001-9189-7797 surname: Wiles fullname: Wiles, Luke organization: Nel Hydrogen/Proton Onsite – sequence: 5 givenname: Alex surname: Keane fullname: Keane, Alex organization: Nel Hydrogen/Proton Onsite – sequence: 6 givenname: Christopher surname: Capuano fullname: Capuano, Christopher organization: Nel Hydrogen/Proton Onsite – sequence: 7 givenname: Iryna V. orcidid: 0000-0002-1612-0475 surname: Zenyuk fullname: Zenyuk, Iryna V. email: iryna.zenyuk@uci.edu organization: University of California Irvine – sequence: 8 givenname: Nemanja orcidid: 0000-0003-2036-6977 surname: Danilovic fullname: Danilovic, Nemanja email: ndanilovic@lbl.gov organization: Lawrence Berkeley National Laboratory |
BackLink | https://www.osti.gov/servlets/purl/1829216$$D View this record in Osti.gov |
BookMark | eNqFkstuEzEUhkeoiJbSLWsLNmwSfJ2MN0ilBIgURCRaWFoe25M4eOxge1rCikdgyfPxJDikqmg3Xdk-_v_vXHQeVwc-eFNVTxEcIwjxS6kv0xhDjCDmDD6ojjDizYg0lB78dz-sTlJaQwgRIxOKmkfVIaGs5ojXR9XvmU92ucoJWJ8DmPlsYieVlQ5Ir8HrwX0F51H6tAkxg8XK-NAbL8Fp1xmVrV-CRQw5eDD9rlbSLw34YPq2GAz4IgsLTF3RxeC2P8pjUeAh9tIrA2QGFy5H-efnr3m4ArNotR16MA9SF2x6Uj3spEvm5Po8ri7eTs_P3o_mH9_Nzk7nI8UIoSPCpISt1AoTCmvFNJ4whojqsNambSkkjVY17yZYS8VaRTmmjHQaUzqpJdbkuJrtuTrItdhE28u4FUFa8S8Q4lLImK1yRhCoOOqaFqIaUzxBnLWwox2seV1DxFFhvdqzNkPbG62ML_25W9DbP96uxDJciobVlDJcAM_2gJCyFUnZbNRKBe_LDAVqMMeoLqIX11li-DaYlEVvkzLOlaGHIQnMOIEE0smuoOd3pOswRF_muVNhCBnnpKjGe5WKIaVoupuKERS7RRO7RRM3i1YM9I6hVCqzDbuurLvXdmWd2d6TRJy--fyp9EHJX0PJ6hM |
CitedBy_id | crossref_primary_10_1002_advs_202401652 crossref_primary_10_1002_advs_202405658 crossref_primary_10_1149_1945_7111_ad5d9f crossref_primary_10_1039_D3YA00492A crossref_primary_10_1002_anie_202304230 crossref_primary_10_1595_205651324X17055018154113 crossref_primary_10_1016_j_ijhydene_2024_02_020 crossref_primary_10_1021_acs_chemmater_3c01524 crossref_primary_10_1021_acs_chemrev_3c00904 crossref_primary_10_1021_jacsau_4c00199 crossref_primary_10_1021_acs_iecr_3c03546 crossref_primary_10_1149_1945_7111_acee25 crossref_primary_10_1149_1945_7111_ad54f1 crossref_primary_10_1016_j_jpowsour_2023_233448 crossref_primary_10_1038_s41467_023_40375_x crossref_primary_10_3390_pr10112417 crossref_primary_10_1021_acssuschemeng_3c06209 crossref_primary_10_1149_1945_7111_ad1165 crossref_primary_10_1002_smsc_202300055 crossref_primary_10_1002_cey2_679 crossref_primary_10_1016_j_ijhydene_2025_03_235 crossref_primary_10_1016_j_jpowsour_2024_235908 crossref_primary_10_1002_ange_202302950 crossref_primary_10_1016_j_apcatb_2022_121213 crossref_primary_10_1002_smtd_202401842 crossref_primary_10_1002_ange_202304230 crossref_primary_10_1002_celc_202400377 crossref_primary_10_3390_app15031495 crossref_primary_10_1039_D4CY00031E crossref_primary_10_1002_aenm_202103670 crossref_primary_10_1002_aenm_202203636 crossref_primary_10_1016_j_pmatsci_2024_101294 crossref_primary_10_1038_s41467_022_35603_9 crossref_primary_10_1016_j_apenergy_2024_123621 crossref_primary_10_1002_adem_202402462 crossref_primary_10_1021_acsami_3c12345 crossref_primary_10_1016_j_ces_2024_120814 crossref_primary_10_1016_j_apenergy_2023_120853 crossref_primary_10_1016_j_cej_2024_155901 crossref_primary_10_1002_anie_202302950 crossref_primary_10_1016_j_jpowsour_2023_232967 crossref_primary_10_1016_j_ijhydene_2025_02_442 crossref_primary_10_1002_advs_202205540 crossref_primary_10_1039_D3EE00142C crossref_primary_10_1039_D3EY00193H crossref_primary_10_1016_j_ijhydene_2025_02_443 crossref_primary_10_1021_acsaem_4c01866 crossref_primary_10_1039_D4TA08669D crossref_primary_10_1021_acssuschemeng_3c05256 crossref_primary_10_1002_adma_202416012 crossref_primary_10_1016_j_coelec_2023_101340 crossref_primary_10_1021_acscatal_3c05162 crossref_primary_10_1016_j_apcatb_2024_123738 crossref_primary_10_1016_j_etran_2024_100365 crossref_primary_10_1016_j_joule_2024_06_005 crossref_primary_10_1002_smll_202411704 crossref_primary_10_1016_j_jpowsour_2024_234554 crossref_primary_10_1039_D3EY00279A crossref_primary_10_1088_2515_7655_acccb1 crossref_primary_10_1002_sus2_230 crossref_primary_10_1016_j_ces_2024_120083 crossref_primary_10_1021_acsami_3c04151 crossref_primary_10_1002_adma_202404806 crossref_primary_10_1002_smll_202304636 crossref_primary_10_1016_j_ijhydene_2025_03_041 crossref_primary_10_1177_09506608231216665 crossref_primary_10_1149_1945_7111_ad0662 crossref_primary_10_1149_1945_7111_ad3497 crossref_primary_10_1021_acscentsci_4c00037 crossref_primary_10_1002_aenm_202302786 crossref_primary_10_1016_j_jpowsour_2022_232606 crossref_primary_10_1021_acssuschemeng_4c06540 |
Cites_doi | 10.1016/j.ijhydene.2019.12.204 10.1016/j.xcrp.2020.100147 10.1146/annurev-chembioeng-060718-030241 10.1021/acsami.0c15687 10.1016/j.apenergy.2016.09.011 10.1016/j.apcatb.2015.09.011 10.1063/1.555839 10.1149/2.F04181if 10.1039/C7TA05681H 10.1016/j.isci.2020.101783 10.1016/j.nanoen.2019.01.043 10.1126/sciadv.1600690 10.1149/1945-7111/ab7f87 10.1016/j.apcatb.2015.05.027 10.1016/j.ijhydene.2017.11.115 10.1016/S1872-2067(17)62949-8 10.1149/2.0231915jes 10.1149/1945-7111/ab68c8 10.1002/aenm.202101438 10.1016/j.apenergy.2017.09.004 10.1149/2.0341904jes 10.1016/j.ijhydene.2011.08.057 10.1126/science.aas9793 10.1016/j.ijhydene.2013.01.151 10.1016/j.apenergy.2017.02.063 10.1126/science.aah3443 10.1149/2.0641805jes 10.1002/anie.201406455 10.1021/acsami.0c12111 10.1016/j.elecom.2018.10.021 10.1039/C4EE04041D 10.1039/C9TA12127G 10.1021/acsaem.0c00735 10.1002/aenm.201903216 10.1016/j.jpowsour.2015.12.139 10.1038/s41467-017-01734-7 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH – notice: 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 The Authors. Advanced Science published by Wiley-VCH GmbH. |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH HCIFZ M2O M2P MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 OIOZB OTOTI 5PM DOA |
DOI | 10.1002/advs.202102950 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection Research Library Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2198-3844 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_30c91f8b0162427195b0f4f069660191 PMC8564452 1829216 10_1002_advs_202102950 ADVS3034 |
Genre | article |
GrantInformation_xml | – fundername: Hydrogen and Fuel Cell Technologies Office, US Dept of Energy – fundername: fuel cell technologies program funderid: DE‐AC02‐05CH11231 – fundername: department of energy, office of science, office of workforce development for teachers and scientists funderid: DE‐SC0014664 – fundername: u.s. department of energy (doe) office of science user facility funderid: DE‐AC02‐06CH11357 – fundername: fuel cell technologies program grantid: DE‐AC02‐05CH11231 – fundername: department of energy, office of science, office of workforce development for teachers and scientists grantid: DE‐SC0014664 – fundername: u.s. department of energy (doe) office of science user facility grantid: DE‐AC02‐06CH11357 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 88I 8G5 AAFWJ AAHHS AAZKR ABDBF ABUWG ACCFJ ACCMX ACGFS ACUHS ACXQS ADBBV ADKYN ADZMN ADZOD AEEZP AEQDE AFBPY AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU AZQEC BCNDV BENPR BPHCQ BRXPI CCPQU DWQXO EBS GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HYE IAO ITC KQ8 M2O M2P O9- OK1 PIMPY PQQKQ PROAC ROL RPM WIN AAYXX ADMLS AFPKN CITATION EJD IGS PHGZM PHGZT 3V. 7XB 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 AEUQT OIOZB OTOTI 5PM PUEGO |
ID | FETCH-LOGICAL-c5334-35aa0badc23406c5d275513cf2ddebb4038dc69f72dac5bc492453fd24476a2d3 |
IEDL.DBID | 24P |
ISSN | 2198-3844 |
IngestDate | Wed Aug 27 00:58:02 EDT 2025 Thu Aug 21 13:59:07 EDT 2025 Thu May 18 22:32:17 EDT 2023 Fri Jul 11 08:32:43 EDT 2025 Mon Jul 14 09:39:58 EDT 2025 Tue Jul 01 03:59:32 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Wed Jan 22 16:28:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Attribution This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5334-35aa0badc23406c5d275513cf2ddebb4038dc69f72dac5bc492453fd24476a2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office AC02-05CH11231; SC0014664; AC02-06CH11357 USDOE Office of Science (SC), Workforce Development for Teachers and Scientists (WDTS) |
ORCID | 0000-0001-6458-2845 0000-0003-2629-4468 0000-0003-2036-6977 0000-0001-9189-7797 0000-0001-8737-5830 0000-0002-1612-0475 0000000164582845 0000000191897797 0000000187375830 0000000326294468 0000000216120475 0000000320366977 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102950 |
PMID | 34569196 |
PQID | 2592005993 |
PQPubID | 4365299 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_30c91f8b0162427195b0f4f069660191 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8564452 osti_scitechconnect_1829216 proquest_miscellaneous_2593030471 proquest_journals_2592005993 crossref_primary_10_1002_advs_202102950 crossref_citationtrail_10_1002_advs_202102950 wiley_primary_10_1002_advs_202102950_ADVS3034 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States – name: Hoboken |
PublicationTitle | Advanced science |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley John Wiley and Sons Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley – name: John Wiley and Sons Inc |
References | 2017; 5 2017; 8 2018; 165 2018; 360 2019; 10 2016; 309 2019; 58 2017; 192 2017; 193 2020; 12 2020; 167 2020; 10 2011; 36 2016; 182 2017; 355 2015; 8 2018; 43 2018; 27 2019; 166 2020; 8 2018; 39 2020; 3 2016; 2 2013; 38 2021; 11 2020; 1 2015; 179 2020; 23 2020; 45 2018; 97 2017; 206 2014; 53 1989; 18 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_1_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 1938 year: 2015 publication-title: Energy Environ. Sci. – volume: 53 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 1449 year: 2017 publication-title: Nat. Commun. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 1 year: 2020 publication-title: Cell Rep. Phys. Sci. – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 10 start-page: 219 year: 2019 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 182 start-page: 123 year: 2016 publication-title: Appl. Catal., B – volume: 206 start-page: 983 year: 2017 publication-title: Appl. Energy – volume: 18 year: 1989 publication-title: J. Phys. Chem. Ref. Data – volume: 45 start-page: 6047 year: 2020 publication-title: Int. J. Hydrogen Energy – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 3 start-page: 8276 year: 2020 publication-title: ACS Appl. Energy Mater. – volume: 193 start-page: 440 year: 2017 publication-title: Appl. Energy – volume: 97 start-page: 96 year: 2018 publication-title: Electrochem. Commun. – volume: 167 year: 2020 publication-title: J. Electrochem. Soc. – volume: 58 start-page: 158 year: 2019 publication-title: Nano Energy – volume: 309 start-page: 127 year: 2016 publication-title: J. Power Sources – volume: 179 start-page: 285 year: 2015 publication-title: Appl. Catal., B – volume: 165 start-page: F305 year: 2018 publication-title: J. Electrochem. Soc. – volume: 36 year: 2011 publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 4898 year: 2020 publication-title: J. Mater. Chem. A – volume: 11 year: 2021 publication-title: Adv. Energy Mater. – volume: 38 start-page: 4901 year: 2013 publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 390 year: 2018 publication-title: Chin. J. Catal. – volume: 192 start-page: 477 year: 2017 publication-title: Appl. Energy – volume: 166 start-page: F214 year: 2019 publication-title: J. Electrochem. Soc. – volume: 355 start-page: 1269 year: 2017 publication-title: Science – volume: 23 year: 2020 publication-title: iScience – volume: 360 year: 2018 publication-title: Science – volume: 43 start-page: 1209 year: 2018 publication-title: Int. J. Hydrogen Energy – volume: 27 start-page: 47 year: 2018 publication-title: Electrochem. Soc. Interface – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. – ident: e_1_2_10_22_1 doi: 10.1016/j.ijhydene.2019.12.204 – ident: e_1_2_10_34_1 doi: 10.1016/j.xcrp.2020.100147 – ident: e_1_2_10_3_1 doi: 10.1146/annurev-chembioeng-060718-030241 – ident: e_1_2_10_5_1 doi: 10.1021/acsami.0c15687 – ident: e_1_2_10_26_1 doi: 10.1016/j.apenergy.2016.09.011 – ident: e_1_2_10_32_1 doi: 10.1016/j.apcatb.2015.09.011 – ident: e_1_2_10_36_1 doi: 10.1063/1.555839 – ident: e_1_2_10_9_1 doi: 10.1149/2.F04181if – ident: e_1_2_10_16_1 doi: 10.1039/C7TA05681H – ident: e_1_2_10_20_1 doi: 10.1016/j.isci.2020.101783 – ident: e_1_2_10_30_1 doi: 10.1016/j.nanoen.2019.01.043 – ident: e_1_2_10_17_1 doi: 10.1126/sciadv.1600690 – ident: e_1_2_10_35_1 doi: 10.1149/1945-7111/ab7f87 – ident: e_1_2_10_28_1 doi: 10.1016/j.apcatb.2015.05.027 – ident: e_1_2_10_8_1 doi: 10.1016/j.ijhydene.2017.11.115 – ident: e_1_2_10_10_1 doi: 10.1016/S1872-2067(17)62949-8 – ident: e_1_2_10_33_1 doi: 10.1149/2.0231915jes – ident: e_1_2_10_19_1 doi: 10.1149/1945-7111/ab68c8 – ident: e_1_2_10_23_1 doi: 10.1002/aenm.202101438 – ident: e_1_2_10_12_1 doi: 10.1016/j.apenergy.2017.09.004 – ident: e_1_2_10_24_1 doi: 10.1149/2.0341904jes – ident: e_1_2_10_29_1 doi: 10.1016/j.ijhydene.2011.08.057 – ident: e_1_2_10_1_1 doi: 10.1126/science.aas9793 – ident: e_1_2_10_4_1 doi: 10.1016/j.ijhydene.2013.01.151 – ident: e_1_2_10_6_1 doi: 10.1016/j.apenergy.2017.02.063 – ident: e_1_2_10_2_1 doi: 10.1126/science.aah3443 – ident: e_1_2_10_15_1 doi: 10.1149/2.0641805jes – ident: e_1_2_10_14_1 doi: 10.1002/anie.201406455 – ident: e_1_2_10_21_1 doi: 10.1021/acsami.0c12111 – ident: e_1_2_10_11_1 doi: 10.1016/j.elecom.2018.10.021 – ident: e_1_2_10_7_1 doi: 10.1039/C4EE04041D – ident: e_1_2_10_25_1 doi: 10.1039/C9TA12127G – ident: e_1_2_10_31_1 doi: 10.1021/acsaem.0c00735 – ident: e_1_2_10_18_1 doi: 10.1002/aenm.201903216 – ident: e_1_2_10_27_1 doi: 10.1016/j.jpowsour.2015.12.139 – ident: e_1_2_10_13_1 doi: 10.1038/s41467-017-01734-7 |
SSID | ssj0001537418 |
Score | 2.4948478 |
Snippet | Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton exchange... Abstract Interfacial and bulk properties between the catalyst layer and the porous transport layer (PTL) restrict the iridium loading reduction for proton... |
SourceID | doaj pubmedcentral osti proquest crossref wiley |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | e2102950 |
SubjectTerms | Capital costs Electricity Electrodes electrolysis ENERGY STORAGE Hydrogen iridium Kinetics PEMWE porous transport layer Titanium ultra‐low loading X‐ray computed tomography |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQ5SFCCxokJOAQNbHjZH1s0VYtatFKsKI3y49EXbFNqt0srxM_gSO_j1_CjJMNu0ioF06RYytxPOPMN8nMN4w999YVKq9MrIzL4kx5G5sqtTGZJiuUkZmjfOfzt_nJNHtzIS82Sn1RTFhHD9wt3IFInEqrkUVogtakSJW0SZVVSU60kmnIW-d44Q1nqssPFkTLsmZpTPiB8Z-InZs8HEVJ9htWKJD146HBTbUFNP8Ok9yEr8H-HN9ld3rgCIfdhHfZrbK-x3b7rbmElz1_9Kv77OdpvSSXewmzum0gfPOrDH0aB1N7OFrNP8LAaQ6Ty7ImFgYDhyG0A00ZTBYNQkIYf-nSguG8vEKnui7hAyLTBYy70jnzr9-wMfmTeQCmhekcH-LX9x9nzWc4Xcz8bHUFZ00I1F8-YNPj8fvXJ3FfgCF2lKEbC2lMYo13XKDdd9LzgurBuIrjS9HaLBEj73JVFdwbJ63L0JmTovIIGYrccC8esp26qctHDHxuc45I3qRGZcYLmwovDDYLI9CGphGL1wLRrmcnpyIZc93xKnNNAtSDACP2Yhh_3fFy_HPkEcl3GEV82uEEapnutUzfpGUR2yPt0AhLiFvXURCSazU6Z4qnecT210qj-1cATkAqHthvRMSeDd24eemPDIqsWYUxgv5NF3iDYkvZtqa73VPPLgMN-EgilpUcVy6o5Q3LoBHmvMObZY__x3rssdt05S4pc5_ttItV-QTRWWufho34Gwq-N34 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF5BeuGCKA9hWtAiIQEHq_au148TalCqFrVVBET0Zu3DphGp3dpOeZz4CRz5ffwSZtYbt0ECTpHjjbzx7Mx8szvzDSHPjNJJFpfSz6SO_CgzypdlqHx0TYpnUkQa652PjuP9WfTmRJy4DbfWpVWubKI11KbWuEe-AzCdWTIR_ur8wseuUXi66lpo3CQbYILTdEQ2xpPj6durXRbBkZ5lxdYYsB1pLpGlGyOdDIvtr3kjS9oPHzUo1xrg_DNd8jqMtX5o7w657QAk3e0lvkluFNVdsulUtKUvHI_0y3vk50HVYujd0nnV1dTu_ZUSt8iprAwdLxef6MBtTqenRYVsDJLu2hQPcGl02tQADenkS18eTI-KMwiuq4J-AITa0EnfQmfx9RtcTK8qEKjs6GwBf-LX9x-H9Wd60MzNfHlGD2ubsN_eJ7O9yfvX-75rxOBrrNT1uZAyUNJoxsH_a2FYgn1hdMnAOCoVBTw1Os7KhBmphdIRBHWClwagQxJLZvgDMqrqqnhIqIlVzADRy1BmkTRchdxwCZeJ5OBLQ4_4K4Hk2rGUY7OMRd7zK7McBZgPAvTI82H8ec_P8deRY5TvMAp5te0XdfMxd2qa80BnYZkqAMKAXZIwEyooozKIkcQUQluPbOHqyAGeIMeuxmQk3eUQpGUsjD2yvVo0uTMFMIFh4Xrk6XAblBhPZkBk9dKO4XhGncADkrXFtjbd9TvV_NTSgacCMK1g8ObssvzPa8gB7ryDh0WP_j3ZLXILf9OXXW6TUdcsi8eAvzr1xCnZb3UIMpo priority: 102 providerName: ProQuest |
Title | Insights into Interfacial and Bulk Transport Phenomena Affecting Proton Exchange Membrane Water Electrolyzer Performance at Ultra‐Low Iridium Loadings |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadvs.202102950 https://www.proquest.com/docview/2592005993 https://www.proquest.com/docview/2593030471 https://www.osti.gov/servlets/purl/1829216 https://pubmed.ncbi.nlm.nih.gov/PMC8564452 https://doaj.org/article/30c91f8b0162427195b0f4f069660191 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6h9sIFUR4itI0WCQk4WLX3YWePCaRqUVJFlIjerH3YbURqozzK48RP4Mjv45cws3acGgkhTpbtUezs7Ox-M575hpDnzthExbkOlLYiEMqZQOeRCXBrMlxpKSzWO4_P4pOpeHshL25V8Vf8EE3ADS3Dr9do4Nosj7akodrdIN02uiwKnfZdrK_FpD4mJtsoi-RIz4Id5sC7DnhPiA1zY8iO2j_R2pk8gT8cSjC0Fvj8M3XyNqT1e9LxfXKvBpO0X2l_j9zJigdkrzbXJX1Zc0q_ekh-nhZLdMOXdFasSurjgLnGcDnVhaOD9fwjbXjO6eQqK5CZQdO-T_eA7Y1OFiXARDr8UpUK03F2DaNXZPQDoNUFHVbtdOZfv8HJZFuNQPWKTufwJ359_zEqP9PTxczN1td0VPrk_eUjMj0evn99EtRNGQKLVbsBl1qHRjvLOGABKx1LsEeMzRkslMaIkPecjVWeMKetNFaAgyd57gBGJLFmjj8mO0VZZE8IdbGJGaB7HWkltOMm4o5rOE00h3016pBgo5DU1ozl2DhjnlZcyyxFBaaNAjvkRSP_qeLq-KvkAPXbSCHHtr9QLi7T2mRTHloV5T0DoBhwTBIpacJc5GGMhKbg5nbIPs6OFKAK8u1aTEyyqxQcNsWiuEMONpMmrZcFeAGpmGfE4R3yrLkNBo1faUBl5drLcPxencADktZka71u-04xu_LU4D0J-FYyGDk_Lf8xDClAn3N4mHj6n_L75C5erGoyD8jOarHODgGcrUzX21-X7PbfjEfncBwMzybvuj7U8RtSDjnG |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9AAXRHmI0AKLBAIOVu1dP-IDQg2kSmgSRdCI3rb7sGlEapc8KOXET-DIr-BH8UuYWT_aIAGnniLHa3vtmZ35ZnfnG0IeG6WjOEylE0vtO35slCNTTznomhSPZeBrzHceDMPu2H9zEByskZ9VLgxuq6xsojXUJtc4R74NMJ1ZMhH-8uSTg1WjcHW1KqFRqMVecnYKIdv8Re81yPcJY7ud_Vddp6wq4GhMO3V4IKWrpNGMgzPTgWERFjnRKYORrpTv8pbRYZxGzEgdKO1DhBLw1IAfjELJDIf7XiHrPg9d1iDr7c5w9PZ8VifgSAdTsUO6bFuaz8gKjpFVjMn9F7yfLRIAPzkM5hWA--f2zIuw2fq93RvkeglY6U6hYRtkLcluko3SJMzps5K3-vkt8qOXzTHUn9NJtsipnWtMJU7JU5kZ2l5OP9KaS52OjpIM2R8k3bFbSsCF0tEsByhKO1-KdGQ6SI4hmM8S-h4Q8Yx2ipI907OvcDA6z3igckHHU3iJX9--9_NT2ptNzGR5TPu5TRCY3ybjSxHRHdLI8iy5S6gJVcgggpCejH1puPK44RIOI8nBd3tN4lQCEbpkRcfiHFNR8DkzgQIUtQCb5Gnd_qTgA_lryzbKt26FPN72j3z2QZRmQXBXx17aUgC8AStFXhwoN_VTN0TSVAilm2QTtUMAHEJOX42bn_RCQFAYMy9skq1KaURpeqAD9UBpkkf1aTAauBIEIsuXtg3HNfEIHhCtKNtKd1fPZJMjSz_eCgBDBwy-nFXL_3wGAfDqHTzMv_fvzj4kV7v7g77o94Z7m-QaXl-kfG6RxmK2TO4D9luoB-WAo-Twssf4b9Wnb6c |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVEJsEOUhQgsMEghYWLFn_IgXCDU0UUPTKAIiupvOw6YRqV3yoJQVn8CSb-Fz-BLuHT_aIAGrriLHk3js-zp3PPdcQh4bpaM4TKUTS-07fmyUI1NPORiaFI9l4Gusd94fhrtj__VBcLBGfla1MLitsvKJ1lGbXOMaeQtgOrNkIryVltsiRju9lyefHOwghW9aq3YahYrsJWenkL7NX_R3QNZPGOt1373adcoOA47GElSHB1K6ShrNOAQ2HRgWYcMTnTKweqV8l7eNDuM0YkbqQGkfspWApwZiYhRKZjj87xWyHmFW1CDrne5w9OZ8hSfgSA1TMUW6rCXNZ2QIxywrxkL_C5HQNgyAjxwMewXs_rlV8yKEtjGwd4NcL8Er3S60bYOsJdlNslG6hzl9VnJYP79FfvSzOab9czrJFjm1646pxOV5KjNDO8vpR1rzqtPRUZIhE4Sk23Z7CYRTOprlAEtp90tRmkz3k2NI7LOEvgd0PKPdon3P9OwrHIzOqx-oXNDxFG7i17fvg_yU9mcTM1ke00FuiwXmt8n4UkR0hzSyPEvuEmpCFTLIJqQnY18arjxuuITDSHKI416TOJVAhC4Z0rFRx1QU3M5MoABFLcAmeVqPPym4Qf46soPyrUchp7f9Ip99EKWLENzVsZe2FYBwwE2RFwfKTf3UDZFAFdLqJtlE7RAAjZDfV-NGKL0QkCDGzAubZKtSGlG6IZhAbTRN8qg-DQ4E3wqByPKlHcPx_XgEF4hWlG1luqtnssmRpSJvB4CnAwZPzqrlfx6DAKj1Fi7m3_v3ZB-Sq2DbYtAf7m2Sa_jzovpzizQWs2VyH2DgQj0o7Y2Sw8s28d_inXPc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Insights+into+Interfacial+and+Bulk+Transport+Phenomena+Affecting+Proton+Exchange+Membrane+Water+Electrolyzer+Performance+at+Ultra-Low+Iridium+Loadings&rft.jtitle=Advanced+science&rft.au=Peng%2C+Xiong&rft.au=Satjaritanun%2C+Pongsarun&rft.au=Taie%2C+Zachary&rft.au=Wiles%2C+Luke&rft.date=2021-11-01&rft.issn=2198-3844&rft.eissn=2198-3844&rft.volume=8&rft.issue=21&rft.spage=e2102950&rft_id=info:doi/10.1002%2Fadvs.202102950&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon |