Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things
The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic...
Saved in:
Published in | Chemical science (Cambridge) Vol. 11; no. 11; pp. 2895 - 296 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
13.02.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(
ii
/
i
) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm
−2
at 1000 lux; 32.7%, 50 μW cm
−2
at 500 lux and 31.4%, 19 μW cm
−2
at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm
2
was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10
15
photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10
20
photons required for training and verification of an artificial neural network were harvested with 64 cm
2
photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped.
Indoor light harvesters enable machine learning on fully autonomous IoT devices at 2.72 × 10
15
photons per inference. |
---|---|
AbstractList | The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(
ii
/
i
) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm
−2
at 1000 lux; 32.7%, 50 μW cm
−2
at 500 lux and 31.4%, 19 μW cm
−2
at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm
2
was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10
15
photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10
20
photons required for training and verification of an artificial neural network were harvested with 64 cm
2
photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and “smart” IoT devices powered through an energy source that is largely untapped.
Indoor light harvesters enable machine learning on fully autonomous IoT devices at 2.72 × 10
15
photons per inference. The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(ii/i) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm−2 at 1000 lux; 32.7%, 50 μW cm−2 at 500 lux and 31.4%, 19 μW cm−2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 1015 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 1020 photons required for training and verification of an artificial neural network were harvested with 64 cm2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and “smart” IoT devices powered through an energy source that is largely untapped. The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper( ii / i ) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm −2 at 1000 lux; 32.7%, 50 μW cm −2 at 500 lux and 31.4%, 19 μW cm −2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm 2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10 15 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10 20 photons required for training and verification of an artificial neural network were harvested with 64 cm 2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and “smart” IoT devices powered through an energy source that is largely untapped. The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(ii/i) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm at 1000 lux; 32.7%, 50 μW cm at 500 lux and 31.4%, 19 μW cm at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 10 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 10 photons required for training and verification of an artificial neural network were harvested with 64 cm photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped. The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(ii/i) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 μW cm-2 at 1000 lux; 32.7%, 50 μW cm-2 at 500 lux and 31.4%, 19 μW cm-2 at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm2 was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 × 1015 photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 × 1020 photons required for training and verification of an artificial neural network were harvested with 64 cm2 photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped. The field of photovoltaics gives the opportunity to make our buildings "smart'' and our portable devices "independent", provided effective energy sources can be developed for use in ambient indoor conditions. To address this important issue, ambient light photovoltaic cells were developed to power autonomous Internet of Things (IoT) devices, capable of machine learning, allowing the on-device implementation of artificial intelligence. Through a novel co-sensitization strategy, we tailored dye-sensitized photovoltaic cells based on a copper(II/I) electrolyte for the generation of power under ambient lighting with an unprecedented conversion efficiency (34%, 103 mu W cm(-2) at 1000 lux; 32.7%, 50 mu W cm(-2) at 500 lux and 31.4%, 19 mu W cm(-2) at 200 lux from a fluorescent lamp). A small array of DSCs with a joint active area of 16 cm(2) was then used to power machine learning on wireless nodes. The collection of 0.947 mJ or 2.72 x 10(15) photons is needed to compute one inference of a pre-trained artificial neural network for MNIST image classification in the employed set up. The inference accuracy of the network exceeded 90% for standard test images and 80% using camera-acquired printed MNIST-digits. Quantization of the neural network significantly reduced memory requirements with a less than 0.1% loss in accuracy compared to a full-precision network, making machine learning inferences on low-power microcontrollers possible. 152 J or 4.41 x 10(20) photons required for training and verification of an artificial neural network were harvested with 64 cm(2) photovoltaic area in less than 24 hours under 1000 lux illumination. Ambient light harvesters provide a new generation of self-powered and "smart" IoT devices powered through an energy source that is largely untapped. |
Author | Rinderle, Michael Michaels, Hannes Freitag, Marina Freitag, Richard Edvinsson, Tomas Benesperi, Iacopo Gagliardi, Alessio Socher, Richard |
AuthorAffiliation | Department of Chemistry IT-Division Salesforce Research Technical University of Munich Uppsala University Department of Electrical and Computer Engineering School of Natural and Environmental Science Department of Solid-state Physics Newcastle University Bedson Building Ångström Laboratory |
AuthorAffiliation_xml | – name: Uppsala University – name: Department of Chemistry – name: Bedson Building – name: Newcastle University – name: Department of Electrical and Computer Engineering – name: IT-Division – name: School of Natural and Environmental Science – name: Salesforce Research – name: Ångström Laboratory – name: Technical University of Munich – name: Department of Solid-state Physics |
Author_xml | – sequence: 1 givenname: Hannes surname: Michaels fullname: Michaels, Hannes – sequence: 2 givenname: Michael surname: Rinderle fullname: Rinderle, Michael – sequence: 3 givenname: Richard surname: Freitag fullname: Freitag, Richard – sequence: 4 givenname: Iacopo surname: Benesperi fullname: Benesperi, Iacopo – sequence: 5 givenname: Tomas surname: Edvinsson fullname: Edvinsson, Tomas – sequence: 6 givenname: Richard surname: Socher fullname: Socher, Richard – sequence: 7 givenname: Alessio surname: Gagliardi fullname: Gagliardi, Alessio – sequence: 8 givenname: Marina surname: Freitag fullname: Freitag, Marina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34122790$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408927$$DView record from Swedish Publication Index |
BookMark | eNp9kktv1DAUhSNUREvphj3IiA1CBGwntmMWSGXKS6rEgsfWcuybGVeJPbUdRmXP_8bDlIGywBs_7nePjo7v3erABw9VdZ_g5wQ38oWRyWBOWtbfqo4obknNWSMP9meKD6uTlC5wWU1DGBV3qsOmJZQKiY-qH2dXUCfwyWX3HSxKYdQRGRjHhGZvISI99Q58RqNbrjJahw1E55do0mblPKARdPTl4SXKYaOjTUjPOfgwhTmhNOmY0VY-xISGEFFeAXI-Q_SQURjKvfSme9XtQY8JTq734-rL2zefF-_r84_vPixOz2vDGpprA7zXBrQ2vLWcmkFwy0GKnrdEDIb2UjAOghtuW2wBi17YgXEhDCW6E0NzXD3b6aYNrOderaMrDq9U0E6dua-nKsSlmmfV4k5SUfBXO7ywE1hTYoh6vNF1s-LdSi3DN9URJtpOFoEn1wIxXM6Qsppc2oarPZR8FGUtFhR3lBX08T_oRZijL2ko2gghKWcMF-rpjjIxpBRh2JshWG3nQS3kp8WveXhd4Id_29-jv3-_AI92QExmX_0zUGptt5E9-B_T_ARbaMvE |
CitedBy_id | crossref_primary_10_1021_acs_jpcc_2c02117 crossref_primary_10_1039_D1TA06793A crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_1039_D1MA00499A crossref_primary_10_1016_j_solener_2021_12_024 crossref_primary_10_1021_acssuschemeng_1c00842 crossref_primary_10_1016_j_matlet_2024_136505 crossref_primary_10_1039_D0SE01527J crossref_primary_10_1021_jacs_0c04886 crossref_primary_10_1016_j_solener_2021_05_068 crossref_primary_10_1007_s12039_022_02088_4 crossref_primary_10_1016_j_dyepig_2022_110566 crossref_primary_10_1038_s41586_022_05460_z crossref_primary_10_1002_solr_202300574 crossref_primary_10_1021_acssuschemeng_3c03611 crossref_primary_10_3390_en15031144 crossref_primary_10_3390_en16155617 crossref_primary_10_1039_D3SC00659J crossref_primary_10_1039_D3TA02698A crossref_primary_10_1002_solr_202300220 crossref_primary_10_1016_j_apsusc_2022_155728 crossref_primary_10_1016_j_ecmx_2024_100606 crossref_primary_10_1155_2022_8366122 crossref_primary_10_1007_s40243_024_00257_8 crossref_primary_10_1016_j_apenergy_2021_117970 crossref_primary_10_1080_15567036_2020_1836083 crossref_primary_10_1021_acsaem_3c02067 crossref_primary_10_1016_j_nanoso_2023_101056 crossref_primary_10_1021_acsaem_1c02087 crossref_primary_10_1039_D0TA07377F crossref_primary_10_1039_D2EE00233G crossref_primary_10_1039_D1SC03251H crossref_primary_10_1016_j_solener_2024_112339 crossref_primary_10_1016_j_jpowsour_2023_232896 crossref_primary_10_1002_aenm_202101854 crossref_primary_10_1002_solr_202000291 crossref_primary_10_1016_j_electacta_2023_142614 crossref_primary_10_1021_acsaem_2c00344 crossref_primary_10_1063_5_0186028 crossref_primary_10_1016_j_surfin_2024_104246 crossref_primary_10_1016_j_electacta_2022_140140 crossref_primary_10_1021_acsaem_2c04022 crossref_primary_10_1002_cptc_202300160 crossref_primary_10_1039_D3SE00949A crossref_primary_10_1039_D3SC05530B crossref_primary_10_1039_D3RA02599C crossref_primary_10_2139_ssrn_4184186 crossref_primary_10_1016_j_cplett_2023_141030 crossref_primary_10_1016_j_dyepig_2021_109626 crossref_primary_10_1016_j_dyepig_2021_109624 crossref_primary_10_3390_solar3010011 crossref_primary_10_1002_aenm_202002067 crossref_primary_10_1002_cssc_202201116 crossref_primary_10_3390_electronics12040992 crossref_primary_10_1007_s40095_021_00460_7 crossref_primary_10_2139_ssrn_4064459 crossref_primary_10_1021_acs_iecr_4c00045 crossref_primary_10_3390_nano13202812 crossref_primary_10_1039_D1SC06828H crossref_primary_10_1021_acsaem_1c03787 crossref_primary_10_1021_acsaem_2c02307 crossref_primary_10_3390_en15051635 crossref_primary_10_1039_D2SE01447E crossref_primary_10_1016_j_mtener_2024_101621 crossref_primary_10_1016_j_optmat_2022_112924 crossref_primary_10_1021_acssuschemeng_3c00424 crossref_primary_10_3390_en16135129 crossref_primary_10_1088_1361_6463_ab94e6 crossref_primary_10_1021_acsomega_3c02571 crossref_primary_10_1016_j_solener_2021_01_001 crossref_primary_10_1021_acssuschemeng_2c06665 crossref_primary_10_1021_acsaelm_0c00870 crossref_primary_10_1016_j_solener_2024_112460 crossref_primary_10_1021_acsomega_2c03229 crossref_primary_10_1021_acsaem_1c03433 crossref_primary_10_1021_acsami_2c14299 crossref_primary_10_1039_D0TA07603A crossref_primary_10_1002_adfm_202008908 crossref_primary_10_1088_2058_8585_acb660 crossref_primary_10_1016_j_apsusc_2022_153989 crossref_primary_10_1016_j_jphotochem_2022_114201 crossref_primary_10_1002_adfm_202200694 crossref_primary_10_1016_j_jphotochem_2021_113385 crossref_primary_10_1016_j_mtener_2021_100907 crossref_primary_10_1016_j_solener_2023_112057 crossref_primary_10_1039_D0RA07353A crossref_primary_10_1016_j_surfin_2023_103627 crossref_primary_10_1002_smll_202302826 crossref_primary_10_1109_JPHOTOV_2020_3047199 crossref_primary_10_1016_j_egyr_2024_02_036 crossref_primary_10_1039_D1MA00829C crossref_primary_10_1021_acssuschemeng_1c07626 crossref_primary_10_1007_s10854_021_05979_3 crossref_primary_10_1021_acs_jpcc_1c07981 crossref_primary_10_3390_en13092198 crossref_primary_10_1016_j_xcrp_2021_100701 crossref_primary_10_1016_j_dyepig_2020_109082 crossref_primary_10_1021_acsomega_2c06843 crossref_primary_10_1021_acsami_0c09519 crossref_primary_10_1016_j_rio_2022_100320 crossref_primary_10_1016_j_solener_2022_03_001 crossref_primary_10_2139_ssrn_4088093 crossref_primary_10_1002_slct_202303508 crossref_primary_10_1021_acsaem_3c01231 crossref_primary_10_1007_s11831_024_10125_3 crossref_primary_10_1002_adom_202100936 crossref_primary_10_1002_cssc_202001898 crossref_primary_10_1071_CH22149 crossref_primary_10_1002_solr_202200315 crossref_primary_10_1126_sciadv_adc9923 crossref_primary_10_1002_solr_202100042 crossref_primary_10_1016_j_jphotochemrev_2023_100586 crossref_primary_10_2139_ssrn_4199015 crossref_primary_10_1039_D0SC06477G crossref_primary_10_1002_aenm_202300353 crossref_primary_10_1016_j_ijhydene_2023_05_021 crossref_primary_10_1039_D2SE00162D crossref_primary_10_3390_en13102521 crossref_primary_10_1021_acs_inorgchem_4c01046 crossref_primary_10_3390_ma14112955 crossref_primary_10_1016_j_dyepig_2023_111087 crossref_primary_10_1002_aenm_202104051 crossref_primary_10_1039_D3TA04491B crossref_primary_10_1016_j_mtcomm_2024_109208 crossref_primary_10_1007_s10854_021_05833_6 crossref_primary_10_1002_app_51929 crossref_primary_10_1002_cssc_202100884 crossref_primary_10_1002_open_202300170 crossref_primary_10_1002_ejoc_202001058 crossref_primary_10_1021_acsaem_1c02912 crossref_primary_10_1021_acsaem_1c00616 crossref_primary_10_1021_acs_energyfuels_2c00633 crossref_primary_10_1039_D1TA03309C crossref_primary_10_2139_ssrn_4173980 crossref_primary_10_3390_coatings12010034 crossref_primary_10_1039_D1TA00690H crossref_primary_10_1039_D0SE00596G crossref_primary_10_1002_solr_202100929 crossref_primary_10_1039_D1SC02963K crossref_primary_10_1039_D2YA00075J crossref_primary_10_1016_j_jphotochem_2024_115477 crossref_primary_10_1016_j_rsurfi_2021_100030 crossref_primary_10_1021_acsaem_1c04121 crossref_primary_10_1039_D3EE00633F crossref_primary_10_1039_D3TA06046B crossref_primary_10_1117_1_JPE_13_042301 crossref_primary_10_3390_en14020407 crossref_primary_10_1016_j_solener_2023_112116 crossref_primary_10_1002_hlca_202000230 crossref_primary_10_1021_acsaem_2c00765 crossref_primary_10_1021_acsaem_4c00717 crossref_primary_10_3390_ma15217725 crossref_primary_10_1177_09506608231213065 crossref_primary_10_1038_s41467_021_21945_3 crossref_primary_10_3390_en13215528 crossref_primary_10_1039_D0CS00698J crossref_primary_10_3390_en16196913 crossref_primary_10_1149_1945_7111_ac741f crossref_primary_10_1039_D3TC03220E crossref_primary_10_1016_j_apcatb_2021_120726 crossref_primary_10_1088_1742_6596_2033_1_012051 crossref_primary_10_1016_j_solener_2021_08_014 crossref_primary_10_1016_j_solener_2024_112748 crossref_primary_10_1002_er_7541 crossref_primary_10_1016_j_electacta_2022_140842 crossref_primary_10_1016_j_mtener_2023_101299 crossref_primary_10_3390_jlpea13010012 crossref_primary_10_1016_j_jallcom_2021_159722 crossref_primary_10_1016_j_jphotochem_2020_112820 crossref_primary_10_1016_j_jallcom_2022_163959 crossref_primary_10_1002_cptc_202200328 crossref_primary_10_1016_j_jallcom_2023_173134 crossref_primary_10_1039_D0GC01148G crossref_primary_10_1021_acs_chemrev_2c00773 crossref_primary_10_1021_acsami_2c13009 crossref_primary_10_1016_j_solener_2022_12_001 crossref_primary_10_3390_ma16237338 crossref_primary_10_1021_acsaem_0c02500 crossref_primary_10_1002_adsu_202100025 crossref_primary_10_1039_D0CP03780J crossref_primary_10_1016_j_nanoen_2022_107966 crossref_primary_10_1016_j_cej_2022_137349 crossref_primary_10_1016_j_ijhydene_2024_05_407 crossref_primary_10_1016_j_mtcomm_2022_104030 crossref_primary_10_1016_j_solener_2020_07_029 crossref_primary_10_1016_j_electacta_2024_144582 crossref_primary_10_2139_ssrn_4120253 crossref_primary_10_1021_acs_joc_4c00357 crossref_primary_10_1007_s13738_022_02644_2 crossref_primary_10_1002_solr_202300913 crossref_primary_10_1021_acsaem_2c02714 crossref_primary_10_1039_D0CS01336F crossref_primary_10_1039_D0NR04112B crossref_primary_10_3390_coatings14030283 crossref_primary_10_1002_aenm_202100698 crossref_primary_10_1021_acsami_3c16527 crossref_primary_10_1016_j_rechem_2023_100838 crossref_primary_10_1155_2022_7666354 crossref_primary_10_1016_j_nanoen_2024_109932 crossref_primary_10_3390_coatings12060816 crossref_primary_10_1002_adfm_202004804 crossref_primary_10_1016_j_solener_2021_09_038 |
Cites_doi | 10.1039/C8EE00661J 10.3390/inorganics6020053 10.1039/C5EE01204J 10.1038/s41560-017-0028-5 10.1016/j.electacta.2018.01.142 10.1039/C5CC06759F 10.1038/ncomms15390 10.1126/science.aaa8415 10.1147/rd.33.0210 10.1016/j.solener.2014.10.024 10.1016/j.micpro.2007.02.006 10.1007/s10489-017-1062-5 10.1002/solr.201800207 10.1109/JPHOTOV.2012.2225023 10.1038/nphoton.2017.60 10.1162/NECO_a_00052 10.1039/C8TA01728J 10.1016/j.joule.2018.03.017 10.1039/C7TA10875C 10.3389/fchem.2019.00209 10.1021/jz3005464 10.1021/acs.jpcc.6b01658 10.1016/j.future.2013.01.010 10.1016/j.nanoen.2018.04.027 10.1039/C8TC02838A 10.1039/C8TC03542C 10.1126/science.1127647 10.1109/JPHOTOV.2015.2487825 10.1021/jacs.6b05281 10.1109/5.726791 10.1016/j.solmat.2011.01.036 10.1038/s41560-019-0529-5 10.1016/S0167-577X(03)00174-5 10.1109/MCOM.2018.1700298 10.1016/j.neunet.2014.09.003 10.1109/TED.2015.2434336 10.1021/jo701592x 10.1002/adma.201904512 10.1109/MNET.2018.1700202 10.5281/zenodo.3351718 10.1016/j.rser.2015.11.010 10.1021/jacs.6b10721 10.1126/science.1165620 10.1002/adts.201900178 10.1016/j.apenergy.2015.07.031 10.1126/science.aau8825 10.5281/zenodo.3351382 10.1126/science.aag0476 10.3390/en7031500 10.1002/adfm.201904072 10.1016/j.electacta.2013.06.005 10.1145/358274.358283 10.1021/jp9037649 10.1016/j.joule.2019.03.026 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2020 This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2020 – notice: This journal is © The Royal Society of Chemistry 2020 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM ACNBI ADTPV AOWAS D8T DF2 ZZAVC |
DOI | 10.1039/c9sc06145b |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Uppsala universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Uppsala universitet SwePub Articles full text |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 296 |
ExternalDocumentID | oai_DiVA_org_uu_408927 10_1039_C9SC06145B 34122790 c9sc06145b |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 43294-1 – fundername: ; grantid: 18-482 – fundername: ; grantid: Unassigned – fundername: ; grantid: 2018-04570 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ -JG 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP H13 HZ~ NPM PGMZT RAOCF RNS AAYXX AFPKN CITATION 7SR 8BQ 8FD JG9 7X8 5PM AAWGC ABASK ACNBI ADTPV AETIL AHGXI ANBJS ANLMG AOWAS ASPBG AVWKF CAG COF D8T DF2 ECGLT FEDTE HVGLF J3G J3H J3I L-8 ROL RPMJG ZZAVC |
ID | FETCH-LOGICAL-c532t-ce6baceaac64d62cf76d6e97b6417fc2b9756e76c6d40de07b7df5677c21a87f3 |
IEDL.DBID | RPM |
ISSN | 2041-6520 2041-6539 |
IngestDate | Sat Aug 24 00:35:04 EDT 2024 Tue Sep 17 21:18:25 EDT 2024 Sat Oct 26 05:50:44 EDT 2024 Thu Oct 10 15:47:39 EDT 2024 Fri Aug 23 02:07:55 EDT 2024 Sat Nov 02 12:27:21 EDT 2024 Sat Jan 08 03:39:25 EST 2022 Wed Nov 11 00:36:16 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-ce6baceaac64d62cf76d6e97b6417fc2b9756e76c6d40de07b7df5677c21a87f3 |
Notes | 10.1039/c9sc06145b Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2759-7356 0000-0002-9744-0015 0000-0001-9126-7410 0000-0001-6236-6073 0000-0001-5715-1932 0000-0002-4954-6851 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8157489/ |
PMID | 34122790 |
PQID | 2377926550 |
PQPubID | 2047492 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2540720825 swepub_primary_oai_DiVA_org_uu_408927 proquest_journals_2377926550 crossref_primary_10_1039_C9SC06145B rsc_primary_c9sc06145b pubmed_primary_34122790 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8157489 |
PublicationCentury | 2000 |
PublicationDate | 20200213 |
PublicationDateYYYYMMDD | 2020-02-13 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200213 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Abadi (C9SC06145B-(cit61)/*[position()=1]) 2015 Zhang (C9SC06145B-(cit63)/*[position()=1]) 28 June 2019 Dagar (C9SC06145B-(cit12)/*[position()=1]) 2018; 49 Freitag (C9SC06145B-(cit24)/*[position()=1]) 2015; 8 Reese (C9SC06145B-(cit19)/*[position()=1]) 2011; 95 Zhang (C9SC06145B-(cit25)/*[position()=1]) 2018; 11 Liouane (C9SC06145B-(cit3)/*[position()=1]) 2018; 48 Haight (C9SC06145B-(cit27)/*[position()=1]) 2016; 353 Li (C9SC06145B-(cit36)/*[position()=1]) 2018; 32 Jordan (C9SC06145B-(cit59)/*[position()=1]) 2015; 349 Shaikh (C9SC06145B-(cit30)/*[position()=1]) 2016; 55 Hande (C9SC06145B-(cit31)/*[position()=1]) 2007; 31 Ferdowsi (C9SC06145B-(cit38)/*[position()=1]) 2018; 265 Nicosia (C9SC06145B-(cit5)/*[position()=1]) 2018-Jan Weicker (C9SC06145B-(cit65)/*[position()=1]) 1984; 27 Khenkin (C9SC06145B-(cit66)/*[position()=1]) 2020; 5 Kjellby (C9SC06145B-(cit32)/*[position()=1]) 2018-Jan Stanley (C9SC06145B-(cit57)/*[position()=1]) 2020; 3 Freitag (C9SC06145B-(cit40)/*[position()=1]) 2016; 120 King (C9SC06145B-(cit56)/*[position()=1]) 2009; 324 Freitag (C9SC06145B-(cit20)/*[position()=1]) 2017; 11 White (C9SC06145B-(cit35)/*[position()=1]) 1992 Kakiage (C9SC06145B-(cit26)/*[position()=1]) 2015; 51 Rinderle (C9SC06145B-(cit46)/*[position()=1]) Yin (C9SC06145B-(cit10)/*[position()=1]) 2018; 6 Müller (C9SC06145B-(cit15)/*[position()=1]) 2013; 3 Ellis (C9SC06145B-(cit44)/*[position()=1]) 2013; 107 Olivetti (C9SC06145B-(cit28)/*[position()=1]) 2019 Mathews (C9SC06145B-(cit7)/*[position()=1]) 2016; 6 Lecun (C9SC06145B-(cit62)/*[position()=1]) 1998; 86 Cao (C9SC06145B-(cit21)/*[position()=1]) 2018; 2 Raga (C9SC06145B-(cit48)/*[position()=1]) 2012; 3 Jukan (C9SC06145B-(cit4)/*[position()=1]) 2017 Mathews (C9SC06145B-(cit13)/*[position()=1]) 2019; 29 Lee (C9SC06145B-(cit9)/*[position()=1]) 2018; 6 Freitag (C9SC06145B-(cit47)/*[position()=1]) Michaels (C9SC06145B-(cit41)/*[position()=1]) 2018; 6 Aydogdu (C9SC06145B-(cit53)/*[position()=1]) 2003; 57 Cui (C9SC06145B-(cit55)/*[position()=1]) 2019; 31 Samuel (C9SC06145B-(cit58)/*[position()=1]) 1959; 3 Li (C9SC06145B-(cit17)/*[position()=1]) 2015; 111 Hittinger (C9SC06145B-(cit60)/*[position()=1]) 2019; 364 Saygili (C9SC06145B-(cit39)/*[position()=1]) 2016; 138 Mohammadi (C9SC06145B-(cit2)/*[position()=1]) 2018; 56 Teran (C9SC06145B-(cit16)/*[position()=1]) 2015; 62 Juang (C9SC06145B-(cit54)/*[position()=1]) 2019; 7 Bock (C9SC06145B-(cit29)/*[position()=1]) 1985; 6 Benesperi (C9SC06145B-(cit52)/*[position()=1]) 2018; 6 Yin (C9SC06145B-(cit11)/*[position()=1]) 2018; 6 Bisquert (C9SC06145B-(cit49)/*[position()=1]) 2009; 113 Mathews (C9SC06145B-(cit14)/*[position()=1]) 2019; 3 Hinton (C9SC06145B-(cit33)/*[position()=1]) 2006; 313 Zhang (C9SC06145B-(cit42)/*[position()=1]) 2016; 138 Bergonzini (C9SC06145B-(cit6)/*[position()=1]) 2009; vol. 2009 Gubbi (C9SC06145B-(cit1)/*[position()=1]) 2013; 29 Schmidhuber (C9SC06145B-(cit34)/*[position()=1]) 2015; 61 Cao (C9SC06145B-(cit51)/*[position()=1]) 2017; 8 Chen (C9SC06145B-(cit18)/*[position()=1]) 2019; 7 Antunez (C9SC06145B-(cit37)/*[position()=1]) 2017; 2 (C9SC06145B-(cit45)/*[position()=1]) 28 March 2018 De Rossi (C9SC06145B-(cit22)/*[position()=1]) 2015; 156 Lee (C9SC06145B-(cit8)/*[position()=1]) 2019; 3 Cireşan (C9SC06145B-(cit64)/*[position()=1]) 2010; 22 Hagberg (C9SC06145B-(cit43)/*[position()=1]) 2007; 72 Minnaert (C9SC06145B-(cit23)/*[position()=1]) 2014; 7 Freitag (C9SC06145B-(cit50)/*[position()=1]) 2015; 8 |
References_xml | – issn: 1992 publication-title: Artificial neural networks: approximation and learning theory doi: White Ronald Gallant – publication-title: Light to Information doi: Rinderle Freitag Freitag Michaels Benesperi Alessio – issn: 28 June 2019 volume-title: Hello Edge: Keyword Spotting on Microcontrollers doi: Zhang Suda Lai Chandra – issn: 2017 end-page: NeM2B.4 publication-title: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) doi: Jukan Chamania – issn: 2018-Jan end-page: p 1-4 publication-title: 2018 IEEE Int. Conf. Consum. Electron. doi: Nicosia Pau Giacalone Plebani Bosco Iacchetti – publication-title: Model and sample data for MNIST classification doi: Freitag Rinderle Michaels Freitag Benesperi Alessio – issn: 2018-Jan end-page: p 455-456 publication-title: Proc. IEEE Int. Conf. VLSI Des., 2018 doi: Kjellby Johnsrud Loetveit Cenkeramaddi Hamid Beferull-Lozano – issn: 28 March 2018 publication-title: Solar Spectral Irradiance: Air Mass 1.5 – issn: 2009 issue: vol. 2009 end-page: p 144-149 publication-title: Int. Work. Adv. Sensors Interfaces, IWASI doi: Bergonzini Brunelli Benini 3rd – issn: 2019 publication-title: Life cycle impacts of alkaline batteries with afocus on end-of-life doi: Olivetti Gregory Kirchain – issn: 2015 doi: Abadi Agarwal Barham Brevdo Chen Citro Corrado Davis Dean Devin Ghemawat Goodfellow Harp Irving Isard Jia Józefowicz Kaiser Kudlur Levenberg Mané Monga Moore Murray Olah Schuster Shlens Steiner Sutskever Talwar Tucker Vanhoucke Vasudevan Viégas Vinyals Warden Wattenberg Wicke Yu Zheng – volume: 11 start-page: 1779 year: 2018 ident: C9SC06145B-(cit25)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00661J contributor: fullname: Zhang – volume: 6 start-page: 53 year: 2018 ident: C9SC06145B-(cit41)/*[position()=1] publication-title: Inorganics doi: 10.3390/inorganics6020053 contributor: fullname: Michaels – volume: 8 start-page: 2634 year: 2015 ident: C9SC06145B-(cit24)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01204J contributor: fullname: Freitag – volume: 2 start-page: 884 year: 2017 ident: C9SC06145B-(cit37)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-017-0028-5 contributor: fullname: Antunez – volume: 265 start-page: 194 year: 2018 ident: C9SC06145B-(cit38)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.142 contributor: fullname: Ferdowsi – volume: 51 start-page: 15894 year: 2015 ident: C9SC06145B-(cit26)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC06759F contributor: fullname: Kakiage – volume-title: Life cycle impacts of alkaline batteries with afocus on end-of-life year: 2019 ident: C9SC06145B-(cit28)/*[position()=1] contributor: fullname: Olivetti – volume: 8 start-page: 15390 year: 2017 ident: C9SC06145B-(cit51)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms15390 contributor: fullname: Cao – volume: 349 start-page: 255 year: 2015 ident: C9SC06145B-(cit59)/*[position()=1] publication-title: Science doi: 10.1126/science.aaa8415 contributor: fullname: Jordan – volume: 3 start-page: 210 year: 1959 ident: C9SC06145B-(cit58)/*[position()=1] publication-title: IBM J. Res. Dev. doi: 10.1147/rd.33.0210 contributor: fullname: Samuel – volume: 111 start-page: 21 year: 2015 ident: C9SC06145B-(cit17)/*[position()=1] publication-title: Sol. Energy doi: 10.1016/j.solener.2014.10.024 contributor: fullname: Li – volume: 31 start-page: 420 year: 2007 ident: C9SC06145B-(cit31)/*[position()=1] publication-title: Microprocess. Microsyst. doi: 10.1016/j.micpro.2007.02.006 contributor: fullname: Hande – volume: 7 start-page: 1 year: 2019 ident: C9SC06145B-(cit18)/*[position()=1] publication-title: Adv. Opt. Mater. contributor: fullname: Chen – volume-title: Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS) year: 2017 ident: C9SC06145B-(cit4)/*[position()=1] contributor: fullname: Jukan – volume-title: Proc. IEEE Int. Conf. VLSI Des., 2018 year: 2018-Jan ident: C9SC06145B-(cit32)/*[position()=1] contributor: fullname: Kjellby – volume: 48 start-page: 2017 year: 2018 ident: C9SC06145B-(cit3)/*[position()=1] publication-title: Appl. Intell. doi: 10.1007/s10489-017-1062-5 contributor: fullname: Liouane – volume-title: 2018 IEEE Int. Conf. Consum. Electron. year: 2018-Jan ident: C9SC06145B-(cit5)/*[position()=1] contributor: fullname: Nicosia – volume: 3 start-page: 1800207 year: 2019 ident: C9SC06145B-(cit8)/*[position()=1] publication-title: Sol. RRL doi: 10.1002/solr.201800207 contributor: fullname: Lee – volume-title: Artificial neural networks: approximation and learning theory year: 1992 ident: C9SC06145B-(cit35)/*[position()=1] contributor: fullname: White – volume: 3 start-page: 59 year: 2013 ident: C9SC06145B-(cit15)/*[position()=1] publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2012.2225023 contributor: fullname: Müller – volume: 11 start-page: 372 year: 2017 ident: C9SC06145B-(cit20)/*[position()=1] publication-title: Nat. Photonics doi: 10.1038/nphoton.2017.60 contributor: fullname: Freitag – volume: 22 start-page: 3207 year: 2010 ident: C9SC06145B-(cit64)/*[position()=1] publication-title: Neural Comput. doi: 10.1162/NECO_a_00052 contributor: fullname: Cireşan – volume: 6 start-page: 8579 year: 2018 ident: C9SC06145B-(cit11)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01728J contributor: fullname: Yin – volume: 2 start-page: 1108 year: 2018 ident: C9SC06145B-(cit21)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2018.03.017 contributor: fullname: Cao – year: 2015 ident: C9SC06145B-(cit61)/*[position()=1] contributor: fullname: Abadi – volume: 6 start-page: 5618 year: 2018 ident: C9SC06145B-(cit9)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10875C contributor: fullname: Lee – volume: 7 start-page: 209 year: 2019 ident: C9SC06145B-(cit54)/*[position()=1] publication-title: Front. Chem. doi: 10.3389/fchem.2019.00209 contributor: fullname: Juang – volume: 3 start-page: 1629 year: 2012 ident: C9SC06145B-(cit48)/*[position()=1] publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3005464 contributor: fullname: Raga – volume: 120 start-page: 9595 year: 2016 ident: C9SC06145B-(cit40)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b01658 contributor: fullname: Freitag – volume: 29 start-page: 1645 year: 2013 ident: C9SC06145B-(cit1)/*[position()=1] publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 contributor: fullname: Gubbi – volume: 49 start-page: 290 year: 2018 ident: C9SC06145B-(cit12)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.04.027 contributor: fullname: Dagar – volume: 6 start-page: 9111 year: 2018 ident: C9SC06145B-(cit10)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC02838A contributor: fullname: Yin – volume: 8 start-page: 2634 year: 2015 ident: C9SC06145B-(cit50)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01204J contributor: fullname: Freitag – volume: 6 start-page: 11903 year: 2018 ident: C9SC06145B-(cit52)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C8TC03542C contributor: fullname: Benesperi – volume: 313 start-page: 504 year: 2006 ident: C9SC06145B-(cit33)/*[position()=1] publication-title: Science doi: 10.1126/science.1127647 contributor: fullname: Hinton – volume: 6 start-page: 230 year: 2016 ident: C9SC06145B-(cit7)/*[position()=1] publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2015.2487825 contributor: fullname: Mathews – volume: 138 start-page: 10742 year: 2016 ident: C9SC06145B-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05281 contributor: fullname: Zhang – volume: 86 start-page: 2278 year: 1998 ident: C9SC06145B-(cit62)/*[position()=1] publication-title: Proc. IEEE doi: 10.1109/5.726791 contributor: fullname: Lecun – volume: 95 start-page: 1253 year: 2011 ident: C9SC06145B-(cit19)/*[position()=1] publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2011.01.036 contributor: fullname: Reese – volume: 5 start-page: 35 year: 2020 ident: C9SC06145B-(cit66)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/s41560-019-0529-5 contributor: fullname: Khenkin – volume: 6 start-page: 180 year: 1985 ident: C9SC06145B-(cit29)/*[position()=1] publication-title: AI Mag. contributor: fullname: Bock – volume: 57 start-page: 3755 year: 2003 ident: C9SC06145B-(cit53)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/S0167-577X(03)00174-5 contributor: fullname: Aydogdu – volume: 56 start-page: 94 year: 2018 ident: C9SC06145B-(cit2)/*[position()=1] publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2018.1700298 contributor: fullname: Mohammadi – volume: 61 start-page: 85 year: 2015 ident: C9SC06145B-(cit34)/*[position()=1] publication-title: Neural Network. doi: 10.1016/j.neunet.2014.09.003 contributor: fullname: Schmidhuber – volume: 62 start-page: 2170 year: 2015 ident: C9SC06145B-(cit16)/*[position()=1] publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2015.2434336 contributor: fullname: Teran – volume: 72 start-page: 9550 year: 2007 ident: C9SC06145B-(cit43)/*[position()=1] publication-title: J. Org. Chem. doi: 10.1021/jo701592x contributor: fullname: Hagberg – volume: 31 start-page: 1904512 year: 2019 ident: C9SC06145B-(cit55)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201904512 contributor: fullname: Cui – volume: 32 start-page: 96 year: 2018 ident: C9SC06145B-(cit36)/*[position()=1] publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1700202 contributor: fullname: Li – volume-title: Light to Information ident: C9SC06145B-(cit46)/*[position()=1] doi: 10.5281/zenodo.3351718 contributor: fullname: Rinderle – volume: 55 start-page: 1041 year: 2016 ident: C9SC06145B-(cit30)/*[position()=1] publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.11.010 contributor: fullname: Shaikh – volume: 138 start-page: 15087 year: 2016 ident: C9SC06145B-(cit39)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b10721 contributor: fullname: Saygili – volume: 324 start-page: 85 year: 2009 ident: C9SC06145B-(cit56)/*[position()=1] publication-title: Science doi: 10.1126/science.1165620 contributor: fullname: King – volume: vol. 2009 volume-title: Int. Work. Adv. Sensors Interfaces, IWASI year: 2009 ident: C9SC06145B-(cit6)/*[position()=1] contributor: fullname: Bergonzini – volume: 3 start-page: 1900178 year: 2020 ident: C9SC06145B-(cit57)/*[position()=1] publication-title: Adv. Theory Simul. doi: 10.1002/adts.201900178 contributor: fullname: Stanley – year: 28 June 2019 ident: C9SC06145B-(cit63)/*[position()=1] contributor: fullname: Zhang – volume: 156 start-page: 413 year: 2015 ident: C9SC06145B-(cit22)/*[position()=1] publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.07.031 contributor: fullname: De Rossi – volume-title: Solar Spectral Irradiance: Air Mass 1.5 year: 28 March 2018 ident: C9SC06145B-(cit45)/*[position()=1] – volume: 364 start-page: 326 year: 2019 ident: C9SC06145B-(cit60)/*[position()=1] publication-title: Science doi: 10.1126/science.aau8825 contributor: fullname: Hittinger – volume-title: Model and sample data for MNIST classification ident: C9SC06145B-(cit47)/*[position()=1] doi: 10.5281/zenodo.3351382 contributor: fullname: Freitag – volume: 353 start-page: 124 year: 2016 ident: C9SC06145B-(cit27)/*[position()=1] publication-title: Science doi: 10.1126/science.aag0476 contributor: fullname: Haight – volume: 7 start-page: 1500 year: 2014 ident: C9SC06145B-(cit23)/*[position()=1] publication-title: Energies doi: 10.3390/en7031500 contributor: fullname: Minnaert – volume: 29 start-page: 1904072 year: 2019 ident: C9SC06145B-(cit13)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904072 contributor: fullname: Mathews – volume: 107 start-page: 45 year: 2013 ident: C9SC06145B-(cit44)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.06.005 contributor: fullname: Ellis – volume: 27 start-page: 1013 year: 1984 ident: C9SC06145B-(cit65)/*[position()=1] publication-title: Commun. ACM doi: 10.1145/358274.358283 contributor: fullname: Weicker – volume: 113 start-page: 17278 year: 2009 ident: C9SC06145B-(cit49)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp9037649 contributor: fullname: Bisquert – volume: 3 start-page: 1415 year: 2019 ident: C9SC06145B-(cit14)/*[position()=1] publication-title: Joule doi: 10.1016/j.joule.2019.03.026 contributor: fullname: Mathews |
SSID | ssj0000331527 |
Score | 2.6730719 |
Snippet | The field of photovoltaics gives the opportunity to make our buildings ''smart'' and our portable devices "independent", provided effective energy sources can... The field of photovoltaics gives the opportunity to make our buildings ‘‘smart’’ and our portable devices “independent”, provided effective energy sources can... The field of photovoltaics gives the opportunity to make our buildings "smart'' and our portable devices "independent", provided effective energy sources can... |
SourceID | swepub pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2895 |
SubjectTerms | Artificial intelligence Artificial neural networks Chemistry Dye-sensitized solar cells Dyes Electrolytic cells Energy conversion efficiency Energy sources Fluorescent lamps Harvesters Illumination Image acquisition Image classification Inference Internet of Things Light Machine learning Microcontrollers Neural networks Photons Photovoltaic cells Portable equipment Power management Smart sensors |
Title | Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34122790 https://www.proquest.com/docview/2377926550 https://search.proquest.com/docview/2540720825 https://pubmed.ncbi.nlm.nih.gov/PMC8157489 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-408927 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB51iwS9VLxaUsrKCDimmziJveFWUqoKqQgBWy2nKH6kRGqSVR6Hcud_M_YmC0s5cYwcxdZ8Y3tmMvMNwOs4pnmAlrDLQqXcMIykmwUafZ4s5HkgmWI2lH35kV0swg_LaLkD0VgLY5P2pShOqpvypCq-29zKVSlnY57Y7NNlMvcjQ5oym8AEFfQPF90ev0EwtGqlXui7LKLeSEsaxDMZt9I4QZHYg_t4ghsCPW_7TrpjaN7Nl5w0rfyLW9TeR-cPYX8wJMnpesGPYEdXj-FBMvZvewI_z26125r89K74oRVpjRNLTKC-JaZyrCFZKUw1JLkxDjpZmX5peJGR0uZXajI0lLh-SzqbW9uSrO9MDUTdt6QtUVTEfL5uWoKWL0FLkhQ2vqg7Uuf4bILwT2Fx_v5rcuEOTRdcGQW0c6VmIpM6yySix6jMOeKlYy5Y6PNcUhHziGnOEMbQU9rjgqs8YpxL6mdzxPcAdqu60s-AKOpJ7omc6gydLq6F0HhRCtQMxX1fBQ68GsWertbcGqn9Jx7EaRJ_SSxO7xw4HhFJh_3VptTwJFKG7pUDLzfDKGAjxazSKIiUGm5BalxgBw7XAG6mGZF3gG9Bu3nBsG5vj6AyWvbtQfkcOEAl2Lz_W68cOPr3QLpSuQNv1kqzNdFZcXWa1s112vdp6M1jyo_-e13PYY-akIDpWRMcw27X9PoF2k2dmNp4w9Tulinc-3y1WH77BbSdHiI |
link.rule.ids | 230,315,730,783,787,867,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RaK9lGfblAJGwDG7iZPYG25lS7VAt0KirXqzYscpEd3sKo8DvfO_GTvJwrZc4BjZih_z2TNjj78BeBPHNAvQEnZZmKZuGEbKTQKNPk8S8ixQLGX2KHt6yibn4afL6HINov4tjA3aVzIfFNezQZF_s7GVi5ka9nFiwy_T8ciPDGnKcB3u4Xr1wj-cdLsBB0GXrJV6oe-yiHo9MWkQD1VcKeMGRXIL7uMebij0vFWtdMfUvBsxuV5W6ha7qNVIxw_goh9LG4jyfdDUcqBubtE8_vNgH8J2Z6OSw7b4Eazp4jFsjvvUcE_g59EP7VYm9L3Ob3RKKuMfE3MHUBHzKK0kyUyah5bk2vj-ZGFSsaGOJDMbuqlJl6vi6h2pbdhuRZKmNs8r5k1Fqhl2jJjfz8uKoFFN0EgluT261DWZZ_htzvefwvnxh7PxxO3yObgqCmjtKs1konSSKAQGoyrjCAUdc8lCn2eKyphHTHOGCAm9VHtc8jSLGOeK-skIobMDG8W80HtAUuop7smM6gT9Oa6l1KiDJYIu5b6fBg687uUpFi1th7DX7UEsxvHXsQXAewcOelGLbulWghoKRsrQc3Pg1bIYJ9jMYlJonAhBDW0hNd61A7stMpbN9JBygK9gZlnBEHqvlqDoLbF3J2oHdhBdy_q_AevA_t8LxCLNHHjbonGloaP84lDMyyvRNCL0RjHl-__dr5ewOTmbnoiTj6efn8EWNScPJjVOcAAbddno52ie1fKFXYy_APqqPVw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIpVeeBdSChgBx2wSO7E33Mouq_JoVQmKKi5W7DgloptdbZIDvfO_GXuTpdty6jGyFT_msz0zHn8D8CZNacFQE_Z5nOd-HCfaz5hBmyeLRcE0z7lzZR8e8YOT-NNpcnop1ZcL2teqHFTn00FV_nSxlfOpDvo4seD4cDSMEkuaEszzItiA27hmQ37JUHebMGNdwlYaxpHPExr25KQsDXRaa2sKJWobtnAftzR64frJdE3dvB41ubGo9RWGUXcqTe7Bj348y2CUX4O2UQN9cYXq8UYDvg93O12V7C-rPIBbpnoId0Z9irhH8Gf82_i1DYFvyguTk9raycTeBdTEPk5bkGyq7INLcm59AGRuU7LhWUmmLoTTkC5nxdk70rjw3ZpkbWOfWczamtRT7Byxv58taoLKNUFllZTOhWkaMivw2_r5H8PJ5MO30YHf5XXwdcJo42vDVaZNlmkECKe6EAgJkwrF40gUmqpUJNwIjkiJw9yEQom8SLgQmkbZECG0A5vVrDJPgeQ01CJUBTUZ2nXCKGXwLFYIvlxEUc48eN3LVM6X9B3SXbuzVI7SryMHgvce7PXilt0SriW1VIyUowXnwatVMU6wncWsMjgRklr6QmqtbA-eLNGxaqaHlQdiDTerCpbYe70Exe8Ivjtxe7CDCFvV_wdaD3b_XyARIB68XSJyraFx-X1fzhZnsm1lHA5TKnZv3K-XsHU8nsgvH48-P4Ntah0QNkMO24PNZtGa56ilNeqFW49_AbUUP9w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dye-sensitized+solar+cells+under+ambient+light+powering+machine+learning%3A+towards+autonomous+smart+sensors+for+the+internet+of+things&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Michaels%2C+Hannes&rft.au=Rinderle%2C+Michael&rft.au=Freitag%2C+Richard&rft.au=Benesperi%2C+Iacopo&rft.date=2020-02-13&rft.issn=2041-6520&rft.volume=11&rft.issue=11&rft.spage=2895&rft_id=info:doi/10.1039%2Fc9sc06145b&rft_id=info%3Apmid%2F34122790&rft.externalDocID=34122790 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |