Predicting Students' Academic Performance Using Multiple Linear Regression and Principal Component Analysis

With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology for helping students to succeed in the classroom; the principle is to predict student's academic performance at an early stage and thus pr...

Full description

Saved in:
Bibliographic Details
Published inJournal of Information Processing Vol. 26; pp. 170 - 176
Main Authors Huang, Jeff C.H., Lu, Owen H.T., Ogata, Hiroaki, Huang, Anna Y.Q., Yang, Stephen J.H., Lin, Albert J.Q.
Format Journal Article
LanguageEnglish
Published Tokyo Information Processing Society of Japan 01.01.2018
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN1882-6652
1882-6652
DOI10.2197/ipsjjip.26.170

Cover

Loading…
Abstract With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology for helping students to succeed in the classroom; the principle is to predict student's academic performance at an early stage and thus provide them with timely assistance. Accordingly, this study used multiple linear regression (MLR), a popular method of predicting students' academic performance, to establish a prediction model. Moreover, we combined MLR with principal component analysis (PCA) to improve the predictive accuracy of the model. Traditional MLR has certain drawbacks; specifically, the coefficient of determination (R2) and mean square error (MSE) measures and the quantile-quantile plot (Q-Q plot) technique cannot evaluate the predictive performance and accuracy of MLR. Therefore, we propose predictive MSE (pMSE) and predictive mean absolute percentage correction (pMAPC) measures for determining the predictive performance and accuracy of the regression model, respectively. Analysis results revealed that the proposed model for predicting students' academic performance could obtain optimal pMSE and pMAPC values by using six components obtained from PCA.
AbstractList With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology for helping students to succeed in the classroom; the principle is to predict student's academic performance at an early stage and thus provide them with timely assistance. Accordingly, this study used multiple linear regression (MLR), a popular method of predicting students' academic performance, to establish a prediction model. Moreover, we combined MLR with principal component analysis (PCA) to improve the predictive accuracy of the model. Traditional MLR has certain drawbacks; specifically, the coefficient of determination (R2) and mean square error (MSE) measures and the quantile-quantile plot (Q-Q plot) technique cannot evaluate the predictive performance and accuracy of MLR. Therefore, we propose predictive MSE (pMSE) and predictive mean absolute percentage correction (pMAPC) measures for determining the predictive performance and accuracy of the regression model, respectively. Analysis results revealed that the proposed model for predicting students' academic performance could obtain optimal pMSE and pMAPC values by using six components obtained from PCA.
Author Huang, Jeff C.H.
Huang, Anna Y.Q.
Ogata, Hiroaki
Lin, Albert J.Q.
Yang, Stephen J.H.
Lu, Owen H.T.
Author_xml – sequence: 1
  fullname: Huang, Jeff C.H.
  organization: Department of Computer Science and Information Engineering, Hwa Hsia University of Technology
– sequence: 1
  fullname: Lu, Owen H.T.
  organization: Department of Computer Science and Information Engineering, National Central University
– sequence: 1
  fullname: Ogata, Hiroaki
  organization: Graduate School of Informatics, Kyoto University
– sequence: 1
  fullname: Huang, Anna Y.Q.
  organization: Department of Computer Science and Information Engineering, National Central University
– sequence: 1
  fullname: Yang, Stephen J.H.
  organization: Department of Computer Science and Information Engineering, National Central University
– sequence: 1
  fullname: Lin, Albert J.Q.
  organization: Department of Computer Science and Information Engineering, National Central University
BookMark eNp1kE1LAzEQhoMoqNWr54AHT61JNpvdHEvxCyoWteeQJrM16za7Jumh_94tLaUInmZgnmeYeS_RqW89IHRDyYhRWdy7Lta160ZMjGhBTtAFLUs2FCJnp0f9ObqMsSZESJKTC_Q9C2CdSc4v8UdaW_Ap3uGx0RZWzuAZhKoNK-0N4HncQq_rJrmuATx1HnTA77AMEKNrPdbe4llw3rhON3jSrrr-QJ_w2OtmE128QmeVbiJc7-sAzR8fPifPw-nb08tkPB2aPMvIkDMrKskLa6nJdZnLhZQCrBCS2YpzIXUuBKE5LzitLKFAipJIkKQoFgtjs2yAbnd7u9D-rCEmVbfr0B8RFSOU50XJOOspvqNMaGMMUCnjkk79Iylo1yhK1DZWtY9VMaH6WHtt9EfrglvpsPlfGO-EOia9hAOuQ3KmgWOc7J3DzHzpoMBnvzhDl2I
CitedBy_id crossref_primary_10_1007_s42488_022_00078_2
crossref_primary_10_1186_s40537_022_00639_7
crossref_primary_10_1007_s43069_023_00267_8
crossref_primary_10_1109_ACCESS_2020_3036572
crossref_primary_10_21015_vtcs_v10i2_1278
crossref_primary_10_1177_1729881420925283
crossref_primary_10_2478_amns_2025_0568
crossref_primary_10_37394_232018_2025_13_11
crossref_primary_10_1088_1757_899X_1193_1_012140
crossref_primary_10_5851_kosfa_2023_e66
crossref_primary_10_3934_steme_2024010
crossref_primary_10_46300_91011_2021_15_21
crossref_primary_10_1155_2022_4151487
crossref_primary_10_1142_S0218213019400049
crossref_primary_10_1007_s10639_020_10230_3
crossref_primary_10_1007_s41870_021_00766_z
crossref_primary_10_59277_ROMJIST_2023_2_01
crossref_primary_10_1007_s10639_022_11536_0
crossref_primary_10_23917_jramathedu_v9i4_4643
crossref_primary_10_1108_TQM_07_2022_0226
crossref_primary_10_54691_bcpbm_v46i_5085
crossref_primary_10_2174_1872212112666180917115140
Cites_doi 10.1109/TSP.2015.2496278
ContentType Journal Article
Copyright 2018 by the Information Processing Society of Japan
Copyright Japan Science and Technology Agency 2018
Copyright_xml – notice: 2018 by the Information Processing Society of Japan
– notice: Copyright Japan Science and Technology Agency 2018
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.2197/ipsjjip.26.170
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1882-6652
EndPage 176
ExternalDocumentID 10_2197_ipsjjip_26_170
article_ipsjjip_26_0_26_170_article_char_en
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
JSH
KQ8
RJT
RZJ
TKC
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c5330-42d6f947dd1c5a859b996ed6692df4469a5660154741fd01e07809e9077bbcd33
ISSN 1882-6652
IngestDate Sun Jun 29 16:36:03 EDT 2025
Thu Apr 24 23:02:52 EDT 2025
Tue Jul 01 01:44:54 EDT 2025
Wed Sep 03 06:28:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5330-42d6f947dd1c5a859b996ed6692df4469a5660154741fd01e07809e9077bbcd33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/ipsjjip/26/0/26_170/_article/-char/en
PQID 2014578242
PQPubID 2048430
PageCount 7
ParticipantIDs proquest_journals_2014578242
crossref_citationtrail_10_2197_ipsjjip_26_170
crossref_primary_10_2197_ipsjjip_26_170
jstage_primary_article_ipsjjip_26_0_26_170_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of Information Processing
PublicationTitleAlternate Journal of Information Processing
PublicationYear 2018
Publisher Information Processing Society of Japan
Japan Science and Technology Agency
Publisher_xml – name: Information Processing Society of Japan
– name: Japan Science and Technology Agency
References [3] Baker, R.S. and Inventado, P.S.: Educational data mining and learning analytics, Learning analytics, pp.61-75, Springer (2014).
[5] Peña-Ayala, A.: Learning Analytics: Fundaments, Applications, and Trends: A View of the Current State of the Art to Enhance e-Learning, Vol.94, Springer (2017).
[25] Ul-Saufie, A., Yahya, A. and Ramli, N.: Improving multiple linear regression model using principal component analysis for predicting PM10 concentration in seberang prai, pulau pinang, International Journal of Environmental Sciences, Vol.2, No.2, p.403 (2011).
[14] Morris, L.V., Finnegan, C. and Wu, S.-S.: Tracking student behavior, persistence, and achievement in online courses, The Internet and Higher Education, Vol.8, No.3, pp.221-231 (2005).
[18] Macfadyen, L.P. and Dawson, S.: Mining lms data to develop an “early warning system” for educators: A proof of concept, Computers & education, Vol.54, No.2, pp.588-599 (2010).
[4] Papamitsiou, Z. and Economides, A.A.: Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence, Journal of Educational Technology & Society, Vol.17, No.4, p.49 (2014).
[11] Huang, S. and Fang, N.: Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models, Computers & Education, Vol.61, pp.133-145 (2013).
[22] Hyndman, R.J. and Koehler, A.B.: Another look at measures of forecast accuracy, International Journal of Forecasting, Vol.22, No.4, pp.679-688 (2006).
[23] Jolliffe, I.T.: Principal component analysis and factor analysis, Principal component analysis, pp.115-128, Springer (1986).
[1] Consortium, N.M. et al.: The 2011 horizon report (2011).
[29] Lamport, L.: A Document Preparation System LaTeX User's Guide & Reference Manual, Addison Wesley (1986).
[13] Zacharis, N.Z.: A multivariate approach to predicting student outcomes in web-enabled blended learning courses, The Internet and Higher Education, Vol.27, pp.44-53 (2015).
[16] Yoo, J. and Kim, J.: Predicting learner's project performance with dialogue features in online q&a discussions, International Conference on Intelligent Tutoring Systems, pp.570-575, Springer (2012).
[10] Lu, O.H., Huang, J.C., Huang, A.Y. and Yang, S.J.: Applying learning analytics for improving students engagement and learning outcomes in an moocs enabled collaborative programming course, Interactive Learning Environments, Vol.25, No.2, pp.220-234 (2017).
[28] Goossens, M., Mittelbach, F. and Samarin, A.: The LaTeX Companion, Addison Wesley (1993).
[7] Meier, Y., Xu, J., Atan, O. and van der Schaar, M.: Predicting grades, IEEE Trans. Signal Processing, Vol.64, No.4, pp.959-972 (2016).
[17] Marbouti, F., Diefes-Dux, H.A. and Madhavan, K.: Models for early prediction of at-risk students in a course using standards-based grading, Computers & Education, Vol.103, pp.1-15 (2016).
[20] Taneja, A. and Chauhan, R.: A performance study of data mining techniques: Multiple linear regression vs. factor analysis, arXiv preprint arXiv:1108.5592 (2011).
[9] Van Leeuwen, A., Janssen, J., Erkens, G. and Brekelmans, M.: Supporting teachers in guiding collaborating students: Effects of learning analytics in cscl, Computers & Education, Vol.79, pp.28-39 (2014).
[12] Tempelaar, D.T., Rienties, B. and Giesbers, B.: In search for the most informative data for feedback generation: Learning analytics in a data-rich context, Computers in Human Behavior, Vol.47, pp.157-167 (2015).
[6] Hu, Y.-H., Lo, C.-L. and Shih, S.-P.: Developing early warning systems to predict students' online learning performance, Computers in Human Behavior, Vol.36, pp.469-478 (2014).
[21] O'Connell, R.T. and Koehler, A.B.: Forecasting, time series, and regression: An applied approach, Vol.4, South-Western Pub (2005).
[24] Hira, Z.M. and Gillies, D.F.: A review of feature selection and feature extraction methods applied on microarray data, Advances in Bioinformatics, Vol.2015 (2015).
[19] Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde-González, M.Á. and Hernández-García, Á.: Can we predict success from log data in vles? classification of interactions for learning analytics and their relation with performance in vle-supported f2f and online learning, Computers in Human Behavior, Vol.31, pp.542-550 (2014).
[26] Qiuhua, L., Lihai, S., Tingjing, G., Lei, Z., Teng, O., Guojia, H., Chuan, C. and Cunxiong, L.: Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of china, Acta Ecologica Sinica, Vol.34, No.1, pp.72-78 (2014).
[2] Becker, S.A., Cummins, M., Davis, A., Freeman, A., Giesinger, C.H., and Ananthanarayanan, V.: NMC Horizon Report: 2017 Higher Education Edition, The New Media Consortium (2017).
[27] Pires, J., Martins, F., Sousa, S., Alvim-Ferraz, M. and Pereira, M.: Selection and validation of parameters in multiple linear and principal component regressions, Environmental Modelling & Software, Vol.23, No.1, pp.50-55 (2008).
[15] Sorour, S.E., Mine, T., Goda, K. and Hirokawa, S.: A predictive model to evaluate student performance, Journal of Information Processing, Vol.23, No.2, pp.192-201 (2015).
[8] Arnold, K.E. and Pistilli, M.D.: Course signals at purdue: Using learning analytics to increase student success, Proc. 2nd International Conference on Learning Analytics and Knowledge, pp.267-270, ACM (2012).
22
23
24
25
26
27
28
29
10
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
20
21
References_xml – reference: [9] Van Leeuwen, A., Janssen, J., Erkens, G. and Brekelmans, M.: Supporting teachers in guiding collaborating students: Effects of learning analytics in cscl, Computers & Education, Vol.79, pp.28-39 (2014).
– reference: [5] Peña-Ayala, A.: Learning Analytics: Fundaments, Applications, and Trends: A View of the Current State of the Art to Enhance e-Learning, Vol.94, Springer (2017).
– reference: [17] Marbouti, F., Diefes-Dux, H.A. and Madhavan, K.: Models for early prediction of at-risk students in a course using standards-based grading, Computers & Education, Vol.103, pp.1-15 (2016).
– reference: [18] Macfadyen, L.P. and Dawson, S.: Mining lms data to develop an “early warning system” for educators: A proof of concept, Computers & education, Vol.54, No.2, pp.588-599 (2010).
– reference: [4] Papamitsiou, Z. and Economides, A.A.: Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence, Journal of Educational Technology & Society, Vol.17, No.4, p.49 (2014).
– reference: [8] Arnold, K.E. and Pistilli, M.D.: Course signals at purdue: Using learning analytics to increase student success, Proc. 2nd International Conference on Learning Analytics and Knowledge, pp.267-270, ACM (2012).
– reference: [29] Lamport, L.: A Document Preparation System LaTeX User's Guide & Reference Manual, Addison Wesley (1986).
– reference: [24] Hira, Z.M. and Gillies, D.F.: A review of feature selection and feature extraction methods applied on microarray data, Advances in Bioinformatics, Vol.2015 (2015).
– reference: [7] Meier, Y., Xu, J., Atan, O. and van der Schaar, M.: Predicting grades, IEEE Trans. Signal Processing, Vol.64, No.4, pp.959-972 (2016).
– reference: [28] Goossens, M., Mittelbach, F. and Samarin, A.: The LaTeX Companion, Addison Wesley (1993).
– reference: [16] Yoo, J. and Kim, J.: Predicting learner's project performance with dialogue features in online q&a discussions, International Conference on Intelligent Tutoring Systems, pp.570-575, Springer (2012).
– reference: [1] Consortium, N.M. et al.: The 2011 horizon report (2011).
– reference: [15] Sorour, S.E., Mine, T., Goda, K. and Hirokawa, S.: A predictive model to evaluate student performance, Journal of Information Processing, Vol.23, No.2, pp.192-201 (2015).
– reference: [12] Tempelaar, D.T., Rienties, B. and Giesbers, B.: In search for the most informative data for feedback generation: Learning analytics in a data-rich context, Computers in Human Behavior, Vol.47, pp.157-167 (2015).
– reference: [3] Baker, R.S. and Inventado, P.S.: Educational data mining and learning analytics, Learning analytics, pp.61-75, Springer (2014).
– reference: [22] Hyndman, R.J. and Koehler, A.B.: Another look at measures of forecast accuracy, International Journal of Forecasting, Vol.22, No.4, pp.679-688 (2006).
– reference: [26] Qiuhua, L., Lihai, S., Tingjing, G., Lei, Z., Teng, O., Guojia, H., Chuan, C. and Cunxiong, L.: Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of china, Acta Ecologica Sinica, Vol.34, No.1, pp.72-78 (2014).
– reference: [21] O'Connell, R.T. and Koehler, A.B.: Forecasting, time series, and regression: An applied approach, Vol.4, South-Western Pub (2005).
– reference: [19] Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde-González, M.Á. and Hernández-García, Á.: Can we predict success from log data in vles? classification of interactions for learning analytics and their relation with performance in vle-supported f2f and online learning, Computers in Human Behavior, Vol.31, pp.542-550 (2014).
– reference: [25] Ul-Saufie, A., Yahya, A. and Ramli, N.: Improving multiple linear regression model using principal component analysis for predicting PM10 concentration in seberang prai, pulau pinang, International Journal of Environmental Sciences, Vol.2, No.2, p.403 (2011).
– reference: [13] Zacharis, N.Z.: A multivariate approach to predicting student outcomes in web-enabled blended learning courses, The Internet and Higher Education, Vol.27, pp.44-53 (2015).
– reference: [14] Morris, L.V., Finnegan, C. and Wu, S.-S.: Tracking student behavior, persistence, and achievement in online courses, The Internet and Higher Education, Vol.8, No.3, pp.221-231 (2005).
– reference: [2] Becker, S.A., Cummins, M., Davis, A., Freeman, A., Giesinger, C.H., and Ananthanarayanan, V.: NMC Horizon Report: 2017 Higher Education Edition, The New Media Consortium (2017).
– reference: [27] Pires, J., Martins, F., Sousa, S., Alvim-Ferraz, M. and Pereira, M.: Selection and validation of parameters in multiple linear and principal component regressions, Environmental Modelling & Software, Vol.23, No.1, pp.50-55 (2008).
– reference: [20] Taneja, A. and Chauhan, R.: A performance study of data mining techniques: Multiple linear regression vs. factor analysis, arXiv preprint arXiv:1108.5592 (2011).
– reference: [23] Jolliffe, I.T.: Principal component analysis and factor analysis, Principal component analysis, pp.115-128, Springer (1986).
– reference: [6] Hu, Y.-H., Lo, C.-L. and Shih, S.-P.: Developing early warning systems to predict students' online learning performance, Computers in Human Behavior, Vol.36, pp.469-478 (2014).
– reference: [10] Lu, O.H., Huang, J.C., Huang, A.Y. and Yang, S.J.: Applying learning analytics for improving students engagement and learning outcomes in an moocs enabled collaborative programming course, Interactive Learning Environments, Vol.25, No.2, pp.220-234 (2017).
– reference: [11] Huang, S. and Fang, N.: Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models, Computers & Education, Vol.61, pp.133-145 (2013).
– ident: 2
– ident: 18
– ident: 4
– ident: 12
– ident: 7
  doi: 10.1109/TSP.2015.2496278
– ident: 10
– ident: 16
– ident: 14
– ident: 28
– ident: 24
– ident: 9
– ident: 20
– ident: 26
– ident: 22
– ident: 17
– ident: 3
– ident: 5
– ident: 1
– ident: 11
– ident: 19
– ident: 13
– ident: 15
– ident: 29
– ident: 6
– ident: 8
– ident: 21
– ident: 27
– ident: 25
– ident: 23
SSID ssj0069050
Score 1.9739003
Snippet With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 170
SubjectTerms Academic achievement
Accuracy
Analytics
Data management
Error analysis
learning analytics
Mathematical analysis
Model accuracy
multiple linear regression
Performance prediction
principal component analysis
Principal components analysis
Regression analysis
Regression models
Students
Title Predicting Students' Academic Performance Using Multiple Linear Regression and Principal Component Analysis
URI https://www.jstage.jst.go.jp/article/ipsjjip/26/0/26_170/_article/-char/en
https://www.proquest.com/docview/2014578242
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Information Processing, 2018, Vol.26, pp.170-176
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwoELb9TQgvaA1INlY6_Xay-3qmplhbRQ5EjpyfJ6naopJFabqII_wN9m9uFHCkXAJYrWo40y83l33oPQW-5LmsiCukyArUpLUbo85jOXsKRKpJqNo5vpHJ-wdEJH02g6GPzoZS2tV8Irv_-2ruR_pAprIFdVJfsPkm03hQX4DvKFT5AwfP6VjD9dqTDLyjTV1j0qdU5El_PeqwowuQHHTf4g2KCqhc_n6twkwi5s2YB2vWuHwtd6uVCJAk3bkjvUWNt5VcOoNlUH1vuQLS-_LXueBptQ5oy81HPOCntlKgfvDaymXuY543XnllgUzpl36jnpukeq49EHaoNu2fosguSWz2IEekB3eKm_18URnH1dc2quJ3MmKyOAsWjj0Cb9Uzcws0du3wZwGKt49EV9PZ9f1B5hniXcbLt98jE_mozHeXY4ze6h-wTsDTUK48NpG45i3I980_FT7fluc8cNjebBHJT6819vdq2uZE_QIysgvG9A8xQNqsUz9LiZ4YEtV56jyw5DuMHQHm4QhHsIwhpBuEEQNgjCHYIwsBi3CMItgnCDoBdocnSYHaSuHcDhlirp2KVEshmnsZRBGRVJxAVYx5VkjBM5o5TxAowBpYSDWjqTflCBvunzivtxLEQpw_Al2lrAL20jXMRhHAeRLEPpU8GrwqeBBFu2CEVFClEOkdswMS9td3o1JOVLDlaqYnpumZ4TlgPTh2ivpa9NX5Y7Kd8bmbR09n3t0_mWuH2mah7hiBmi3UaOuX3xr3OiQvGgWVPy6s-Pd9DDDv27aGt1ta5egw67Em80vn4Ce1enYQ
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students%27+Academic+Performance+Using+Multiple+Linear+Regression+and+Principal+Component+Analysis&rft.jtitle=Journal+of+information+processing+%28Tokyo%29&rft.au=Stephen+J.H.+Yang&rft.au=Owen+H.T.+Lu&rft.au=Anna+Y.Q.+Huang&rft.au=Jeff+C.H.+Huang&rft.date=2018-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.eissn=1882-6652&rft.volume=26&rft.spage=170&rft_id=info:doi/10.2197%2Fipsjjip.26.170&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-6652&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-6652&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-6652&client=summon