Predicting Students' Academic Performance Using Multiple Linear Regression and Principal Component Analysis
With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology for helping students to succeed in the classroom; the principle is to predict student's academic performance at an early stage and thus pr...
Saved in:
Published in | Journal of Information Processing Vol. 26; pp. 170 - 176 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
Information Processing Society of Japan
01.01.2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 1882-6652 1882-6652 |
DOI | 10.2197/ipsjjip.26.170 |
Cover
Loading…
Abstract | With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology for helping students to succeed in the classroom; the principle is to predict student's academic performance at an early stage and thus provide them with timely assistance. Accordingly, this study used multiple linear regression (MLR), a popular method of predicting students' academic performance, to establish a prediction model. Moreover, we combined MLR with principal component analysis (PCA) to improve the predictive accuracy of the model. Traditional MLR has certain drawbacks; specifically, the coefficient of determination (R2) and mean square error (MSE) measures and the quantile-quantile plot (Q-Q plot) technique cannot evaluate the predictive performance and accuracy of MLR. Therefore, we propose predictive MSE (pMSE) and predictive mean absolute percentage correction (pMAPC) measures for determining the predictive performance and accuracy of the regression model, respectively. Analysis results revealed that the proposed model for predicting students' academic performance could obtain optimal pMSE and pMAPC values by using six components obtained from PCA. |
---|---|
AbstractList | With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology for helping students to succeed in the classroom; the principle is to predict student's academic performance at an early stage and thus provide them with timely assistance. Accordingly, this study used multiple linear regression (MLR), a popular method of predicting students' academic performance, to establish a prediction model. Moreover, we combined MLR with principal component analysis (PCA) to improve the predictive accuracy of the model. Traditional MLR has certain drawbacks; specifically, the coefficient of determination (R2) and mean square error (MSE) measures and the quantile-quantile plot (Q-Q plot) technique cannot evaluate the predictive performance and accuracy of MLR. Therefore, we propose predictive MSE (pMSE) and predictive mean absolute percentage correction (pMAPC) measures for determining the predictive performance and accuracy of the regression model, respectively. Analysis results revealed that the proposed model for predicting students' academic performance could obtain optimal pMSE and pMAPC values by using six components obtained from PCA. |
Author | Huang, Jeff C.H. Huang, Anna Y.Q. Ogata, Hiroaki Lin, Albert J.Q. Yang, Stephen J.H. Lu, Owen H.T. |
Author_xml | – sequence: 1 fullname: Huang, Jeff C.H. organization: Department of Computer Science and Information Engineering, Hwa Hsia University of Technology – sequence: 1 fullname: Lu, Owen H.T. organization: Department of Computer Science and Information Engineering, National Central University – sequence: 1 fullname: Ogata, Hiroaki organization: Graduate School of Informatics, Kyoto University – sequence: 1 fullname: Huang, Anna Y.Q. organization: Department of Computer Science and Information Engineering, National Central University – sequence: 1 fullname: Yang, Stephen J.H. organization: Department of Computer Science and Information Engineering, National Central University – sequence: 1 fullname: Lin, Albert J.Q. organization: Department of Computer Science and Information Engineering, National Central University |
BookMark | eNp1kE1LAzEQhoMoqNWr54AHT61JNpvdHEvxCyoWteeQJrM16za7Jumh_94tLaUInmZgnmeYeS_RqW89IHRDyYhRWdy7Lta160ZMjGhBTtAFLUs2FCJnp0f9ObqMsSZESJKTC_Q9C2CdSc4v8UdaW_Ap3uGx0RZWzuAZhKoNK-0N4HncQq_rJrmuATx1HnTA77AMEKNrPdbe4llw3rhON3jSrrr-QJ_w2OtmE128QmeVbiJc7-sAzR8fPifPw-nb08tkPB2aPMvIkDMrKskLa6nJdZnLhZQCrBCS2YpzIXUuBKE5LzitLKFAipJIkKQoFgtjs2yAbnd7u9D-rCEmVbfr0B8RFSOU50XJOOspvqNMaGMMUCnjkk79Iylo1yhK1DZWtY9VMaH6WHtt9EfrglvpsPlfGO-EOia9hAOuQ3KmgWOc7J3DzHzpoMBnvzhDl2I |
CitedBy_id | crossref_primary_10_1007_s42488_022_00078_2 crossref_primary_10_1186_s40537_022_00639_7 crossref_primary_10_1007_s43069_023_00267_8 crossref_primary_10_1109_ACCESS_2020_3036572 crossref_primary_10_21015_vtcs_v10i2_1278 crossref_primary_10_1177_1729881420925283 crossref_primary_10_2478_amns_2025_0568 crossref_primary_10_37394_232018_2025_13_11 crossref_primary_10_1088_1757_899X_1193_1_012140 crossref_primary_10_5851_kosfa_2023_e66 crossref_primary_10_3934_steme_2024010 crossref_primary_10_46300_91011_2021_15_21 crossref_primary_10_1155_2022_4151487 crossref_primary_10_1142_S0218213019400049 crossref_primary_10_1007_s10639_020_10230_3 crossref_primary_10_1007_s41870_021_00766_z crossref_primary_10_59277_ROMJIST_2023_2_01 crossref_primary_10_1007_s10639_022_11536_0 crossref_primary_10_23917_jramathedu_v9i4_4643 crossref_primary_10_1108_TQM_07_2022_0226 crossref_primary_10_54691_bcpbm_v46i_5085 crossref_primary_10_2174_1872212112666180917115140 |
Cites_doi | 10.1109/TSP.2015.2496278 |
ContentType | Journal Article |
Copyright | 2018 by the Information Processing Society of Japan Copyright Japan Science and Technology Agency 2018 |
Copyright_xml | – notice: 2018 by the Information Processing Society of Japan – notice: Copyright Japan Science and Technology Agency 2018 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.2197/ipsjjip.26.170 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1882-6652 |
EndPage | 176 |
ExternalDocumentID | 10_2197_ipsjjip_26_170 article_ipsjjip_26_0_26_170_article_char_en |
GroupedDBID | 2WC ALMA_UNASSIGNED_HOLDINGS CS3 JSF JSH KQ8 RJT RZJ TKC AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c5330-42d6f947dd1c5a859b996ed6692df4469a5660154741fd01e07809e9077bbcd33 |
ISSN | 1882-6652 |
IngestDate | Sun Jun 29 16:36:03 EDT 2025 Thu Apr 24 23:02:52 EDT 2025 Tue Jul 01 01:44:54 EDT 2025 Wed Sep 03 06:28:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5330-42d6f947dd1c5a859b996ed6692df4469a5660154741fd01e07809e9077bbcd33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/ipsjjip/26/0/26_170/_article/-char/en |
PQID | 2014578242 |
PQPubID | 2048430 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2014578242 crossref_citationtrail_10_2197_ipsjjip_26_170 crossref_primary_10_2197_ipsjjip_26_170 jstage_primary_article_ipsjjip_26_0_26_170_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Journal of Information Processing |
PublicationTitleAlternate | Journal of Information Processing |
PublicationYear | 2018 |
Publisher | Information Processing Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: Information Processing Society of Japan – name: Japan Science and Technology Agency |
References | [3] Baker, R.S. and Inventado, P.S.: Educational data mining and learning analytics, Learning analytics, pp.61-75, Springer (2014). [5] Peña-Ayala, A.: Learning Analytics: Fundaments, Applications, and Trends: A View of the Current State of the Art to Enhance e-Learning, Vol.94, Springer (2017). [25] Ul-Saufie, A., Yahya, A. and Ramli, N.: Improving multiple linear regression model using principal component analysis for predicting PM10 concentration in seberang prai, pulau pinang, International Journal of Environmental Sciences, Vol.2, No.2, p.403 (2011). [14] Morris, L.V., Finnegan, C. and Wu, S.-S.: Tracking student behavior, persistence, and achievement in online courses, The Internet and Higher Education, Vol.8, No.3, pp.221-231 (2005). [18] Macfadyen, L.P. and Dawson, S.: Mining lms data to develop an “early warning system” for educators: A proof of concept, Computers & education, Vol.54, No.2, pp.588-599 (2010). [4] Papamitsiou, Z. and Economides, A.A.: Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence, Journal of Educational Technology & Society, Vol.17, No.4, p.49 (2014). [11] Huang, S. and Fang, N.: Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models, Computers & Education, Vol.61, pp.133-145 (2013). [22] Hyndman, R.J. and Koehler, A.B.: Another look at measures of forecast accuracy, International Journal of Forecasting, Vol.22, No.4, pp.679-688 (2006). [23] Jolliffe, I.T.: Principal component analysis and factor analysis, Principal component analysis, pp.115-128, Springer (1986). [1] Consortium, N.M. et al.: The 2011 horizon report (2011). [29] Lamport, L.: A Document Preparation System LaTeX User's Guide & Reference Manual, Addison Wesley (1986). [13] Zacharis, N.Z.: A multivariate approach to predicting student outcomes in web-enabled blended learning courses, The Internet and Higher Education, Vol.27, pp.44-53 (2015). [16] Yoo, J. and Kim, J.: Predicting learner's project performance with dialogue features in online q&a discussions, International Conference on Intelligent Tutoring Systems, pp.570-575, Springer (2012). [10] Lu, O.H., Huang, J.C., Huang, A.Y. and Yang, S.J.: Applying learning analytics for improving students engagement and learning outcomes in an moocs enabled collaborative programming course, Interactive Learning Environments, Vol.25, No.2, pp.220-234 (2017). [28] Goossens, M., Mittelbach, F. and Samarin, A.: The LaTeX Companion, Addison Wesley (1993). [7] Meier, Y., Xu, J., Atan, O. and van der Schaar, M.: Predicting grades, IEEE Trans. Signal Processing, Vol.64, No.4, pp.959-972 (2016). [17] Marbouti, F., Diefes-Dux, H.A. and Madhavan, K.: Models for early prediction of at-risk students in a course using standards-based grading, Computers & Education, Vol.103, pp.1-15 (2016). [20] Taneja, A. and Chauhan, R.: A performance study of data mining techniques: Multiple linear regression vs. factor analysis, arXiv preprint arXiv:1108.5592 (2011). [9] Van Leeuwen, A., Janssen, J., Erkens, G. and Brekelmans, M.: Supporting teachers in guiding collaborating students: Effects of learning analytics in cscl, Computers & Education, Vol.79, pp.28-39 (2014). [12] Tempelaar, D.T., Rienties, B. and Giesbers, B.: In search for the most informative data for feedback generation: Learning analytics in a data-rich context, Computers in Human Behavior, Vol.47, pp.157-167 (2015). [6] Hu, Y.-H., Lo, C.-L. and Shih, S.-P.: Developing early warning systems to predict students' online learning performance, Computers in Human Behavior, Vol.36, pp.469-478 (2014). [21] O'Connell, R.T. and Koehler, A.B.: Forecasting, time series, and regression: An applied approach, Vol.4, South-Western Pub (2005). [24] Hira, Z.M. and Gillies, D.F.: A review of feature selection and feature extraction methods applied on microarray data, Advances in Bioinformatics, Vol.2015 (2015). [19] Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde-González, M.Á. and Hernández-García, Á.: Can we predict success from log data in vles? classification of interactions for learning analytics and their relation with performance in vle-supported f2f and online learning, Computers in Human Behavior, Vol.31, pp.542-550 (2014). [26] Qiuhua, L., Lihai, S., Tingjing, G., Lei, Z., Teng, O., Guojia, H., Chuan, C. and Cunxiong, L.: Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of china, Acta Ecologica Sinica, Vol.34, No.1, pp.72-78 (2014). [2] Becker, S.A., Cummins, M., Davis, A., Freeman, A., Giesinger, C.H., and Ananthanarayanan, V.: NMC Horizon Report: 2017 Higher Education Edition, The New Media Consortium (2017). [27] Pires, J., Martins, F., Sousa, S., Alvim-Ferraz, M. and Pereira, M.: Selection and validation of parameters in multiple linear and principal component regressions, Environmental Modelling & Software, Vol.23, No.1, pp.50-55 (2008). [15] Sorour, S.E., Mine, T., Goda, K. and Hirokawa, S.: A predictive model to evaluate student performance, Journal of Information Processing, Vol.23, No.2, pp.192-201 (2015). [8] Arnold, K.E. and Pistilli, M.D.: Course signals at purdue: Using learning analytics to increase student success, Proc. 2nd International Conference on Learning Analytics and Knowledge, pp.267-270, ACM (2012). 22 23 24 25 26 27 28 29 10 11 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – reference: [9] Van Leeuwen, A., Janssen, J., Erkens, G. and Brekelmans, M.: Supporting teachers in guiding collaborating students: Effects of learning analytics in cscl, Computers & Education, Vol.79, pp.28-39 (2014). – reference: [5] Peña-Ayala, A.: Learning Analytics: Fundaments, Applications, and Trends: A View of the Current State of the Art to Enhance e-Learning, Vol.94, Springer (2017). – reference: [17] Marbouti, F., Diefes-Dux, H.A. and Madhavan, K.: Models for early prediction of at-risk students in a course using standards-based grading, Computers & Education, Vol.103, pp.1-15 (2016). – reference: [18] Macfadyen, L.P. and Dawson, S.: Mining lms data to develop an “early warning system” for educators: A proof of concept, Computers & education, Vol.54, No.2, pp.588-599 (2010). – reference: [4] Papamitsiou, Z. and Economides, A.A.: Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence, Journal of Educational Technology & Society, Vol.17, No.4, p.49 (2014). – reference: [8] Arnold, K.E. and Pistilli, M.D.: Course signals at purdue: Using learning analytics to increase student success, Proc. 2nd International Conference on Learning Analytics and Knowledge, pp.267-270, ACM (2012). – reference: [29] Lamport, L.: A Document Preparation System LaTeX User's Guide & Reference Manual, Addison Wesley (1986). – reference: [24] Hira, Z.M. and Gillies, D.F.: A review of feature selection and feature extraction methods applied on microarray data, Advances in Bioinformatics, Vol.2015 (2015). – reference: [7] Meier, Y., Xu, J., Atan, O. and van der Schaar, M.: Predicting grades, IEEE Trans. Signal Processing, Vol.64, No.4, pp.959-972 (2016). – reference: [28] Goossens, M., Mittelbach, F. and Samarin, A.: The LaTeX Companion, Addison Wesley (1993). – reference: [16] Yoo, J. and Kim, J.: Predicting learner's project performance with dialogue features in online q&a discussions, International Conference on Intelligent Tutoring Systems, pp.570-575, Springer (2012). – reference: [1] Consortium, N.M. et al.: The 2011 horizon report (2011). – reference: [15] Sorour, S.E., Mine, T., Goda, K. and Hirokawa, S.: A predictive model to evaluate student performance, Journal of Information Processing, Vol.23, No.2, pp.192-201 (2015). – reference: [12] Tempelaar, D.T., Rienties, B. and Giesbers, B.: In search for the most informative data for feedback generation: Learning analytics in a data-rich context, Computers in Human Behavior, Vol.47, pp.157-167 (2015). – reference: [3] Baker, R.S. and Inventado, P.S.: Educational data mining and learning analytics, Learning analytics, pp.61-75, Springer (2014). – reference: [22] Hyndman, R.J. and Koehler, A.B.: Another look at measures of forecast accuracy, International Journal of Forecasting, Vol.22, No.4, pp.679-688 (2006). – reference: [26] Qiuhua, L., Lihai, S., Tingjing, G., Lei, Z., Teng, O., Guojia, H., Chuan, C. and Cunxiong, L.: Use of principal component scores in multiple linear regression models for simulation of chlorophyll-a and phytoplankton abundance at a karst deep reservoir, southwest of china, Acta Ecologica Sinica, Vol.34, No.1, pp.72-78 (2014). – reference: [21] O'Connell, R.T. and Koehler, A.B.: Forecasting, time series, and regression: An applied approach, Vol.4, South-Western Pub (2005). – reference: [19] Agudo-Peregrina, Á.F., Iglesias-Pradas, S., Conde-González, M.Á. and Hernández-García, Á.: Can we predict success from log data in vles? classification of interactions for learning analytics and their relation with performance in vle-supported f2f and online learning, Computers in Human Behavior, Vol.31, pp.542-550 (2014). – reference: [25] Ul-Saufie, A., Yahya, A. and Ramli, N.: Improving multiple linear regression model using principal component analysis for predicting PM10 concentration in seberang prai, pulau pinang, International Journal of Environmental Sciences, Vol.2, No.2, p.403 (2011). – reference: [13] Zacharis, N.Z.: A multivariate approach to predicting student outcomes in web-enabled blended learning courses, The Internet and Higher Education, Vol.27, pp.44-53 (2015). – reference: [14] Morris, L.V., Finnegan, C. and Wu, S.-S.: Tracking student behavior, persistence, and achievement in online courses, The Internet and Higher Education, Vol.8, No.3, pp.221-231 (2005). – reference: [2] Becker, S.A., Cummins, M., Davis, A., Freeman, A., Giesinger, C.H., and Ananthanarayanan, V.: NMC Horizon Report: 2017 Higher Education Edition, The New Media Consortium (2017). – reference: [27] Pires, J., Martins, F., Sousa, S., Alvim-Ferraz, M. and Pereira, M.: Selection and validation of parameters in multiple linear and principal component regressions, Environmental Modelling & Software, Vol.23, No.1, pp.50-55 (2008). – reference: [20] Taneja, A. and Chauhan, R.: A performance study of data mining techniques: Multiple linear regression vs. factor analysis, arXiv preprint arXiv:1108.5592 (2011). – reference: [23] Jolliffe, I.T.: Principal component analysis and factor analysis, Principal component analysis, pp.115-128, Springer (1986). – reference: [6] Hu, Y.-H., Lo, C.-L. and Shih, S.-P.: Developing early warning systems to predict students' online learning performance, Computers in Human Behavior, Vol.36, pp.469-478 (2014). – reference: [10] Lu, O.H., Huang, J.C., Huang, A.Y. and Yang, S.J.: Applying learning analytics for improving students engagement and learning outcomes in an moocs enabled collaborative programming course, Interactive Learning Environments, Vol.25, No.2, pp.220-234 (2017). – reference: [11] Huang, S. and Fang, N.: Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models, Computers & Education, Vol.61, pp.133-145 (2013). – ident: 2 – ident: 18 – ident: 4 – ident: 12 – ident: 7 doi: 10.1109/TSP.2015.2496278 – ident: 10 – ident: 16 – ident: 14 – ident: 28 – ident: 24 – ident: 9 – ident: 20 – ident: 26 – ident: 22 – ident: 17 – ident: 3 – ident: 5 – ident: 1 – ident: 11 – ident: 19 – ident: 13 – ident: 15 – ident: 29 – ident: 6 – ident: 8 – ident: 21 – ident: 27 – ident: 25 – ident: 23 |
SSID | ssj0069050 |
Score | 1.9739003 |
Snippet | With the rise of big data analytics, learning analytics has become a major trend for improving the quality of education. Learning analytics is a methodology... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 170 |
SubjectTerms | Academic achievement Accuracy Analytics Data management Error analysis learning analytics Mathematical analysis Model accuracy multiple linear regression Performance prediction principal component analysis Principal components analysis Regression analysis Regression models Students |
Title | Predicting Students' Academic Performance Using Multiple Linear Regression and Principal Component Analysis |
URI | https://www.jstage.jst.go.jp/article/ipsjjip/26/0/26_170/_article/-char/en https://www.proquest.com/docview/2014578242 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Information Processing, 2018, Vol.26, pp.170-176 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FwoELb9TQgvaA1INlY6_Xay-3qmplhbRQ5EjpyfJ6naopJFabqII_wN9m9uFHCkXAJYrWo40y83l33oPQW-5LmsiCukyArUpLUbo85jOXsKRKpJqNo5vpHJ-wdEJH02g6GPzoZS2tV8Irv_-2ruR_pAprIFdVJfsPkm03hQX4DvKFT5AwfP6VjD9dqTDLyjTV1j0qdU5El_PeqwowuQHHTf4g2KCqhc_n6twkwi5s2YB2vWuHwtd6uVCJAk3bkjvUWNt5VcOoNlUH1vuQLS-_LXueBptQ5oy81HPOCntlKgfvDaymXuY543XnllgUzpl36jnpukeq49EHaoNu2fosguSWz2IEekB3eKm_18URnH1dc2quJ3MmKyOAsWjj0Cb9Uzcws0du3wZwGKt49EV9PZ9f1B5hniXcbLt98jE_mozHeXY4ze6h-wTsDTUK48NpG45i3I980_FT7fluc8cNjebBHJT6819vdq2uZE_QIysgvG9A8xQNqsUz9LiZ4YEtV56jyw5DuMHQHm4QhHsIwhpBuEEQNgjCHYIwsBi3CMItgnCDoBdocnSYHaSuHcDhlirp2KVEshmnsZRBGRVJxAVYx5VkjBM5o5TxAowBpYSDWjqTflCBvunzivtxLEQpw_Al2lrAL20jXMRhHAeRLEPpU8GrwqeBBFu2CEVFClEOkdswMS9td3o1JOVLDlaqYnpumZ4TlgPTh2ivpa9NX5Y7Kd8bmbR09n3t0_mWuH2mah7hiBmi3UaOuX3xr3OiQvGgWVPy6s-Pd9DDDv27aGt1ta5egw67Em80vn4Ce1enYQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Students%27+Academic+Performance+Using+Multiple+Linear+Regression+and+Principal+Component+Analysis&rft.jtitle=Journal+of+information+processing+%28Tokyo%29&rft.au=Stephen+J.H.+Yang&rft.au=Owen+H.T.+Lu&rft.au=Anna+Y.Q.+Huang&rft.au=Jeff+C.H.+Huang&rft.date=2018-01-01&rft.pub=Japan+Science+and+Technology+Agency&rft.eissn=1882-6652&rft.volume=26&rft.spage=170&rft_id=info:doi/10.2197%2Fipsjjip.26.170&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-6652&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-6652&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-6652&client=summon |