Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset
The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat...
Saved in:
Published in | Human molecular genetics Vol. 18; no. 16; pp. 3039 - 3047 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
15.08.2009
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets. |
---|---|
AbstractList | The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets. The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets. The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets. |
Author | Gillis, Tammy Mysore, Jayalakshmi Myers, Richard H. Swami, Meera Hendricks, Audrey E. Massood, Tiffany Wheeler, Vanessa C. |
AuthorAffiliation | 3 Department of Neurology , Boston University School of Public Health , Boston, MA 02118 , USA 1 Center for Human Genetic Research , Massachusetts General Hospital , Boston, MA 02114 , USA 2 Department of Biostatistics |
AuthorAffiliation_xml | – name: 2 Department of Biostatistics – name: 3 Department of Neurology , Boston University School of Public Health , Boston, MA 02118 , USA – name: 1 Center for Human Genetic Research , Massachusetts General Hospital , Boston, MA 02114 , USA |
Author_xml | – sequence: 1 givenname: Meera surname: Swami fullname: Swami, Meera organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 2 givenname: Audrey E. surname: Hendricks fullname: Hendricks, Audrey E. organization: Department of Biostatistics – sequence: 3 givenname: Tammy surname: Gillis fullname: Gillis, Tammy organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 4 givenname: Tiffany surname: Massood fullname: Massood, Tiffany organization: Department of Neurology, Boston University School of Public Health, Boston, MA 02118, USA – sequence: 5 givenname: Jayalakshmi surname: Mysore fullname: Mysore, Jayalakshmi organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA – sequence: 6 givenname: Richard H. surname: Myers fullname: Myers, Richard H. organization: Department of Neurology, Boston University School of Public Health, Boston, MA 02118, USA – sequence: 7 givenname: Vanessa C. surname: Wheeler fullname: Wheeler, Vanessa C. email: wheeler@helix.mgh.harvard.edu organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21777608$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19465745$$D View this record in MEDLINE/PubMed |
BookMark | eNqFklGLEzEUhQdZcburL_4ACYIKwrhJZiaZvAhr0VZY8EEF8SVkMjdt1mkyJhmt_97Udosuok8J5Lvnntx7zooT5x0UxUOCXxAsqov1ZnXR9yOt6Z1iRmqGS4rb6qSYYcHqkgnMTouzGK8xJqyu-L3ilIiaNbxuZsX2vd-oZDWC7ahctN4hb1BaA1pOLlm3St49i6i3EVQENL9coAAjqISs-4V1QeWbjUjF6LVVCXr03aY1Ug6BCoOFgNQKdqo3It5FSPeLu0YNER4czvPi45vXH-bL8urd4u388qrUTUVT2Xe6US0xLTacCqMEYwxwhymFztCu0xTrjmnMCamFqAUYgzvNKVa0MnXbVefFy73uOHUb6DW4FNQgx2A3KvyQXln554uza7ny3yTlpOa0zQJPDwLBf50gJrmxUcMwKAd-ipLxhoi2wv8FKeZ8J5jBx7fAaz8Fl6cgKSGUCs5Ihh797vto-GZ1GXhyAFTUajBBOW3jkaMkd2N45x_vOR18jAGM1Dbllfvdd-0gCZa7FMmcIrlPUS55fqvk2P1v8MGHn8Z_c-WeszHB9kiq8CWPsOKNXH76LDl5JRYtZ5JVPwEv7eW4 |
CODEN | HNGEE5 |
CitedBy_id | crossref_primary_10_1007_s13311_019_00768_7 crossref_primary_10_1016_j_tig_2015_03_013 crossref_primary_10_1007_s00439_022_02500_6 crossref_primary_10_1016_j_dnarep_2016_01_001 crossref_primary_10_1038_nrdp_2015_5 crossref_primary_10_1515_medgen_2021_2101 crossref_primary_10_1002_ana_24656 crossref_primary_10_1186_s40673_016_0058_y crossref_primary_10_7554_eLife_55911 crossref_primary_10_1038_s41467_024_47485_0 crossref_primary_10_1016_j_ebiom_2023_104720 crossref_primary_10_3390_ijms252111787 crossref_primary_10_1002_mdc3_13375 crossref_primary_10_1098_rsos_240790 crossref_primary_10_1016_j_ymthe_2023_05_006 crossref_primary_10_1007_s42764_021_00041_2 crossref_primary_10_1093_hmg_ddx261 crossref_primary_10_1016_j_celrep_2021_109649 crossref_primary_10_3988_jcn_2020_16_4_586 crossref_primary_10_1016_j_ajhg_2021_03_011 crossref_primary_10_1093_brain_awad436 crossref_primary_10_4199_C00151ED1V01Y201702ISP074 crossref_primary_10_1242_dmm_041319 crossref_primary_10_1007_s00259_012_2114_z crossref_primary_10_3389_fncel_2021_628010 crossref_primary_10_1016_j_celrep_2021_110078 crossref_primary_10_1042_ETLS20230015 crossref_primary_10_1016_j_mrgentox_2010_06_008 crossref_primary_10_3389_fncel_2017_00153 crossref_primary_10_1038_s41598_019_55202_x crossref_primary_10_1007_s11064_019_02809_1 crossref_primary_10_1016_j_ejmg_2014_11_005 crossref_primary_10_1093_nargab_lqz003 crossref_primary_10_1016_j_tig_2022_03_016 crossref_primary_10_3389_fgene_2018_00601 crossref_primary_10_1016_j_cell_2023_09_008 crossref_primary_10_1126_scitranslmed_adn4600 