Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset

The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat...

Full description

Saved in:
Bibliographic Details
Published inHuman molecular genetics Vol. 18; no. 16; pp. 3039 - 3047
Main Authors Swami, Meera, Hendricks, Audrey E., Gillis, Tammy, Massood, Tiffany, Mysore, Jayalakshmi, Myers, Richard H., Wheeler, Vanessa C.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.08.2009
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.
AbstractList The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.
The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.
The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying factors. Delineating these modifiers is a critical step towards developing validated therapeutic targets in HD patients. The HD CAG repeat is somatically unstable, undergoing progressive length increases over time, particularly in brain regions that are the targets of neurodegeneration. Here, we have explored the hypothesis that somatic instability of the HD CAG repeat is itself a modifier of disease. Using small-pool PCR, we quantified somatic instability in the cortex region of the brain from a cohort of HD individuals exhibiting phenotypic extremes of young and old disease onset as predicted by the length of their constitutive HD CAG repeat lengths. After accounting for constitutive repeat length, somatic instability was found to be a significant predictor of onset age, with larger repeat length gains associated with earlier disease onset. These data are consistent with the hypothesis that somatic HD CAG repeat length expansions in target tissues contribute to the HD pathogenic process, and support pursuing factors that modify somatic instability as viable therapeutic targets.
Author Gillis, Tammy
Mysore, Jayalakshmi
Myers, Richard H.
Swami, Meera
Hendricks, Audrey E.
Massood, Tiffany
Wheeler, Vanessa C.
AuthorAffiliation 3 Department of Neurology , Boston University School of Public Health , Boston, MA 02118 , USA
1 Center for Human Genetic Research , Massachusetts General Hospital , Boston, MA 02114 , USA
2 Department of Biostatistics
AuthorAffiliation_xml – name: 2 Department of Biostatistics
– name: 3 Department of Neurology , Boston University School of Public Health , Boston, MA 02118 , USA
– name: 1 Center for Human Genetic Research , Massachusetts General Hospital , Boston, MA 02114 , USA
Author_xml – sequence: 1
  givenname: Meera
  surname: Swami
  fullname: Swami, Meera
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 2
  givenname: Audrey E.
  surname: Hendricks
  fullname: Hendricks, Audrey E.
  organization: Department of Biostatistics
– sequence: 3
  givenname: Tammy
  surname: Gillis
  fullname: Gillis, Tammy
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 4
  givenname: Tiffany
  surname: Massood
  fullname: Massood, Tiffany
  organization: Department of Neurology, Boston University School of Public Health, Boston, MA 02118, USA
– sequence: 5
  givenname: Jayalakshmi
  surname: Mysore
  fullname: Mysore, Jayalakshmi
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
– sequence: 6
  givenname: Richard H.
  surname: Myers
  fullname: Myers, Richard H.
  organization: Department of Neurology, Boston University School of Public Health, Boston, MA 02118, USA
– sequence: 7
  givenname: Vanessa C.
  surname: Wheeler
  fullname: Wheeler, Vanessa C.
  email: wheeler@helix.mgh.harvard.edu
  organization: Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21777608$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/19465745$$D View this record in MEDLINE/PubMed
BookMark eNqFklGLEzEUhQdZcburL_4ACYIKwrhJZiaZvAhr0VZY8EEF8SVkMjdt1mkyJhmt_97Udosuok8J5Lvnntx7zooT5x0UxUOCXxAsqov1ZnXR9yOt6Z1iRmqGS4rb6qSYYcHqkgnMTouzGK8xJqyu-L3ilIiaNbxuZsX2vd-oZDWC7ahctN4hb1BaA1pOLlm3St49i6i3EVQENL9coAAjqISs-4V1QeWbjUjF6LVVCXr03aY1Ug6BCoOFgNQKdqo3It5FSPeLu0YNER4czvPi45vXH-bL8urd4u388qrUTUVT2Xe6US0xLTacCqMEYwxwhymFztCu0xTrjmnMCamFqAUYgzvNKVa0MnXbVefFy73uOHUb6DW4FNQgx2A3KvyQXln554uza7ny3yTlpOa0zQJPDwLBf50gJrmxUcMwKAd-ipLxhoi2wv8FKeZ8J5jBx7fAaz8Fl6cgKSGUCs5Ihh797vto-GZ1GXhyAFTUajBBOW3jkaMkd2N45x_vOR18jAGM1Dbllfvdd-0gCZa7FMmcIrlPUS55fqvk2P1v8MGHn8Z_c-WeszHB9kiq8CWPsOKNXH76LDl5JRYtZ5JVPwEv7eW4
CODEN HNGEE5
CitedBy_id crossref_primary_10_1007_s13311_019_00768_7
crossref_primary_10_1016_j_tig_2015_03_013
crossref_primary_10_1007_s00439_022_02500_6
crossref_primary_10_1016_j_dnarep_2016_01_001
crossref_primary_10_1038_nrdp_2015_5
crossref_primary_10_1515_medgen_2021_2101
crossref_primary_10_1002_ana_24656
crossref_primary_10_1186_s40673_016_0058_y
crossref_primary_10_7554_eLife_55911
crossref_primary_10_1038_s41467_024_47485_0
crossref_primary_10_1016_j_ebiom_2023_104720
crossref_primary_10_3390_ijms252111787
crossref_primary_10_1002_mdc3_13375
crossref_primary_10_1098_rsos_240790
crossref_primary_10_1016_j_ymthe_2023_05_006
crossref_primary_10_1007_s42764_021_00041_2
crossref_primary_10_1093_hmg_ddx261
crossref_primary_10_1016_j_celrep_2021_109649
crossref_primary_10_3988_jcn_2020_16_4_586
crossref_primary_10_1016_j_ajhg_2021_03_011
crossref_primary_10_1093_brain_awad436
crossref_primary_10_4199_C00151ED1V01Y201702ISP074
crossref_primary_10_1242_dmm_041319
crossref_primary_10_1007_s00259_012_2114_z
crossref_primary_10_3389_fncel_2021_628010
crossref_primary_10_1016_j_celrep_2021_110078
crossref_primary_10_1042_ETLS20230015
crossref_primary_10_1016_j_mrgentox_2010_06_008
crossref_primary_10_3389_fncel_2017_00153
crossref_primary_10_1038_s41598_019_55202_x
crossref_primary_10_1007_s11064_019_02809_1
crossref_primary_10_1016_j_ejmg_2014_11_005
crossref_primary_10_1093_nargab_lqz003
crossref_primary_10_1016_j_tig_2022_03_016
crossref_primary_10_3389_fgene_2018_00601
crossref_primary_10_1016_j_cell_2023_09_008
crossref_primary_10_1126_scitranslmed_adn4600
crossref_primary_10_1021_bi300410d
crossref_primary_10_1371_journal_pgen_1000749
crossref_primary_10_1093_hmg_ddae137
crossref_primary_10_1002_hbm_23266
crossref_primary_10_1016_j_dnarep_2017_06_017
crossref_primary_10_1038_nrg3152
crossref_primary_10_1038_s41582_020_0389_4
crossref_primary_10_1093_hmg_ddy375
crossref_primary_10_3233_JHD_200395
crossref_primary_10_1126_sciadv_abd1700
crossref_primary_10_5607_en_2014_23_4_271
crossref_primary_10_1093_nar_gky110
crossref_primary_10_1111_cge_12324
crossref_primary_10_1038_s41431_022_01213_8
crossref_primary_10_1016_j_lfs_2024_122562
crossref_primary_10_1128_MCB_00332_10
crossref_primary_10_1038_s41598_024_64105_5
crossref_primary_10_1371_journal_pgen_1003280
crossref_primary_10_1002_mds_23623
crossref_primary_10_1371_journal_pone_0023647
crossref_primary_10_1242_dmm_031930
crossref_primary_10_3390_genes15060807
crossref_primary_10_1016_j_ajhg_2009_11_006
crossref_primary_10_1016_j_tig_2018_02_005
crossref_primary_10_1111_nan_12465
crossref_primary_10_1093_braincomms_fcaa066
crossref_primary_10_1016_j_gde_2020_10_006
crossref_primary_10_1186_s40035_024_00406_z
crossref_primary_10_1007_s00415_020_10218_6
crossref_primary_10_1016_j_arr_2018_10_004
crossref_primary_10_1093_bioinformatics_btae485
crossref_primary_10_1016_j_jns_2019_05_010
crossref_primary_10_1016_j_nbd_2015_01_004
crossref_primary_10_1038_s41598_017_05125_2
crossref_primary_10_1016_j_cell_2019_06_036
crossref_primary_10_1016_j_jns_2018_09_022
crossref_primary_10_1007_s13238_022_00912_8
crossref_primary_10_1371_journal_pone_0298323
crossref_primary_10_3233_JHD_160203
crossref_primary_10_3389_fnagi_2020_524369
crossref_primary_10_1038_s41598_017_01510_z
crossref_primary_10_1093_hmg_dds337
crossref_primary_10_1016_j_jmb_2016_08_005
crossref_primary_10_1002_wrna_1709
crossref_primary_10_1038_nrm2854
crossref_primary_10_1186_s40035_023_00350_4
crossref_primary_10_1371_journal_pgen_1003930
crossref_primary_10_1038_s41593_022_01033_5
crossref_primary_10_3390_ijms252111493
crossref_primary_10_1038_nrg2828
crossref_primary_10_1186_1752_0509_4_29
crossref_primary_10_7554_eLife_70217
crossref_primary_10_1038_s41588_019_0575_8
crossref_primary_10_1002_med_21425
crossref_primary_10_1186_s40478_022_01349_0
crossref_primary_10_1038_tpj_2009_69
crossref_primary_10_1242_dmm_049453
crossref_primary_10_1016_j_ebiom_2019_09_020
crossref_primary_10_1093_nar_gkae1204
crossref_primary_10_1371_journal_pone_0019800
crossref_primary_10_1093_nar_gkae368
crossref_primary_10_3390_biomedicines11123336
crossref_primary_10_1371_journal_pone_0053361
crossref_primary_10_3389_fpsyt_2015_00032
crossref_primary_10_1080_21675511_2015_1131885
crossref_primary_10_1080_15476286_2020_1712894
crossref_primary_10_1111_j_1399_0004_2011_01795_x
crossref_primary_10_1016_j_dnarep_2015_01_005
crossref_primary_10_1016_j_dnarep_2016_03_016
crossref_primary_10_1002_mds_25172
crossref_primary_10_3810_pgm_2011_09_2466
crossref_primary_10_1038_d41586_025_00717_9
crossref_primary_10_1016_j_pneurobio_2023_102484
crossref_primary_10_1093_nar_gku285
crossref_primary_10_3233_JHD_231516
crossref_primary_10_3390_genes12071071
crossref_primary_10_1007_s42764_020_00027_6
crossref_primary_10_3390_ijms26062655
crossref_primary_10_1016_j_brainres_2015_10_001
crossref_primary_10_3390_brainsci12101389
crossref_primary_10_1016_j_cell_2024_11_038
crossref_primary_10_3389_fncel_2020_606331
crossref_primary_10_1002_humu_23580
crossref_primary_10_1093_hmg_ddaa196
crossref_primary_10_1016_j_mad_2016_09_003
crossref_primary_10_1093_nar_gkz501
crossref_primary_10_3233_JHD_200445
crossref_primary_10_1016_j_neubiorev_2015_03_003
crossref_primary_10_1016_j_jns_2013_11_014
crossref_primary_10_1159_000479375
crossref_primary_10_1017_erm_2022_16
crossref_primary_10_3390_biomedicines10081863
crossref_primary_10_1212_WNL_0000000000007355
crossref_primary_10_1016_j_ejmg_2011_04_002
crossref_primary_10_1002_humu_22287
crossref_primary_10_1093_hmg_ddaa283
crossref_primary_10_7554_eLife_77568
crossref_primary_10_3390_molecules22122027
crossref_primary_10_4161_cc_10_4_14729
crossref_primary_10_1016_j_pbj_2017_07_083
crossref_primary_10_1016_j_neuron_2020_11_005
crossref_primary_10_1212_NXG_0000000000000608
crossref_primary_10_3233_JHD_200433
crossref_primary_10_1002_mds_25502
crossref_primary_10_1016_j_neuron_2023_12_009
crossref_primary_10_1186_s12883_017_0923_1
crossref_primary_10_3233_JHD_200438
crossref_primary_10_7554_eLife_89782
crossref_primary_10_1073_pnas_2413298121
crossref_primary_10_1093_hmg_ddq015
crossref_primary_10_1093_hmg_ddac231
crossref_primary_10_1093_hmg_ddab148
crossref_primary_10_1371_journal_pgen_1003051
crossref_primary_10_3233_JHD_200423
crossref_primary_10_1016_S1474_4422_10_70276_3
crossref_primary_10_3233_JHD_200425
crossref_primary_10_1016_j_ajhg_2019_04_007
crossref_primary_10_3233_JHD_200421
crossref_primary_10_7554_eLife_64674
crossref_primary_10_1089_genbio_2021_0012
crossref_primary_10_1093_brain_awae105
crossref_primary_10_1016_j_cell_2015_07_003
crossref_primary_10_3233_JHD_200427
crossref_primary_10_1093_braincomms_fcac279
crossref_primary_10_3233_JHD_200426
crossref_primary_10_1016_S1474_4422_20_30343_4
crossref_primary_10_3233_JHD_200429
crossref_primary_10_1371_journal_pone_0028260
crossref_primary_10_1098_rsif_2013_0605
crossref_primary_10_1093_hmg_dds185
crossref_primary_10_3390_biomedicines11082275
crossref_primary_10_1016_j_pneurobio_2023_102448
crossref_primary_10_1073_pnas_1712526114
crossref_primary_10_1016_j_ajhg_2024_04_015
crossref_primary_10_1038_s41467_024_50626_0
crossref_primary_10_1093_braincomms_fcae030
crossref_primary_10_1038_s41588_024_02054_5
crossref_primary_10_1093_hmg_dds059
crossref_primary_10_1371_journal_pgen_1001242
crossref_primary_10_1093_hmg_ddab129
crossref_primary_10_3390_genes4030375
crossref_primary_10_1093_hmg_ddae087
crossref_primary_10_1093_nar_gkab152
crossref_primary_10_3233_JHD_210485
crossref_primary_10_1016_j_tox_2009_10_019
crossref_primary_10_1007_s12041_018_0948_2
crossref_primary_10_1038_s41591_024_03424_6
crossref_primary_10_1038_s41431_024_01546_6
crossref_primary_10_1038_s41582_021_00465_0
crossref_primary_10_3389_fnmol_2021_721749
crossref_primary_10_1093_nar_gkae1155
crossref_primary_10_1093_brain_awz115
crossref_primary_10_1177_18796397251316762
crossref_primary_10_1016_S1474_4422_17_30161_8
crossref_primary_10_1007_s12264_010_0113_2
crossref_primary_10_1016_j_neuron_2019_01_039
crossref_primary_10_1038_s41588_024_02055_4
crossref_primary_10_1016_S1474_4422_10_70183_6
crossref_primary_10_1093_hmg_ddr421
crossref_primary_10_1038_s41593_024_01850_w
crossref_primary_10_1093_hmg_ddaa139
crossref_primary_10_1038_s41598_021_92381_y
crossref_primary_10_7554_eLife_89782_2
crossref_primary_10_1246_bcsj_20200351
crossref_primary_10_1371_journal_pgen_1005267
crossref_primary_10_1042_NS20200010
crossref_primary_10_1038_s41380_018_0129_y
crossref_primary_10_1093_brain_awae266
crossref_primary_10_1007_s00415_023_11572_x
Cites_doi 10.1093/hmg/ddg300
10.1038/nature05778
10.1097/00005072-198511000-00003
10.1007/s10048-004-0175-2
10.1093/hmg/ddg056
10.1038/ng0893-393
10.1038/ng0893-387
10.1073/pnas.94.8.3872
10.1093/hmg/8.1.115
10.1038/ng0494-409
10.1111/j.1468-1331.2007.01975.x
10.1016/0092-8674(93)90585-E
10.1212/WNL.53.6.1330
10.1086/378133
10.1016/S0304-3940(03)00436-1
10.1007/s10048-005-0023-z
10.1016/0896-6273(95)90106-X
10.1006/mcpr.1993.1034
10.1101/SQB.1996.061.01.062
10.1371/journal.pcbi.0030235
10.1136/jnnp.2007.128728
10.1093/hmg/ddg352
10.1093/hmg/ddm054
10.1073/pnas.0308679101
10.1093/hmg/ddn003
10.1038/nsmb965
10.1186/1471-2350-10-11
10.1093/hmg/2.10.1547
10.1073/pnas.0800048105
10.1212/WNL.43.12.2674
10.1093/hmg/9.17.2539
10.1093/brain/awn025
10.1038/70598
10.1002/gepi.20317
10.1073/pnas.98.4.1811
10.1038/ng0893-398
10.1007/BF00225192
10.1093/hmg/9.3.439
10.1136/jmg.2006.045153
10.1016/j.nbd.2008.09.014
10.1016/j.dnarep.2007.01.002
10.1016/S0304-3940(02)00231-8
10.1186/1471-2350-7-71
10.1126/science.1139517
ContentType Journal Article
Copyright The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
2009 INIST-CNRS
The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
Copyright_xml – notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2009
– notice: 2009 INIST-CNRS
– notice: The Author 2009. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
DOI 10.1093/hmg/ddp242
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Genetics Abstracts

MEDLINE

Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1460-2083
EndPage 3047
ExternalDocumentID PMC2714728
1809903031
19465745
21777608
10_1093_hmg_ddp242
10.1093/hmg/ddp242
ark_67375_HXZ_71B9G876_6
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS049206
– fundername: NINDS NIH HHS
  grantid: NS049206
– fundername: NINDS NIH HHS
  grantid: P50 NS16367-28
GroupedDBID ---
-DZ
-E4
.2P
.I3
.XZ
.ZR
0R~
18M
1TH
29I
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNGD
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGORE
AGQPQ
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
ARIXL
ASPBG
ATGXG
AVWKF
AXUDD
AYOIW
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSCLL
BSWAC
BTRTY
BVRKM
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
EBS
EE~
EJD
EMOBN
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HVGLF
HW0
HZ~
IH2
IOX
J21
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
NVLIB
O0~
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
SJN
TEORI
TJX
TLC
TMA
TR2
W8F
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZKX
~91
AASNB
AAYOK
ABQTQ
ADJQC
ADRIX
AFXEN
M49
RIG
AAYXX
CITATION
.55
.GJ
AAPGJ
AAWDT
ABEFU
ABIME
ABPIB
ABSMQ
ABTAH
ABZEO
ACFRR
ACPQN
ACVCV
ACZBC
ADMTO
AEHUL
AEKPW
AFFQV
AFSHK
AGKRT
AGMDO
AJDVS
ANFBD
APJGH
AQDSO
AQKUS
ASAOO
ATDFG
ATTQO
AVNTJ
BZKNY
CXTWN
DFGAJ
EIHJH
ELUNK
IQODW
MBLQV
MBTAY
NEJ
NTWIH
OBFPC
O~Y
QBD
RNI
RZF
RZO
TCN
X7M
ZCG
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7TK
8FD
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c532t-dbc5a81f80f729fa9666e0b022ebf2bbc20cb6c071149949eff0bc720a23f48b3
ISSN 0964-6906
1460-2083
IngestDate Thu Aug 21 13:17:32 EDT 2025
Thu Jul 10 19:01:38 EDT 2025
Fri Jul 11 01:16:02 EDT 2025
Fri Jul 25 19:32:04 EDT 2025
Wed Feb 19 01:49:37 EST 2025
Wed Apr 02 07:25:38 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Tue Jul 01 00:24:07 EDT 2025
Wed Sep 11 04:51:09 EDT 2024
Tue Aug 05 16:50:21 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Nervous system diseases
Huntingtin
Central nervous system
Huntington disease
Genetic disease
Cerebral disorder
Encephalon
Age of onset
Central nervous system disease
Genetics
Degenerative disease
Expansion
Extrapyramidal syndrome
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-dbc5a81f80f729fa9666e0b022ebf2bbc20cb6c071149949eff0bc720a23f48b3
Notes istex:F8AF21B673CDEA09F52DD9CCBD34879558376521
ark:/67375/HXZ-71B9G876-6
ArticleID:ddp242
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://academic.oup.com/hmg/article-pdf/18/16/3039/17247251/ddp242.pdf
PMID 19465745
PQID 211229761
PQPubID 32497
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2714728
proquest_miscellaneous_67519830
proquest_miscellaneous_20777283
proquest_journals_211229761
pubmed_primary_19465745
pascalfrancis_primary_21777608
crossref_citationtrail_10_1093_hmg_ddp242
crossref_primary_10_1093_hmg_ddp242
oup_primary_10_1093_hmg_ddp242
istex_primary_ark_67375_HXZ_71B9G876_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-08-15
PublicationDateYYYYMMDD 2009-08-15
PublicationDate_xml – month: 08
  year: 2009
  text: 2009-08-15
  day: 15
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Human molecular genetics
PublicationTitleAlternate Hum Mol Genet
PublicationYear 2009
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Gonitel ( key 20170522151447_DDP242C29) 2008; 105
Veitch ( key 20170522151447_DDP242C34) 2007; 6
Wheeler ( key 20170522151447_DDP242C25) 1999; 8
Wexler ( key 20170522151447_DDP242C11) 2004; 101
Rubinsztein ( key 20170522151447_DDP242C12) 1997; 94
Owen ( key 20170522151447_DDP242C44) 2005; 12
Kovtun ( key 20170522151447_DDP242C45) 2007; 447
Warner ( key 20170522151447_DDP242C47) 1993; 7
Stine ( key 20170522151447_DDP242C7) 1993; 2
Andrew ( key 20170522151447_DDP242C5) 1993; 4
Metzger ( key 20170522151447_DDP242C21) 2008; 17
Wheeler ( key 20170522151447_DDP242C31) 2003; 12
Paulsen ( key 20170522151447_DDP242C41) 2008; 79
Verny ( key 20170522151447_DDP242C40) 2007; 14
Vonsattel ( key 20170522151447_DDP242C3) 1985; 44
Shelbourne ( key 20170522151447_DDP242C28) 2007; 16
Manley ( key 20170522151447_DDP242C46) 1999; 23
Gusella ( key 20170522151447_DDP242C8) 1996; 61
Jung ( key 20170522151447_DDP242C35) 2007; 315
Djousse ( key 20170522151447_DDP242C17) 2004; 5
Andresen ( key 20170522151447_DDP242C20) 2007; 44
Gomes-Pereira ( key 20170522151447_DDP242C33) 2004; 277
Aronin ( key 20170522151447_DDP242C30) 1995; 15
Harper ( key 20170522151447_DDP242C1) 1999; 354
Li ( key 20170522151447_DDP242C10) 2003; 73
Myers ( key 20170522151447_DDP242C9) 1998
Kennedy ( key 20170522151447_DDP242C27) 2003; 12
Naze ( key 20170522151447_DDP242C15) 2002; 328
Huntington's disease collaborative research group ( key 20170522151447_DDP242C2) 1993; 72
Ashizawa ( key 20170522151447_DDP242C43) 1993; 43
Cannella ( key 20170522151447_DDP242C39) 2009; 10
Duyao ( key 20170522151447_DDP242C4) 1993; 4
De Rooij ( key 20170522151447_DDP242C24) 1995; 95
Kennedy ( key 20170522151447_DDP242C26) 2000; 9
Holbert ( key 20170522151447_DDP242C14) 2001; 98
Li ( key 20170522151447_DDP242C19) 2006; 7
MacDonald ( key 20170522151447_DDP242C13) 1999; 53
Dragileva ( key 20170522151447_DDP242C32) 2009; 33
Watase ( key 20170522151447_DDP242C37) 2003; 12
Chattopadhyay ( key 20170522151447_DDP242C16) 2003; 345
Fortune ( key 20170522151447_DDP242C36) 2000; 9
Rosas ( key 20170522151447_DDP242C42) 2008; 131
Gayan ( key 20170522151447_DDP242C22) 2008; 32
Kaplan ( key 20170522151447_DDP242C38) 2007; 3
Metzger ( key 20170522151447_DDP242C18) 2006; 7
Telenius ( key 20170522151447_DDP242C23) 1994; 6
Snell ( key 20170522151447_DDP242C6) 1993; 4
10655554 - Hum Mol Genet. 2000 Feb 12;9(3):439-45
16369839 - Neurogenetics. 2006 Mar;7(1):27-30
7868117 - Hum Genet. 1995 Mar;95(3):270-4
19210789 - BMC Med Genet. 2009;10:11
10581038 - Nat Genet. 1999 Dec;23(4):471-3
14993615 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3498-503
15029481 - Neurogenetics. 2004 Jun;5(2):109-14
18299573 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3467-72
2932539 - J Neuropathol Exp Neurol. 1985 Nov;44(6):559-77
8268907 - Hum Mol Genet. 1993 Oct;2(10):1547-9
12821179 - Neurosci Lett. 2003 Jul 17;345(2):93-6
9108071 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3872-6
12900792 - Am J Hum Genet. 2003 Sep;73(3):682-7
17450122 - Nature. 2007 May 24;447(7143):447-52
18337273 - Brain. 2008 Apr;131(Pt 4):1057-68
8401587 - Nat Genet. 1993 Aug;4(4):387-92
10434293 - Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):957-61
17018562 - J Med Genet. 2007 Jan;44(1):44-50
7576661 - Neuron. 1995 Nov;15(5):1193-201
18481795 - Genet Epidemiol. 2008 Jul;32(5):445-53
9887339 - Hum Mol Genet. 1999 Jan;8(1):115-22
8054984 - Nat Genet. 1994 Apr;6(4):409-14
18930147 - Neurobiol Dis. 2009 Jan;33(1):37-47
11030759 - Hum Mol Genet. 2000 Oct 12;9(17):2539-44
14570710 - Hum Mol Genet. 2003 Dec 15;12(24):3359-67
17332375 - Science. 2007 Mar 30;315(5820):1857-9
18192679 - Hum Mol Genet. 2008 Apr 15;17(8):1137-46
11172033 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1811-6
12123845 - Neurosci Lett. 2002 Aug 2;328(1):1-4
12554681 - Hum Mol Genet. 2003 Feb 1;12(3):273-81
12952864 - Hum Mol Genet. 2003 Nov 1;12(21):2789-95
17941857 - Eur J Neurol. 2007 Dec;14(12):1344-50
8401588 - Nat Genet. 1993 Aug;4(4):393-7
8366869 - Mol Cell Probes. 1993 Jun;7(3):235-9
17293170 - DNA Repair (Amst). 2007 Jun 1;6(6):789-96
8401589 - Nat Genet. 1993 Aug;4(4):398-403
9246488 - Cold Spring Harb Symp Quant Biol. 1996;61:615-26
16025128 - Nat Struct Mol Biol. 2005 Aug;12(8):663-70
15201449 - Methods Mol Biol. 2004;277:61-76
8458085 - Cell. 1993 Mar 26;72(6):971-83
18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80
17409200 - Hum Mol Genet. 2007 May 15;16(10):1133-42
18039028 - PLoS Comput Biol. 2007 Nov;3(11):e235
10522893 - Neurology. 1999 Oct 12;53(6):1330-2
8255475 - Neurology. 1993 Dec;43(12):2674-8
16914060 - BMC Med Genet. 2006;7:71
References_xml – volume: 12
  start-page: 2789
  year: 2003
  ident: key 20170522151447_DDP242C37
  article-title: Regional differences of somatic CAG repeat instability do not account for selective neuronal vulnerability in a knock-in mouse model of SCA1
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg300
– volume: 447
  start-page: 447
  year: 2007
  ident: key 20170522151447_DDP242C45
  article-title: OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells
  publication-title: Nature
  doi: 10.1038/nature05778
– volume: 44
  start-page: 559
  year: 1985
  ident: key 20170522151447_DDP242C3
  article-title: Neuropathological classification of Huntington's disease
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/00005072-198511000-00003
– volume: 5
  start-page: 109
  year: 2004
  ident: key 20170522151447_DDP242C17
  article-title: Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16
  publication-title: Neurogenetics
  doi: 10.1007/s10048-004-0175-2
– volume: 12
  start-page: 273
  year: 2003
  ident: key 20170522151447_DDP242C31
  article-title: Mismatch repair gene Msh2 modifies the timing of early disease in Hdh(Q111) striatum
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg056
– volume: 4
  start-page: 393
  year: 1993
  ident: key 20170522151447_DDP242C6
  article-title: Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng0893-393
– volume: 4
  start-page: 387
  year: 1993
  ident: key 20170522151447_DDP242C4
  article-title: Trinucleotide repeat length instability and age of onset in Huntington's disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng0893-387
– volume: 94
  start-page: 3872
  year: 1997
  ident: key 20170522151447_DDP242C12
  article-title: Genotypes at the GluR6 kainate receptor locus are associated with variation in the age of onset of Huntington disease
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.94.8.3872
– volume: 8
  start-page: 115
  year: 1999
  ident: key 20170522151447_DDP242C25
  article-title: Length-dependent gametic CAG repeat instability in the Huntington's disease knock-in mouse
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/8.1.115
– volume: 6
  start-page: 409
  year: 1994
  ident: key 20170522151447_DDP242C23
  article-title: Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm
  publication-title: Nat. Genet.
  doi: 10.1038/ng0494-409
– volume: 14
  start-page: 1344
  year: 2007
  ident: key 20170522151447_DDP242C40
  article-title: Cognitive changes in asymptomatic carriers of the Huntington disease mutation gene
  publication-title: Eur. J. Neurol.
  doi: 10.1111/j.1468-1331.2007.01975.x
– volume: 72
  start-page: 971
  year: 1993
  ident: key 20170522151447_DDP242C2
  article-title: A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90585-E
– volume: 53
  start-page: 1330
  year: 1999
  ident: key 20170522151447_DDP242C13
  article-title: Evidence for the GluR6 gene associated with younger onset age of Huntington's disease
  publication-title: Neurology
  doi: 10.1212/WNL.53.6.1330
– volume: 73
  start-page: 682
  year: 2003
  ident: key 20170522151447_DDP242C10
  article-title: A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS Study
  publication-title: Am. J. Hum. Genet.
  doi: 10.1086/378133
– volume: 345
  start-page: 93
  year: 2003
  ident: key 20170522151447_DDP242C16
  article-title: Modulation of age at onset in Huntington's disease and spinocerebellar ataxia type 2 patients originated from eastern India
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(03)00436-1
– volume: 7
  start-page: 27
  year: 2006
  ident: key 20170522151447_DDP242C18
  article-title: The S18Y polymorphism in the UCHL1 gene is a genetic modifier in Huntington's disease
  publication-title: Neurogenetics
  doi: 10.1007/s10048-005-0023-z
– start-page: 301
  volume-title: Genetic Instabilities and Hereditary Neurological Diseases
  year: 1998
  ident: key 20170522151447_DDP242C9
  article-title: Huntington's disease
– volume: 15
  start-page: 1193
  year: 1995
  ident: key 20170522151447_DDP242C30
  article-title: CAG expansion affects the expression of mutant Huntingtin in the Huntington's disease brain
  publication-title: Neuron
  doi: 10.1016/0896-6273(95)90106-X
– volume: 7
  start-page: 235
  year: 1993
  ident: key 20170522151447_DDP242C47
  article-title: A new polymerase chain reaction (PCR) assay for the trinucleotide repeat that is unstable and expanded on Huntington's disease chromosomes
  publication-title: Mol. Cell Probes
  doi: 10.1006/mcpr.1993.1034
– volume: 61
  start-page: 615
  year: 1996
  ident: key 20170522151447_DDP242C8
  article-title: Huntington's disease
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/SQB.1996.061.01.062
– volume: 3
  start-page: e235
  year: 2007
  ident: key 20170522151447_DDP242C38
  article-title: A universal mechanism ties genotype to phenotype in trinucleotide diseases
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.0030235
– volume: 79
  start-page: 874
  year: 2008
  ident: key 20170522151447_DDP242C41
  article-title: Detection of Huntington's disease decades before diagnosis: the Predict-HD study
  publication-title: J. Neurol. Neurosurg. Psychiatr.
  doi: 10.1136/jnnp.2007.128728
– volume: 277
  start-page: 61
  year: 2004
  ident: key 20170522151447_DDP242C33
  article-title: Analysis of unstable triplet repeats using small-pool polymerase chain reaction
  publication-title: Methods Mol. Biol.
– volume: 12
  start-page: 3359
  year: 2003
  ident: key 20170522151447_DDP242C27
  article-title: Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddg352
– volume: 16
  start-page: 1133
  year: 2007
  ident: key 20170522151447_DDP242C28
  article-title: Triplet repeat mutation length gains correlate with cell-type specific vulnerability in Huntington disease brain
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddm054
– volume: 101
  start-page: 3498
  year: 2004
  ident: key 20170522151447_DDP242C11
  article-title: Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's disease age of onset
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0308679101
– volume: 17
  start-page: 1137
  year: 2008
  ident: key 20170522151447_DDP242C21
  article-title: Huntingtin-associated protein-1 is a modifier of the age-at-onset of Huntington's disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddn003
– volume: 12
  start-page: 663
  year: 2005
  ident: key 20170522151447_DDP242C44
  article-title: (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb965
– volume: 10
  start-page: 11
  year: 2009
  ident: key 20170522151447_DDP242C39
  article-title: DNA instability in replicating Huntington's disease lymphoblasts
  publication-title: BMC Med. Genet.
  doi: 10.1186/1471-2350-10-11
– volume: 2
  start-page: 1547
  year: 1993
  ident: key 20170522151447_DDP242C7
  article-title: Correlation between the onset age of Huntington's disease and length of the trinucleotide repeat in IT-15
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/2.10.1547
– volume: 105
  start-page: 3467
  year: 2008
  ident: key 20170522151447_DDP242C29
  article-title: DNA instability in postmitotic neurons
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0800048105
– volume: 43
  start-page: 2674
  year: 1993
  ident: key 20170522151447_DDP242C43
  article-title: Somatic instability of CTG repeat in myotonic dystrophy
  publication-title: Neurology
  doi: 10.1212/WNL.43.12.2674
– volume: 9
  start-page: 2539
  year: 2000
  ident: key 20170522151447_DDP242C26
  article-title: Dramatic mutation instability in HD mouse striatum: does polyglutamine load contribute to cell-specific vulnerability in Huntington's disease?
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.17.2539
– volume: 131
  start-page: 1057
  year: 2008
  ident: key 20170522151447_DDP242C42
  article-title: Cerebral cortex and the clinical expression of Huntington's disease: complexity and heterogeneity
  publication-title: Brain
  doi: 10.1093/brain/awn025
– volume: 23
  start-page: 471
  year: 1999
  ident: key 20170522151447_DDP242C46
  article-title: Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice
  publication-title: Nat. Genet.
  doi: 10.1038/70598
– volume: 354
  start-page: 957
  year: 1999
  ident: key 20170522151447_DDP242C1
  article-title: Huntington's disease: a clinical, genetic and molecular model for polyglutamine repeat disorders
  publication-title: Philos. Trans. R. Soc. Lond. B, Biol. Sci.
– volume: 32
  start-page: 445
  year: 2008
  ident: key 20170522151447_DDP242C22
  article-title: Genomewide linkage scan reveals novel loci modifying age of onset of Huntington's disease in the Venezuelan HD kindreds
  publication-title: Genet. Epidemiol.
  doi: 10.1002/gepi.20317
– volume: 98
  start-page: 1811
  year: 2001
  ident: key 20170522151447_DDP242C14
  article-title: The Gln-Ala repeat transcriptional activator CA150 interacts with huntingtin: neuropathologic and genetic evidence for a role in Huntington's disease pathogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.98.4.1811
– volume: 4
  start-page: 398
  year: 1993
  ident: key 20170522151447_DDP242C5
  article-title: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington's disease
  publication-title: Nat. Genet.
  doi: 10.1038/ng0893-398
– volume: 95
  start-page: 270
  year: 1995
  ident: key 20170522151447_DDP242C24
  article-title: Somatic expansion of the (CAG)n repeat in Huntington disease brains
  publication-title: Hum. Genet.
  doi: 10.1007/BF00225192
– volume: 9
  start-page: 439
  year: 2000
  ident: key 20170522151447_DDP242C36
  article-title: Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/9.3.439
– volume: 44
  start-page: 44
  year: 2007
  ident: key 20170522151447_DDP242C20
  article-title: Replication of twelve association studies for Huntington's disease residual age of onset in large Venezuelan kindreds
  publication-title: J. Med. Genet.
  doi: 10.1136/jmg.2006.045153
– volume: 33
  start-page: 37
  year: 2009
  ident: key 20170522151447_DDP242C32
  article-title: Intergenerational and striatal CAG repeat instability in Huntington's disease knock-in mice involve different DNA repair genes
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2008.09.014
– volume: 6
  start-page: 789
  year: 2007
  ident: key 20170522151447_DDP242C34
  article-title: Inherited CAG.CTG allele length is a major modifier of somatic mutation length variability in Huntington disease
  publication-title: DNA Repair
  doi: 10.1016/j.dnarep.2007.01.002
– volume: 328
  start-page: 1
  year: 2002
  ident: key 20170522151447_DDP242C15
  article-title: Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington's disease
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(02)00231-8
– volume: 7
  start-page: 71
  year: 2006
  ident: key 20170522151447_DDP242C19
  article-title: Genome-wide significance for a modifier of age at neurological onset in Huntington's disease at 6q23-24: the HD MAPS study
  publication-title: BMC Med. Genet.
  doi: 10.1186/1471-2350-7-71
– volume: 315
  start-page: 1857
  year: 2007
  ident: key 20170522151447_DDP242C35
  article-title: CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease
  publication-title: Science
  doi: 10.1126/science.1139517
– reference: 16914060 - BMC Med Genet. 2006;7:71
– reference: 8255475 - Neurology. 1993 Dec;43(12):2674-8
– reference: 17018562 - J Med Genet. 2007 Jan;44(1):44-50
– reference: 10434293 - Philos Trans R Soc Lond B Biol Sci. 1999 Jun 29;354(1386):957-61
– reference: 17941857 - Eur J Neurol. 2007 Dec;14(12):1344-50
– reference: 19210789 - BMC Med Genet. 2009;10:11
– reference: 17409200 - Hum Mol Genet. 2007 May 15;16(10):1133-42
– reference: 18299573 - Proc Natl Acad Sci U S A. 2008 Mar 4;105(9):3467-72
– reference: 17450122 - Nature. 2007 May 24;447(7143):447-52
– reference: 15201449 - Methods Mol Biol. 2004;277:61-76
– reference: 16025128 - Nat Struct Mol Biol. 2005 Aug;12(8):663-70
– reference: 17293170 - DNA Repair (Amst). 2007 Jun 1;6(6):789-96
– reference: 8401589 - Nat Genet. 1993 Aug;4(4):398-403
– reference: 8054984 - Nat Genet. 1994 Apr;6(4):409-14
– reference: 18337273 - Brain. 2008 Apr;131(Pt 4):1057-68
– reference: 18481795 - Genet Epidemiol. 2008 Jul;32(5):445-53
– reference: 8268907 - Hum Mol Genet. 1993 Oct;2(10):1547-9
– reference: 18096682 - J Neurol Neurosurg Psychiatry. 2008 Aug;79(8):874-80
– reference: 9246488 - Cold Spring Harb Symp Quant Biol. 1996;61:615-26
– reference: 18192679 - Hum Mol Genet. 2008 Apr 15;17(8):1137-46
– reference: 12900792 - Am J Hum Genet. 2003 Sep;73(3):682-7
– reference: 10581038 - Nat Genet. 1999 Dec;23(4):471-3
– reference: 7576661 - Neuron. 1995 Nov;15(5):1193-201
– reference: 11172033 - Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1811-6
– reference: 8401588 - Nat Genet. 1993 Aug;4(4):393-7
– reference: 16369839 - Neurogenetics. 2006 Mar;7(1):27-30
– reference: 9887339 - Hum Mol Genet. 1999 Jan;8(1):115-22
– reference: 10522893 - Neurology. 1999 Oct 12;53(6):1330-2
– reference: 8366869 - Mol Cell Probes. 1993 Jun;7(3):235-9
– reference: 8458085 - Cell. 1993 Mar 26;72(6):971-83
– reference: 2932539 - J Neuropathol Exp Neurol. 1985 Nov;44(6):559-77
– reference: 9108071 - Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3872-6
– reference: 18039028 - PLoS Comput Biol. 2007 Nov;3(11):e235
– reference: 17332375 - Science. 2007 Mar 30;315(5820):1857-9
– reference: 12554681 - Hum Mol Genet. 2003 Feb 1;12(3):273-81
– reference: 7868117 - Hum Genet. 1995 Mar;95(3):270-4
– reference: 8401587 - Nat Genet. 1993 Aug;4(4):387-92
– reference: 14570710 - Hum Mol Genet. 2003 Dec 15;12(24):3359-67
– reference: 12821179 - Neurosci Lett. 2003 Jul 17;345(2):93-6
– reference: 12952864 - Hum Mol Genet. 2003 Nov 1;12(21):2789-95
– reference: 14993615 - Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3498-503
– reference: 11030759 - Hum Mol Genet. 2000 Oct 12;9(17):2539-44
– reference: 15029481 - Neurogenetics. 2004 Jun;5(2):109-14
– reference: 10655554 - Hum Mol Genet. 2000 Feb 12;9(3):439-45
– reference: 12123845 - Neurosci Lett. 2002 Aug 2;328(1):1-4
– reference: 18930147 - Neurobiol Dis. 2009 Jan;33(1):37-47
SSID ssj0016437
Score 2.425771
Snippet The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying...
The age of onset of Huntington's disease (HD) is determined primarily by the length of the HD CAG repeat mutation, but is also influenced by other modifying...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3039
SubjectTerms Adult
Age of Onset
Aged
Aged, 80 and over
Biological and medical sciences
Brain - pathology
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Female
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Humans
Huntington Disease - genetics
Huntington Disease - pathology
Male
Medical sciences
Middle Aged
Molecular and cellular biology
Neurology
Trinucleotide Repeat Expansion
Young Adult
Title Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset
URI https://api.istex.fr/ark:/67375/HXZ-71B9G876-6/fulltext.pdf
https://www.ncbi.nlm.nih.gov/pubmed/19465745
https://www.proquest.com/docview/211229761
https://www.proquest.com/docview/20777283
https://www.proquest.com/docview/67519830
https://pubmed.ncbi.nlm.nih.gov/PMC2714728
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKJhASQjBuYVAsgUBoypY498cxthVQeVknTbxEthNrFWtaNa0o_En-EufETtqMbhr0IaoS10lzPp-Lz42QN16sAAWc25knpe1LEdq8ciECOjwmJZMxZiP3v4a9U__zWXDW6fxeiVqaz8Su_LU2r-R_qArngK6YJfsPlG0mhRPwHegLR6AwHG9E45OxLriaL2BNl0b1Q02ypxtAVHpdVNZemJ2D_WN0EuCmgAlvFNghApuac0OmOhodlj2sgQvMReF6X6GeBMOvWxv62g8wqvvsYlNmzIxslPWTH3xUxQz083zaSIFeXmRYkl93Q55nAKmdw90mHAi3gXQEEx-NViKV4TF1jNBgqFTNyOpdiwS3YXXe5nXZkKvbk6FvYxFlLac0c_ZDB-ivG9_8zb3nddqm4cUgnJMVuY7-xbUyQ9fTOh8Baz3KsgnT1b7apbkvicwmkJFPv2NkXBSkvbNvaeR-SI5BvKThLbLJwG7BlhofP31p3FroJa2KP5o_V9fLTbw9uP-evntLQ9rExb6osy_vTXgJS1fpnivrjKLLsb0rytLgAblvrBy6ryH7kHTyYovc1n1Pf26RO30T0fGILAyGaYNhOlYUoEmXGH5XUgM-CgimGsF0WFTDKgTTYUmXCKaIYMoLahBMgTA4az1JheDH5PTocHDQs003EFsGHpvZmZABj10VOwoMQsXBTg9zR4AOmgvFhJDMAU4jQWUGoz_xk1wpR8iIOZx5yo-F94RsFOMif0Zo5GFkA9o2zPFlEggQeonyA_hIIcLAIu9rCqTSlMrHji0XqQ7Z8FKgVqqpZZHXzdiJLhCzdtTbipDNkKuAY5EuUPrambotEDRDmRtFUejEFtmuUZEaXlXCRZcxsDxci7xqroIgQe8gL_LxHIY48HswNq4eEUZg7sWeY5GnGmPLx0z8MIh8eHFRC33NACxi375SDM-rYvYscn247fObvqBtcnfJT16Qjdl0nr8Eu2AmutVa-wOsiROK
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Somatic+expansion+of+the+Huntington%27s+disease+CAG+repeat+in+the+brain+is+associated+with+an+earlier+age+of+disease+onset&rft.jtitle=Human+molecular+genetics&rft.au=Swami%2C+Meera&rft.au=Hendricks%2C+Audrey+E.&rft.au=Gillis%2C+Tammy&rft.au=Massood%2C+Tiffany&rft.date=2009-08-15&rft.pub=Oxford+University+Press&rft.issn=0964-6906&rft.eissn=1460-2083&rft.volume=18&rft.issue=16&rft.spage=3039&rft.epage=3047&rft_id=info:doi/10.1093%2Fhmg%2Fddp242&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_HXZ_71B9G876_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-6906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-6906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-6906&client=summon