Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma
MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative ass...
Saved in:
Published in | Molecular cancer Vol. 14; no. 1; p. 52 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
BioMed Central Ltd
22.02.2015
BioMed Central |
Subjects | |
Online Access | Get full text |
ISSN | 1476-4598 1476-4598 |
DOI | 10.1186/s12943-015-0323-3 |
Cover
Loading…
Abstract | MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated.
The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated.
We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression.
In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC. |
---|---|
AbstractList | MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated.BACKGROUNDMicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated.The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated.METHODSThe expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated.We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression.RESULTSWe found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression.In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.CONCLUSIONIn conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC. Background MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. Methods The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. Results We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. Conclusion In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC. Keywords: Gastric adenocarcinoma, MicroRNA-15a, MicroRNA-16-1, Tumor suppressor, Yes-associated protein 1 MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC. MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC. |
ArticleNumber | 52 |
Audience | Academic |
Author | Dong, Yujuan Lung, Raymond WM Yang, Weiqin Cheng, Alfred SL Pang, Jesse CS Zhao, Junhong Zhang, Li Liang, Qiaoyi To, Ka Fai Kang, Wei Pan, Yi Tong, Joanna HM Yu, Jun |
Author_xml | – sequence: 1 givenname: Wei surname: Kang fullname: Kang, Wei – sequence: 2 givenname: Joanna HM surname: Tong fullname: Tong, Joanna HM – sequence: 3 givenname: Raymond WM surname: Lung fullname: Lung, Raymond WM – sequence: 4 givenname: Yujuan surname: Dong fullname: Dong, Yujuan – sequence: 5 givenname: Junhong surname: Zhao fullname: Zhao, Junhong – sequence: 6 givenname: Qiaoyi surname: Liang fullname: Liang, Qiaoyi – sequence: 7 givenname: Li surname: Zhang fullname: Zhang, Li – sequence: 8 givenname: Yi surname: Pan fullname: Pan, Yi – sequence: 9 givenname: Weiqin surname: Yang fullname: Yang, Weiqin – sequence: 10 givenname: Jesse CS surname: Pang fullname: Pang, Jesse CS – sequence: 11 givenname: Alfred SL surname: Cheng fullname: Cheng, Alfred SL – sequence: 12 givenname: Jun surname: Yu fullname: Yu, Jun – sequence: 13 givenname: Ka Fai surname: To fullname: To, Ka Fai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25743273$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1rFTEUhoNU7If-ADcScONmar4_NsKlWBWKitSFq5DJJNfITHJNZsT--2a4tdyKSBYJJ895Ocn7noKjlJMH4DlG5xgr8bpiohntEOYdooR29BE4wUyKjnGtjg7Ox-C01h8IYakkewKOCZeMEklPQLq2ZevnmLYwB_ht8xnD_gZO0ZX85eOmw9xCm4aDgugw9L99mSuclykXWJfdrvha2zEsyc0xJxgT3No6l-igHXzKzhYXU57sU_A42LH6Z3f7Gfh6-fb64n139endh4vNVec4JXPnhAq07wMXniOuiEJBSqFlr51yCBMc1IAUDtpxQrUYesR6orHQAwmWDAM9A2_2uruln_zgfJqLHc2uxMmWG5NtNA9vUvxutvmXYZQRRWgTeHUnUPLPxdfZTLE6P442-bxUg4VkQiMidUNf7tGtHb2JKeSm6FbcbDjDTCnFUaPO_0G1Nfj2uc3XEFv9QcOLwyfcz_7HuwbgPdCsqbX4cI9gZNZ8mH0-TMuHWfNh1h75V4-Ls109a9PE8T-dt4AWvW0 |
CitedBy_id | crossref_primary_10_1038_srep27945 crossref_primary_10_26599_BSA_2022_9050008 crossref_primary_10_1007_s00018_019_03345_5 crossref_primary_10_1016_j_jneuroim_2016_04_014 crossref_primary_10_18632_oncotarget_5681 crossref_primary_10_3389_fgene_2021_827444 crossref_primary_10_3892_mmr_2019_10568 crossref_primary_10_1016_j_yexcr_2018_06_025 crossref_primary_10_1016_j_biopha_2018_12_099 crossref_primary_10_1093_jb_mvac006 crossref_primary_10_1016_j_neucom_2018_03_003 crossref_primary_10_3748_wjg_v21_i39_10956 crossref_primary_10_1038_onc_2016_151 crossref_primary_10_1155_2017_9645940 crossref_primary_10_1007_s10529_021_03085_2 crossref_primary_10_3390_cells10020448 crossref_primary_10_1002_jcp_29349 crossref_primary_10_3892_etm_2021_9650 crossref_primary_10_1002_jcp_26833 crossref_primary_10_1186_s12943_017_0647_2 crossref_primary_10_3390_biomedicines10102512 crossref_primary_10_1039_D3NR03495J crossref_primary_10_18632_oncotarget_6504 crossref_primary_10_3892_or_2015_4168 crossref_primary_10_1186_s12943_018_0902_1 crossref_primary_10_1530_ERC_18_0478 crossref_primary_10_1096_fj_202000393R crossref_primary_10_3390_ijms23074068 crossref_primary_10_3233_HAB_200417 crossref_primary_10_3390_cancers8080076 crossref_primary_10_3390_ijms20071576 crossref_primary_10_1093_narcan_zcaf006 crossref_primary_10_1007_s13277_016_4903_7 crossref_primary_10_34133_jbioxresearch_0010 crossref_primary_10_1016_j_biopha_2018_05_050 crossref_primary_10_1038_s41419_023_06053_y crossref_primary_10_3724_abbs_2023038 crossref_primary_10_1007_s00432_016_2243_z crossref_primary_10_1186_s13046_022_02403_4 crossref_primary_10_3390_ijms21051782 crossref_primary_10_3892_ol_2018_8997 crossref_primary_10_1016_j_molmed_2016_08_006 crossref_primary_10_3892_ijo_2016_3503 crossref_primary_10_1038_s41388_018_0430_x crossref_primary_10_1016_j_abb_2024_109994 crossref_primary_10_3390_ijms20051036 crossref_primary_10_3892_mmr_2017_6699 crossref_primary_10_1038_ncb3623 crossref_primary_10_3748_wjg_v22_i3_1279 crossref_primary_10_7717_peerj_8504 crossref_primary_10_1007_s10120_019_01014_x crossref_primary_10_3389_fbioe_2022_956563 crossref_primary_10_1007_s10555_020_09905_7 crossref_primary_10_3727_096504016X14685034103194 crossref_primary_10_1007_s13277_016_5271_z crossref_primary_10_3892_mmr_2018_9074 crossref_primary_10_18632_oncotarget_8056 crossref_primary_10_1007_s12253_017_0263_x crossref_primary_10_18632_aging_102572 crossref_primary_10_1016_j_archoralbio_2017_12_029 crossref_primary_10_1016_j_cellsig_2020_109858 crossref_primary_10_1038_onc_2017_257 crossref_primary_10_1097_CM9_0000000000000921 crossref_primary_10_1038_s41417_025_00885_w crossref_primary_10_1186_s12967_023_04366_2 crossref_primary_10_3389_fphar_2021_736323 crossref_primary_10_3892_mmr_2018_9502 crossref_primary_10_1097_MD_0000000000016711 crossref_primary_10_3892_ol_2017_7424 crossref_primary_10_1186_s12885_021_08227_3 crossref_primary_10_18632_oncotarget_12479 crossref_primary_10_1002_ijc_31561 crossref_primary_10_1016_j_genrep_2020_100755 crossref_primary_10_14218_ERHM_2021_00017 crossref_primary_10_1016_j_biopha_2018_05_111 crossref_primary_10_1161_ATVBAHA_115_305748 crossref_primary_10_3390_ijms22073640 crossref_primary_10_3892_ol_2017_6792 crossref_primary_10_1016_j_gene_2017_09_071 crossref_primary_10_1002_mco2_70128 crossref_primary_10_1016_j_yexcr_2016_09_004 crossref_primary_10_3727_096504016X14611963142290 crossref_primary_10_3390_ijms21030717 crossref_primary_10_1038_s41388_017_0029_7 crossref_primary_10_1134_S0362119720010144 crossref_primary_10_3390_cancers13163949 crossref_primary_10_1038_s41419_017_0134_0 crossref_primary_10_1007_s11033_018_4554_4 crossref_primary_10_4252_wjsc_v12_i11_1276 crossref_primary_10_1002_mc_22831 crossref_primary_10_1002_jcp_26301 crossref_primary_10_1111_nan_12532 crossref_primary_10_1186_s12943_019_1079_y crossref_primary_10_3390_cells11040752 crossref_primary_10_1038_s41388_020_1293_5 crossref_primary_10_1097_MRM_0000000000000203 |
Cites_doi | 10.1016/j.bbrc.2010.03.036 10.1038/onc.2012.156 10.1182/blood-2011-05-351510 10.1186/1479-5876-12-80 10.1371/journal.pone.0033919 10.1136/gutjnl-2011-300411 10.1186/1756-9966-31-27 10.1016/j.pan.2012.02.008 10.1158/1078-0432.CCR-10-2467 10.1038/cdd.2009.69 10.1053/j.gastro.2008.04.003 10.1016/j.ccr.2009.11.019 10.1186/1476-4598-10-55 10.1186/1756-8722-3-46 10.1186/1471-2407-10-240 10.1073/pnas.0506654102 10.1002/ijc.23501 10.1158/0008-5472.CAN-09-2552 10.1038/onc.2012.185 10.1371/journal.pone.0032068 10.1158/1541-7786.MCR-10-0344 10.1016/j.ajpath.2014.01.027 10.1186/s12967-014-0281-3 10.1038/jid.2011.451 10.1038/onc.2011.140 10.1159/000336919 10.1186/1756-9966-30-110 10.1038/nm.1880 10.1111/j.1440-1746.2008.05666.x |
ContentType | Journal Article |
Copyright | COPYRIGHT 2015 BioMed Central Ltd. Kang et al.; licensee BioMed Central. 2015 |
Copyright_xml | – notice: COPYRIGHT 2015 BioMed Central Ltd. – notice: Kang et al.; licensee BioMed Central. 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1186/s12943-015-0323-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1476-4598 |
ExternalDocumentID | PMC4342823 A541488850 25743273 10_1186_s12943_015_0323_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 123 29M 2WC 4.4 53G 5VS 7X7 88E 8FI 8FJ AAFWJ AAJSJ AASML AAYXX ABDBF ABUWG ACGFO ACGFS ACIHN ACIWK ACMJI ACPRK ACUHS ADBBV ADRAZ ADUKV AEAQA AENEX AFKRA AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC BPHCQ BVXVI C6C CCPQU CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P FYUFA GROUPED_DOAJ GX1 H13 HH5 HMCUK HYE IAO IHR INH INR ITC KQ8 M1P M48 M~E O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PZZ RBZ RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS UKHRP W2D WOQ WOW XSB CGR CUY CVF ECM EIF NPM PMFND 7X8 PPXIY 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c532t-c68f3bbf56e5058280f77697b9c8c0121f8d081f9c52396db04b29169d2fa2dd3 |
IEDL.DBID | M48 |
ISSN | 1476-4598 |
IngestDate | Tue Sep 02 05:54:42 EDT 2025 Fri Jul 11 02:57:51 EDT 2025 Tue Jun 17 22:05:30 EDT 2025 Tue Jun 10 21:10:07 EDT 2025 Thu Apr 03 07:01:45 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Tue Jul 01 01:01:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-c68f3bbf56e5058280f77697b9c8c0121f8d081f9c52396db04b29169d2fa2dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12943-015-0323-3 |
PMID | 25743273 |
PQID | 1674690279 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4342823 proquest_miscellaneous_1674690279 gale_infotracmisc_A541488850 gale_infotracacademiconefile_A541488850 pubmed_primary_25743273 crossref_primary_10_1186_s12943_015_0323_3 crossref_citationtrail_10_1186_s12943_015_0323_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-02-22 2015-Feb-22 20150222 |
PublicationDateYYYYMMDD | 2015-02-22 |
PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: London |
PublicationTitle | Molecular cancer |
PublicationTitleAlternate | Mol Cancer |
PublicationYear | 2015 |
Publisher | BioMed Central Ltd BioMed Central |
Publisher_xml | – name: BioMed Central Ltd – name: BioMed Central |
References | M Musumeci (323_CR18) 2011; 30 SM Gao (323_CR17) 2011; 30 A Link (323_CR6) 2012; 30 W Kang (323_CR4) 2012; 7 L Xia (323_CR12) 2008; 123 X Li (323_CR3) 2012; 31 R Bhattacharya (323_CR25) 2009; 69 L Xu (323_CR2) 2012; 61 XJ Zhang (323_CR22) 2010; 3 D Bonci (323_CR19) 2008; 14 X Zhao (323_CR9) 2013; 32 M Ofir (323_CR20) 2011; 9 J Shen (323_CR24) 2012; 12 SM Gao (323_CR10) 2012; 31 LR Jiao (323_CR23) 2012; 7 HW Rho (323_CR28) 2010; 10 RI Aqeilan (323_CR13) 2010; 17 AM Liu (323_CR26) 2010; 394 W Kang (323_CR11) 2014; 12 U Klein (323_CR14) 2010; 17 L Poliseno (323_CR8) 2012; 132 W Kang (323_CR27) 2011; 17 D Sampath (323_CR15) 2012; 119 W Kang (323_CR5) 2014; 12 QW Wong (323_CR29) 2008; 135 J Guo (323_CR7) 2009; 24 A Cimmino (323_CR16) 2005; 102 G Lian (323_CR1) 2014; 184 N Bandi (323_CR21) 2011; 10 |
References_xml | – volume: 394 start-page: 623 year: 2010 ident: 323_CR26 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2010.03.036 – volume: 32 start-page: 1363 year: 2013 ident: 323_CR9 publication-title: Oncogene doi: 10.1038/onc.2012.156 – volume: 119 start-page: 1162 year: 2012 ident: 323_CR15 publication-title: Blood doi: 10.1182/blood-2011-05-351510 – volume: 12 start-page: 80 year: 2014 ident: 323_CR5 publication-title: J Transl Med doi: 10.1186/1479-5876-12-80 – volume: 7 start-page: e33919 year: 2012 ident: 323_CR4 publication-title: PLoS ONE doi: 10.1371/journal.pone.0033919 – volume: 61 start-page: 977 year: 2012 ident: 323_CR2 publication-title: Gut doi: 10.1136/gutjnl-2011-300411 – volume: 31 start-page: 27 year: 2012 ident: 323_CR10 publication-title: J Exp Clin Cancer Res doi: 10.1186/1756-9966-31-27 – volume: 12 start-page: 91 year: 2012 ident: 323_CR24 publication-title: Pancreatology doi: 10.1016/j.pan.2012.02.008 – volume: 17 start-page: 2130 year: 2011 ident: 323_CR27 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-10-2467 – volume: 17 start-page: 215 year: 2010 ident: 323_CR13 publication-title: Cell Death Differ doi: 10.1038/cdd.2009.69 – volume: 135 start-page: 257 year: 2008 ident: 323_CR29 publication-title: Gastroenterology doi: 10.1053/j.gastro.2008.04.003 – volume: 17 start-page: 28 year: 2010 ident: 323_CR14 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.11.019 – volume: 10 start-page: 55 year: 2011 ident: 323_CR21 publication-title: Mol Cancer doi: 10.1186/1476-4598-10-55 – volume: 3 start-page: 46 year: 2010 ident: 323_CR22 publication-title: J Hematol Oncol doi: 10.1186/1756-8722-3-46 – volume: 10 start-page: 240 year: 2010 ident: 323_CR28 publication-title: BMC Cancer doi: 10.1186/1471-2407-10-240 – volume: 102 start-page: 13944 year: 2005 ident: 323_CR16 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0506654102 – volume: 123 start-page: 372 year: 2008 ident: 323_CR12 publication-title: Int J Cancer doi: 10.1002/ijc.23501 – volume: 69 start-page: 9090 year: 2009 ident: 323_CR25 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-09-2552 – volume: 31 start-page: 3482 year: 2012 ident: 323_CR3 publication-title: Oncogene doi: 10.1038/onc.2012.185 – volume: 7 start-page: e32068 year: 2012 ident: 323_CR23 publication-title: PLoS ONE doi: 10.1371/journal.pone.0032068 – volume: 9 start-page: 440 year: 2011 ident: 323_CR20 publication-title: Mol Cancer Res doi: 10.1158/1541-7786.MCR-10-0344 – volume: 184 start-page: 1343 year: 2014 ident: 323_CR1 publication-title: Am J Pathol doi: 10.1016/j.ajpath.2014.01.027 – volume: 12 start-page: 281 year: 2014 ident: 323_CR11 publication-title: J Transl Med doi: 10.1186/s12967-014-0281-3 – volume: 132 start-page: 1860 year: 2012 ident: 323_CR8 publication-title: J Invest Dermatol doi: 10.1038/jid.2011.451 – volume: 30 start-page: 4231 year: 2011 ident: 323_CR18 publication-title: Oncogene doi: 10.1038/onc.2011.140 – volume: 30 start-page: 255 year: 2012 ident: 323_CR6 publication-title: Dig Dis doi: 10.1159/000336919 – volume: 30 start-page: 110 year: 2011 ident: 323_CR17 publication-title: J Exp Clin Cancer Res doi: 10.1186/1756-9966-30-110 – volume: 14 start-page: 1271 year: 2008 ident: 323_CR19 publication-title: Nat Med doi: 10.1038/nm.1880 – volume: 24 start-page: 652 year: 2009 ident: 323_CR7 publication-title: J Gastroenterol Hepatol doi: 10.1111/j.1440-1746.2008.05666.x |
SSID | ssj0017874 |
Score | 2.4493604 |
Snippet | MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma... Background MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric... |
SourceID | pubmedcentral proquest gale pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 52 |
SubjectTerms | Adaptor Proteins, Signal Transducing - genetics Adenocarcinoma - genetics Animals Cell Line, Tumor Cell Movement - genetics Cell Proliferation - genetics Comparative analysis Development and progression Down-Regulation - genetics G1 Phase Cell Cycle Checkpoints - genetics Gene Expression Regulation, Neoplastic - genetics Genes Genes, Tumor Suppressor - physiology Genetic aspects Humans Mice Mice, Inbred BALB C Mice, Nude MicroRNA MicroRNAs - genetics Phosphoproteins - genetics Physiological aspects Resting Phase, Cell Cycle - genetics Stomach cancer Stomach Neoplasms - genetics Transcription Factors |
Title | Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25743273 https://www.proquest.com/docview/1674690279 https://pubmed.ncbi.nlm.nih.gov/PMC4342823 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9swED_6YGNfxta9snVBg8FgoM2RZMn6MIY3WkogoXQNZJ-MJNtdoXG6PGD573fnOFk8ymCfbCz5eXf63Vmn-wG8RYTC4zbwMjGeKysDdz4UvFcQc5hTLo9oofBgqM9Gqj-Ox3uwobdqPuD8ztCO-KRGs5sPv36uPqPBf6oNPtEf54hZirKCYh5JIbnch0MEJkN2OlB_JhVQN-tJZmU0V7FNmknOOy_Rgqm_B-sdtGpnUu5A0-kjeNj4lCxdK8Fj2CuqI7i3ZplcHcH9QTN__gSqyzrxG-GKTUv2PT3vMb9iE0rKuximvBc75qp854DmPUasTIs5Wywn0xmbL2_r1FncJUgksbLril054v8IzOEwhug4w9tNJ-4pjE5PLr-e8YZxgYdYigUPOiml92WsC_SMMBiLSmO0Nd6GJFD1tzLJ0YcobcD41ercR8oLdDBtLkon8lw-g4NqWhUvgAUnrY9CjuGlVj0fW2XKwplCxC4urPUdiDYfOAtNOXJixbjJ6rAk0dlaJhnKJCOZZLID77en3K5rcfyr8zuSWkaag9cNrllugE9HFa-ylPjPMfyPow4ct3qifYVW85uN3DNqoqS0qpgu5xkt4NAW43rbgedrPdg-F46ESqJr2AHT0pBtByrr3W6prn_U5b2VxJBQyJf_87av4IGolVdwIY7hYDFbFq_RW1r4LuybsenCYZr2v_Vx--VkeH7Rrf89dGv7-A0TCRJa |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+of+YAP1+by+microRNA-15a+and+microRNA-16-1+exerts+tumor+suppressor+function+in+gastric+adenocarcinoma&rft.jtitle=Molecular+cancer&rft.au=Kang%2C+Wei&rft.au=Tong%2C+Joanna+HM&rft.au=Lung%2C+Raymond+WM&rft.au=Dong%2C+Yujuan&rft.date=2015-02-22&rft.issn=1476-4598&rft.eissn=1476-4598&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs12943-015-0323-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12943_015_0323_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon |