Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things

The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 11; no. 11; pp. 2895 - 296
Main Authors Michaels, Hannes, Rinderle, Michael, Freitag, Richard, Benesperi, Iacopo, Edvinsson, Tomas, Socher, Richard, Gagliardi, Alessio, Freitag, Marina
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 13.02.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper( ii / i ) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm −2 at 1000 lux; 32.7%, 50 μW cm −2 at 500 lux and 31.4%, 19 μW cm −2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm 2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10 15 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10 20 photons required for training and verification of an artificial neural network were harvested with 64 cm 2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped. Indoor light harvesters enable machine learning on fully autonomous IoT devices at 2.72 × 10 15 photons per inference.
AbstractList The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper( ii / i ) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm −2 at 1000 lux; 32.7%, 50 μW cm −2 at 500 lux and 31.4%, 19 μW cm −2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm 2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10 15 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10 20 photons required for training and verification of an artificial neural network were harvested with 64 cm 2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and “smart” IoT devices powered through an energy source that is largely untapped. Indoor light harvesters enable machine learning on fully autonomous IoT devices at 2.72 × 10 15 photons per inference.
The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(ii/i) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm−2 at 1000 lux; 32.7%, 50 μW cm−2 at 500 lux and 31.4%, 19 μW cm−2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 1015 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 1020 photons required for training and verification of an artificial neural network were harvested with 64 cm2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and “smart” IoT devices powered through an energy source that is largely untapped.
The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper( ii / i ) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm −2 at 1000 lux; 32.7%, 50 μW cm −2 at 500 lux and 31.4%, 19 μW cm −2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm 2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10 15 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10 20 photons required for training and verification of an artificial neural network were harvested with 64 cm 2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and “smart” IoT devices powered through an energy source that is largely untapped.
The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(ii/i) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm at 1000 lux; 32.7%, 50 μW cm at 500 lux and 31.4%, 19 μW cm at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10 photons required for training and verification of an artificial neural network were harvested with 64 cm photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped.
The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(ii/i) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm-2 at 1000 lux; 32.7%, 50 μW cm-2 at 500 lux and 31.4%, 19 μW cm-2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 1015 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 1020 photons required for training and verification of an artificial neural network were harvested with 64 cm2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped.
The field of photovoltaics gives the opportunity to make our buildings "smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(II/I) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 mu W cm(-2) at 1000 lux; 32.7%, 50 mu W cm(-2) at 500 lux and 31.4%, 19 mu W cm(-2) at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm(2) was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 x 10(15) photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 x 10(20) photons required for training and verification of an artificial neural network were harvested with 64 cm(2) photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped.
Author Rinderle, Michael
Michaels, Hannes
Freitag, Marina
Freitag, Richard
Edvinsson, Tomas
Benesperi, Iacopo
Gagliardi, Alessio
Socher, Richard
AuthorAffiliation Department of Chemistry
IT-Division
Salesforce Research
Technical University of Munich
Uppsala University
Department of Electrical and Computer Engineering
School of Natural and Environmental Science
Department of Solid-state Physics
Newcastle University
Bedson Building
Ångström Laboratory
AuthorAffiliation_xml – name: Uppsala University
– name: Department of Chemistry
– name: Bedson Building
– name: Newcastle University
– name: Department of Electrical and Computer Engineering
– name: IT-Division
– name: School of Natural and Environmental Science
– name: Salesforce Research
– name: Ångström Laboratory
– name: Technical University of Munich
– name: Department of Solid-state Physics
Author_xml – sequence: 1
  givenname: Hannes
  surname: Michaels
  fullname: Michaels, Hannes
– sequence: 2
  givenname: Michael
  surname: Rinderle
  fullname: Rinderle, Michael
– sequence: 3
  givenname: Richard
  surname: Freitag
  fullname: Freitag, Richard
– sequence: 4
  givenname: Iacopo
  surname: Benesperi
  fullname: Benesperi, Iacopo
– sequence: 5
  givenname: Tomas
  surname: Edvinsson
  fullname: Edvinsson, Tomas
– sequence: 6
  givenname: Richard
  surname: Socher
  fullname: Socher, Richard
– sequence: 7
  givenname: Alessio
  surname: Gagliardi
  fullname: Gagliardi, Alessio
– sequence: 8
  givenname: Marina
  surname: Freitag
  fullname: Freitag, Marina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34122790$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408927$$DView record from Swedish Publication Index
BookMark eNp9kktv1DAUhSNUREvphj3IiA1CBGwntmMWSGXKS6rEgsfWcuybGVeJPbUdRmXP_8bDlIGywBs_7nePjo7v3erABw9VdZ_g5wQ38oWRyWBOWtbfqo4obknNWSMP9meKD6uTlC5wWU1DGBV3qsOmJZQKiY-qH2dXUCfwyWX3HSxKYdQRGRjHhGZvISI99Q58RqNbrjJahw1E55do0mblPKARdPTl4SXKYaOjTUjPOfgwhTmhNOmY0VY-xISGEFFeAXI-Q_SQURjKvfSme9XtQY8JTq734-rL2zefF-_r84_vPixOz2vDGpprA7zXBrQ2vLWcmkFwy0GKnrdEDIb2UjAOghtuW2wBi17YgXEhDCW6E0NzXD3b6aYNrOderaMrDq9U0E6dua-nKsSlmmfV4k5SUfBXO7ywE1hTYoh6vNF1s-LdSi3DN9URJtpOFoEn1wIxXM6Qsppc2oarPZR8FGUtFhR3lBX08T_oRZijL2ko2gghKWcMF-rpjjIxpBRh2JshWG3nQS3kp8WveXhd4Id_29-jv3-_AI92QExmX_0zUGptt5E9-B_T_ARbaMvE
CitedBy_id crossref_primary_10_1021_acs_jpcc_2c02117
crossref_primary_10_1039_D1TA06793A
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_1039_D1MA00499A
crossref_primary_10_1016_j_solener_2021_12_024
crossref_primary_10_1021_acssuschemeng_1c00842
crossref_primary_10_1016_j_matlet_2024_136505
crossref_primary_10_1039_D0SE01527J
crossref_primary_10_1021_jacs_0c04886
crossref_primary_10_1016_j_solener_2021_05_068
crossref_primary_10_1007_s12039_022_02088_4
crossref_primary_10_1016_j_dyepig_2022_110566
crossref_primary_10_1038_s41586_022_05460_z
crossref_primary_10_1002_solr_202300574
crossref_primary_10_1021_acssuschemeng_3c03611
crossref_primary_10_3390_en15031144
crossref_primary_10_3390_en16155617
crossref_primary_10_1039_D3SC00659J
crossref_primary_10_1039_D3TA02698A
crossref_primary_10_1002_solr_202300220
crossref_primary_10_1016_j_apsusc_2022_155728
crossref_primary_10_1016_j_ecmx_2024_100606
crossref_primary_10_1155_2022_8366122
crossref_primary_10_1007_s40243_024_00257_8
crossref_primary_10_1016_j_apenergy_2021_117970
crossref_primary_10_1080_15567036_2020_1836083
crossref_primary_10_1021_acsaem_3c02067
crossref_primary_10_1016_j_nanoso_2023_101056
crossref_primary_10_1021_acsaem_1c02087
crossref_primary_10_1039_D0TA07377F
crossref_primary_10_1039_D2EE00233G
crossref_primary_10_1039_D1SC03251H
crossref_primary_10_1016_j_solener_2024_112339
crossref_primary_10_1016_j_jpowsour_2023_232896
crossref_primary_10_1002_aenm_202101854
crossref_primary_10_1002_solr_202000291
crossref_primary_10_1016_j_electacta_2023_142614
crossref_primary_10_1021_acsaem_2c00344
crossref_primary_10_1063_5_0186028
crossref_primary_10_1016_j_surfin_2024_104246
crossref_primary_10_1016_j_electacta_2022_140140
crossref_primary_10_1021_acsaem_2c04022
crossref_primary_10_1002_cptc_202300160
crossref_primary_10_1039_D3SE00949A
crossref_primary_10_1039_D3SC05530B
crossref_primary_10_1039_D3RA02599C
crossref_primary_10_2139_ssrn_4184186
crossref_primary_10_1016_j_cplett_2023_141030
crossref_primary_10_1016_j_dyepig_2021_109626
crossref_primary_10_1016_j_dyepig_2021_109624
crossref_primary_10_3390_solar3010011
crossref_primary_10_1002_aenm_202002067
crossref_primary_10_1002_cssc_202201116
crossref_primary_10_3390_electronics12040992
crossref_primary_10_1007_s40095_021_00460_7
crossref_primary_10_2139_ssrn_4064459
crossref_primary_10_1021_acs_iecr_4c00045
crossref_primary_10_3390_nano13202812
crossref_primary_10_1039_D1SC06828H
crossref_primary_10_1021_acsaem_1c03787
crossref_primary_10_1021_acsaem_2c02307
crossref_primary_10_3390_en15051635
crossref_primary_10_1039_D2SE01447E
crossref_primary_10_1016_j_mtener_2024_101621
crossref_primary_10_1016_j_optmat_2022_112924
crossref_primary_10_1021_acssuschemeng_3c00424
crossref_primary_10_3390_en16135129
crossref_primary_10_1088_1361_6463_ab94e6
crossref_primary_10_1021_acsomega_3c02571
crossref_primary_10_1016_j_solener_2021_01_001
crossref_primary_10_1021_acssuschemeng_2c06665
crossref_primary_10_1021_acsaelm_0c00870
crossref_primary_10_1016_j_solener_2024_112460
crossref_primary_10_1021_acsomega_2c03229
crossref_primary_10_1021_acsaem_1c03433
crossref_primary_10_1021_acsami_2c14299
crossref_primary_10_1039_D0TA07603A
crossref_primary_10_1002_adfm_202008908
crossref_primary_10_1088_2058_8585_acb660
crossref_primary_10_1016_j_apsusc_2022_153989
crossref_primary_10_1016_j_jphotochem_2022_114201
crossref_primary_10_1002_adfm_202200694
crossref_primary_10_1016_j_jphotochem_2021_113385
crossref_primary_10_1016_j_mtener_2021_100907
crossref_primary_10_1016_j_solener_2023_112057
crossref_primary_10_1039_D0RA07353A
crossref_primary_10_1016_j_surfin_2023_103627
crossref_primary_10_1002_smll_202302826
crossref_primary_10_1109_JPHOTOV_2020_3047199
crossref_primary_10_1016_j_egyr_2024_02_036
crossref_primary_10_1039_D1MA00829C
crossref_primary_10_1021_acssuschemeng_1c07626
crossref_primary_10_1007_s10854_021_05979_3
crossref_primary_10_1021_acs_jpcc_1c07981
crossref_primary_10_3390_en13092198
crossref_primary_10_1016_j_xcrp_2021_100701
crossref_primary_10_1016_j_dyepig_2020_109082
crossref_primary_10_1021_acsomega_2c06843
crossref_primary_10_1021_acsami_0c09519
crossref_primary_10_1016_j_rio_2022_100320
crossref_primary_10_1016_j_solener_2022_03_001
crossref_primary_10_2139_ssrn_4088093
crossref_primary_10_1002_slct_202303508
crossref_primary_10_1021_acsaem_3c01231
crossref_primary_10_1007_s11831_024_10125_3
crossref_primary_10_1002_adom_202100936
crossref_primary_10_1002_cssc_202001898
crossref_primary_10_1071_CH22149
crossref_primary_10_1002_solr_202200315
crossref_primary_10_1126_sciadv_adc9923
crossref_primary_10_1002_solr_202100042
crossref_primary_10_1016_j_jphotochemrev_2023_100586
crossref_primary_10_2139_ssrn_4199015
crossref_primary_10_1039_D0SC06477G
crossref_primary_10_1002_aenm_202300353
crossref_primary_10_1016_j_ijhydene_2023_05_021
crossref_primary_10_1039_D2SE00162D
crossref_primary_10_3390_en13102521
crossref_primary_10_1021_acs_inorgchem_4c01046
crossref_primary_10_3390_ma14112955
crossref_primary_10_1016_j_dyepig_2023_111087
crossref_primary_10_1002_aenm_202104051
crossref_primary_10_1039_D3TA04491B
crossref_primary_10_1016_j_mtcomm_2024_109208
crossref_primary_10_1007_s10854_021_05833_6
crossref_primary_10_1002_app_51929
crossref_primary_10_1002_cssc_202100884
crossref_primary_10_1002_open_202300170
crossref_primary_10_1002_ejoc_202001058
crossref_primary_10_1021_acsaem_1c02912
crossref_primary_10_1021_acsaem_1c00616
crossref_primary_10_1021_acs_energyfuels_2c00633
crossref_primary_10_1039_D1TA03309C
crossref_primary_10_2139_ssrn_4173980
crossref_primary_10_3390_coatings12010034
crossref_primary_10_1039_D1TA00690H
crossref_primary_10_1039_D0SE00596G
crossref_primary_10_1002_solr_202100929
crossref_primary_10_1039_D1SC02963K
crossref_primary_10_1039_D2YA00075J
crossref_primary_10_1016_j_jphotochem_2024_115477
crossref_primary_10_1016_j_rsurfi_2021_100030
crossref_primary_10_1021_acsaem_1c04121
crossref_primary_10_1039_D3EE00633F
crossref_primary_10_1039_D3TA06046B
crossref_primary_10_1117_1_JPE_13_042301
crossref_primary_10_3390_en14020407
crossref_primary_10_1016_j_solener_2023_112116
crossref_primary_10_1002_hlca_202000230
crossref_primary_10_1021_acsaem_2c00765
crossref_primary_10_1021_acsaem_4c00717
crossref_primary_10_3390_ma15217725
crossref_primary_10_1177_09506608231213065
crossref_primary_10_1038_s41467_021_21945_3
crossref_primary_10_3390_en13215528
crossref_primary_10_1039_D0CS00698J
crossref_primary_10_3390_en16196913
crossref_primary_10_1149_1945_7111_ac741f
crossref_primary_10_1039_D3TC03220E
crossref_primary_10_1016_j_apcatb_2021_120726
crossref_primary_10_1088_1742_6596_2033_1_012051
crossref_primary_10_1016_j_solener_2021_08_014
crossref_primary_10_1016_j_solener_2024_112748
crossref_primary_10_1002_er_7541
crossref_primary_10_1016_j_electacta_2022_140842
crossref_primary_10_1016_j_mtener_2023_101299
crossref_primary_10_3390_jlpea13010012
crossref_primary_10_1016_j_jallcom_2021_159722
crossref_primary_10_1016_j_jphotochem_2020_112820
crossref_primary_10_1016_j_jallcom_2022_163959
crossref_primary_10_1002_cptc_202200328
crossref_primary_10_1016_j_jallcom_2023_173134
crossref_primary_10_1039_D0GC01148G
crossref_primary_10_1021_acs_chemrev_2c00773
crossref_primary_10_1021_acsami_2c13009
crossref_primary_10_1016_j_solener_2022_12_001
crossref_primary_10_3390_ma16237338
crossref_primary_10_1021_acsaem_0c02500
crossref_primary_10_1002_adsu_202100025
crossref_primary_10_1039_D0CP03780J
crossref_primary_10_1016_j_nanoen_2022_107966
crossref_primary_10_1016_j_cej_2022_137349
crossref_primary_10_1016_j_ijhydene_2024_05_407
crossref_primary_10_1016_j_mtcomm_2022_104030
crossref_primary_10_1016_j_solener_2020_07_029
crossref_primary_10_1016_j_electacta_2024_144582
crossref_primary_10_2139_ssrn_4120253
crossref_primary_10_1021_acs_joc_4c00357
crossref_primary_10_1007_s13738_022_02644_2
crossref_primary_10_1002_solr_202300913
crossref_primary_10_1021_acsaem_2c02714
crossref_primary_10_1039_D0CS01336F
crossref_primary_10_1039_D0NR04112B
crossref_primary_10_3390_coatings14030283
crossref_primary_10_1002_aenm_202100698
crossref_primary_10_1021_acsami_3c16527
crossref_primary_10_1016_j_rechem_2023_100838
crossref_primary_10_1155_2022_7666354
crossref_primary_10_1016_j_nanoen_2024_109932
crossref_primary_10_3390_coatings12060816
crossref_primary_10_1002_adfm_202004804
crossref_primary_10_1016_j_solener_2021_09_038
Cites_doi 10.1039/C8EE00661J
10.3390/inorganics6020053
10.1039/C5EE01204J
10.1038/s41560-017-0028-5
10.1016/j.electacta.2018.01.142
10.1039/C5CC06759F
10.1038/ncomms15390
10.1126/science.aaa8415
10.1147/rd.33.0210
10.1016/j.solener.2014.10.024
10.1016/j.micpro.2007.02.006
10.1007/s10489-017-1062-5
10.1002/solr.201800207
10.1109/JPHOTOV.2012.2225023
10.1038/nphoton.2017.60
10.1162/NECO_a_00052
10.1039/C8TA01728J
10.1016/j.joule.2018.03.017
10.1039/C7TA10875C
10.3389/fchem.2019.00209
10.1021/jz3005464
10.1021/acs.jpcc.6b01658
10.1016/j.future.2013.01.010
10.1016/j.nanoen.2018.04.027
10.1039/C8TC02838A
10.1039/C8TC03542C
10.1126/science.1127647
10.1109/JPHOTOV.2015.2487825
10.1021/jacs.6b05281
10.1109/5.726791
10.1016/j.solmat.2011.01.036
10.1038/s41560-019-0529-5
10.1016/S0167-577X(03)00174-5
10.1109/MCOM.2018.1700298
10.1016/j.neunet.2014.09.003
10.1109/TED.2015.2434336
10.1021/jo701592x
10.1002/adma.201904512
10.1109/MNET.2018.1700202
10.5281/zenodo.3351718
10.1016/j.rser.2015.11.010
10.1021/jacs.6b10721
10.1126/science.1165620
10.1002/adts.201900178
10.1016/j.apenergy.2015.07.031
10.1126/science.aau8825
10.5281/zenodo.3351382
10.1126/science.aag0476
10.3390/en7031500
10.1002/adfm.201904072
10.1016/j.electacta.2013.06.005
10.1145/358274.358283
10.1021/jp9037649
10.1016/j.joule.2019.03.026
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2020
This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2020
– notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
ACNBI
ADTPV
AOWAS
D8T
DF2
ZZAVC
DOI 10.1039/c9sc06145b
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Uppsala universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Uppsala universitet
SwePub Articles full text
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 296
ExternalDocumentID oai_DiVA_org_uu_408927
10_1039_C9SC06145B
34122790
c9sc06145b
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: 43294-1
– fundername: ;
  grantid: 18-482
– fundername: ;
  grantid: Unassigned
– fundername: ;
  grantid: 2018-04570
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
-JG
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
H13
HZ~
NPM
PGMZT
RAOCF
RNS
AAYXX
AFPKN
CITATION
7SR
8BQ
8FD
JG9
7X8
5PM
AAWGC
ABASK
ACNBI
ADTPV
AETIL
AHGXI
ANBJS
ANLMG
AOWAS
ASPBG
AVWKF
CAG
COF
D8T
DF2
ECGLT
FEDTE
HVGLF
J3G
J3H
J3I
L-8
ROL
RPMJG
ZZAVC
ID FETCH-LOGICAL-c532t-ce6baceaac64d62cf76d6e97b6417fc2b9756e76c6d40de07b7df5677c21a87f3
IEDL.DBID RPM
ISSN 2041-6520
2041-6539
IngestDate Sat Aug 24 00:35:04 EDT 2024
Tue Sep 17 21:18:25 EDT 2024
Sat Oct 26 05:50:44 EDT 2024
Thu Oct 10 15:47:39 EDT 2024
Fri Aug 23 02:07:55 EDT 2024
Sat Nov 02 12:27:21 EDT 2024
Sat Jan 08 03:39:25 EST 2022
Wed Nov 11 00:36:16 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-ce6baceaac64d62cf76d6e97b6417fc2b9756e76c6d40de07b7df5677c21a87f3
Notes 10.1039/c9sc06145b
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2759-7356
0000-0002-9744-0015
0000-0001-9126-7410
0000-0001-6236-6073
0000-0001-5715-1932
0000-0002-4954-6851
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157489/
PMID 34122790
PQID 2377926550
PQPubID 2047492
PageCount 12
ParticipantIDs proquest_miscellaneous_2540720825
swepub_primary_oai_DiVA_org_uu_408927
proquest_journals_2377926550
crossref_primary_10_1039_C9SC06145B
rsc_primary_c9sc06145b
pubmed_primary_34122790
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157489
PublicationCentury 2000
PublicationDate 20200213
PublicationDateYYYYMMDD 2020-02-13
PublicationDate_xml – month: 2
  year: 2020
  text: 20200213
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Abadi (C9SC06145B-(cit61)/*[position()=1]) 2015
Zhang (C9SC06145B-(cit63)/*[position()=1]) 28 June 2019
Dagar (C9SC06145B-(cit12)/*[position()=1]) 2018; 49
Freitag (C9SC06145B-(cit24)/*[position()=1]) 2015; 8
Reese (C9SC06145B-(cit19)/*[position()=1]) 2011; 95
Zhang (C9SC06145B-(cit25)/*[position()=1]) 2018; 11
Liouane (C9SC06145B-(cit3)/*[position()=1]) 2018; 48
Haight (C9SC06145B-(cit27)/*[position()=1]) 2016; 353
Li (C9SC06145B-(cit36)/*[position()=1]) 2018; 32
Jordan (C9SC06145B-(cit59)/*[position()=1]) 2015; 349
Shaikh (C9SC06145B-(cit30)/*[position()=1]) 2016; 55
Hande (C9SC06145B-(cit31)/*[position()=1]) 2007; 31
Ferdowsi (C9SC06145B-(cit38)/*[position()=1]) 2018; 265
Nicosia (C9SC06145B-(cit5)/*[position()=1]) 2018-Jan
Weicker (C9SC06145B-(cit65)/*[position()=1]) 1984; 27
Khenkin (C9SC06145B-(cit66)/*[position()=1]) 2020; 5
Kjellby (C9SC06145B-(cit32)/*[position()=1]) 2018-Jan
Stanley (C9SC06145B-(cit57)/*[position()=1]) 2020; 3
Freitag (C9SC06145B-(cit40)/*[position()=1]) 2016; 120
King (C9SC06145B-(cit56)/*[position()=1]) 2009; 324
Freitag (C9SC06145B-(cit20)/*[position()=1]) 2017; 11
White (C9SC06145B-(cit35)/*[position()=1]) 1992
Kakiage (C9SC06145B-(cit26)/*[position()=1]) 2015; 51
Rinderle (C9SC06145B-(cit46)/*[position()=1])
Yin (C9SC06145B-(cit10)/*[position()=1]) 2018; 6
Müller (C9SC06145B-(cit15)/*[position()=1]) 2013; 3
Ellis (C9SC06145B-(cit44)/*[position()=1]) 2013; 107
Olivetti (C9SC06145B-(cit28)/*[position()=1]) 2019
Mathews (C9SC06145B-(cit7)/*[position()=1]) 2016; 6
Lecun (C9SC06145B-(cit62)/*[position()=1]) 1998; 86
Cao (C9SC06145B-(cit21)/*[position()=1]) 2018; 2
Raga (C9SC06145B-(cit48)/*[position()=1]) 2012; 3
Jukan (C9SC06145B-(cit4)/*[position()=1]) 2017
Mathews (C9SC06145B-(cit13)/*[position()=1]) 2019; 29
Lee (C9SC06145B-(cit9)/*[position()=1]) 2018; 6
Freitag (C9SC06145B-(cit47)/*[position()=1])
Michaels (C9SC06145B-(cit41)/*[position()=1]) 2018; 6
Aydogdu (C9SC06145B-(cit53)/*[position()=1]) 2003; 57
Cui (C9SC06145B-(cit55)/*[position()=1]) 2019; 31
Samuel (C9SC06145B-(cit58)/*[position()=1]) 1959; 3
Li (C9SC06145B-(cit17)/*[position()=1]) 2015; 111
Hittinger (C9SC06145B-(cit60)/*[position()=1]) 2019; 364
Saygili (C9SC06145B-(cit39)/*[position()=1]) 2016; 138
Mohammadi (C9SC06145B-(cit2)/*[position()=1]) 2018; 56
Teran (C9SC06145B-(cit16)/*[position()=1]) 2015; 62
Juang (C9SC06145B-(cit54)/*[position()=1]) 2019; 7
Bock (C9SC06145B-(cit29)/*[position()=1]) 1985; 6
Benesperi (C9SC06145B-(cit52)/*[position()=1]) 2018; 6
Yin (C9SC06145B-(cit11)/*[position()=1]) 2018; 6
Bisquert (C9SC06145B-(cit49)/*[position()=1]) 2009; 113
Mathews (C9SC06145B-(cit14)/*[position()=1]) 2019; 3
Hinton (C9SC06145B-(cit33)/*[position()=1]) 2006; 313
Zhang (C9SC06145B-(cit42)/*[position()=1]) 2016; 138
Bergonzini (C9SC06145B-(cit6)/*[position()=1]) 2009; vol. 2009
Gubbi (C9SC06145B-(cit1)/*[position()=1]) 2013; 29
Schmidhuber (C9SC06145B-(cit34)/*[position()=1]) 2015; 61
Cao (C9SC06145B-(cit51)/*[position()=1]) 2017; 8
Chen (C9SC06145B-(cit18)/*[position()=1]) 2019; 7
Antunez (C9SC06145B-(cit37)/*[position()=1]) 2017; 2
(C9SC06145B-(cit45)/*[position()=1]) 28 March 2018
De Rossi (C9SC06145B-(cit22)/*[position()=1]) 2015; 156
Lee (C9SC06145B-(cit8)/*[position()=1]) 2019; 3
Cireşan (C9SC06145B-(cit64)/*[position()=1]) 2010; 22
Hagberg (C9SC06145B-(cit43)/*[position()=1]) 2007; 72
Minnaert (C9SC06145B-(cit23)/*[position()=1]) 2014; 7
Freitag (C9SC06145B-(cit50)/*[position()=1]) 2015; 8
References_xml – issn: 1992
  publication-title: Artificial neural networks: approximation and learning theory
  doi: White Ronald Gallant
– publication-title: Light to Information
  doi: Rinderle Freitag Freitag Michaels Benesperi Alessio
– issn: 28 June 2019
  volume-title: Hello Edge: Keyword Spotting on Microcontrollers
  doi: Zhang Suda Lai Chandra
– issn: 2017
  end-page: NeM2B.4
  publication-title: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS)
  doi: Jukan Chamania
– issn: 2018-Jan
  end-page: p 1-4
  publication-title: 2018 IEEE Int. Conf. Consum. Electron.
  doi: Nicosia Pau Giacalone Plebani Bosco Iacchetti
– publication-title: Model and sample data for MNIST classification
  doi: Freitag Rinderle Michaels Freitag Benesperi Alessio
– issn: 2018-Jan
  end-page: p 455-456
  publication-title: Proc. IEEE Int. Conf. VLSI Des., 2018
  doi: Kjellby Johnsrud Loetveit Cenkeramaddi Hamid Beferull-Lozano
– issn: 28 March 2018
  publication-title: Solar Spectral Irradiance: Air Mass 1.5
– issn: 2009
  issue: vol. 2009
  end-page: p 144-149
  publication-title: Int. Work. Adv. Sensors Interfaces, IWASI
  doi: Bergonzini Brunelli Benini 3rd
– issn: 2019
  publication-title: Life cycle impacts of alkaline batteries with afocus on end-of-life
  doi: Olivetti Gregory Kirchain
– issn: 2015
  doi: Abadi Agarwal Barham Brevdo Chen Citro Corrado Davis Dean Devin Ghemawat Goodfellow Harp Irving Isard Jia Józefowicz Kaiser Kudlur Levenberg Mané Monga Moore Murray Olah Schuster Shlens Steiner Sutskever Talwar Tucker Vanhoucke Vasudevan Viégas Vinyals Warden Wattenberg Wicke Yu Zheng
– volume: 11
  start-page: 1779
  year: 2018
  ident: C9SC06145B-(cit25)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00661J
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 53
  year: 2018
  ident: C9SC06145B-(cit41)/*[position()=1]
  publication-title: Inorganics
  doi: 10.3390/inorganics6020053
  contributor:
    fullname: Michaels
– volume: 8
  start-page: 2634
  year: 2015
  ident: C9SC06145B-(cit24)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01204J
  contributor:
    fullname: Freitag
– volume: 2
  start-page: 884
  year: 2017
  ident: C9SC06145B-(cit37)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0028-5
  contributor:
    fullname: Antunez
– volume: 265
  start-page: 194
  year: 2018
  ident: C9SC06145B-(cit38)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.01.142
  contributor:
    fullname: Ferdowsi
– volume: 51
  start-page: 15894
  year: 2015
  ident: C9SC06145B-(cit26)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06759F
  contributor:
    fullname: Kakiage
– volume-title: Life cycle impacts of alkaline batteries with afocus on end-of-life
  year: 2019
  ident: C9SC06145B-(cit28)/*[position()=1]
  contributor:
    fullname: Olivetti
– volume: 8
  start-page: 15390
  year: 2017
  ident: C9SC06145B-(cit51)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15390
  contributor:
    fullname: Cao
– volume: 349
  start-page: 255
  year: 2015
  ident: C9SC06145B-(cit59)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aaa8415
  contributor:
    fullname: Jordan
– volume: 3
  start-page: 210
  year: 1959
  ident: C9SC06145B-(cit58)/*[position()=1]
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.33.0210
  contributor:
    fullname: Samuel
– volume: 111
  start-page: 21
  year: 2015
  ident: C9SC06145B-(cit17)/*[position()=1]
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.10.024
  contributor:
    fullname: Li
– volume: 31
  start-page: 420
  year: 2007
  ident: C9SC06145B-(cit31)/*[position()=1]
  publication-title: Microprocess. Microsyst.
  doi: 10.1016/j.micpro.2007.02.006
  contributor:
    fullname: Hande
– volume: 7
  start-page: 1
  year: 2019
  ident: C9SC06145B-(cit18)/*[position()=1]
  publication-title: Adv. Opt. Mater.
  contributor:
    fullname: Chen
– volume-title: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS)
  year: 2017
  ident: C9SC06145B-(cit4)/*[position()=1]
  contributor:
    fullname: Jukan
– volume-title: Proc. IEEE Int. Conf. VLSI Des., 2018
  year: 2018-Jan
  ident: C9SC06145B-(cit32)/*[position()=1]
  contributor:
    fullname: Kjellby
– volume: 48
  start-page: 2017
  year: 2018
  ident: C9SC06145B-(cit3)/*[position()=1]
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1062-5
  contributor:
    fullname: Liouane
– volume-title: 2018 IEEE Int. Conf. Consum. Electron.
  year: 2018-Jan
  ident: C9SC06145B-(cit5)/*[position()=1]
  contributor:
    fullname: Nicosia
– volume: 3
  start-page: 1800207
  year: 2019
  ident: C9SC06145B-(cit8)/*[position()=1]
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800207
  contributor:
    fullname: Lee
– volume-title: Artificial neural networks: approximation and learning theory
  year: 1992
  ident: C9SC06145B-(cit35)/*[position()=1]
  contributor:
    fullname: White
– volume: 3
  start-page: 59
  year: 2013
  ident: C9SC06145B-(cit15)/*[position()=1]
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2012.2225023
  contributor:
    fullname: Müller
– volume: 11
  start-page: 372
  year: 2017
  ident: C9SC06145B-(cit20)/*[position()=1]
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2017.60
  contributor:
    fullname: Freitag
– volume: 22
  start-page: 3207
  year: 2010
  ident: C9SC06145B-(cit64)/*[position()=1]
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00052
  contributor:
    fullname: Cireşan
– volume: 6
  start-page: 8579
  year: 2018
  ident: C9SC06145B-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01728J
  contributor:
    fullname: Yin
– volume: 2
  start-page: 1108
  year: 2018
  ident: C9SC06145B-(cit21)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2018.03.017
  contributor:
    fullname: Cao
– year: 2015
  ident: C9SC06145B-(cit61)/*[position()=1]
  contributor:
    fullname: Abadi
– volume: 6
  start-page: 5618
  year: 2018
  ident: C9SC06145B-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10875C
  contributor:
    fullname: Lee
– volume: 7
  start-page: 209
  year: 2019
  ident: C9SC06145B-(cit54)/*[position()=1]
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00209
  contributor:
    fullname: Juang
– volume: 3
  start-page: 1629
  year: 2012
  ident: C9SC06145B-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3005464
  contributor:
    fullname: Raga
– volume: 120
  start-page: 9595
  year: 2016
  ident: C9SC06145B-(cit40)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b01658
  contributor:
    fullname: Freitag
– volume: 29
  start-page: 1645
  year: 2013
  ident: C9SC06145B-(cit1)/*[position()=1]
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.01.010
  contributor:
    fullname: Gubbi
– volume: 49
  start-page: 290
  year: 2018
  ident: C9SC06145B-(cit12)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.027
  contributor:
    fullname: Dagar
– volume: 6
  start-page: 9111
  year: 2018
  ident: C9SC06145B-(cit10)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC02838A
  contributor:
    fullname: Yin
– volume: 8
  start-page: 2634
  year: 2015
  ident: C9SC06145B-(cit50)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01204J
  contributor:
    fullname: Freitag
– volume: 6
  start-page: 11903
  year: 2018
  ident: C9SC06145B-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC03542C
  contributor:
    fullname: Benesperi
– volume: 313
  start-page: 504
  year: 2006
  ident: C9SC06145B-(cit33)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1127647
  contributor:
    fullname: Hinton
– volume: 6
  start-page: 230
  year: 2016
  ident: C9SC06145B-(cit7)/*[position()=1]
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2015.2487825
  contributor:
    fullname: Mathews
– volume: 138
  start-page: 10742
  year: 2016
  ident: C9SC06145B-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05281
  contributor:
    fullname: Zhang
– volume: 86
  start-page: 2278
  year: 1998
  ident: C9SC06145B-(cit62)/*[position()=1]
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
  contributor:
    fullname: Lecun
– volume: 95
  start-page: 1253
  year: 2011
  ident: C9SC06145B-(cit19)/*[position()=1]
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2011.01.036
  contributor:
    fullname: Reese
– volume: 5
  start-page: 35
  year: 2020
  ident: C9SC06145B-(cit66)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0529-5
  contributor:
    fullname: Khenkin
– volume: 6
  start-page: 180
  year: 1985
  ident: C9SC06145B-(cit29)/*[position()=1]
  publication-title: AI Mag.
  contributor:
    fullname: Bock
– volume: 57
  start-page: 3755
  year: 2003
  ident: C9SC06145B-(cit53)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/S0167-577X(03)00174-5
  contributor:
    fullname: Aydogdu
– volume: 56
  start-page: 94
  year: 2018
  ident: C9SC06145B-(cit2)/*[position()=1]
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2018.1700298
  contributor:
    fullname: Mohammadi
– volume: 61
  start-page: 85
  year: 2015
  ident: C9SC06145B-(cit34)/*[position()=1]
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2014.09.003
  contributor:
    fullname: Schmidhuber
– volume: 62
  start-page: 2170
  year: 2015
  ident: C9SC06145B-(cit16)/*[position()=1]
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2015.2434336
  contributor:
    fullname: Teran
– volume: 72
  start-page: 9550
  year: 2007
  ident: C9SC06145B-(cit43)/*[position()=1]
  publication-title: J. Org. Chem.
  doi: 10.1021/jo701592x
  contributor:
    fullname: Hagberg
– volume: 31
  start-page: 1904512
  year: 2019
  ident: C9SC06145B-(cit55)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904512
  contributor:
    fullname: Cui
– volume: 32
  start-page: 96
  year: 2018
  ident: C9SC06145B-(cit36)/*[position()=1]
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1700202
  contributor:
    fullname: Li
– volume-title: Light to Information
  ident: C9SC06145B-(cit46)/*[position()=1]
  doi: 10.5281/zenodo.3351718
  contributor:
    fullname: Rinderle
– volume: 55
  start-page: 1041
  year: 2016
  ident: C9SC06145B-(cit30)/*[position()=1]
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.11.010
  contributor:
    fullname: Shaikh
– volume: 138
  start-page: 15087
  year: 2016
  ident: C9SC06145B-(cit39)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b10721
  contributor:
    fullname: Saygili
– volume: 324
  start-page: 85
  year: 2009
  ident: C9SC06145B-(cit56)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1165620
  contributor:
    fullname: King
– volume: vol. 2009
  volume-title: Int. Work. Adv. Sensors Interfaces, IWASI
  year: 2009
  ident: C9SC06145B-(cit6)/*[position()=1]
  contributor:
    fullname: Bergonzini
– volume: 3
  start-page: 1900178
  year: 2020
  ident: C9SC06145B-(cit57)/*[position()=1]
  publication-title: Adv. Theory Simul.
  doi: 10.1002/adts.201900178
  contributor:
    fullname: Stanley
– year: 28 June 2019
  ident: C9SC06145B-(cit63)/*[position()=1]
  contributor:
    fullname: Zhang
– volume: 156
  start-page: 413
  year: 2015
  ident: C9SC06145B-(cit22)/*[position()=1]
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.07.031
  contributor:
    fullname: De Rossi
– volume-title: Solar Spectral Irradiance: Air Mass 1.5
  year: 28 March 2018
  ident: C9SC06145B-(cit45)/*[position()=1]
– volume: 364
  start-page: 326
  year: 2019
  ident: C9SC06145B-(cit60)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aau8825
  contributor:
    fullname: Hittinger
– volume-title: Model and sample data for MNIST classification
  ident: C9SC06145B-(cit47)/*[position()=1]
  doi: 10.5281/zenodo.3351382
  contributor:
    fullname: Freitag
– volume: 353
  start-page: 124
  year: 2016
  ident: C9SC06145B-(cit27)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.aag0476
  contributor:
    fullname: Haight
– volume: 7
  start-page: 1500
  year: 2014
  ident: C9SC06145B-(cit23)/*[position()=1]
  publication-title: Energies
  doi: 10.3390/en7031500
  contributor:
    fullname: Minnaert
– volume: 29
  start-page: 1904072
  year: 2019
  ident: C9SC06145B-(cit13)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904072
  contributor:
    fullname: Mathews
– volume: 107
  start-page: 45
  year: 2013
  ident: C9SC06145B-(cit44)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.06.005
  contributor:
    fullname: Ellis
– volume: 27
  start-page: 1013
  year: 1984
  ident: C9SC06145B-(cit65)/*[position()=1]
  publication-title: Commun. ACM
  doi: 10.1145/358274.358283
  contributor:
    fullname: Weicker
– volume: 113
  start-page: 17278
  year: 2009
  ident: C9SC06145B-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9037649
  contributor:
    fullname: Bisquert
– volume: 3
  start-page: 1415
  year: 2019
  ident: C9SC06145B-(cit14)/*[position()=1]
  publication-title: Joule
  doi: 10.1016/j.joule.2019.03.026
  contributor:
    fullname: Mathews
SSID ssj0000331527
Score 2.6730719
Snippet The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can...
The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can...
The field of photovoltaics gives the opportunity to make our buildings "smart'' and our portable devices "independent", provided effective energy sources can...
SourceID swepub
pubmedcentral
proquest
crossref
pubmed
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2895
SubjectTerms Artificial intelligence
Artificial neural networks
Chemistry
Dye-sensitized solar cells
Dyes
Electrolytic cells
Energy conversion efficiency
Energy sources
Fluorescent lamps
Harvesters
Illumination
Image acquisition
Image classification
Inference
Internet of Things
Light
Machine learning
Microcontrollers
Neural networks
Photons
Photovoltaic cells
Portable equipment
Power management
Smart sensors
Title Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things
URI https://www.ncbi.nlm.nih.gov/pubmed/34122790
https://www.proquest.com/docview/2377926550
https://search.proquest.com/docview/2540720825
https://pubmed.ncbi.nlm.nih.gov/PMC8157489
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408927
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51iwS9VLxaUsrKCDimmziJveFWUqoKqQgBWy2nKH6kRGqSVR6Hcud_M_YmC0s5cYwcxdZ8Y3tmMvMNwOs4pnmAlrDLQqXcMIykmwUafZ4s5HkgmWI2lH35kV0swg_LaLkD0VgLY5P2pShOqpvypCq-29zKVSlnY57Y7NNlMvcjQ5oym8AEFfQPF90ev0EwtGqlXui7LKLeSEsaxDMZt9I4QZHYg_t4ghsCPW_7TrpjaN7Nl5w0rfyLW9TeR-cPYX8wJMnpesGPYEdXj-FBMvZvewI_z26125r89K74oRVpjRNLTKC-JaZyrCFZKUw1JLkxDjpZmX5peJGR0uZXajI0lLh-SzqbW9uSrO9MDUTdt6QtUVTEfL5uWoKWL0FLkhQ2vqg7Uuf4bILwT2Fx_v5rcuEOTRdcGQW0c6VmIpM6yySix6jMOeKlYy5Y6PNcUhHziGnOEMbQU9rjgqs8YpxL6mdzxPcAdqu60s-AKOpJ7omc6gydLq6F0HhRCtQMxX1fBQ68GsWertbcGqn9Jx7EaRJ_SSxO7xw4HhFJh_3VptTwJFKG7pUDLzfDKGAjxazSKIiUGm5BalxgBw7XAG6mGZF3gG9Bu3nBsG5vj6AyWvbtQfkcOEAl2Lz_W68cOPr3QLpSuQNv1kqzNdFZcXWa1s112vdp6M1jyo_-e13PYY-akIDpWRMcw27X9PoF2k2dmNp4w9Tulinc-3y1WH77BbSdHiI
link.rule.ids 230,315,730,783,787,867,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RaK9lGfblAJGwDG7iZPYG25lS7VAt0KirXqzYscpEd3sKo8DvfO_GTvJwrZc4BjZih_z2TNjj78BeBPHNAvQEnZZmKZuGEbKTQKNPk8S8ixQLGX2KHt6yibn4afL6HINov4tjA3aVzIfFNezQZF_s7GVi5ka9nFiwy_T8ciPDGnKcB3u4Xr1wj-cdLsBB0GXrJV6oe-yiHo9MWkQD1VcKeMGRXIL7uMebij0vFWtdMfUvBsxuV5W6ha7qNVIxw_goh9LG4jyfdDUcqBubtE8_vNgH8J2Z6OSw7b4Eazp4jFsjvvUcE_g59EP7VYm9L3Ob3RKKuMfE3MHUBHzKK0kyUyah5bk2vj-ZGFSsaGOJDMbuqlJl6vi6h2pbdhuRZKmNs8r5k1Fqhl2jJjfz8uKoFFN0EgluT261DWZZ_htzvefwvnxh7PxxO3yObgqCmjtKs1konSSKAQGoyrjCAUdc8lCn2eKyphHTHOGCAm9VHtc8jSLGOeK-skIobMDG8W80HtAUuop7smM6gT9Oa6l1KiDJYIu5b6fBg687uUpFi1th7DX7UEsxvHXsQXAewcOelGLbulWghoKRsrQc3Pg1bIYJ9jMYlJonAhBDW0hNd61A7stMpbN9JBygK9gZlnBEHqvlqDoLbF3J2oHdhBdy_q_AevA_t8LxCLNHHjbonGloaP84lDMyyvRNCL0RjHl-__dr5ewOTmbnoiTj6efn8EWNScPJjVOcAAbddno52ie1fKFXYy_APqqPVw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIpVeeBdSChgBx2wSO7E33Mouq_JoVQmKKi5W7DgloptdbZIDvfO_GXuTpdty6jGyFT_msz0zHn8D8CZNacFQE_Z5nOd-HCfaz5hBmyeLRcE0z7lzZR8e8YOT-NNpcnop1ZcL2teqHFTn00FV_nSxlfOpDvo4seD4cDSMEkuaEszzItiA27hmQ37JUHebMGNdwlYaxpHPExr25KQsDXRaa2sKJWobtnAftzR64frJdE3dvB41ubGo9RWGUXcqTe7Bj348y2CUX4O2UQN9cYXq8UYDvg93O12V7C-rPIBbpnoId0Z9irhH8Gf82_i1DYFvyguTk9raycTeBdTEPk5bkGyq7INLcm59AGRuU7LhWUmmLoTTkC5nxdk70rjw3ZpkbWOfWczamtRT7Byxv58taoLKNUFllZTOhWkaMivw2_r5H8PJ5MO30YHf5XXwdcJo42vDVaZNlmkECKe6EAgJkwrF40gUmqpUJNwIjkiJw9yEQom8SLgQmkbZECG0A5vVrDJPgeQ01CJUBTUZ2nXCKGXwLFYIvlxEUc48eN3LVM6X9B3SXbuzVI7SryMHgvce7PXilt0SriW1VIyUowXnwatVMU6wncWsMjgRklr6QmqtbA-eLNGxaqaHlQdiDTerCpbYe70Exe8Ivjtxe7CDCFvV_wdaD3b_XyARIB68XSJyraFx-X1fzhZnsm1lHA5TKnZv3K-XsHU8nsgvH48-P4Ntah0QNkMO24PNZtGa56ilNeqFW49_AbUUP9w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dye-sensitized+solar+cells+under+ambient+light+powering+machine+learning%3A+towards+autonomous+smart+sensors+for+the+internet+of+things&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Michaels%2C+Hannes&rft.au=Rinderle%2C+Michael&rft.au=Freitag%2C+Richard&rft.au=Benesperi%2C+Iacopo&rft.date=2020-02-13&rft.issn=2041-6520&rft.volume=11&rft.issue=11&rft.spage=2895&rft_id=info:doi/10.1039%2Fc9sc06145b&rft_id=info%3Apmid%2F34122790&rft.externalDocID=34122790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon