Mutational Analysis of Mammalian Translation Initiation Factor 5 (eIF5): Role of Interaction between the β Subunit of eIF2 and eIF5 in eIF5 Function In Vitro and In Vivo
Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Molecular and Cellular Biology Vol. 20; no. 11; pp. 3942 - 3950 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.06.2000
Taylor & Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
MCB
About
MCB
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
MCB
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0270-7306
Online ISSN:
1098-5549
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
MCB
.asm.org, visit:
MCB
|
---|---|
AbstractList | Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S–eIF3–AUG–Met-tRNA
f
–eIF2–GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the β subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2β interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2β-binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2β but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A,E347A,E384A,E385A,E386A) showed negligible binding to eIF2β. These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the
TIF5
gene, the eIF5 double-point mutants allowed only slow growth of this Δ
TIF5
yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2β interaction plays an essential role in eIF5 function in eukaryotic cells. Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA(f)-eIF2-GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the beta subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2beta interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2beta-binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2beta but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A, E347A,E384A,E385A,E386A) showed negligible binding to eIF2beta. These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the TIF5 gene, the eIF5 double-point mutants allowed only slow growth of this DeltaTIF5 yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2beta interaction plays an essential role in eIF5 function in eukaryotic cells. Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA f -eIF2-GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the β subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2β interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2β-binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2β but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A,E347A,E384A,E385A,E386A) showed negligible binding to eIF2β. These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the TIF5 gene, the eIF5 double-point mutants allowed only slow growth of this ΔTIF5 yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2β interaction plays an essential role in eIF5 function in eukaryotic cells. Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA sub(f)-eIF2-GTP) to promote the hydrolysis of ribosome-bound GTP. eIF5 also forms a complex with eIF2 by interacting with the beta subunit of eIF2. In this work, we have used a mutational approach to investigate the importance of eIF5-eIF2 beta interaction in eIF5 function. Binding analyses with recombinant rat eIF5 deletion mutants identified the C terminus of eIF5 as the eIF2 beta -binding region. Alanine substitution mutagenesis at sites within this region defined several conserved glutamic acid residues in a bipartite motif as critical for eIF5 function. The E346A,E347A and E384A,E385A double-point mutations each caused a severe defect in the binding of eIF5 to eIF2 beta but not to eIF3-Nip1p, while a eIF5 hexamutant (E345A,E346A,E347A,E384A,E385A,E386A) showed negligible binding to eIF2 beta . These mutants were also severely defective in eIF5-dependent GTP hydrolysis, in 80S initiation complex formation, and in the ability to stimulate translation of mRNAs in an eIF5-dependent yeast cell-free translation system. Furthermore, unlike wild-type rat eIF5, which can functionally substitute for yeast eIF5 in complementing in vivo a genetic disruption of the chromosomal copy of the TIF5 gene, the eIF5 double-point mutants allowed only slow growth of this Delta TIF5 yeast strain, while the eIF5 hexamutant was unable to support cell growth and viability of this strain. These findings suggest that eIF5-eIF2 beta interaction plays an essential role in eIF5 function in eukaryotic cells. Article Usage Stats Services MCB Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue MCB About MCB Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy MCB RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0270-7306 Online ISSN: 1098-5549 Copyright © 2014 by the American Society for Microbiology. For an alternate route to MCB .asm.org, visit: MCB |
Author | Supratik Das Umadas Maitra |
AuthorAffiliation | Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 |
AuthorAffiliation_xml | – name: Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461 |
Author_xml | – sequence: 1 givenname: Supratik surname: Das fullname: Das, Supratik organization: Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University – sequence: 2 givenname: Umadas surname: Maitra fullname: Maitra, Umadas email: maitra@aecom.yu.edu organization: Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10805737$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkcGO0zAQhi20iO0uvAKyOCA4pDhxnDiIy1JRqLQVEixcLdeZbI0ce9d2tuorceRBeCacpkLlxsX-R_P9M7b-C3RmnQWEcE7meV7wN-vF-3kx6jltyiKjDSOpJuQRmuWk4RljZXOGZqSoSVZTUp2jixB-JKBqCH2CznPCCatpPUM_10OUUTsrDb5Kxz7ogF2H17LvpdHS4hsvbTAHBq-sjnqSS6mi85jhV7Bastdv8RdnYHSubASfmiO0gbgDsDhuAf_-hb8OmyFNGKlkKrC07SgY1na6l4NVx0X4u47eHZBD8eCeosedNAGeHe9L9G354WbxKbv-_HG1uLrOFKNFzFrVspyToqw7zpqqbHkOXFW8I7RVuWxUuWlbmT5f18CgKUBCV1JOqtRoGkXoJXo3zb0bNj20Cmz00og7r3vp98JJLf7tWL0Vt-5BcFaXVbK_PNq9ux8gRNHroMAYacENQeQ1YxUtaQL5BCrvQvDQ_V2REzHGLFLMohi1GGMWY8xijDlZn58-8cQ45ZqAxQRo2znfy53zphVR7o3zXQpU6SDof6x5MU3Z6tvtTnsQMvSiV5sTnP4BgR7IOQ |
CitedBy_id | crossref_primary_10_1093_nar_gkr339 crossref_primary_10_1017_S095457941200079X crossref_primary_10_1146_annurev_biochem_060713_035802 crossref_primary_10_1146_annurev_biochem_73_030403_080419 crossref_primary_10_1016_j_jmb_2005_11_083 crossref_primary_10_1038_sj_emboj_7601268 crossref_primary_10_1007_s13238_010_0070_6 crossref_primary_10_1016_j_gendis_2020_01_008 crossref_primary_10_1074_jbc_M311055200 crossref_primary_10_1080_15384047_2017_1345383 crossref_primary_10_1016_j_fmrre_2004_10_002 crossref_primary_10_1038_srep45403 crossref_primary_10_1099_vir_0_81792_0 crossref_primary_10_1016_S0300_9084_01_01344_X crossref_primary_10_1002_prot_21797 crossref_primary_10_1016_j_jmb_2008_08_013 crossref_primary_10_1016_j_bbagen_2006_05_011 crossref_primary_10_1016_j_jcrysgro_2008_05_036 crossref_primary_10_1016_S0092_8674_01_00212_4 crossref_primary_10_1134_S0006297909010088 crossref_primary_10_1016_j_yexcr_2006_03_034 crossref_primary_10_3390_molecules22040635 crossref_primary_10_1016_j_molbrainres_2004_10_034 crossref_primary_10_1016_j_jmb_2006_03_037 crossref_primary_10_1093_emboj_cdf515 crossref_primary_10_1021_bi4009775 crossref_primary_10_1038_sj_emboj_7600844 crossref_primary_10_1016_j_celrep_2020_108534 crossref_primary_10_1016_S0960_9822_00_00025_7 crossref_primary_10_1074_jbc_M008863200 crossref_primary_10_1074_jbc_M312745200 crossref_primary_10_1128_MMBR_00008_11 crossref_primary_10_1111_febs_13158 crossref_primary_10_1073_pnas_0706784104 crossref_primary_10_1074_jbc_M409609200 crossref_primary_10_3389_fmicb_2016_00777 crossref_primary_10_1016_j_jmb_2006_05_021 crossref_primary_10_1074_jbc_M511700200 crossref_primary_10_1074_jbc_M007398200 crossref_primary_10_1101_gad_831800 crossref_primary_10_1074_jbc_R110_119743 crossref_primary_10_1074_jbc_M109_007658 |
Cites_doi | 10.1074/jbc.272.50.31712 10.1074/jbc.271.28.16934 10.1093/nar/27.5.1331 10.1016/S0021-9258(20)80775-3 10.1128/MCB.18.8.4935 10.1074/jbc.272.12.7883 10.1021/bi00182a007 10.1093/emboj/18.6.1673 10.1016/S0021-9258(18)83709-7 10.1073/pnas.90.7.3058 10.1016/S0021-9258(18)89527-8 10.1074/jbc.272.29.18333 10.1016/S0021-9258(18)92807-3 10.1016/S0021-9258(18)53383-4 10.1016/S0968-0004(98)01224-9 10.1038/349117a0 10.1073/pnas.89.21.10355 10.1016/S0021-9258(18)82230-X 10.1146/annurev.bi.51.070182.004253 10.1016/0092-8674(92)90246-9 10.1016/S0378-1119(99)00210-3 10.1101/gad.11.18.2396 |
ContentType | Journal Article |
Copyright | Copyright © 2000 American Society for Microbiology 2000 Copyright © 2000, American Society for Microbiology 2000 |
Copyright_xml | – notice: Copyright © 2000 American Society for Microbiology 2000 – notice: Copyright © 2000, American Society for Microbiology 2000 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TM 5PM |
DOI | 10.1128/MCB.20.11.3942-3950.2000 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Nucleic Acids Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Nucleic Acids Abstracts |
DatabaseTitleList | MEDLINE Nucleic Acids Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1098-5549 |
EndPage | 3950 |
ExternalDocumentID | 10_1128_MCB_20_11_3942_3950_2000 10805737 12264648 mcb_20_11_3942 |
Genre | Gene Expression Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM015399 – fundername: NIGMS NIH HHS grantid: GM15399 – fundername: NCI NIH HHS grantid: P30 CA013330 – fundername: NCI NIH HHS grantid: P30CA13330 |
GroupedDBID | --- -DZ -~X .55 .GJ 08R 0R~ 123 18M 29M 2WC 39C 3O- 4.4 53G 5RE 5VS 9M8 AAPBV AAUGY ABPTK ACGFO ACKIV ACNCT ADBBV ADIYS AENEX AFFNX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE HZ~ IH2 KQ8 L7B MVM N9A O9- OK1 P2P RHF RHI RNS RPM RSF TFL TFW TR2 UCJ UDS VQA W8F WH7 WHG WOQ X7M Y6R YYP ZA5 ZCA ZGI ZXP ABJNI ABRLO ABTAH AEOZL AGHSJ CGR CUY CVF ECM EIF EMOBN F20 M4Z NPM TDBHL ZY4 AAYXX CITATION 7TM 5PM |
ID | FETCH-LOGICAL-c532t-dcd5180247f85964d81e8c68f03dc1a9c4bdda73777e5e92eaef43806c4b99c03 |
IEDL.DBID | RPM |
ISSN | 0270-7306 1098-5549 |
IngestDate | Tue Sep 17 21:27:13 EDT 2024 Fri Oct 25 02:15:51 EDT 2024 Thu Sep 12 18:28:57 EDT 2024 Sat Sep 28 08:34:03 EDT 2024 Tue Jun 13 19:24:57 EDT 2023 Wed May 18 15:25:49 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-dcd5180247f85964d81e8c68f03dc1a9c4bdda73777e5e92eaef43806c4b99c03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Corresponding author. Mailing address: Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Jack and Pearl Resnick Campus, Bronx, NY 10461. Phone: (718) 430-3505. Fax: (718) 430-8567. E-mail: maitra@aecom.yu.edu. |
OpenAccessLink | https://europepmc.org/articles/pmc85746?pdf=render |
PMID | 10805737 |
PQID | 17556343 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | highwire_asm_mcb_20_11_3942 pubmedcentral_primary_oai_pubmedcentral_nih_gov_85746 proquest_miscellaneous_17556343 informaworld_taylorfrancis_310_1128_MCB_20_11_3942_3950_2000 pubmed_primary_10805737 crossref_primary_10_1128_MCB_20_11_3942_3950_2000 |
PublicationCentury | 2000 |
PublicationDate | 20000601 6/1/2000 2000-Jun 2000-06-01 |
PublicationDateYYYYMMDD | 2000-06-01 |
PublicationDate_xml | – month: 06 year: 2000 text: 20000601 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular and Cellular Biology |
PublicationTitleAlternate | Mol Cell Biol |
PublicationYear | 2000 |
Publisher | American Society for Microbiology Taylor & Francis |
Publisher_xml | – name: American Society for Microbiology – name: Taylor & Francis |
References | B20 B21 Sachs A. B. (B23) 1992; 70 Sambrook J. (B24) Bandyopadhyay A. (B2) 1999; 27 Chakrabarti A. (B4) 1991; 266 Das K. (B10) 1993; 90 Chakravarti D. (B5) 1993; 268 B11 B12 B13 B15 Hannig E. M. (B14) 1993; 13 B16 B18 Merrick W. C. (B19) 1996 B1 B3 B6 B8 Si K. (B26) 1996; 271 B9 Rose M. D. (B22) 1989 Scheffzek K. (B25) 1989; 23 Chaudhuri J. (B7) 1994; 33 Maiti T. (B17) 1997; 272 |
References_xml | – ident: B11 doi: 10.1074/jbc.272.50.31712 – volume: 13 start-page: 506 year: 1993 ident: B14 publication-title: Mol. Cell. Biol. contributor: fullname: Hannig E. M. – volume: 271 start-page: 16934 year: 1996 ident: B26 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.28.16934 contributor: fullname: Si K. – start-page: 31 volume-title: Translational control. year: 1996 ident: B19 contributor: fullname: Merrick W. C. – volume: 27 start-page: 1331 year: 1999 ident: B2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/27.5.1331 contributor: fullname: Bandyopadhyay A. – volume-title: Methods in yeast genetics: a laboratory course manual. year: 1989 ident: B22 contributor: fullname: Rose M. D. – ident: B9 doi: 10.1016/S0021-9258(20)80775-3 – ident: B20 doi: 10.1128/MCB.18.8.4935 – ident: B8 doi: 10.1074/jbc.272.12.7883 – volume: 33 start-page: 4794 year: 1994 ident: B7 publication-title: Biochemistry doi: 10.1021/bi00182a007 contributor: fullname: Chaudhuri J. – ident: B1 doi: 10.1093/emboj/18.6.1673 – ident: B12 doi: 10.1016/S0021-9258(18)83709-7 – volume: 90 start-page: 3058 year: 1993 ident: B10 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.90.7.3058 contributor: fullname: Das K. – ident: B21 doi: 10.1016/S0021-9258(18)89527-8 – volume: 272 start-page: 18333 year: 1997 ident: B17 publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.29.18333 contributor: fullname: Maiti T. – volume: 266 start-page: 14039 year: 1991 ident: B4 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)92807-3 contributor: fullname: Chakrabarti A. – volume: 268 start-page: 5754 year: 1993 ident: B5 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)53383-4 contributor: fullname: Chakravarti D. – volume: 23 start-page: 257 year: 1989 ident: B25 publication-title: Trends Biochem. Sci. doi: 10.1016/S0968-0004(98)01224-9 contributor: fullname: Scheffzek K. – ident: B3 doi: 10.1038/349117a0 – ident: B13 doi: 10.1073/pnas.89.21.10355 – volume-title: Molecular cloning: a laboratory manual ident: B24 contributor: fullname: Sambrook J. – ident: B6 doi: 10.1016/S0021-9258(18)82230-X – ident: B18 doi: 10.1146/annurev.bi.51.070182.004253 – volume: 70 start-page: 961 year: 1992 ident: B23 publication-title: Cell doi: 10.1016/0092-8674(92)90246-9 contributor: fullname: Sachs A. B. – ident: B16 doi: 10.1016/S0378-1119(99)00210-3 – ident: B15 doi: 10.1101/gad.11.18.2396 |
SSID | ssj0006903 |
Score | 1.912897 |
Snippet | Article Usage Stats
Services
MCB
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA f -eIF2-GTP) to promote the hydrolysis of... Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA(f)-eIF2-GTP) to promote the hydrolysis of... Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S-eIF3-AUG-Met-tRNA sub(f)-eIF2-GTP) to promote the hydrolysis... Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S–eIF3–AUG–Met-tRNA f –eIF2–GTP) to promote the hydrolysis of... |
SourceID | pubmedcentral proquest crossref pubmed informaworld highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3942 |
SubjectTerms | Alanine - genetics Alanine - metabolism Amino Acid Substitution Animals Artemia Eukaryotic Initiation Factor-2 - genetics Eukaryotic Initiation Factor-2 - metabolism Eukaryotic Initiation Factor-3 Eukaryotic Initiation Factor-5 Fungal Proteins - metabolism Gene Expression Guanosine Triphosphate - metabolism Hydrolysis initiation factor eIF-5 Mammals Mutagenesis Nip1p protein Nuclear Proteins - metabolism Peptide Initiation Factors - genetics Peptide Initiation Factors - metabolism Peptide Initiation Factors - physiology Protein Biosynthesis Rabbits Rats Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Recombinant Fusion Proteins - physiology Ribosomal Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae Proteins TIF5 gene |
Title | Mutational Analysis of Mammalian Translation Initiation Factor 5 (eIF5): Role of Interaction between the β Subunit of eIF2 and eIF5 in eIF5 Function In Vitro and In Vivo |
URI | http://mcb.asm.org/content/20/11/3942.abstract https://www.tandfonline.com/doi/abs/10.1128/MCB.20.11.3942-3950.2000 https://www.ncbi.nlm.nih.gov/pubmed/10805737 https://search.proquest.com/docview/17556343 https://pubmed.ncbi.nlm.nih.gov/PMC85746 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoJQQXBOUVCsUHDnBIN4k9cYy4wIpVixSEEEW9WYntqCs1SdXNIvGXOPJD-E2M7QSlFRISpzjyI48Zex4ef0PIC24K3Xh8O5vVMW8SHheGNbFB3oCEgUhqt6NbfsyPTviHUzgdz3FvxrDKTtfrw-68PezWZz628qLViylObPGpXBYgeL7YITvInpOBPi6-aOz5TeVMJDHW5lPwTlYsyuU7tAexjHY-z2ImIfEHVRxuKOpNIFwu9LlwmgCDr6GY_k0XvR5SOZNRq7vkzqhc0rfhI-6RG7bbIzdDusnve-TWcsrudp_8KLfD6AekEzAJ7RtaVm3rXR_US7EQKUePXYhRKK58gh4K9KU9XsGr1_Rzf25dT-9bDMck6Bj9RVG7pL9-UlydtjiCa4WdMlp1xhWArrtwXaF0HR9Ev66Hy9438Tff-gfkZPX-y_IoHvM2xBpYNsRGG3DAclw0Bcgc2SG1hc6LJmFGp5XUvDamwt8thAUrM1vZxgHf51ghpU7YQ7Lb9Z19TKgWQqIKoSEVjOdNXRlcMgQDmVqQhZERSSeCqYsAz6G8WZMVCumtMldWjt7K0dsl3Uwisj9RVlWbVrW6nrWLyJs5sdXgHSdNyHKi2L8Hfz4xh0KKut2XqrP9dqNQT4OccRaRR4FVZi8cuC8icIWJ_jRwEOBXa3BmeChwPxOe_Ge_fXI7AAs4n9JTsjtcbu0zVLGG-sAJODjwU-s3E3ciIQ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCJVLBQVKKFAfOMAh3SS24xhxgRXRLjQVQi3qzUpsR6zUJFU3W4m_xJEfwm9ibCcorZCQOMWRH3nM2PPw-BuEXlKdqdrh25mkCmkd0TDTpA418AaLCONRZXd0i-N0cUo_nrGz4Rz3egirbFW1OmzPm8N29c3FVl40ajbGic0-F_OMcZrObqM7MFsjOprow_IL5p7bVk54FAL7pmP4TpLNivl7sAihDJY-TUIiWOSOqljkUNCcGLfZ0KfiaYQMvoFj-jdt9GZQ5URK5ffRzqBe4nf-Mx6gW6bdRXd9wsnvu2h7PuZ3e4h-FJt-8ATiEZoEdzUuyqZxzg_s5JiPlcNLG2Tki7lL0YMZfmWWOXv9Bn_pzo3t6byL_qAEHuK_MOiX-NdPDOvTBkawraBTgstW2wLDq9Zfc5Cvw4Pw11V_2bkm7uaqe4RO8w8n80U4ZG4IFSNJH2qlmYWWo7zOmEiBIWKTqTSrI6JVXApFK61L-N2cG2ZEYkpTW-j7FCqEUBF5jLbarjVPEFacC1AiFIs5oWldlRoWDU6YiA0TmRYBikeCyQsP0CGdYZNkEugtE1uWlt7S0tum3YwCtD9SVpbrRjaqmrQL0NspsWXvXCe1z3Miyb8HPxiZQwJF7f5L2Zpus5agqbGUUBKgPc8qkxf23Bcgdo2J_jSwIODXa2BuODBwNxee_me_A7S9OCmO5NHy-NM-uudhBqyH6Rna6i835jkoXH31wk2w36cSJJE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCOgFQaEQCtQHDnBI87Adx4gLLERdYKsKUdSbldiOWKlJVt1sJf4SR34Iv4mxnaC0QkLiFEd-5DFjz8PjbxB6TnWuaodvZ9IqpHVMw1yTOtTAGywmjMeV3dFdHGWHJ_TDKTsdXBfrIayyVdXyoD1rDtrlNxdbuWpUNMaJRceLWc44zaKVrqPr6AbM2DgbzfRhCQaTz20tpzwOgYWzMYQnzaPF7C1YhVAGa5-mIREsdsdVLHooaE-M24zoUxE1wgZfwTL9m0Z6NbByIqmKu-jOoGLiN_5T7qFrpt1BN33Sye876PZszPF2H_1YbPrBG4hHeBLc1XhRNo1zgGAny3y8HJ7bQCNfLFyaHszwCzMv2MtX-HN3ZmxP52H0hyXwEAOGQcfEv35iWKM2MIJtBZ1SXLbaFhhetv5agIwdHoS_LvvzzjVxNxfdA3RSvP8yOwyH7A2hYiTtQ600s_BylNc5ExkwRWJyleV1TLRKSqFopXUJv5tzw4xITWlqC3-fQYUQKia7aKvtWvMIYcW5AEVCsYQTmtVVqWHh4ISJxDCRaxGgZCSYXHmQDumMmzSXQG-Z2rK09JaW3jb1ZhygvZGyslw3slHVpF2AXk-JLXvnPql9rhNJ_j34_sgcEihq92DK1nSbtQRtjWWEkgA99KwyeWHPfQFil5joTwMLBH65BuaHAwR38-Hxf_bbR7eO3xXy0_zo4x7a9kgD1sn0BG315xvzFHSuvnrm5tdv5HglpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutational+Analysis+of+Mammalian+Translation+Initiation+Factor+5+%28eIF5%29%3A+Role+of+Interaction+between+the+%CE%B2+Subunit+of+eIF2+and+eIF5+in+eIF5+Function+In+Vitro+and+In+Vivo&rft.jtitle=Molecular+and+cellular+biology&rft.au=Das%2C+Supratik&rft.au=Maitra%2C+Umadas&rft.date=2000-06-01&rft.pub=American+Society+for+Microbiology&rft.issn=0270-7306&rft.eissn=1098-5549&rft.volume=20&rft.issue=11&rft.spage=3942&rft.epage=3950&rft_id=info:doi/10.1128%2FMCB.20.11.3942-3950.2000&rft_id=info%3Apmid%2F10805737&rft.externalDBID=PMC85746 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-7306&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-7306&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-7306&client=summon |