crossref_primary_10_1021_bi300410d crossref_primary_10_1371_journal_pgen_1000749 crossref_primary_10_1093_hmg_ddae137 crossref_primary_10_1002_hbm_23266 crossref_primary_10_1016_j_dnarep_2017_06_017 crossref_primary_10_1038_nrg3152 crossref_primary_10_1038_s41582_020_0389_4 crossref_primary_10_1093_hmg_ddy375 crossref_primary_10_3233_JHD_200395 crossref_primary_10_1126_sciadv_abd1700 crossref_primary_10_5607_en_2014_23_4_271 crossref_primary_10_1093_nar_gky110 crossref_primary_10_1111_cge_12324 crossref_primary_10_1038_s41431_022_01213_8 crossref_primary_10_1016_j_lfs_2024_122562 crossref_primary_10_1128_MCB_00332_10 crossref_primary_10_1038_s41598_024_64105_5 crossref_primary_10_1371_journal_pgen_1003280 crossref_primary_10_1002_mds_23623 crossref_primary_10_1371_journal_pone_0023647 crossref_primary_10_1242_dmm_031930 crossref_primary_10_3390_genes15060807 crossref_primary_10_1016_j_ajhg_2009_11_006 crossref_primary_10_1016_j_tig_2018_02_005 crossref_primary_10_1111_nan_12465 crossref_primary_10_1093_braincomms_fcaa066 crossref_primary_10_1016_j_gde_2020_10_006 crossref_primary_10_1186_s40035_024_00406_z crossref_primary_10_1007_s00415_020_10218_6 crossref_primary_10_1016_j_arr_2018_10_004 crossref_primary_10_1093_bioinformatics_btae485 crossref_primary_10_1016_j_jns_2019_05_010 crossref_primary_10_1016_j_nbd_2015_01_004 crossref_primary_10_1038_s41598_017_05125_2 crossref_primary_10_1016_j_cell_2019_06_036 crossref_primary_10_1016_j_jns_2018_09_022 crossref_primary_10_1007_s13238_022_00912_8 crossref_primary_10_1371_journal_pone_0298323 crossref_primary_10_3233_JHD_160203 crossref_primary_10_3389_fnagi_2020_524369 crossref_primary_10_1038_s41598_017_01510_z crossref_primary_10_1093_hmg_dds337 crossref_primary_10_1016_j_jmb_2016_08_005 crossref_primary_10_1002_wrna_1709 crossref_primary_10_1038_nrm2854 crossref_primary_10_1186_s40035_023_00350_4 crossref_primary_10_1371_journal_pgen_1003930 crossref_primary_10_1038_s41593_022_01033_5 crossref_primary_10_3390_ijms252111493 crossref_primary_10_1038_nrg2828 crossref_primary_10_1186_1752_0509_4_29 crossref_primary_10_7554_eLife_70217 crossref_primary_10_1038_s41588_019_0575_8 crossref_primary_10_1002_med_21425 crossref_primary_10_1186_s40478_022_01349_0 crossref_primary_10_1038_tpj_2009_69 crossref_primary_10_1242_dmm_049453 crossref_primary_10_1016_j_ebiom_2019_09_020 crossref_primary_10_1093_nar_gkae1204 crossref_primary_10_1371_journal_pone_0019800 crossref_primary_10_1093_nar_gkae368 crossref_primary_10_3390_biomedicines11123336 crossref_primary_10_1371_journal_pone_0053361 crossref_primary_10_3389_fpsyt_2015_00032 crossref_primary_10_1080_21675511_2015_1131885 crossref_primary_10_1080_15476286_2020_1712894 crossref_primary_10_1111_j_1399_0004_2011_01795_x crossref_primary_10_1016_j_dnarep_2015_01_005 crossref_primary_10_1016_j_dnarep_2016_03_016 crossref_primary_10_1002_mds_25172 crossref_primary_10_3810_pgm_2011_09_2466 crossref_primary_10_1038_d41586_025_00717_9 crossref_primary_10_1016_j_pneurobio_2023_102484 crossref_primary_10_1093_nar_gku285 crossref_primary_10_3233_JHD_231516 crossref_primary_10_3390_genes12071071 crossref_primary_10_1007_s42764_020_00027_6 crossref_primary_10_3390_ijms26062655 crossref_primary_10_1016_j_brainres_2015_10_001 crossref_primary_10_3390_brainsci12101389 crossref_primary_10_1016_j_cell_2024_11_038 crossref_primary_10_3389_fncel_2020_606331 crossref_primary_10_1002_humu_23580 crossref_primary_10_1093_hmg_ddaa196 crossref_primary_10_1016_j_mad_2016_09_003 crossref_primary_10_1093_nar_gkz501 crossref_primary_10_3233_JHD_200445 crossref_primary_10_1016_j_neubiorev_2015_03_003 crossref_primary_10_1016_j_jns_2013_11_014 crossref_primary_10_1159_000479375 crossref_primary_10_1017_erm_2022_16 crossref_primary_10_3390_biomedicines10081863 crossref_primary_10_1212_WNL_0000000000007355 crossref_primary_10_1016_j_ejmg_2011_04_002 crossref_primary_10_1002_humu_22287 crossref_primary_10_1093_hmg_ddaa283 crossref_primary_10_7554_eLife_77568 crossref_primary_10_3390_molecules22122027 crossref_primary_10_4161_cc_10_4_14729 crossref_primary_10_1016_j_pbj_2017_07_083 crossref_primary_10_1016_j_neuron_2020_11_005 crossref_primary_10_1212_NXG_0000000000000608 crossref_primary_10_3233_JHD_200433 crossref_primary_10_1002_mds_25502 crossref_primary_10_1016_j_neuron_2023_12_009 crossref_primary_10_1186_s12883_017_0923_1 crossref_primary_10_3233_JHD_200438 crossref_primary_10_7554_eLife_89782 crossref_primary_10_1073_pnas_2413298121 crossref_primary_10_1093_hmg_ddq015 crossref_primary_10_1093_hmg_ddac231 crossref_primary_10_1093_hmg_ddab148 crossref_primary_10_1371_journal_pgen_1003051 crossref_primary_10_3233_JHD_200423 crossref_primary_10_1016_S1474_4422_10_70276_3 crossref_primary_10_3233_JHD_200425 crossref_primary_10_1016_j_ajhg_2019_04_007 crossref_primary_10_3233_JHD_200421 crossref_primary_10_7554_eLife_64674 crossref_primary_10_1089_genbio_2021_0012 crossref_primary_10_1093_brain_awae105 crossref_primary_10_1016_j_cell_2015_07_003 crossref_primary_10_3233_JHD_200427 crossref_primary_10_1093_braincomms_fcac279 crossref_primary_10_3233_JHD_200426 crossref_primary_10_1016_S1474_4422_20_30343_4 crossref_primary_10_3233_JHD_200429 crossref_primary_10_1371_journal_pone_0028260 crossref_primary_10_1098_rsif_2013_0605 crossref_primary_10_1093_hmg_dds185 crossref_primary_10_3390_biomedicines11082275 crossref_primary_10_1016_j_pneurobio_2023_102448 crossref_primary_10_1073_pnas_1712526114 crossref_primary_10_1016_j_ajhg_2024_04_015 crossref_primary_10_1038_s41467_024_50626_0 crossref_primary_10_1093_braincomms_fcae030 crossref_primary_10_1038_s41588_024_02054_5 crossref_primary_10_1093_hmg_dds059 crossref_primary_10_1371_journal_pgen_1001242 crossref_primary_10_1093_hmg_ddab129 crossref_primary_10_3390_genes4030375 crossref_primary_10_1093_hmg_ddae087 crossref_primary_10_1093_nar_gkab152 crossref_primary_10_3233_JHD_210485 crossref_primary_10_1016_j_tox_2009_10_019 crossref_primary_10_1007_s12041_018_0948_2 crossref_primary_10_1038_s41591_024_03424_6 crossref_primary_10_1038_s41431_024_01546_6 crossref_primary_10_1038_s41582_021_00465_0 crossref_primary_10_3389_fnmol_2021_721749 crossref_primary_10_1093_nar_gkae1155 crossref_primary_10_1093_brain_awz115 crossref_primary_10_1177_18796397251316762 crossref_primary_10_1016_S1474_4422_17_30161_8 crossref_primary_10_1007_s12264_010_0113_2 crossref_primary_10_1016_j_neuron_2019_01_039 crossref_primary_10_1038_s41588_024_02055_4 crossref_primary_10_1016_S1474_4422_10_70183_6 crossref_primary_10_1093_hmg_ddr421 crossref_primary_10_1038_s41593_024_01850_w crossref_primary_10_1093_hmg_ddaa139 crossref_primary_10_1038_s41598_021_92381_y crossref_primary_10_7554_eLife_89782_2 crossref_primary_10_1246_bcsj_20200351 crossref_primary_10_1371_journal_pgen_1005267 crossref_primary_10_1042_NS20200010 crossref_primary_10_1038_s41380_018_0129_y crossref_primary_10_1093_brain_awae266 crossref_primary_10_1007_s00415_023_11572_x |
Cites_doi | 10.1093/hmg/ddg300 10.1038/nature05778 10.1097/00005072-198511000-00003 10.1007/s10048-004-0175-2 10.1093/hmg/ddg056 10.1038/ng0893-393 10.1038/ng0893-387 10.1073/pnas.94.8.3872 10.1093/hmg/8.1.115 10.1038/ng0494-409 10.1111/j.1468-1331.2007.01975.x 10.1016/0092-8674(93)90585-E 10.1212/WNL.53.6.1330 10.1086/378133 10.1016/S0304-3940(03)00436-1 10.1007/s10048-005-0023-z 10.1016/0896-6273(95)90106-X 10.1006/mcpr.1993.1034 10.1101/SQB.1996.061.01.062 10.1371/journal.pcbi.0030235 10.1136/jnnp.2007.128728 10.1093/hmg/ddg352 10.1093/hmg/ddm054 10.1073/pnas.0308679101 10.1093/hmg/ddn003 10.1038/nsmb965 10.1186/1471-2350-10-11 10.1093/hmg/2.10.1547 10.1073/pnas.0800048105 10.1212/WNL.43.12.2674 10.1093/hmg/9.17.2539 10.1093/brain/awn025 10.1038/70598 10.1002/gepi.20317 10.1073/pnas.98.4.1811 10.1038/ng0893-398 10.1007/BF00225192 10.1093/hmg/9.3.439 10.1136/jmg.2006.045153 10.1016/j.nbd.2008.09.014 10.1016/j.dnarep.2007.01.002 10.1016/S0304-3940(02)00231-8 10.1186/1471-2350-7-71 10.1126/science.1139517 |
ContentType | Journal Article |
Copyright | The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 2009 INIST-CNRS The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org |
Copyright_xml | – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009 – notice: 2009 INIST-CNRS – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1093/hmg/ddp242 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database ProQuest Health & Medical Complete (Alumni) Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1460-2083 |
EndPage | 3047 |
ExternalDocumentID | PMC2714728 1809903031 19465745 21777608 10_1093_hmg_ddp242 10.1093/hmg/ddp242 ark_67375_HXZ_71B9G876_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS049206 – fundername: NINDS NIH HHS grantid: NS049206 – fundername: NINDS NIH HHS grantid: P50 NS16367-28 |
GroupedDBID | --- -DZ -E4 .2P .I3 .XZ .ZR 0R~ 18M 1TH 29I 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABLJU ABMNT ABNGD ABNHQ ABNKS ABPQP ABPTD ABQLI ABVGC ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACPRK ACUFI ACUKT ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ ADZXQ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFYAG AGINJ AGKEF AGORE AGQPQ AGQXC AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN ARIXL ASPBG ATGXG AVWKF AXUDD AYOIW AZFZN BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSCLL BSWAC BTRTY BVRKM C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K EBS EE~ EJD EMOBN F5P F9B FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HVGLF HW0 HZ~ IH2 IOX J21 JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z ML0 N9A NGC NLBLG NOMLY NOYVH NU- NVLIB O0~ O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RUSNO RW1 RXO SJN TEORI TJX TLC TMA TR2 W8F WOQ X7H XSW YAYTL YKOAZ YXANX ZKX ~91 AASNB AAYOK ABQTQ ADJQC ADRIX AFXEN M49 RIG AAYXX CITATION .55 .GJ AAPGJ AAWDT ABEFU ABIME ABPIB ABSMQ ABTAH ABZEO ACFRR ACPQN ACVCV ACZBC ADMTO AEHUL AEKPW AFFQV AFSHK AGKRT AGMDO AJDVS ANFBD APJGH AQDSO AQKUS ASAOO ATDFG ATTQO AVNTJ BZKNY CXTWN DFGAJ EIHJH ELUNK IQODW MBLQV MBTAY NEJ NTWIH OBFPC O~Y QBD RNI RZF RZO TCN X7M ZCG ZGI ZXP ZY4 CGR CUY CVF ECM EIF NPM 7QP 7TK 8FD FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c532t-dbc5a81f80f729fa9666e0b022ebf2bbc20cb6c071149949eff0bc720a23f48b3 |
ISSN | 0964-6906 1460-2083 |
IngestDate | Thu Aug 21 13:17:32 EDT 2025 Thu Jul 10 19:01:38 EDT 2025 Fri Jul 11 01:16:02 EDT 2025 Fri Jul 25 19:32:04 EDT 2025 Wed Feb 19 01:49:37 EST 2025 Wed Apr 02 07:25:38 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Tue Jul 01 00:24:07 EDT 2025 Wed Sep 11 04:51:09 EDT 2024 Tue Aug 05 16:50:21 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Nervous system diseases Huntingtin Central nervous system Huntington disease Genetic disease Cerebral disorder Encephalon Age of onset Central nervous system disease Genetics Degenerative disease Expansion Extrapyramidal syndrome |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-dbc5a81f80f729fa9666e0b022ebf2bbc20cb6c071149949eff0bc720a23f48b3 |
Notes | istex:F8AF21B673CDEA09F52DD9CCBD34879558376521 ark:/67375/HXZ-71B9G876-6 ArticleID:ddp242 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://academic.oup.com/hmg/article-pdf/18/16/3039/17247251/ddp242.pdf |
PMID | 19465745 |
PQID | 211229761 |
PQPubID | 32497 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2714728 proquest_miscellaneous_67519830 proquest_miscellaneous_20777283 proquest_journals_211229761 pubmed_primary_19465745 pascalfrancis_primary_21777608 crossref_citationtrail_10_1093_hmg_ddp242 crossref_primary_10_1093_hmg_ddp242 oup_primary_10_1093_hmg_ddp242 istex_primary_ark_67375_HXZ_71B9G876_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-08-15 |
PublicationDateYYYYMMDD | 2009-08-15 |
PublicationDate_xml | – month: 08 year: 2009 text: 2009-08-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Human molecular genetics |
PublicationTitleAlternate | Hum Mol Genet |
PublicationYear | 2009 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Gonitel ( key 20170522151447_DDP242C29) 2008; 105 Veitch ( key 20170522151447_DDP242C34) 2007; 6 Wheeler ( key 20170522151447_DDP242C25) 1999; 8 Wexler ( key 20170522151447_DDP242C11) 2004; 101 Rubinsztein ( key 20170522151447_DDP242C12) 1997; 94 Owen ( key 20170522151447_DDP242C44) 2005; 12 Kovtun ( key 20170522151447_DDP242C45) 2007; 447 Warner ( key 20170522151447_DDP242C47) 1993; 7 Stine ( key 20170522151447_DDP242C7) 1993; 2 Andrew ( key 20170522151447_DDP242C5) 1993; 4 Metzger ( key 20170522151447_DDP242C21) 2008; 17 Wheeler ( key 20170522151447_DDP242C31) 2003; 12 Paulsen ( key 20170522151447_DDP242C41) 2008; 79 Verny ( key 20170522151447_DDP242C40) 2007; 14 Vonsattel ( key 20170522151447_DDP242C3) 1985; 44 Shelbourne ( key 20170522151447_DDP242C28) 2007; 16 Manley ( key 20170522151447_DDP242C46) 1999; 23 Gusella ( key 20170522151447_DDP242C8) 1996; 61 Jung ( key 20170522151447_DDP242C35) 2007; 315 Djousse ( key 20170522151447_DDP242C17) 2004; 5 Andresen ( key 20170522151447_DDP242C20) 2007; 44 Gomes-Pereira ( key 20170522151447_DDP242C33) 2004; 277 Aronin ( key 20170522151447_DDP242C30) 1995; 15 Harper ( key 20170522151447_DDP242C1) 1999; 354 Li ( key 20170522151447_DDP242C10) 2003; 73 Myers ( key 20170522151447_DDP242C9) 1998 Kennedy ( key 20170522151447_DDP242C27) 2003; 12 Naze ( key 20170522151447_DDP242C15) 2002; 328 Huntington's disease collaborative research group ( key 20170522151447_DDP242C2) 1993; 72 Ashizawa ( key 20170522151447_DDP242C43) 1993; 43 Cannella ( key 20170522151447_DDP242C39) 2009; 10 Duyao ( key 20170522151447_DDP242C4) 1993; 4 De Rooij ( key 20170522151447_DDP242C24) 1995; 95 Kennedy ( key 20170522151447_DDP242C26) 2000; 9 Holbert ( key 20170522151447_DDP242C14) 2001; 98 Li ( key 20170522151447_DDP242C19) 2006; 7 MacDonald ( key 20170522151447_DDP242C13) 1999; 53 Dragileva ( key 20170522151447_DDP242C32) 2009; 33 Watase ( key 20170522151447_DDP242C37) 2003; 12 Chattopadhyay ( key 20170522151447_DDP242C16) 2003; 345 Fortune ( key 20170522151447_DDP242C36) 2000; 9 Rosas ( key 20170522151447_DDP242C42) 2008; 131 Gayan ( key 20170522151447_DDP242C22) 2008; 32 Kaplan ( key 20170522151447_DDP242C38) 2007; 3 Metzger ( key 20170522151447_DDP242C18) 2006; 7 Telenius ( key 20170522151447_DDP242C23) 1994; 6 Snell ( key 20170522151447_DDP242C6) 1993; 4 10655554 - Hum Mol Genet. 2000 Feb 12;9(3):439-45 16369839 - Neurogenetics. 2006 Mar;7(1):27-30 7868117 - Hum Genet. 1995 Mar;95(3):270-4 19210789 - BMC Med Genet. 2009;10:11 10581038 - Nat Genet. 1999 Dec;23(4):471-3 14993615 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3498-503 15029481 - Neurogenetics. 2004 Jun;5(2):109-14 18299573 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3467-72 2932539 - J Neuropathol Exp Neurol. 1985 Nov;44(6):559-77 8268907 - Hum Mol Genet. 1993 Oct;2(10):1547-9 12821179 - Neurosci Lett. 2003 Jul 17;345(2):93-6 9108071 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3872-6 12900792 - Am J Hum Genet. 2003 Sep;73(3):682-7 17450122 - Nature. 2007 May 24;447(7143):447-52 18337273 - Brain. 2008 Apr;131(Pt 4):1057-68 8401587 - Nat Genet. 1993 Aug;4(4):387-92 10434293 - Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):957-61 17018562 - J Med Genet. 2007 Jan;44(1):44-50 7576661 - Neuron. 1995 Nov;15(5):1193-201 18481795 - Genet Epidemiol. 2008 Jul;32(5):445-53 9887339 - Hum Mol Genet. 1999 Jan;8(1):115-22 8054984 - Nat Genet. 1994 Apr;6(4):409-14 18930147 - Neurobiol Dis. 2009 Jan;33(1):37-47 11030759 - Hum Mol Genet. 2000 Oct 12;9(17):2539-44 14570710 - Hum Mol Genet. 2003 Dec 15;12(24):3359-67 17332375 - Science. 2007 Mar 30;315(5820):1857-9 18192679 - Hum Mol Genet. 2008 Apr 15;17(8):1137-46 11172033 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1811-6 12123845 - Neurosci Lett. 2002 Aug 2;328(1):1-4 12554681 - Hum Mol Genet. 2003 Feb 1;12(3):273-81 12952864 - Hum Mol Genet. 2003 Nov 1;12(21):2789-95 17941857 - Eur J Neurol. 2007 Dec;14(12):1344-50 8401588 - Nat Genet. 1993 Aug;4(4):393-7 8366869 - Mol Cell Probes. 1993 Jun;7(3):235-9 17293170 - DNA Repair (Amst). 2007 Jun 1;6(6):789-96 8401589 - Nat Genet. 1993 Aug;4(4):398-403 9246488 - Cold Spring Harb Symp Quant Biol. 1996;61:615-26 16025128 - Nat Struct Mol Biol. 2005 Aug;12(8):663-70 15201449 - Methods Mol Biol. 2004;277:61-76 8458085 - Cell. 1993 Mar 26;72(6):971-83 18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80 17409200 - Hum Mol Genet. 2007 May 15;16(10):1133-42 18039028 - PLoS Comput Biol. 2007 Nov;3(11):e235 10522893 - Neurology. 1999 Oct 12;53(6):1330-2 8255475 - Neurology. 1993 Dec;43(12):2674-8 16914060 - BMC Med Genet. 2006;7:71 |
References_xml | – volume: 12 start-page: 2789 year: 2003 ident: key 20170522151447_DDP242C37 article-title: Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg300 – volume: 447 start-page: 447 year: 2007 ident: key 20170522151447_DDP242C45 article-title: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells publication-title: Nature doi: 10.1038/nature05778 – volume: 44 start-page: 559 year: 1985 ident: key 20170522151447_DDP242C3 article-title: Neuropathological classification of Huntington's disease publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/00005072-198511000-00003 – volume: 5 start-page: 109 year: 2004 ident: key 20170522151447_DDP242C17 article-title: Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16 publication-title: Neurogenetics doi: 10.1007/s10048-004-0175-2 – volume: 12 start-page: 273 year: 2003 ident: key 20170522151447_DDP242C31 article-title: Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg056 – volume: 4 start-page: 393 year: 1993 ident: key 20170522151447_DDP242C6 article-title: Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease publication-title: Nat. Genet. doi: 10.1038/ng0893-393 – volume: 4 start-page: 387 year: 1993 ident: key 20170522151447_DDP242C4 article-title: Trinucleotide repeat length instability and age of onset in Huntington's disease publication-title: Nat. Genet. doi: 10.1038/ng0893-387 – volume: 94 start-page: 3872 year: 1997 ident: key 20170522151447_DDP242C12 article-title: Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.94.8.3872 – volume: 8 start-page: 115 year: 1999 ident: key 20170522151447_DDP242C25 article-title: Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/8.1.115 – volume: 6 start-page: 409 year: 1994 ident: key 20170522151447_DDP242C23 article-title: Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm publication-title: Nat. Genet. doi: 10.1038/ng0494-409 – volume: 14 start-page: 1344 year: 2007 ident: key 20170522151447_DDP242C40 article-title: Cognitive changes in asymptomatic carriers of the Huntington disease mutation gene publication-title: Eur. J. Neurol. doi: 10.1111/j.1468-1331.2007.01975.x – volume: 72 start-page: 971 year: 1993 ident: key 20170522151447_DDP242C2 article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes publication-title: Cell doi: 10.1016/0092-8674(93)90585-E – volume: 53 start-page: 1330 year: 1999 ident: key 20170522151447_DDP242C13 article-title: Evidence for the GluR6 gene associated with younger onset age of Huntington's disease publication-title: Neurology doi: 10.1212/WNL.53.6.1330 – volume: 73 start-page: 682 year: 2003 ident: key 20170522151447_DDP242C10 article-title: A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS Study publication-title: Am. J. Hum. Genet. doi: 10.1086/378133 – volume: 345 start-page: 93 year: 2003 ident: key 20170522151447_DDP242C16 article-title: Modulation of age at onset in Huntington's disease and spinocerebellar ataxia type 2 patients originated from eastern India publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(03)00436-1 – volume: 7 start-page: 27 year: 2006 ident: key 20170522151447_DDP242C18 article-title: The S18Y polymorphism in the UCHL1 gene is a genetic modifier in Huntington's disease publication-title: Neurogenetics doi: 10.1007/s10048-005-0023-z – start-page: 301 volume-title: Genetic Instabilities and Hereditary Neurological Diseases year: 1998 ident: key 20170522151447_DDP242C9 article-title: Huntington's disease – volume: 15 start-page: 1193 year: 1995 ident: key 20170522151447_DDP242C30 article-title: CAG expansion affects the expression of mutant Huntingtin in the Huntington's disease brain publication-title: Neuron doi: 10.1016/0896-6273(95)90106-X – volume: 7 start-page: 235 year: 1993 ident: key 20170522151447_DDP242C47 article-title: A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes publication-title: Mol. Cell Probes doi: 10.1006/mcpr.1993.1034 – volume: 61 start-page: 615 year: 1996 ident: key 20170522151447_DDP242C8 article-title: Huntington's disease publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1996.061.01.062 – volume: 3 start-page: e235 year: 2007 ident: key 20170522151447_DDP242C38 article-title: A universal mechanism ties genotype to phenotype in trinucleotide diseases publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.0030235 – volume: 79 start-page: 874 year: 2008 ident: key 20170522151447_DDP242C41 article-title: Detection of Huntington's disease decades before diagnosis: the Predict-HD study publication-title: J. Neurol. Neurosurg. Psychiatr. doi: 10.1136/jnnp.2007.128728 – volume: 277 start-page: 61 year: 2004 ident: key 20170522151447_DDP242C33 article-title: Analysis of unstable triplet repeats using small-pool polymerase chain reaction publication-title: Methods Mol. Biol. – volume: 12 start-page: 3359 year: 2003 ident: key 20170522151447_DDP242C27 article-title: Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddg352 – volume: 16 start-page: 1133 year: 2007 ident: key 20170522151447_DDP242C28 article-title: Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm054 – volume: 101 start-page: 3498 year: 2004 ident: key 20170522151447_DDP242C11 article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0308679101 – volume: 17 start-page: 1137 year: 2008 ident: key 20170522151447_DDP242C21 article-title: Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington's disease publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddn003 – volume: 12 start-page: 663 year: 2005 ident: key 20170522151447_DDP242C44 article-title: (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb965 – volume: 10 start-page: 11 year: 2009 ident: key 20170522151447_DDP242C39 article-title: DNA instability in replicating Huntington's disease lymphoblasts publication-title: BMC Med. Genet. doi: 10.1186/1471-2350-10-11 – volume: 2 start-page: 1547 year: 1993 ident: key 20170522151447_DDP242C7 article-title: Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/2.10.1547 – volume: 105 start-page: 3467 year: 2008 ident: key 20170522151447_DDP242C29 article-title: DNA instability in postmitotic neurons publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0800048105 – volume: 43 start-page: 2674 year: 1993 ident: key 20170522151447_DDP242C43 article-title: Somatic instability of CTG repeat in myotonic dystrophy publication-title: Neurology doi: 10.1212/WNL.43.12.2674 – volume: 9 start-page: 2539 year: 2000 ident: key 20170522151447_DDP242C26 article-title: Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease? publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.17.2539 – volume: 131 start-page: 1057 year: 2008 ident: key 20170522151447_DDP242C42 article-title: Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity publication-title: Brain doi: 10.1093/brain/awn025 – volume: 23 start-page: 471 year: 1999 ident: key 20170522151447_DDP242C46 article-title: Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice publication-title: Nat. Genet. doi: 10.1038/70598 – volume: 354 start-page: 957 year: 1999 ident: key 20170522151447_DDP242C1 article-title: Huntington's disease: a clinical, genetic and molecular model for polyglutamine repeat disorders publication-title: Philos. Trans. R. Soc. Lond. B, Biol. Sci. – volume: 32 start-page: 445 year: 2008 ident: key 20170522151447_DDP242C22 article-title: Genomewide linkage scan reveals novel loci modifying age of onset of Huntington's disease in the Venezuelan HD kindreds publication-title: Genet. Epidemiol. doi: 10.1002/gepi.20317 – volume: 98 start-page: 1811 year: 2001 ident: key 20170522151447_DDP242C14 article-title: The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.98.4.1811 – volume: 4 start-page: 398 year: 1993 ident: key 20170522151447_DDP242C5 article-title: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease publication-title: Nat. Genet. doi: 10.1038/ng0893-398 – volume: 95 start-page: 270 year: 1995 ident: key 20170522151447_DDP242C24 article-title: Somatic expansion of the (CAG)n repeat in Huntington disease brains publication-title: Hum. Genet. doi: 10.1007/BF00225192 – volume: 9 start-page: 439 year: 2000 ident: key 20170522151447_DDP242C36 article-title: Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/9.3.439 – volume: 44 start-page: 44 year: 2007 ident: key 20170522151447_DDP242C20 article-title: Replication of twelve association studies for Huntington's disease residual age of onset in large Venezuelan kindreds publication-title: J. Med. Genet. doi: 10.1136/jmg.2006.045153 – volume: 33 start-page: 37 year: 2009 ident: key 20170522151447_DDP242C32 article-title: Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.09.014 – volume: 6 start-page: 789 year: 2007 ident: key 20170522151447_DDP242C34 article-title: Inherited CAG.CTG allele length is a major modifier of somatic mutation length variability in Huntington disease publication-title: DNA Repair doi: 10.1016/j.dnarep.2007.01.002 – volume: 328 start-page: 1 year: 2002 ident: key 20170522151447_DDP242C15 article-title: Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington's disease publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(02)00231-8 – volume: 7 start-page: 71 year: 2006 ident: key 20170522151447_DDP242C19 article-title: Genome-wide significance for a modifier of age at neurological onset in Huntington's disease at 6q23-24: the HD MAPS study publication-title: BMC Med. Genet. doi: 10.1186/1471-2350-7-71 – volume: 315 start-page: 1857 year: 2007 ident: key 20170522151447_DDP242C35 article-title: CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease publication-title: Science doi: 10.1126/science.1139517 – reference: 16914060 - BMC Med Genet. 2006;7:71 – reference: 8255475 - Neurology. 1993 Dec;43(12):2674-8 – reference: 17018562 - J Med Genet. 2007 Jan;44(1):44-50 – reference: 10434293 - Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):957-61 – reference: 17941857 - Eur J Neurol. 2007 Dec;14(12):1344-50 – reference: 19210789 - BMC Med Genet. 2009;10:11 – reference: 17409200 - Hum Mol Genet. 2007 May 15;16(10):1133-42 – reference: 18299573 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3467-72 – reference: 17450122 - Nature. 2007 May 24;447(7143):447-52 – reference: 15201449 - Methods Mol Biol. 2004;277:61-76 – reference: 16025128 - Nat Struct Mol Biol. 2005 Aug;12(8):663-70 – reference: 17293170 - DNA Repair (Amst). 2007 Jun 1;6(6):789-96 – reference: 8401589 - Nat Genet. 1993 Aug;4(4):398-403 – reference: 8054984 - Nat Genet. 1994 Apr;6(4):409-14 – reference: 18337273 - Brain. 2008 Apr;131(Pt 4):1057-68 – reference: 18481795 - Genet Epidemiol. 2008 Jul;32(5):445-53 – reference: 8268907 - Hum Mol Genet. 1993 Oct;2(10):1547-9 – reference: 18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80 – reference: 9246488 - Cold Spring Harb Symp Quant Biol. 1996;61:615-26 – reference: 18192679 - Hum Mol Genet. 2008 Apr 15;17(8):1137-46 – reference: 12900792 - Am J Hum Genet. 2003 Sep;73(3):682-7 – reference: 10581038 - Nat Genet. 1999 Dec;23(4):471-3 – reference: 7576661 - Neuron. 1995 Nov;15(5):1193-201 – reference: 11172033 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1811-6 – reference: 8401588 - Nat Genet. 1993 Aug;4(4):393-7 – reference: 16369839 - Neurogenetics. 2006 Mar;7(1):27-30 – reference: 9887339 - Hum Mol Genet. 1999 Jan;8(1):115-22 – reference: 10522893 - Neurology. 1999 Oct 12;53(6):1330-2 – reference: 8366869 - Mol Cell Probes. 1993 Jun;7(3):235-9 – reference: 8458085 - Cell. 1993 Mar 26;72(6):971-83 – reference: 2932539 - J Neuropathol Exp Neurol. 1985 Nov;44(6):559-77 – reference: 9108071 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3872-6 – reference: 18039028 - PLoS Comput Biol. 2007 Nov;3(11):e235 – reference: 17332375 - Science. 2007 Mar 30;315(5820):1857-9 – reference: 12554681 - Hum Mol Genet. 2003 Feb 1;12(3):273-81 – reference: 7868117 - Hum Genet. 1995 Mar;95(3):270-4 – reference: 8401587 - Nat Genet. 1993 Aug;4(4):387-92 – reference: 14570710 - Hum Mol Genet. 2003 Dec 15;12(24):3359-67 – reference: 12821179 - Neurosci Lett. 2003 Jul 17;345(2):93-6 – reference: 12952864 - Hum Mol Genet. 2003 Nov 1;12(21):2789-95 – reference: 14993615 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3498-503 – reference: 11030759 - Hum Mol Genet. 2000 Oct 12;9(17):2539-44 – reference: 15029481 - Neurogenetics. 2004 Jun;5(2):109-14 – reference: 10655554 - Hum Mol Genet. 2000 Feb 12;9(3):439-45 – reference: 12123845 - Neurosci Lett. 2002 Aug 2;328(1):1-4 – reference: 18930147 - Neurobiol Dis. 2009 Jan;33(1):37-47 |
SSID | ssj0016437 |
Score | 2.425771 |
Snippet | The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying... The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref oup istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3039 |
SubjectTerms | Adult Age of Onset Aged Aged, 80 and over Biological and medical sciences Brain - pathology Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Female Fundamental and applied biological sciences. Psychology Genetics of eukaryotes. Biological and molecular evolution Humans Huntington Disease - genetics Huntington Disease - pathology Male Medical sciences Middle Aged Molecular and cellular biology Neurology Trinucleotide Repeat Expansion Young Adult |
Title | Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset |
URI | https://api.istex.fr/ark:/67375/HXZ-71B9G876-6/fulltext.pdf https://www.ncbi.nlm.nih.gov/pubmed/19465745 https://www.proquest.com/docview/211229761 https://www.proquest.com/docview/20777283 https://www.proquest.com/docview/67519830 https://pubmed.ncbi.nlm.nih.gov/PMC2714728 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJhASQjBuYVAsgUBoypY498cxthVQeVknTbxEthNrFWtaNa0o_En-EufETtqMbhr0IaoS10lzPp-Lz42QN16sAAWc25knpe1LEdq8ciECOjwmJZMxZiP3v4a9U__zWXDW6fxeiVqaz8Su_LU2r-R_qArngK6YJfsPlG0mhRPwHegLR6AwHG9E45OxLriaL2BNl0b1Q02ypxtAVHpdVNZemJ2D_WN0EuCmgAlvFNghApuac0OmOhodlj2sgQvMReF6X6GeBMOvWxv62g8wqvvsYlNmzIxslPWTH3xUxQz083zaSIFeXmRYkl93Q55nAKmdw90mHAi3gXQEEx-NViKV4TF1jNBgqFTNyOpdiwS3YXXe5nXZkKvbk6FvYxFlLac0c_ZDB-ivG9_8zb3nddqm4cUgnJMVuY7-xbUyQ9fTOh8Baz3KsgnT1b7apbkvicwmkJFPv2NkXBSkvbNvaeR-SI5BvKThLbLJwG7BlhofP31p3FroJa2KP5o_V9fLTbw9uP-evntLQ9rExb6osy_vTXgJS1fpnivrjKLLsb0rytLgAblvrBy6ryH7kHTyYovc1n1Pf26RO30T0fGILAyGaYNhOlYUoEmXGH5XUgM-CgimGsF0WFTDKgTTYUmXCKaIYMoLahBMgTA4az1JheDH5PTocHDQs003EFsGHpvZmZABj10VOwoMQsXBTg9zR4AOmgvFhJDMAU4jQWUGoz_xk1wpR8iIOZx5yo-F94RsFOMif0Zo5GFkA9o2zPFlEggQeonyA_hIIcLAIu9rCqTSlMrHji0XqQ7Z8FKgVqqpZZHXzdiJLhCzdtTbipDNkKuAY5EuUPrambotEDRDmRtFUejEFtmuUZEaXlXCRZcxsDxci7xqroIgQe8gL_LxHIY48HswNq4eEUZg7sWeY5GnGmPLx0z8MIh8eHFRC33NACxi375SDM-rYvYscn247fObvqBtcnfJT16Qjdl0nr8Eu2AmutVa-wOsiROK |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Somatic+expansion+of+the+Huntington%27s+disease+CAG+repeat+in+the+brain+is+associated+with+an+earlier+age+of+disease+onset&rft.jtitle=Human+molecular+genetics&rft.au=Swami%2C+Meera&rft.au=Hendricks%2C+Audrey+E.&rft.au=Gillis%2C+Tammy&rft.au=Massood%2C+Tiffany&rft.date=2009-08-15&rft.pub=Oxford+University+Press&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=18&rft.issue=16&rft.spage=3039&rft.epage=3047&rft_id=info:doi/10.1093%2Fhmg%2Fddp242&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_71B9G876_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon |