Mesoporous Carbon Nanocube Architecture for High-Performance Lithium-Oxygen Batteries

One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 28; pp. 4436 - 4444
Main Authors Sun, Bing, Chen, Shuangqiang, Liu, Hao, Wang, Guoxiu
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.07.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g−1 at 200 mA g−1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g−1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g−1 with the curtaining capacity of 1000 mA h g−1. Mesoporous carbon nanocubes (MCCs) are synthesized by a chemical vapor deposition method. Oxygen electrode made of MCCs contains a hierarchical porous structure, which can facilitate oxygen diffusion, electrolyte impregnation, and accommodation of discharge products during the charge and discharge processes.
AbstractList One of the major challenges to develop high-performance lithium-oxygen (Li-O sub(2)) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li-O sub(2) batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li-O sub(2) cells deliver discharge capacities of 26 100 mA h g super(-1) at 200 mA g super(-1), which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li-O sub(2) batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g super(-1) under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g super(-1) with the curtaining capacity of 1000 mA h g super(-1). Mesoporous carbon nanocubes (MCCs) are synthesized by a chemical vapor deposition method. Oxygen electrode made of MCCs contains a hierarchical porous structure, which can facilitate oxygen diffusion, electrolyte impregnation, and accommodation of discharge products during the charge and discharge processes.
One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g−1 at 200 mA g−1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g−1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g−1 with the curtaining capacity of 1000 mA h g−1. Mesoporous carbon nanocubes (MCCs) are synthesized by a chemical vapor deposition method. Oxygen electrode made of MCCs contains a hierarchical porous structure, which can facilitate oxygen diffusion, electrolyte impregnation, and accommodation of discharge products during the charge and discharge processes.
One of the major challenges to develop high‐performance lithium–oxygen (Li–O 2 ) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O 2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O 2 cells deliver discharge capacities of 26 100 mA h g −1 at 200 mA g −1 , which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O 2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g −1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g −1 with the curtaining capacity of 1000 mA h g −1 .
Author Liu, Hao
Chen, Shuangqiang
Wang, Guoxiu
Sun, Bing
Author_xml – sequence: 1
  givenname: Bing
  surname: Sun
  fullname: Sun, Bing
  organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, NSW, 2007, Sydney, Australia
– sequence: 2
  givenname: Shuangqiang
  surname: Chen
  fullname: Chen, Shuangqiang
  organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, NSW, 2007, Sydney, Australia
– sequence: 3
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, NSW, 2007, Sydney, Australia
– sequence: 4
  givenname: Guoxiu
  surname: Wang
  fullname: Wang, Guoxiu
  email: guoxiu.wang@uts.edu.au
  organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, 2007, Sydney, NSW, Australia
BookMark eNqFkD1PwzAQhi0EEi2wMmdkSbHrr2Qs5aOIlCIBgs1y3UtrSOJiO4L-e4qKKoSEmO4d3udO93TRbuMaQOiY4B7BuH-qZ2Xd62PCMc4E3UEdIohIKe5nu9tMnvdRN4QXjImUlHXQ4xiCWzrv2pAMtZ-6JrnVjTPtFJKBNwsbwcTWQ1I6n4zsfJHegV_nWjcGksLGhW3rdPKxmkOTnOkYwVsIh2iv1FWAo-95gB4vLx6Go7SYXF0PB0VqOKU0pUaXLAdOmeA5plxOQWKCic6ExoIyznVJTWa4lkbk1ECW52w2I4xxyGlm6AE62exdevfWQoiqtsFAVekG1h8pIkmWS5YRtq72NlXjXQgeSrX0ttZ-pQhWX_7Ulz-19bcG2C_A2KijdU302lZ_Y_kGe7cVrP45ogbnl-OfbLphbYjwsWW1f1VCUsnV0-2VuhH3o-JhfKcK-gnev5aa
CitedBy_id crossref_primary_10_1002_adfm_201704973
crossref_primary_10_1016_j_ensm_2017_10_012
crossref_primary_10_1002_ange_201511832
crossref_primary_10_1007_s13391_016_6183_1
crossref_primary_10_1021_acsami_6b10115
crossref_primary_10_1021_acsenergylett_6b00128
crossref_primary_10_1039_C8NR02376J
crossref_primary_10_1002_adma_201606552
crossref_primary_10_1039_C6TA10291C
crossref_primary_10_1016_j_jpowsour_2018_03_080
crossref_primary_10_1002_aenm_201901967
crossref_primary_10_1039_C8TA07145D
crossref_primary_10_1002_aenm_202100110
crossref_primary_10_1016_j_nxmate_2024_100126
crossref_primary_10_1039_C7TA01124E
crossref_primary_10_1002_cnma_201700023
crossref_primary_10_1002_adfm_201808303
crossref_primary_10_1007_s11664_023_10599_0
crossref_primary_10_1016_j_cej_2018_10_038
crossref_primary_10_1016_j_cej_2022_136311
crossref_primary_10_1002_ente_201500271
crossref_primary_10_1021_acsaem_0c02172
crossref_primary_10_1002_adfm_201503907
crossref_primary_10_1007_s11426_023_1908_9
crossref_primary_10_1016_j_apsusc_2018_02_267
crossref_primary_10_1002_adfm_201801904
crossref_primary_10_1039_C6TA06767K
crossref_primary_10_1002_admi_201901186
crossref_primary_10_1021_acsami_5b07003
crossref_primary_10_1016_j_cej_2024_150108
crossref_primary_10_1002_ange_202114067
crossref_primary_10_1002_aenm_202001789
crossref_primary_10_1002_ange_202201416
crossref_primary_10_1016_j_ensm_2021_09_011
crossref_primary_10_1021_acsnano_4c04420
crossref_primary_10_1039_C6TA08427C
crossref_primary_10_1002_er_7342
crossref_primary_10_1039_C7TA09932K
crossref_primary_10_1016_j_cclet_2016_10_023
crossref_primary_10_1039_C6TA05020D
crossref_primary_10_1016_j_scib_2017_01_037
crossref_primary_10_1039_C9GC03284C
crossref_primary_10_1016_j_jpowsour_2017_05_094
crossref_primary_10_1016_j_ensm_2019_02_028
crossref_primary_10_1039_C6TA00317F
crossref_primary_10_1126_sciadv_adf2398
crossref_primary_10_1002_anie_201905251
crossref_primary_10_1016_j_jelechem_2019_04_055
crossref_primary_10_1016_j_apsusc_2019_145103
crossref_primary_10_1016_j_gee_2016_04_004
crossref_primary_10_1039_C9TA00267G
crossref_primary_10_1039_C6EE03770D
crossref_primary_10_1002_adsu_201700183
crossref_primary_10_1039_D1TA00203A
crossref_primary_10_1088_1361_6528_aa66bc
crossref_primary_10_1002_adsu_202300510
crossref_primary_10_1002_aenm_201700283
crossref_primary_10_1039_C7QM00353F
crossref_primary_10_1002_adma_201606816
crossref_primary_10_1002_smll_201704296
crossref_primary_10_3390_molecules27227851
crossref_primary_10_1016_j_ensm_2021_11_049
crossref_primary_10_1002_smll_201800078
crossref_primary_10_3390_inorganics7060069
crossref_primary_10_1002_anie_201511832
crossref_primary_10_1016_j_ensm_2016_07_001
crossref_primary_10_1039_C9TA00543A
crossref_primary_10_1016_j_ensm_2020_09_014
crossref_primary_10_1002_cey2_382
crossref_primary_10_1039_C5TA09539E
crossref_primary_10_1016_j_jpcs_2017_09_036
crossref_primary_10_1002_inf2_12243
crossref_primary_10_1039_C5CC09034B
crossref_primary_10_1016_j_apcatb_2020_119792
crossref_primary_10_1021_jacs_8b13568
crossref_primary_10_1002_smll_201804958
crossref_primary_10_1016_j_jcis_2023_11_101
crossref_primary_10_1016_j_ensm_2023_102829
crossref_primary_10_1002_aenm_201602674
crossref_primary_10_1002_anie_202114067
crossref_primary_10_1002_advs_201700172
crossref_primary_10_1002_smll_201804600
crossref_primary_10_1002_slct_201801904
crossref_primary_10_1021_acsami_8b06912
crossref_primary_10_1007_s10008_019_04222_8
crossref_primary_10_1016_j_electacta_2019_01_027
crossref_primary_10_1016_j_cej_2025_159351
crossref_primary_10_1016_j_jelechem_2022_116380
crossref_primary_10_1038_s41467_020_15416_4
crossref_primary_10_1039_C8NR01049H
crossref_primary_10_1002_smll_201900001
crossref_primary_10_1021_acs_jpcc_3c01042
crossref_primary_10_1016_j_jechem_2016_10_012
crossref_primary_10_1021_acsami_5b10856
crossref_primary_10_1039_C8CS00009C
crossref_primary_10_1016_j_jpowsour_2017_09_071
crossref_primary_10_1039_D1SC00716E
crossref_primary_10_1002_ange_201905251
crossref_primary_10_1002_cssc_201601718
crossref_primary_10_1016_j_nanoen_2017_02_030
crossref_primary_10_1021_acsami_6b16090
crossref_primary_10_1039_C9CC04720D
crossref_primary_10_1016_j_carbon_2017_03_037
crossref_primary_10_1016_j_cej_2018_06_014
crossref_primary_10_1016_j_electacta_2016_03_146
crossref_primary_10_1039_C7TA10930J
crossref_primary_10_1016_j_nanoen_2022_106964
crossref_primary_10_1016_j_jechem_2024_03_016
crossref_primary_10_1016_j_carbon_2016_01_012
crossref_primary_10_1002_aenm_201903030
crossref_primary_10_1016_j_jechem_2019_09_029
crossref_primary_10_1007_s11837_016_2039_2
crossref_primary_10_1007_s40843_023_2765_3
crossref_primary_10_1016_j_cclet_2022_04_011
crossref_primary_10_1007_s11814_022_1309_7
crossref_primary_10_1002_anie_202201416
crossref_primary_10_1002_smll_201805277
crossref_primary_10_1016_j_apsusc_2018_07_026
crossref_primary_10_1007_s11051_021_05306_1
crossref_primary_10_1002_adfm_201602246
crossref_primary_10_1007_s11426_017_9156_0
crossref_primary_10_1039_D0TA07587F
crossref_primary_10_1002_aenm_202403983
crossref_primary_10_1039_C6CC05349A
crossref_primary_10_1007_s40843_018_9367_3
crossref_primary_10_1016_j_ensm_2017_05_004
crossref_primary_10_1016_j_jpowsour_2017_04_029
crossref_primary_10_1016_j_jpowsour_2024_234553
crossref_primary_10_1149_2_1141811jes
crossref_primary_10_1016_j_esci_2023_100123
crossref_primary_10_1021_acsomega_7b00497
crossref_primary_10_1007_s12274_017_1921_8
crossref_primary_10_1016_j_est_2022_104952
crossref_primary_10_54227_mlab_20220015
crossref_primary_10_1021_acs_energyfuels_3c04463
crossref_primary_10_1002_adma_201603356
crossref_primary_10_1039_C7QI00314E
crossref_primary_10_1063_1_5091444
crossref_primary_10_1016_j_electacta_2016_03_161
crossref_primary_10_1002_adfm_201505420
crossref_primary_10_1002_aenm_201900788
crossref_primary_10_1007_s10562_024_04655_5
crossref_primary_10_1016_j_ensm_2021_12_031
crossref_primary_10_1002_smtd_201900619
crossref_primary_10_1007_s12274_018_2214_6
crossref_primary_10_1016_j_jechem_2020_06_063
crossref_primary_10_1002_aenm_201700875
crossref_primary_10_1016_j_nanoen_2016_08_057
crossref_primary_10_1021_acs_chemmater_7b03839
crossref_primary_10_1038_ncomms15607
crossref_primary_10_1002_aenm_201801930
crossref_primary_10_1016_j_electacta_2016_02_008
crossref_primary_10_1039_C6TA00901H
Cites_doi 10.1016/j.elecom.2012.01.023
10.1149/1.1836378
10.1016/j.nanoen.2014.08.022
10.1016/S0008-6223(02)00045-3
10.1002/anie.200907289
10.1021/ja310258x
10.1149/2.086202jes
10.1002/adma.201400162
10.1021/jz1005384
10.1021/nl402213h
10.1038/nchem.1376
10.1002/adma.201002045
10.1016/j.carbon.2011.09.040
10.1039/c3ee42934b
10.1021/jz3018368
10.1021/nl500397y
10.1021/cm401720n
10.1126/science.1200770
10.1039/c3ee40697k
10.1039/c2cc37042e
10.1038/ncomms3383
10.1038/srep02247
10.1021/nn400477d
10.1039/C3EE44043E
10.1038/ncomms3756
10.1002/adma.201302459
10.1007/s12274-012-0231-4
10.1039/c3ee00053b
10.1016/j.elecom.2011.04.004
10.1002/anie.201205354
10.1021/cr400573b
10.1016/j.nanoen.2012.11.014
10.1038/nmat3191
10.1039/c1cc13464g
10.1038/nmat3737
10.1021/nl203332e
10.1039/c2ee21746e
10.1149/1.3314375
10.1126/science.1223985
10.1039/c1ee01496j
10.1021/nl800957b
10.1002/anie.201100879
10.1016/S0008-6223(00)00183-4
10.1039/c2ee23475k
10.1039/c3nr02959j
10.1039/c3ra47372d
10.1016/S0008-6223(98)00290-5
10.1021/cs300036v
10.1021/ja1036572
10.1021/nl4020952
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1002/adfm.201500863
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1616-3028
EndPage 4444
ExternalDocumentID 10_1002_adfm_201500863
ADFM201500863
ark_67375_WNG_K6SHLTMP_L
Genre article
GrantInformation_xml – fundername: Australian Research Council
  funderid: FT110100800
– fundername: Fundamental Research Funds for the Central Universities of China
  funderid: NE2014301
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JG9
L7M
ID FETCH-LOGICAL-c5333-3caf49e5346590357be70101a86a063455af3c8c5a7c693ce8994dd1445e938c3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 11 12:11:37 EDT 2025
Tue Jul 01 01:30:20 EDT 2025
Thu Apr 24 23:10:32 EDT 2025
Wed Jan 22 16:17:44 EST 2025
Wed Oct 30 09:53:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5333-3caf49e5346590357be70101a86a063455af3c8c5a7c693ce8994dd1445e938c3
Notes ArticleID:ADFM201500863
istex:DD6F2404588D3081835AD6CCE54FC9E4593A91FD
ark:/67375/WNG-K6SHLTMP-L
Australian Research Council - No. FT110100800
Fundamental Research Funds for the Central Universities of China - No. NE2014301
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1718974814
PQPubID 23500
PageCount 9
ParticipantIDs proquest_miscellaneous_1718974814
crossref_primary_10_1002_adfm_201500863
crossref_citationtrail_10_1002_adfm_201500863
wiley_primary_10_1002_adfm_201500863_ADFM201500863
istex_primary_ark_67375_WNG_K6SHLTMP_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Y. Cao, Z. K. Wei, J. He, J. Zang, Q. Zhang, M. S. Zheng, Q. F. Dong, Energy Environ. Sci. 2012, 5, 9765.
P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.
Z. Q. Peng, S. A. Freunberger, Y. H. Chen, P. G. Bruce, Science 2012, 337, 563.
R. R. Mitchell, B. M. Gallant, C. V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 2011, 4, 2952.
J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, Energy Environ. Sci. 2014, 7, 2213.
R. Black, J. H. Lee, B. Adams, C. A. Mims, L. F. Nazar, Angew. Chem. Int. Ed. 2013, 52, 392.
J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J. Electrochem. Soc. 2012, 159, R1.
D. Oh, J. F. Qi, Y. C. Lu, Y. Zhang, Y. Shao-Horn, A. M. Belcher, Nat. Commun. 2013, 4, 2756.
J. Lu, Y. Lei, K. C. Lau, X. Y. Luo, P. Du, J. G. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. Abd El-Hady, Y. K. Sun, L. A. Curtiss, K. Amine, Nat. Commun. 2013, 4, 2383.
B. Sun, H. Liu, P. Munroe, H. Ahn, G. X. Wang, Nano Res. 2012, 5, 460.
Y. Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, ACS Catal. 2012, 2, 844.
F. J. Li, R. Ohnishi, Y. Yamada, J. Kubota, K. Domen, A. Yamada, H. S. Zhou, Chem. Commun. 2013, 49, 1175.
Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 2010, 132, 12170.
E. Frackowiak, F. Beguin, Carbon 2002, 40, 1775.
Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, R. Y. Li, X. L. Sun, Chem. Commun. 2011, 47, 9438.
G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater. 2010, 22, 4944.
J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang, X. B. Zhang, Nat. Commun. 2013, 4, 3438.
J. Liu, R. Younesi, T. Gustafsson, K. Edström, J. Zhu, Nano Energy 2014, 10, 19.
J. Wang, Y. Li, X. Sun, Nano Energy 2013, 2, 443.
H. Nie, H. Zhang, Y. Zhang, T. Liu, J. Li, Q. Lai, Nanoscale 2013, 5, 8484.
F. Li, D.-M. Tang, Y. Chen, D. Golberg, H. Kitaura, T. Zhang, A. Yamada, H. Zhou, Nano Lett. 2013, 13, 4702.
M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, Nat. Mater. 2013, 12, 1050.
B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Nano Lett. 2014, 14, 3145.
Y. L. Li, J. J. Wang, X. F. Li, J. Liu, D. S. Geng, J. L. Yang, R. Y. Li, X. L. Sun, Electrochem. Commun. 2011, 13, 668.
F. J. Li, T. Zhang, H. S. Zhou, Energy Environ. Sci. 2013, 6, 1125.
Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, M. N. Banis, R. Y. Li, X. L. Sun, Electrochem. Commun. 2012, 18, 12.
F. Li, D.-M. Tang, Z. Jian, D. Liu, D. Golberg, A. Yamada, H. Zhou, Adv. Mater. 2014, 26, 4659.
Z. Q. Peng, S. A. Freunberger, L. J. Hardwick, Y. H. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J. M. Tarascon, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 6351.
E. Frackowiak, F. Beguin, Carbon 2001, 39, 937.
B. Sun, P. Munroe, G. X. Wang, Sci. Rep. 2013, 3, 2247.
B. Sun, X. Huang, S. Chen, J. Zhang, G. Wang, RSC Adv. 2014, 4, 11115.
Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Adv. Mater. 2013, 25, 5668.
H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579.
Y.-C. Lu, Y. Shao-Horn, J. Phys. Chem. Lett. 2013, 4, 93.
R. Liu, D. Wu, X. Feng, K. Muellen, Angew. Chem. Int. Ed. 2010, 49, 2565.
H. L. Wang, Y. Yang, Y. Y. Liang, G. Y. Zheng, Y. G. Li, Y. Cui, H. J. Dai, Energy Environ. Sci. 2012, 5, 7931.
F. Li, Y. Chen, D.-M. Tang, Z. Jian, C. Liu, D. Golberg, A. Yamada, H. Zhou, Energy Environ. Sci. 2014, 7, 1648.
J. Xiao, D. H. Wang, W. Xu, D. Y. Wang, R. E. Williford, J. Liu, J. G. Zhang, J. Electrochem. Soc. 2010, 157, A487.
G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193.
J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, W. D. Bennett, Z. M. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Nano Lett. 2011, 11, 5071.
E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, H. R. Byon, Nano Lett. 2013, 13, 4679.
S. Kang, Y. Mo, S. P. Ong, G. Ceder, Chem. Mater. 2013, 25, 3328.
M. M. O. Thotiyl, S. A. Freunberger, Z. Peng, P. G. Bruce, J. Am. Chem. Soc. 2013, 135, 494.
S. Flandrois, B. Simon, Carbon 1999, 37, 165.
Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Energy Environ. Sci. 2013, 6, 1772.
S. J. Kang, T. Mori, S. Narizuka, W. Wilcke, H.-C. Kim, Nat. Commun. 2014, 5.
J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu, K. Amine, Chem. Rev. 2014, 114, 5611.
H. G. Jung, Y. S. Jeong, J. B. Park, Y. K. Sun, B. Scrosati, Y. J. Lee, ACS Nano 2013, 7, 3532.
E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Nano Lett. 2008, 8, 2277.
B. Sun, B. Wang, D. W. Su, L. D. Xiao, H. Ahn, G. X. Wang, Carbon 2012, 50, 727.
K. M. Abraham, Z. Jiang, J. Electrochem. Soc. 1996, 143, 1.
2013; 3
2013; 4
2013; 25
2013; 2
2013; 49
2014; 26
2011; 11
2008; 8
2012; 18
2011; 13
1996; 143
2011; 4
2013; 7
2013; 5
2012; 11
2013; 6
2014; 114
2011; 332
2012; 50
2010; 22
2010; 49
2014; 5
2012; 2
2014; 4
2010; 1
2013; 13
2002; 40
2013; 12
1999; 37
2011; 50
2010; 157
2013; 52
2010; 132
2014; 14
2013; 135
2001; 39
2011; 47
2012; 159
2014; 7
2012; 4
2012; 337
2012; 5
2014; 10
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Xu J. J. (e_1_2_6_10_1) 2013; 4
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Kang S. J. (e_1_2_6_19_1) 2014; 5
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: R. R. Mitchell, B. M. Gallant, C. V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 2011, 4, 2952.
– reference: H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579.
– reference: J. Liu, R. Younesi, T. Gustafsson, K. Edström, J. Zhu, Nano Energy 2014, 10, 19.
– reference: F. Li, D.-M. Tang, Y. Chen, D. Golberg, H. Kitaura, T. Zhang, A. Yamada, H. Zhou, Nano Lett. 2013, 13, 4702.
– reference: B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Nano Lett. 2014, 14, 3145.
– reference: J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J. Electrochem. Soc. 2012, 159, R1.
– reference: Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, R. Y. Li, X. L. Sun, Chem. Commun. 2011, 47, 9438.
– reference: Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 2010, 132, 12170.
– reference: E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Nano Lett. 2008, 8, 2277.
– reference: F. J. Li, T. Zhang, H. S. Zhou, Energy Environ. Sci. 2013, 6, 1125.
– reference: H. Nie, H. Zhang, Y. Zhang, T. Liu, J. Li, Q. Lai, Nanoscale 2013, 5, 8484.
– reference: J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, Energy Environ. Sci. 2014, 7, 2213.
– reference: R. Liu, D. Wu, X. Feng, K. Muellen, Angew. Chem. Int. Ed. 2010, 49, 2565.
– reference: D. Oh, J. F. Qi, Y. C. Lu, Y. Zhang, Y. Shao-Horn, A. M. Belcher, Nat. Commun. 2013, 4, 2756.
– reference: F. Li, D.-M. Tang, Z. Jian, D. Liu, D. Golberg, A. Yamada, H. Zhou, Adv. Mater. 2014, 26, 4659.
– reference: F. Li, Y. Chen, D.-M. Tang, Z. Jian, C. Liu, D. Golberg, A. Yamada, H. Zhou, Energy Environ. Sci. 2014, 7, 1648.
– reference: Z. Q. Peng, S. A. Freunberger, L. J. Hardwick, Y. H. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J. M. Tarascon, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 6351.
– reference: G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193.
– reference: J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu, K. Amine, Chem. Rev. 2014, 114, 5611.
– reference: B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Energy Environ. Sci. 2013, 6, 1772.
– reference: J. Xiao, D. H. Wang, W. Xu, D. Y. Wang, R. E. Williford, J. Liu, J. G. Zhang, J. Electrochem. Soc. 2010, 157, A487.
– reference: B. Sun, B. Wang, D. W. Su, L. D. Xiao, H. Ahn, G. X. Wang, Carbon 2012, 50, 727.
– reference: B. Sun, H. Liu, P. Munroe, H. Ahn, G. X. Wang, Nano Res. 2012, 5, 460.
– reference: S. J. Kang, T. Mori, S. Narizuka, W. Wilcke, H.-C. Kim, Nat. Commun. 2014, 5.
– reference: G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater. 2010, 22, 4944.
– reference: Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, M. N. Banis, R. Y. Li, X. L. Sun, Electrochem. Commun. 2012, 18, 12.
– reference: J. Wang, Y. Li, X. Sun, Nano Energy 2013, 2, 443.
– reference: M. M. O. Thotiyl, S. A. Freunberger, Z. Peng, P. G. Bruce, J. Am. Chem. Soc. 2013, 135, 494.
– reference: P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19.
– reference: J. Lu, Y. Lei, K. C. Lau, X. Y. Luo, P. Du, J. G. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. Abd El-Hady, Y. K. Sun, L. A. Curtiss, K. Amine, Nat. Commun. 2013, 4, 2383.
– reference: M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, Nat. Mater. 2013, 12, 1050.
– reference: F. J. Li, R. Ohnishi, Y. Yamada, J. Kubota, K. Domen, A. Yamada, H. S. Zhou, Chem. Commun. 2013, 49, 1175.
– reference: Y. Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, ACS Catal. 2012, 2, 844.
– reference: H. L. Wang, Y. Yang, Y. Y. Liang, G. Y. Zheng, Y. G. Li, Y. Cui, H. J. Dai, Energy Environ. Sci. 2012, 5, 7931.
– reference: E. Frackowiak, F. Beguin, Carbon 2002, 40, 1775.
– reference: Y.-C. Lu, Y. Shao-Horn, J. Phys. Chem. Lett. 2013, 4, 93.
– reference: J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, W. D. Bennett, Z. M. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Nano Lett. 2011, 11, 5071.
– reference: Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Adv. Mater. 2013, 25, 5668.
– reference: Z. Q. Peng, S. A. Freunberger, Y. H. Chen, P. G. Bruce, Science 2012, 337, 563.
– reference: K. M. Abraham, Z. Jiang, J. Electrochem. Soc. 1996, 143, 1.
– reference: B. Sun, P. Munroe, G. X. Wang, Sci. Rep. 2013, 3, 2247.
– reference: S. Flandrois, B. Simon, Carbon 1999, 37, 165.
– reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
– reference: B. Sun, X. Huang, S. Chen, J. Zhang, G. Wang, RSC Adv. 2014, 4, 11115.
– reference: Y. Cao, Z. K. Wei, J. He, J. Zang, Q. Zhang, M. S. Zheng, Q. F. Dong, Energy Environ. Sci. 2012, 5, 9765.
– reference: J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang, X. B. Zhang, Nat. Commun. 2013, 4, 3438.
– reference: R. Black, J. H. Lee, B. Adams, C. A. Mims, L. F. Nazar, Angew. Chem. Int. Ed. 2013, 52, 392.
– reference: E. Frackowiak, F. Beguin, Carbon 2001, 39, 937.
– reference: H. G. Jung, Y. S. Jeong, J. B. Park, Y. K. Sun, B. Scrosati, Y. J. Lee, ACS Nano 2013, 7, 3532.
– reference: S. Kang, Y. Mo, S. P. Ong, G. Ceder, Chem. Mater. 2013, 25, 3328.
– reference: Y. L. Li, J. J. Wang, X. F. Li, J. Liu, D. S. Geng, J. L. Yang, R. Y. Li, X. L. Sun, Electrochem. Commun. 2011, 13, 668.
– reference: E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, H. R. Byon, Nano Lett. 2013, 13, 4679.
– volume: 50
  start-page: 6351
  year: 2011
  publication-title: Angew. Chem. Int. Ed.
– volume: 332
  start-page: 1537
  year: 2011
  publication-title: Science
– volume: 8
  start-page: 2277
  year: 2008
  publication-title: Nano Lett.
– volume: 10
  start-page: 19
  year: 2014
  publication-title: Nano Energy
– volume: 4
  start-page: 2756
  year: 2013
  publication-title: Nat. Commun.
– volume: 22
  start-page: 4944
  year: 2010
  publication-title: Adv. Mater.
– volume: 2
  start-page: 443
  year: 2013
  publication-title: Nano Energy
– volume: 39
  start-page: 937
  year: 2001
  publication-title: Carbon
– volume: 11
  start-page: 5071
  year: 2011
  publication-title: Nano Lett.
– volume: 135
  start-page: 494
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 3145
  year: 2014
  publication-title: Nano Lett.
– volume: 114
  start-page: 5611
  year: 2014
  publication-title: Chem. Rev.
– volume: 337
  start-page: 563
  year: 2012
  publication-title: Science
– volume: 157
  start-page: A487
  year: 2010
  publication-title: J. Electrochem. Soc.
– volume: 5
  start-page: 460
  year: 2012
  publication-title: Nano Res.
– volume: 4
  start-page: 93
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 19
  year: 2012
  publication-title: Nat. Mater.
– volume: 12
  start-page: 1050
  year: 2013
  publication-title: Nat. Mater.
– volume: 132
  start-page: 12170
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 3328
  year: 2013
  publication-title: Chem. Mater.
– volume: 5
  start-page: 9765
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 1125
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 2383
  year: 2013
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2213
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 13
  start-page: 668
  year: 2011
  publication-title: Electrochem. Commun.
– volume: 4
  start-page: 579
  year: 2012
  publication-title: Nat. Chem.
– volume: 5
  year: 2014
  publication-title: Nat. Commun.
– volume: 13
  start-page: 4679
  year: 2013
  publication-title: Nano Lett.
– volume: 25
  start-page: 5668
  year: 2013
  publication-title: Adv. Mater.
– volume: 5
  start-page: 8484
  year: 2013
  publication-title: Nanoscale
– volume: 7
  start-page: 3532
  year: 2013
  publication-title: ACS Nano
– volume: 4
  start-page: 3438
  year: 2013
  publication-title: Nat. Commun.
– volume: 6
  start-page: 1772
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 2247
  year: 2013
  publication-title: Sci. Rep.
– volume: 49
  start-page: 1175
  year: 2013
  publication-title: Chem. Commun.
– volume: 49
  start-page: 2565
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 727
  year: 2012
  publication-title: Carbon
– volume: 4
  start-page: 2952
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 844
  year: 2012
  publication-title: ACS Catal.
– volume: 143
  start-page: 1
  year: 1996
  publication-title: J. Electrochem. Soc.
– volume: 13
  start-page: 4702
  year: 2013
  publication-title: Nano Lett.
– volume: 40
  start-page: 1775
  year: 2002
  publication-title: Carbon
– volume: 26
  start-page: 4659
  year: 2014
  publication-title: Adv. Mater.
– volume: 159
  start-page: R1
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 37
  start-page: 165
  year: 1999
  publication-title: Carbon
– volume: 5
  start-page: 7931
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 47
  start-page: 9438
  year: 2011
  publication-title: Chem. Commun.
– volume: 1
  start-page: 2193
  year: 2010
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 1648
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 52
  start-page: 392
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 4
  start-page: 11115
  year: 2014
  publication-title: RSC Adv.
– volume: 18
  start-page: 12
  year: 2012
  publication-title: Electrochem. Commun.
– ident: e_1_2_6_37_1
  doi: 10.1016/j.elecom.2012.01.023
– ident: e_1_2_6_1_1
  doi: 10.1149/1.1836378
– ident: e_1_2_6_26_1
  doi: 10.1016/j.nanoen.2014.08.022
– ident: e_1_2_6_14_1
  doi: 10.1016/S0008-6223(02)00045-3
– ident: e_1_2_6_18_1
  doi: 10.1002/anie.200907289
– ident: e_1_2_6_50_1
  doi: 10.1021/ja310258x
– ident: e_1_2_6_5_1
  doi: 10.1149/2.086202jes
– ident: e_1_2_6_44_1
  doi: 10.1002/adma.201400162
– ident: e_1_2_6_3_1
  doi: 10.1021/jz1005384
– ident: e_1_2_6_42_1
  doi: 10.1021/nl402213h
– ident: e_1_2_6_27_1
  doi: 10.1038/nchem.1376
– ident: e_1_2_6_17_1
  doi: 10.1002/adma.201002045
– ident: e_1_2_6_24_1
  doi: 10.1016/j.carbon.2011.09.040
– ident: e_1_2_6_9_1
  doi: 10.1039/c3ee42934b
– ident: e_1_2_6_52_1
  doi: 10.1021/jz3018368
– ident: e_1_2_6_46_1
  doi: 10.1021/nl500397y
– ident: e_1_2_6_51_1
  doi: 10.1021/cm401720n
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1200770
– ident: e_1_2_6_48_1
  doi: 10.1039/c3ee40697k
– ident: e_1_2_6_29_1
  doi: 10.1039/c2cc37042e
– ident: e_1_2_6_35_1
  doi: 10.1038/ncomms3383
– ident: e_1_2_6_41_1
  doi: 10.1038/srep02247
– ident: e_1_2_6_40_1
  doi: 10.1021/nn400477d
– volume: 5
  year: 2014
  ident: e_1_2_6_19_1
  publication-title: Nat. Commun.
– ident: e_1_2_6_45_1
  doi: 10.1039/C3EE44043E
– volume: 4
  start-page: 3438
  year: 2013
  ident: e_1_2_6_10_1
  publication-title: Nat. Commun.
– ident: e_1_2_6_36_1
  doi: 10.1038/ncomms3756
– ident: e_1_2_6_25_1
  doi: 10.1002/adma.201302459
– ident: e_1_2_6_32_1
  doi: 10.1007/s12274-012-0231-4
– ident: e_1_2_6_6_1
  doi: 10.1039/c3ee00053b
– ident: e_1_2_6_38_1
  doi: 10.1016/j.elecom.2011.04.004
– ident: e_1_2_6_30_1
  doi: 10.1002/anie.201205354
– ident: e_1_2_6_4_1
  doi: 10.1021/cr400573b
– ident: e_1_2_6_11_1
  doi: 10.1016/j.nanoen.2012.11.014
– ident: e_1_2_6_2_1
  doi: 10.1038/nmat3191
– ident: e_1_2_6_22_1
  doi: 10.1039/c1cc13464g
– ident: e_1_2_6_47_1
  doi: 10.1038/nmat3737
– ident: e_1_2_6_23_1
  doi: 10.1021/nl203332e
– ident: e_1_2_6_31_1
  doi: 10.1039/c2ee21746e
– ident: e_1_2_6_20_1
  doi: 10.1149/1.3314375
– ident: e_1_2_6_8_1
  doi: 10.1126/science.1223985
– ident: e_1_2_6_21_1
  doi: 10.1039/c1ee01496j
– ident: e_1_2_6_16_1
  doi: 10.1021/nl800957b
– ident: e_1_2_6_7_1
  doi: 10.1002/anie.201100879
– ident: e_1_2_6_13_1
  doi: 10.1016/S0008-6223(00)00183-4
– ident: e_1_2_6_33_1
  doi: 10.1039/c2ee23475k
– ident: e_1_2_6_39_1
  doi: 10.1039/c3nr02959j
– ident: e_1_2_6_49_1
  doi: 10.1039/c3ra47372d
– ident: e_1_2_6_12_1
  doi: 10.1016/S0008-6223(98)00290-5
– ident: e_1_2_6_28_1
  doi: 10.1021/cs300036v
– ident: e_1_2_6_34_1
  doi: 10.1021/ja1036572
– ident: e_1_2_6_43_1
  doi: 10.1021/nl4020952
SSID ssj0017734
Score 2.5357535
Snippet One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture...
One of the major challenges to develop high‐performance lithium–oxygen (Li–O 2 ) battery is to find effective cathode catalysts and design porous architecture...
One of the major challenges to develop high-performance lithium-oxygen (Li-O sub(2)) battery is to find effective cathode catalysts and design porous...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4436
SubjectTerms Architecture
Carbon
Catalysis
Catalysts
cathode catalysts
Cathodes
Discharge
Electrodes
lithium-oxygen batteries
mesoporous carbon nanocubes
Nanostructure
ruthenium nanocrystals
Title Mesoporous Carbon Nanocube Architecture for High-Performance Lithium-Oxygen Batteries
URI https://api.istex.fr/ark:/67375/WNG-K6SHLTMP-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201500863
https://www.proquest.com/docview/1718974814
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VcKGHQqFVlz8ZqaKnQBL_JDmuoNsV3VBUQN2eLNtxVESbVLsbCTjxCJX6hjxJx8lu2K1UVWpviTRW4rHH84098xngtY58ZtBzYFiSYIAS8NzTKOpZRhHsahYG2hUKp6eif8lOhnw4V8Xf8EO0G27OMur12hm40uPDR9JQleWukhwBDaJyR_fpErYcKvrY8kcFUdQcK4vAJXgFwxlrox8eLjZf8ErLTsE3C5BzHrjWnqe3Cmr2z03CyfVBNdEH5u43Osf_6dQaPJvCUtJt5tFzeGKLdXg6R1a4AZ9TOy4RrZfVmBypkS4LgktzaSptSXfuOIIgDCYufeTh_sfZY1kCGVxNvlxV3x7uf364ucVpSxpqT4zUX8Bl7-3FUd-bXszgGUSH1KNG5SyxnDLBE5_ySNvIcdWpWCiEPIxzlVMTG64iIxJqLAZ1LMswduM2obGhL2GpKAv7CogRioYJdtcIn-Wxr8MssCLLI-tzlYW0A95sYKSZspa7yzO-yoZvOZROZbJVWQfetPLfG76OP0ru1-PciqnRtctyi7j8dPpOvhfn_cFFeiYHHdibTQSJtucOVFRhUdkyQMeO8VgcsA6E9bD-5Zuye9xL27fNf2m0BSvuuckY3oalyaiyO4iLJnoXlrvH6eB8t7aBXzJdBuY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V9gAceCPCoywSj5Nb2-v148AhaggpcUIFqQinZXe9FlHBRkksWk79CUj8Ev5Kf0J_CbN27CZICAmpB4621q-dGc83uzPfADyWge0p9BwYlkQYoDgstSQOtbRHEexKz3WkKRQeDP3evvdqzMZr8LOuhan4IZoFN2MZ5f_aGLhZkN4-Yw0VSWpKyRHRICyv-1f39dFXjNpmz3c7KOInrtt9MdrpWYvGApZCdEMtqkTqRZpRz2eRTVkgdWC41kToC3TZHmMipSpUTATKj6jSGJR4SYKxB9MRDRXF-16ADdNG3ND1d940jFVOEFQb2b5jUsqccc0Tabvbq--74gc3jEgPV0DuMlQufV33KpzUs1SluBxsFXO5pb79RiD5X03jNbiyQN6kXZnKdVjT2Q24vMTHeBPeD_Qsx4AkL2ZkR0xlnhH0PrkqpCbtpR0XgkifmAyZ0-Pve2eVFySezD9Ois-nxz9eHx6hZZKKvXSiZ7dg_1y-7TasZ3mm7wBRvqBuhNOrfNtLQ1u6iaP9JA20zUTi0hZYtSZwtSBmN_1BPvGKUtrlRkS8EVELnjXjv1SUJH8c-bRUrGaYmB6YRL6A8XfDl7zvv-3Fo8Eej1vwqNY8jr8Xs2ckMo2TzR3ELhhyho7XArfUo788k7c73UFzdPdfLnoIF3ujQczj3WH_Hlwy56sE6fuwPp8W-gHCwLncLA2PwIfzVtFfEa5gfw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVkJw4I0Iz0XicXJrex-2DxyihpCSBxG0ajgt6_VaRIW4SmLRcupPQOKP8Ff4C_0lzNqxmyAhJKQeONpav3Zmdr7xznwD8CQOXKbRc2BYEmGA4vHUiXGoYxhFsBsz34ttoXB_IDp77PWIj9bgR1ULU_JD1D_crGUU67U18MMk3TojDVVJaivJEdAgKq_aV3fN8RcM2mYvdloo4ae-3365u91xFn0FHI3ghjpUq5RFhlMmeORSHsQmsFRrKhQKPTbjXKVUh5qrQIuIaoMxCUsSDD24iWioKd73Amww4Ua2WUTrbU1Y5QVBuY8tPJtR5o0qmkjX31p93xU3uGElerSCcZeRcuHq2lfhZzVJZYbLwWY-jzf119_4I_-nWbwGVxa4mzRLQ7kOa2ZyAy4vsTHehPd9M8swHMnyGdlW0zibEPQ9mc5jQ5pL-y0EcT6x-TGnJ9-GZ3UXpDeefxznn09Pvr85Oka7JCV36djMbsHeuXzbbVifZBNzB4gWivoRTq8WLktDN_YTz4gkDYzLVeLTBjiVIki9oGW33UE-yZJQ2pdWRLIWUQOe1-MPS0KSP458VuhVPUxND2waX8Dl_uCV7Ip3nd5ufyh7DXhcKZ7ExcXuGKmJwcmWHiIXDDhDjzXAL9ToL8-UzVa7Xx_d_ZeLHsHFYastezuD7j24ZE-X2dH3YX0-zc0DxIDz-GFhdgQ-nLeG_gJqcl8u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+Carbon+Nanocube+Architecture+for+High%E2%80%90Performance+Lithium%E2%80%93Oxygen+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Sun%2C+Bing&rft.au=Chen%2C+Shuangqiang&rft.au=Liu%2C+Hao&rft.au=Wang%2C+Guoxiu&rft.date=2015-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=28&rft.spage=4436&rft.epage=4444&rft_id=info:doi/10.1002%2Fadfm.201500863&rft.externalDBID=10.1002%252Fadfm.201500863&rft.externalDocID=ADFM201500863
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon