Mesoporous Carbon Nanocube Architecture for High-Performance Lithium-Oxygen Batteries
One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 28; pp. 4436 - 4444 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.07.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g−1 at 200 mA g−1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g−1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g−1 with the curtaining capacity of 1000 mA h g−1.
Mesoporous carbon nanocubes (MCCs) are synthesized by a chemical vapor deposition method. Oxygen electrode made of MCCs contains a hierarchical porous structure, which can facilitate oxygen diffusion, electrolyte impregnation, and accommodation of discharge products during the charge and discharge processes. |
---|---|
AbstractList | One of the major challenges to develop high-performance lithium-oxygen (Li-O sub(2)) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li-O sub(2) batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li-O sub(2) cells deliver discharge capacities of 26 100 mA h g super(-1) at 200 mA g super(-1), which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li-O sub(2) batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g super(-1) under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g super(-1) with the curtaining capacity of 1000 mA h g super(-1). Mesoporous carbon nanocubes (MCCs) are synthesized by a chemical vapor deposition method. Oxygen electrode made of MCCs contains a hierarchical porous structure, which can facilitate oxygen diffusion, electrolyte impregnation, and accommodation of discharge products during the charge and discharge processes. One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g−1 at 200 mA g−1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g−1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g−1 with the curtaining capacity of 1000 mA h g−1. Mesoporous carbon nanocubes (MCCs) are synthesized by a chemical vapor deposition method. Oxygen electrode made of MCCs contains a hierarchical porous structure, which can facilitate oxygen diffusion, electrolyte impregnation, and accommodation of discharge products during the charge and discharge processes. One of the major challenges to develop high‐performance lithium–oxygen (Li–O 2 ) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O 2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O 2 cells deliver discharge capacities of 26 100 mA h g −1 at 200 mA g −1 , which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O 2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g −1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g −1 with the curtaining capacity of 1000 mA h g −1 . |
Author | Liu, Hao Chen, Shuangqiang Wang, Guoxiu Sun, Bing |
Author_xml | – sequence: 1 givenname: Bing surname: Sun fullname: Sun, Bing organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, NSW, 2007, Sydney, Australia – sequence: 2 givenname: Shuangqiang surname: Chen fullname: Chen, Shuangqiang organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, NSW, 2007, Sydney, Australia – sequence: 3 givenname: Hao surname: Liu fullname: Liu, Hao organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, NSW, 2007, Sydney, Australia – sequence: 4 givenname: Guoxiu surname: Wang fullname: Wang, Guoxiu email: guoxiu.wang@uts.edu.au organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, 2007, Sydney, NSW, Australia |
BookMark | eNqFkD1PwzAQhi0EEi2wMmdkSbHrr2Qs5aOIlCIBgs1y3UtrSOJiO4L-e4qKKoSEmO4d3udO93TRbuMaQOiY4B7BuH-qZ2Xd62PCMc4E3UEdIohIKe5nu9tMnvdRN4QXjImUlHXQ4xiCWzrv2pAMtZ-6JrnVjTPtFJKBNwsbwcTWQ1I6n4zsfJHegV_nWjcGksLGhW3rdPKxmkOTnOkYwVsIh2iv1FWAo-95gB4vLx6Go7SYXF0PB0VqOKU0pUaXLAdOmeA5plxOQWKCic6ExoIyznVJTWa4lkbk1ECW52w2I4xxyGlm6AE62exdevfWQoiqtsFAVekG1h8pIkmWS5YRtq72NlXjXQgeSrX0ttZ-pQhWX_7Ulz-19bcG2C_A2KijdU302lZ_Y_kGe7cVrP45ogbnl-OfbLphbYjwsWW1f1VCUsnV0-2VuhH3o-JhfKcK-gnev5aa |
CitedBy_id | crossref_primary_10_1002_adfm_201704973 crossref_primary_10_1016_j_ensm_2017_10_012 crossref_primary_10_1002_ange_201511832 crossref_primary_10_1007_s13391_016_6183_1 crossref_primary_10_1021_acsami_6b10115 crossref_primary_10_1021_acsenergylett_6b00128 crossref_primary_10_1039_C8NR02376J crossref_primary_10_1002_adma_201606552 crossref_primary_10_1039_C6TA10291C crossref_primary_10_1016_j_jpowsour_2018_03_080 crossref_primary_10_1002_aenm_201901967 crossref_primary_10_1039_C8TA07145D crossref_primary_10_1002_aenm_202100110 crossref_primary_10_1016_j_nxmate_2024_100126 crossref_primary_10_1039_C7TA01124E crossref_primary_10_1002_cnma_201700023 crossref_primary_10_1002_adfm_201808303 crossref_primary_10_1007_s11664_023_10599_0 crossref_primary_10_1016_j_cej_2018_10_038 crossref_primary_10_1016_j_cej_2022_136311 crossref_primary_10_1002_ente_201500271 crossref_primary_10_1021_acsaem_0c02172 crossref_primary_10_1002_adfm_201503907 crossref_primary_10_1007_s11426_023_1908_9 crossref_primary_10_1016_j_apsusc_2018_02_267 crossref_primary_10_1002_adfm_201801904 crossref_primary_10_1039_C6TA06767K crossref_primary_10_1002_admi_201901186 crossref_primary_10_1021_acsami_5b07003 crossref_primary_10_1016_j_cej_2024_150108 crossref_primary_10_1002_ange_202114067 crossref_primary_10_1002_aenm_202001789 crossref_primary_10_1002_ange_202201416 crossref_primary_10_1016_j_ensm_2021_09_011 crossref_primary_10_1021_acsnano_4c04420 crossref_primary_10_1039_C6TA08427C crossref_primary_10_1002_er_7342 crossref_primary_10_1039_C7TA09932K crossref_primary_10_1016_j_cclet_2016_10_023 crossref_primary_10_1039_C6TA05020D crossref_primary_10_1016_j_scib_2017_01_037 crossref_primary_10_1039_C9GC03284C crossref_primary_10_1016_j_jpowsour_2017_05_094 crossref_primary_10_1016_j_ensm_2019_02_028 crossref_primary_10_1039_C6TA00317F crossref_primary_10_1126_sciadv_adf2398 crossref_primary_10_1002_anie_201905251 crossref_primary_10_1016_j_jelechem_2019_04_055 crossref_primary_10_1016_j_apsusc_2019_145103 crossref_primary_10_1016_j_gee_2016_04_004 crossref_primary_10_1039_C9TA00267G crossref_primary_10_1039_C6EE03770D crossref_primary_10_1002_adsu_201700183 crossref_primary_10_1039_D1TA00203A crossref_primary_10_1088_1361_6528_aa66bc crossref_primary_10_1002_adsu_202300510 crossref_primary_10_1002_aenm_201700283 crossref_primary_10_1039_C7QM00353F crossref_primary_10_1002_adma_201606816 crossref_primary_10_1002_smll_201704296 crossref_primary_10_3390_molecules27227851 crossref_primary_10_1016_j_ensm_2021_11_049 crossref_primary_10_1002_smll_201800078 crossref_primary_10_3390_inorganics7060069 crossref_primary_10_1002_anie_201511832 crossref_primary_10_1016_j_ensm_2016_07_001 crossref_primary_10_1039_C9TA00543A crossref_primary_10_1016_j_ensm_2020_09_014 crossref_primary_10_1002_cey2_382 crossref_primary_10_1039_C5TA09539E crossref_primary_10_1016_j_jpcs_2017_09_036 crossref_primary_10_1002_inf2_12243 crossref_primary_10_1039_C5CC09034B crossref_primary_10_1016_j_apcatb_2020_119792 crossref_primary_10_1021_jacs_8b13568 crossref_primary_10_1002_smll_201804958 crossref_primary_10_1016_j_jcis_2023_11_101 crossref_primary_10_1016_j_ensm_2023_102829 crossref_primary_10_1002_aenm_201602674 crossref_primary_10_1002_anie_202114067 crossref_primary_10_1002_advs_201700172 crossref_primary_10_1002_smll_201804600 crossref_primary_10_1002_slct_201801904 crossref_primary_10_1021_acsami_8b06912 crossref_primary_10_1007_s10008_019_04222_8 crossref_primary_10_1016_j_electacta_2019_01_027 crossref_primary_10_1016_j_cej_2025_159351 crossref_primary_10_1016_j_jelechem_2022_116380 crossref_primary_10_1038_s41467_020_15416_4 crossref_primary_10_1039_C8NR01049H crossref_primary_10_1002_smll_201900001 crossref_primary_10_1021_acs_jpcc_3c01042 crossref_primary_10_1016_j_jechem_2016_10_012 crossref_primary_10_1021_acsami_5b10856 crossref_primary_10_1039_C8CS00009C crossref_primary_10_1016_j_jpowsour_2017_09_071 crossref_primary_10_1039_D1SC00716E crossref_primary_10_1002_ange_201905251 crossref_primary_10_1002_cssc_201601718 crossref_primary_10_1016_j_nanoen_2017_02_030 crossref_primary_10_1021_acsami_6b16090 crossref_primary_10_1039_C9CC04720D crossref_primary_10_1016_j_carbon_2017_03_037 crossref_primary_10_1016_j_cej_2018_06_014 crossref_primary_10_1016_j_electacta_2016_03_146 crossref_primary_10_1039_C7TA10930J crossref_primary_10_1016_j_nanoen_2022_106964 crossref_primary_10_1016_j_jechem_2024_03_016 crossref_primary_10_1016_j_carbon_2016_01_012 crossref_primary_10_1002_aenm_201903030 crossref_primary_10_1016_j_jechem_2019_09_029 crossref_primary_10_1007_s11837_016_2039_2 crossref_primary_10_1007_s40843_023_2765_3 crossref_primary_10_1016_j_cclet_2022_04_011 crossref_primary_10_1007_s11814_022_1309_7 crossref_primary_10_1002_anie_202201416 crossref_primary_10_1002_smll_201805277 crossref_primary_10_1016_j_apsusc_2018_07_026 crossref_primary_10_1007_s11051_021_05306_1 crossref_primary_10_1002_adfm_201602246 crossref_primary_10_1007_s11426_017_9156_0 crossref_primary_10_1039_D0TA07587F crossref_primary_10_1002_aenm_202403983 crossref_primary_10_1039_C6CC05349A crossref_primary_10_1007_s40843_018_9367_3 crossref_primary_10_1016_j_ensm_2017_05_004 crossref_primary_10_1016_j_jpowsour_2017_04_029 crossref_primary_10_1016_j_jpowsour_2024_234553 crossref_primary_10_1149_2_1141811jes crossref_primary_10_1016_j_esci_2023_100123 crossref_primary_10_1021_acsomega_7b00497 crossref_primary_10_1007_s12274_017_1921_8 crossref_primary_10_1016_j_est_2022_104952 crossref_primary_10_54227_mlab_20220015 crossref_primary_10_1021_acs_energyfuels_3c04463 crossref_primary_10_1002_adma_201603356 crossref_primary_10_1039_C7QI00314E crossref_primary_10_1063_1_5091444 crossref_primary_10_1016_j_electacta_2016_03_161 crossref_primary_10_1002_adfm_201505420 crossref_primary_10_1002_aenm_201900788 crossref_primary_10_1007_s10562_024_04655_5 crossref_primary_10_1016_j_ensm_2021_12_031 crossref_primary_10_1002_smtd_201900619 crossref_primary_10_1007_s12274_018_2214_6 crossref_primary_10_1016_j_jechem_2020_06_063 crossref_primary_10_1002_aenm_201700875 crossref_primary_10_1016_j_nanoen_2016_08_057 crossref_primary_10_1021_acs_chemmater_7b03839 crossref_primary_10_1038_ncomms15607 crossref_primary_10_1002_aenm_201801930 crossref_primary_10_1016_j_electacta_2016_02_008 crossref_primary_10_1039_C6TA00901H |
Cites_doi | 10.1016/j.elecom.2012.01.023 10.1149/1.1836378 10.1016/j.nanoen.2014.08.022 10.1016/S0008-6223(02)00045-3 10.1002/anie.200907289 10.1021/ja310258x 10.1149/2.086202jes 10.1002/adma.201400162 10.1021/jz1005384 10.1021/nl402213h 10.1038/nchem.1376 10.1002/adma.201002045 10.1016/j.carbon.2011.09.040 10.1039/c3ee42934b 10.1021/jz3018368 10.1021/nl500397y 10.1021/cm401720n 10.1126/science.1200770 10.1039/c3ee40697k 10.1039/c2cc37042e 10.1038/ncomms3383 10.1038/srep02247 10.1021/nn400477d 10.1039/C3EE44043E 10.1038/ncomms3756 10.1002/adma.201302459 10.1007/s12274-012-0231-4 10.1039/c3ee00053b 10.1016/j.elecom.2011.04.004 10.1002/anie.201205354 10.1021/cr400573b 10.1016/j.nanoen.2012.11.014 10.1038/nmat3191 10.1039/c1cc13464g 10.1038/nmat3737 10.1021/nl203332e 10.1039/c2ee21746e 10.1149/1.3314375 10.1126/science.1223985 10.1039/c1ee01496j 10.1021/nl800957b 10.1002/anie.201100879 10.1016/S0008-6223(00)00183-4 10.1039/c2ee23475k 10.1039/c3nr02959j 10.1039/c3ra47372d 10.1016/S0008-6223(98)00290-5 10.1021/cs300036v 10.1021/ja1036572 10.1021/nl4020952 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 L7M |
DOI | 10.1002/adfm.201500863 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Architecture |
EISSN | 1616-3028 |
EndPage | 4444 |
ExternalDocumentID | 10_1002_adfm_201500863 ADFM201500863 ark_67375_WNG_K6SHLTMP_L |
Genre | article |
GrantInformation_xml | – fundername: Australian Research Council funderid: FT110100800 – fundername: Fundamental Research Funds for the Central Universities of China funderid: NE2014301 |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SP 7SR 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JG9 L7M |
ID | FETCH-LOGICAL-c5333-3caf49e5346590357be70101a86a063455af3c8c5a7c693ce8994dd1445e938c3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 11 12:11:37 EDT 2025 Tue Jul 01 01:30:20 EDT 2025 Thu Apr 24 23:10:32 EDT 2025 Wed Jan 22 16:17:44 EST 2025 Wed Oct 30 09:53:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 28 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5333-3caf49e5346590357be70101a86a063455af3c8c5a7c693ce8994dd1445e938c3 |
Notes | ArticleID:ADFM201500863 istex:DD6F2404588D3081835AD6CCE54FC9E4593A91FD ark:/67375/WNG-K6SHLTMP-L Australian Research Council - No. FT110100800 Fundamental Research Funds for the Central Universities of China - No. NE2014301 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1718974814 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1718974814 crossref_primary_10_1002_adfm_201500863 crossref_citationtrail_10_1002_adfm_201500863 wiley_primary_10_1002_adfm_201500863_ADFM201500863 istex_primary_ark_67375_WNG_K6SHLTMP_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Y. Cao, Z. K. Wei, J. He, J. Zang, Q. Zhang, M. S. Zheng, Q. F. Dong, Energy Environ. Sci. 2012, 5, 9765. P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19. Z. Q. Peng, S. A. Freunberger, Y. H. Chen, P. G. Bruce, Science 2012, 337, 563. R. R. Mitchell, B. M. Gallant, C. V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 2011, 4, 2952. J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, Energy Environ. Sci. 2014, 7, 2213. R. Black, J. H. Lee, B. Adams, C. A. Mims, L. F. Nazar, Angew. Chem. Int. Ed. 2013, 52, 392. J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J. Electrochem. Soc. 2012, 159, R1. D. Oh, J. F. Qi, Y. C. Lu, Y. Zhang, Y. Shao-Horn, A. M. Belcher, Nat. Commun. 2013, 4, 2756. J. Lu, Y. Lei, K. C. Lau, X. Y. Luo, P. Du, J. G. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. Abd El-Hady, Y. K. Sun, L. A. Curtiss, K. Amine, Nat. Commun. 2013, 4, 2383. B. Sun, H. Liu, P. Munroe, H. Ahn, G. X. Wang, Nano Res. 2012, 5, 460. Y. Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, ACS Catal. 2012, 2, 844. F. J. Li, R. Ohnishi, Y. Yamada, J. Kubota, K. Domen, A. Yamada, H. S. Zhou, Chem. Commun. 2013, 49, 1175. Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 2010, 132, 12170. E. Frackowiak, F. Beguin, Carbon 2002, 40, 1775. Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, R. Y. Li, X. L. Sun, Chem. Commun. 2011, 47, 9438. G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater. 2010, 22, 4944. J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang, X. B. Zhang, Nat. Commun. 2013, 4, 3438. J. Liu, R. Younesi, T. Gustafsson, K. Edström, J. Zhu, Nano Energy 2014, 10, 19. J. Wang, Y. Li, X. Sun, Nano Energy 2013, 2, 443. H. Nie, H. Zhang, Y. Zhang, T. Liu, J. Li, Q. Lai, Nanoscale 2013, 5, 8484. F. Li, D.-M. Tang, Y. Chen, D. Golberg, H. Kitaura, T. Zhang, A. Yamada, H. Zhou, Nano Lett. 2013, 13, 4702. M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, Nat. Mater. 2013, 12, 1050. B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Nano Lett. 2014, 14, 3145. Y. L. Li, J. J. Wang, X. F. Li, J. Liu, D. S. Geng, J. L. Yang, R. Y. Li, X. L. Sun, Electrochem. Commun. 2011, 13, 668. F. J. Li, T. Zhang, H. S. Zhou, Energy Environ. Sci. 2013, 6, 1125. Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, M. N. Banis, R. Y. Li, X. L. Sun, Electrochem. Commun. 2012, 18, 12. F. Li, D.-M. Tang, Z. Jian, D. Liu, D. Golberg, A. Yamada, H. Zhou, Adv. Mater. 2014, 26, 4659. Z. Q. Peng, S. A. Freunberger, L. J. Hardwick, Y. H. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J. M. Tarascon, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 6351. E. Frackowiak, F. Beguin, Carbon 2001, 39, 937. B. Sun, P. Munroe, G. X. Wang, Sci. Rep. 2013, 3, 2247. B. Sun, X. Huang, S. Chen, J. Zhang, G. Wang, RSC Adv. 2014, 4, 11115. Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Adv. Mater. 2013, 25, 5668. H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579. Y.-C. Lu, Y. Shao-Horn, J. Phys. Chem. Lett. 2013, 4, 93. R. Liu, D. Wu, X. Feng, K. Muellen, Angew. Chem. Int. Ed. 2010, 49, 2565. H. L. Wang, Y. Yang, Y. Y. Liang, G. Y. Zheng, Y. G. Li, Y. Cui, H. J. Dai, Energy Environ. Sci. 2012, 5, 7931. F. Li, Y. Chen, D.-M. Tang, Z. Jian, C. Liu, D. Golberg, A. Yamada, H. Zhou, Energy Environ. Sci. 2014, 7, 1648. J. Xiao, D. H. Wang, W. Xu, D. Y. Wang, R. E. Williford, J. Liu, J. G. Zhang, J. Electrochem. Soc. 2010, 157, A487. G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193. J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, W. D. Bennett, Z. M. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Nano Lett. 2011, 11, 5071. E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, H. R. Byon, Nano Lett. 2013, 13, 4679. S. Kang, Y. Mo, S. P. Ong, G. Ceder, Chem. Mater. 2013, 25, 3328. M. M. O. Thotiyl, S. A. Freunberger, Z. Peng, P. G. Bruce, J. Am. Chem. Soc. 2013, 135, 494. S. Flandrois, B. Simon, Carbon 1999, 37, 165. Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Energy Environ. Sci. 2013, 6, 1772. S. J. Kang, T. Mori, S. Narizuka, W. Wilcke, H.-C. Kim, Nat. Commun. 2014, 5. J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu, K. Amine, Chem. Rev. 2014, 114, 5611. H. G. Jung, Y. S. Jeong, J. B. Park, Y. K. Sun, B. Scrosati, Y. J. Lee, ACS Nano 2013, 7, 3532. E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Nano Lett. 2008, 8, 2277. B. Sun, B. Wang, D. W. Su, L. D. Xiao, H. Ahn, G. X. Wang, Carbon 2012, 50, 727. K. M. Abraham, Z. Jiang, J. Electrochem. Soc. 1996, 143, 1. 2013; 3 2013; 4 2013; 25 2013; 2 2013; 49 2014; 26 2011; 11 2008; 8 2012; 18 2011; 13 1996; 143 2011; 4 2013; 7 2013; 5 2012; 11 2013; 6 2014; 114 2011; 332 2012; 50 2010; 22 2010; 49 2014; 5 2012; 2 2014; 4 2010; 1 2013; 13 2002; 40 2013; 12 1999; 37 2011; 50 2010; 157 2013; 52 2010; 132 2014; 14 2013; 135 2001; 39 2011; 47 2012; 159 2014; 7 2012; 4 2012; 337 2012; 5 2014; 10 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Xu J. J. (e_1_2_6_10_1) 2013; 4 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_1_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Kang S. J. (e_1_2_6_19_1) 2014; 5 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: R. R. Mitchell, B. M. Gallant, C. V. Thompson, Y. Shao-Horn, Energy Environ. Sci. 2011, 4, 2952. – reference: H. G. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579. – reference: J. Liu, R. Younesi, T. Gustafsson, K. Edström, J. Zhu, Nano Energy 2014, 10, 19. – reference: F. Li, D.-M. Tang, Y. Chen, D. Golberg, H. Kitaura, T. Zhang, A. Yamada, H. Zhou, Nano Lett. 2013, 13, 4702. – reference: B. Sun, X. Huang, S. Chen, P. Munroe, G. Wang, Nano Lett. 2014, 14, 3145. – reference: J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed, A. Kojic, J. Electrochem. Soc. 2012, 159, R1. – reference: Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, R. Y. Li, X. L. Sun, Chem. Commun. 2011, 47, 9438. – reference: Y. C. Lu, Z. C. Xu, H. A. Gasteiger, S. Chen, K. Hamad-Schifferli, Y. Shao-Horn, J. Am. Chem. Soc. 2010, 132, 12170. – reference: E. Yoo, J. Kim, E. Hosono, H.-s. Zhou, T. Kudo, I. Honma, Nano Lett. 2008, 8, 2277. – reference: F. J. Li, T. Zhang, H. S. Zhou, Energy Environ. Sci. 2013, 6, 1125. – reference: H. Nie, H. Zhang, Y. Zhang, T. Liu, J. Li, Q. Lai, Nanoscale 2013, 5, 8484. – reference: J.-J. Xu, Z.-L. Wang, D. Xu, F.-Z. Meng, X.-B. Zhang, Energy Environ. Sci. 2014, 7, 2213. – reference: R. Liu, D. Wu, X. Feng, K. Muellen, Angew. Chem. Int. Ed. 2010, 49, 2565. – reference: D. Oh, J. F. Qi, Y. C. Lu, Y. Zhang, Y. Shao-Horn, A. M. Belcher, Nat. Commun. 2013, 4, 2756. – reference: F. Li, D.-M. Tang, Z. Jian, D. Liu, D. Golberg, A. Yamada, H. Zhou, Adv. Mater. 2014, 26, 4659. – reference: F. Li, Y. Chen, D.-M. Tang, Z. Jian, C. Liu, D. Golberg, A. Yamada, H. Zhou, Energy Environ. Sci. 2014, 7, 1648. – reference: Z. Q. Peng, S. A. Freunberger, L. J. Hardwick, Y. H. Chen, V. Giordani, F. Barde, P. Novak, D. Graham, J. M. Tarascon, P. G. Bruce, Angew. Chem. Int. Ed. 2011, 50, 6351. – reference: G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 2010, 1, 2193. – reference: J. Lu, L. Li, J.-B. Park, Y.-K. Sun, F. Wu, K. Amine, Chem. Rev. 2014, 114, 5611. – reference: B. D. Adams, C. Radtke, R. Black, M. L. Trudeau, K. Zaghib, L. F. Nazar, Energy Environ. Sci. 2013, 6, 1772. – reference: J. Xiao, D. H. Wang, W. Xu, D. Y. Wang, R. E. Williford, J. Liu, J. G. Zhang, J. Electrochem. Soc. 2010, 157, A487. – reference: B. Sun, B. Wang, D. W. Su, L. D. Xiao, H. Ahn, G. X. Wang, Carbon 2012, 50, 727. – reference: B. Sun, H. Liu, P. Munroe, H. Ahn, G. X. Wang, Nano Res. 2012, 5, 460. – reference: S. J. Kang, T. Mori, S. Narizuka, W. Wilcke, H.-C. Kim, Nat. Commun. 2014, 5. – reference: G. Wang, H. Liu, J. Liu, S. Qiao, G. M. Lu, P. Munroe, H. Ahn, Adv. Mater. 2010, 22, 4944. – reference: Y. L. Li, J. J. Wang, X. F. Li, D. S. Geng, M. N. Banis, R. Y. Li, X. L. Sun, Electrochem. Commun. 2012, 18, 12. – reference: J. Wang, Y. Li, X. Sun, Nano Energy 2013, 2, 443. – reference: M. M. O. Thotiyl, S. A. Freunberger, Z. Peng, P. G. Bruce, J. Am. Chem. Soc. 2013, 135, 494. – reference: P. G. Bruce, S. A. Freunberger, L. J. Hardwick, J. M. Tarascon, Nat. Mater. 2012, 11, 19. – reference: J. Lu, Y. Lei, K. C. Lau, X. Y. Luo, P. Du, J. G. Wen, R. S. Assary, U. Das, D. J. Miller, J. W. Elam, H. M. Albishri, D. Abd El-Hady, Y. K. Sun, L. A. Curtiss, K. Amine, Nat. Commun. 2013, 4, 2383. – reference: M. M. Ottakam Thotiyl, S. A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P. G. Bruce, Nat. Mater. 2013, 12, 1050. – reference: F. J. Li, R. Ohnishi, Y. Yamada, J. Kubota, K. Domen, A. Yamada, H. S. Zhou, Chem. Commun. 2013, 49, 1175. – reference: Y. Y. Shao, S. Park, J. Xiao, J. G. Zhang, Y. Wang, J. Liu, ACS Catal. 2012, 2, 844. – reference: H. L. Wang, Y. Yang, Y. Y. Liang, G. Y. Zheng, Y. G. Li, Y. Cui, H. J. Dai, Energy Environ. Sci. 2012, 5, 7931. – reference: E. Frackowiak, F. Beguin, Carbon 2002, 40, 1775. – reference: Y.-C. Lu, Y. Shao-Horn, J. Phys. Chem. Lett. 2013, 4, 93. – reference: J. Xiao, D. H. Mei, X. L. Li, W. Xu, D. Y. Wang, G. L. Graff, W. D. Bennett, Z. M. Nie, L. V. Saraf, I. A. Aksay, J. Liu, J. G. Zhang, Nano Lett. 2011, 11, 5071. – reference: Z. Guo, D. Zhou, X. Dong, Z. Qiu, Y. Wang, Y. Xia, Adv. Mater. 2013, 25, 5668. – reference: Z. Q. Peng, S. A. Freunberger, Y. H. Chen, P. G. Bruce, Science 2012, 337, 563. – reference: K. M. Abraham, Z. Jiang, J. Electrochem. Soc. 1996, 143, 1. – reference: B. Sun, P. Munroe, G. X. Wang, Sci. Rep. 2013, 3, 2247. – reference: S. Flandrois, B. Simon, Carbon 1999, 37, 165. – reference: Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537. – reference: B. Sun, X. Huang, S. Chen, J. Zhang, G. Wang, RSC Adv. 2014, 4, 11115. – reference: Y. Cao, Z. K. Wei, J. He, J. Zang, Q. Zhang, M. S. Zheng, Q. F. Dong, Energy Environ. Sci. 2012, 5, 9765. – reference: J. J. Xu, Z. L. Wang, D. Xu, L. L. Zhang, X. B. Zhang, Nat. Commun. 2013, 4, 3438. – reference: R. Black, J. H. Lee, B. Adams, C. A. Mims, L. F. Nazar, Angew. Chem. Int. Ed. 2013, 52, 392. – reference: E. Frackowiak, F. Beguin, Carbon 2001, 39, 937. – reference: H. G. Jung, Y. S. Jeong, J. B. Park, Y. K. Sun, B. Scrosati, Y. J. Lee, ACS Nano 2013, 7, 3532. – reference: S. Kang, Y. Mo, S. P. Ong, G. Ceder, Chem. Mater. 2013, 25, 3328. – reference: Y. L. Li, J. J. Wang, X. F. Li, J. Liu, D. S. Geng, J. L. Yang, R. Y. Li, X. L. Sun, Electrochem. Commun. 2011, 13, 668. – reference: E. Yilmaz, C. Yogi, K. Yamanaka, T. Ohta, H. R. Byon, Nano Lett. 2013, 13, 4679. – volume: 50 start-page: 6351 year: 2011 publication-title: Angew. Chem. Int. Ed. – volume: 332 start-page: 1537 year: 2011 publication-title: Science – volume: 8 start-page: 2277 year: 2008 publication-title: Nano Lett. – volume: 10 start-page: 19 year: 2014 publication-title: Nano Energy – volume: 4 start-page: 2756 year: 2013 publication-title: Nat. Commun. – volume: 22 start-page: 4944 year: 2010 publication-title: Adv. Mater. – volume: 2 start-page: 443 year: 2013 publication-title: Nano Energy – volume: 39 start-page: 937 year: 2001 publication-title: Carbon – volume: 11 start-page: 5071 year: 2011 publication-title: Nano Lett. – volume: 135 start-page: 494 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 3145 year: 2014 publication-title: Nano Lett. – volume: 114 start-page: 5611 year: 2014 publication-title: Chem. Rev. – volume: 337 start-page: 563 year: 2012 publication-title: Science – volume: 157 start-page: A487 year: 2010 publication-title: J. Electrochem. Soc. – volume: 5 start-page: 460 year: 2012 publication-title: Nano Res. – volume: 4 start-page: 93 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 11 start-page: 19 year: 2012 publication-title: Nat. Mater. – volume: 12 start-page: 1050 year: 2013 publication-title: Nat. Mater. – volume: 132 start-page: 12170 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 3328 year: 2013 publication-title: Chem. Mater. – volume: 5 start-page: 9765 year: 2012 publication-title: Energy Environ. Sci. – volume: 6 start-page: 1125 year: 2013 publication-title: Energy Environ. Sci. – volume: 4 start-page: 2383 year: 2013 publication-title: Nat. Commun. – volume: 7 start-page: 2213 year: 2014 publication-title: Energy Environ. Sci. – volume: 13 start-page: 668 year: 2011 publication-title: Electrochem. Commun. – volume: 4 start-page: 579 year: 2012 publication-title: Nat. Chem. – volume: 5 year: 2014 publication-title: Nat. Commun. – volume: 13 start-page: 4679 year: 2013 publication-title: Nano Lett. – volume: 25 start-page: 5668 year: 2013 publication-title: Adv. Mater. – volume: 5 start-page: 8484 year: 2013 publication-title: Nanoscale – volume: 7 start-page: 3532 year: 2013 publication-title: ACS Nano – volume: 4 start-page: 3438 year: 2013 publication-title: Nat. Commun. – volume: 6 start-page: 1772 year: 2013 publication-title: Energy Environ. Sci. – volume: 3 start-page: 2247 year: 2013 publication-title: Sci. Rep. – volume: 49 start-page: 1175 year: 2013 publication-title: Chem. Commun. – volume: 49 start-page: 2565 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 727 year: 2012 publication-title: Carbon – volume: 4 start-page: 2952 year: 2011 publication-title: Energy Environ. Sci. – volume: 2 start-page: 844 year: 2012 publication-title: ACS Catal. – volume: 143 start-page: 1 year: 1996 publication-title: J. Electrochem. Soc. – volume: 13 start-page: 4702 year: 2013 publication-title: Nano Lett. – volume: 40 start-page: 1775 year: 2002 publication-title: Carbon – volume: 26 start-page: 4659 year: 2014 publication-title: Adv. Mater. – volume: 159 start-page: R1 year: 2012 publication-title: J. Electrochem. Soc. – volume: 37 start-page: 165 year: 1999 publication-title: Carbon – volume: 5 start-page: 7931 year: 2012 publication-title: Energy Environ. Sci. – volume: 47 start-page: 9438 year: 2011 publication-title: Chem. Commun. – volume: 1 start-page: 2193 year: 2010 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 1648 year: 2014 publication-title: Energy Environ. Sci. – volume: 52 start-page: 392 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 4 start-page: 11115 year: 2014 publication-title: RSC Adv. – volume: 18 start-page: 12 year: 2012 publication-title: Electrochem. Commun. – ident: e_1_2_6_37_1 doi: 10.1016/j.elecom.2012.01.023 – ident: e_1_2_6_1_1 doi: 10.1149/1.1836378 – ident: e_1_2_6_26_1 doi: 10.1016/j.nanoen.2014.08.022 – ident: e_1_2_6_14_1 doi: 10.1016/S0008-6223(02)00045-3 – ident: e_1_2_6_18_1 doi: 10.1002/anie.200907289 – ident: e_1_2_6_50_1 doi: 10.1021/ja310258x – ident: e_1_2_6_5_1 doi: 10.1149/2.086202jes – ident: e_1_2_6_44_1 doi: 10.1002/adma.201400162 – ident: e_1_2_6_3_1 doi: 10.1021/jz1005384 – ident: e_1_2_6_42_1 doi: 10.1021/nl402213h – ident: e_1_2_6_27_1 doi: 10.1038/nchem.1376 – ident: e_1_2_6_17_1 doi: 10.1002/adma.201002045 – ident: e_1_2_6_24_1 doi: 10.1016/j.carbon.2011.09.040 – ident: e_1_2_6_9_1 doi: 10.1039/c3ee42934b – ident: e_1_2_6_52_1 doi: 10.1021/jz3018368 – ident: e_1_2_6_46_1 doi: 10.1021/nl500397y – ident: e_1_2_6_51_1 doi: 10.1021/cm401720n – ident: e_1_2_6_15_1 doi: 10.1126/science.1200770 – ident: e_1_2_6_48_1 doi: 10.1039/c3ee40697k – ident: e_1_2_6_29_1 doi: 10.1039/c2cc37042e – ident: e_1_2_6_35_1 doi: 10.1038/ncomms3383 – ident: e_1_2_6_41_1 doi: 10.1038/srep02247 – ident: e_1_2_6_40_1 doi: 10.1021/nn400477d – volume: 5 year: 2014 ident: e_1_2_6_19_1 publication-title: Nat. Commun. – ident: e_1_2_6_45_1 doi: 10.1039/C3EE44043E – volume: 4 start-page: 3438 year: 2013 ident: e_1_2_6_10_1 publication-title: Nat. Commun. – ident: e_1_2_6_36_1 doi: 10.1038/ncomms3756 – ident: e_1_2_6_25_1 doi: 10.1002/adma.201302459 – ident: e_1_2_6_32_1 doi: 10.1007/s12274-012-0231-4 – ident: e_1_2_6_6_1 doi: 10.1039/c3ee00053b – ident: e_1_2_6_38_1 doi: 10.1016/j.elecom.2011.04.004 – ident: e_1_2_6_30_1 doi: 10.1002/anie.201205354 – ident: e_1_2_6_4_1 doi: 10.1021/cr400573b – ident: e_1_2_6_11_1 doi: 10.1016/j.nanoen.2012.11.014 – ident: e_1_2_6_2_1 doi: 10.1038/nmat3191 – ident: e_1_2_6_22_1 doi: 10.1039/c1cc13464g – ident: e_1_2_6_47_1 doi: 10.1038/nmat3737 – ident: e_1_2_6_23_1 doi: 10.1021/nl203332e – ident: e_1_2_6_31_1 doi: 10.1039/c2ee21746e – ident: e_1_2_6_20_1 doi: 10.1149/1.3314375 – ident: e_1_2_6_8_1 doi: 10.1126/science.1223985 – ident: e_1_2_6_21_1 doi: 10.1039/c1ee01496j – ident: e_1_2_6_16_1 doi: 10.1021/nl800957b – ident: e_1_2_6_7_1 doi: 10.1002/anie.201100879 – ident: e_1_2_6_13_1 doi: 10.1016/S0008-6223(00)00183-4 – ident: e_1_2_6_33_1 doi: 10.1039/c2ee23475k – ident: e_1_2_6_39_1 doi: 10.1039/c3nr02959j – ident: e_1_2_6_49_1 doi: 10.1039/c3ra47372d – ident: e_1_2_6_12_1 doi: 10.1016/S0008-6223(98)00290-5 – ident: e_1_2_6_28_1 doi: 10.1021/cs300036v – ident: e_1_2_6_34_1 doi: 10.1021/ja1036572 – ident: e_1_2_6_43_1 doi: 10.1021/nl4020952 |
SSID | ssj0017734 |
Score | 2.5357535 |
Snippet | One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture... One of the major challenges to develop high‐performance lithium–oxygen (Li–O 2 ) battery is to find effective cathode catalysts and design porous architecture... One of the major challenges to develop high-performance lithium-oxygen (Li-O sub(2)) battery is to find effective cathode catalysts and design porous... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 4436 |
SubjectTerms | Architecture Carbon Catalysis Catalysts cathode catalysts Cathodes Discharge Electrodes lithium-oxygen batteries mesoporous carbon nanocubes Nanostructure ruthenium nanocrystals |
Title | Mesoporous Carbon Nanocube Architecture for High-Performance Lithium-Oxygen Batteries |
URI | https://api.istex.fr/ark:/67375/WNG-K6SHLTMP-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201500863 https://www.proquest.com/docview/1718974814 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwEB5VcKGHQqFVlz8ZqaKnQBL_JDmuoNsV3VBUQN2eLNtxVESbVLsbCTjxCJX6hjxJx8lu2K1UVWpviTRW4rHH84098xngtY58ZtBzYFiSYIAS8NzTKOpZRhHsahYG2hUKp6eif8lOhnw4V8Xf8EO0G27OMur12hm40uPDR9JQleWukhwBDaJyR_fpErYcKvrY8kcFUdQcK4vAJXgFwxlrox8eLjZf8ErLTsE3C5BzHrjWnqe3Cmr2z03CyfVBNdEH5u43Osf_6dQaPJvCUtJt5tFzeGKLdXg6R1a4AZ9TOy4RrZfVmBypkS4LgktzaSptSXfuOIIgDCYufeTh_sfZY1kCGVxNvlxV3x7uf364ucVpSxpqT4zUX8Bl7-3FUd-bXszgGUSH1KNG5SyxnDLBE5_ySNvIcdWpWCiEPIxzlVMTG64iIxJqLAZ1LMswduM2obGhL2GpKAv7CogRioYJdtcIn-Wxr8MssCLLI-tzlYW0A95sYKSZspa7yzO-yoZvOZROZbJVWQfetPLfG76OP0ru1-PciqnRtctyi7j8dPpOvhfn_cFFeiYHHdibTQSJtucOVFRhUdkyQMeO8VgcsA6E9bD-5Zuye9xL27fNf2m0BSvuuckY3oalyaiyO4iLJnoXlrvH6eB8t7aBXzJdBuY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6V9gAceCPCoywSj5Nb2-v148AhaggpcUIFqQinZXe9FlHBRkksWk79CUj8Ev5Kf0J_CbN27CZICAmpB4621q-dGc83uzPfADyWge0p9BwYlkQYoDgstSQOtbRHEexKz3WkKRQeDP3evvdqzMZr8LOuhan4IZoFN2MZ5f_aGLhZkN4-Yw0VSWpKyRHRICyv-1f39dFXjNpmz3c7KOInrtt9MdrpWYvGApZCdEMtqkTqRZpRz2eRTVkgdWC41kToC3TZHmMipSpUTATKj6jSGJR4SYKxB9MRDRXF-16ADdNG3ND1d940jFVOEFQb2b5jUsqccc0Tabvbq--74gc3jEgPV0DuMlQufV33KpzUs1SluBxsFXO5pb79RiD5X03jNbiyQN6kXZnKdVjT2Q24vMTHeBPeD_Qsx4AkL2ZkR0xlnhH0PrkqpCbtpR0XgkifmAyZ0-Pve2eVFySezD9Ois-nxz9eHx6hZZKKvXSiZ7dg_1y-7TasZ3mm7wBRvqBuhNOrfNtLQ1u6iaP9JA20zUTi0hZYtSZwtSBmN_1BPvGKUtrlRkS8EVELnjXjv1SUJH8c-bRUrGaYmB6YRL6A8XfDl7zvv-3Fo8Eej1vwqNY8jr8Xs2ckMo2TzR3ELhhyho7XArfUo788k7c73UFzdPdfLnoIF3ujQczj3WH_Hlwy56sE6fuwPp8W-gHCwLncLA2PwIfzVtFfEa5gfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VVkJw4I0Iz0XicXJrex-2DxyihpCSBxG0ajgt6_VaRIW4SmLRcupPQOKP8Ff4C_0lzNqxmyAhJKQeONpav3Zmdr7xznwD8CQOXKbRc2BYEmGA4vHUiXGoYxhFsBsz34ttoXB_IDp77PWIj9bgR1ULU_JD1D_crGUU67U18MMk3TojDVVJaivJEdAgKq_aV3fN8RcM2mYvdloo4ae-3365u91xFn0FHI3ghjpUq5RFhlMmeORSHsQmsFRrKhQKPTbjXKVUh5qrQIuIaoMxCUsSDD24iWioKd73Amww4Ua2WUTrbU1Y5QVBuY8tPJtR5o0qmkjX31p93xU3uGElerSCcZeRcuHq2lfhZzVJZYbLwWY-jzf119_4I_-nWbwGVxa4mzRLQ7kOa2ZyAy4vsTHehPd9M8swHMnyGdlW0zibEPQ9mc5jQ5pL-y0EcT6x-TGnJ9-GZ3UXpDeefxznn09Pvr85Oka7JCV36djMbsHeuXzbbVifZBNzB4gWivoRTq8WLktDN_YTz4gkDYzLVeLTBjiVIki9oGW33UE-yZJQ2pdWRLIWUQOe1-MPS0KSP458VuhVPUxND2waX8Dl_uCV7Ip3nd5ufyh7DXhcKZ7ExcXuGKmJwcmWHiIXDDhDjzXAL9ToL8-UzVa7Xx_d_ZeLHsHFYastezuD7j24ZE-X2dH3YX0-zc0DxIDz-GFhdgQ-nLeG_gJqcl8u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mesoporous+Carbon+Nanocube+Architecture+for+High%E2%80%90Performance+Lithium%E2%80%93Oxygen+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Sun%2C+Bing&rft.au=Chen%2C+Shuangqiang&rft.au=Liu%2C+Hao&rft.au=Wang%2C+Guoxiu&rft.date=2015-07-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=28&rft.spage=4436&rft.epage=4444&rft_id=info:doi/10.1002%2Fadfm.201500863&rft.externalDBID=10.1002%252Fadfm.201500863&rft.externalDocID=ADFM201500863 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |