Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma

MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative ass...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer Vol. 14; no. 1; p. 52
Main Authors Kang, Wei, Tong, Joanna HM, Lung, Raymond WM, Dong, Yujuan, Zhao, Junhong, Liang, Qiaoyi, Zhang, Li, Pan, Yi, Yang, Weiqin, Pang, Jesse CS, Cheng, Alfred SL, Yu, Jun, To, Ka Fai
Format Journal Article
LanguageEnglish
Published England BioMed Central Ltd 22.02.2015
BioMed Central
Subjects
Online AccessGet full text
ISSN1476-4598
1476-4598
DOI10.1186/s12943-015-0323-3

Cover

Loading…
Abstract MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.
AbstractList MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated.BACKGROUNDMicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated.The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated.METHODSThe expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated.We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression.RESULTSWe found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression.In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.CONCLUSIONIn conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.
Background MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. Methods The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. Results We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. Conclusion In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC. Keywords: Gastric adenocarcinoma, MicroRNA-15a, MicroRNA-16-1, Tumor suppressor, Yes-associated protein 1
MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.
MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma (GAC) was investigated. The expression of miR-15a and miR-16-1 in cell lines and primary tumors was examined by miRNA qRT-PCR. Proliferative assays, colony formation, cell invasion and migration, flow cytometry analysis and in vivo study were performed by ectopic expression of miR-15a and miR-16-1. The putative target genes of miR-15a and miR-16-1 were explored by TargetScan and further validated. We found that miR-15a and miR-16-1 were down-regulated in GAC cell lines and primary tumor samples compared with normal gastric epithelium. Functional study demonstrated that ectopic expression of miR-15a and miR-16-1 suppressed cell proliferation, monolayer colony formation, invasion and migration, and xenograft formation in vivo. In addition, miR-15a and miR-16-1 induced G0/G1 cell cycle arrest which was further confirmed by Western blot and qRT-PCR of related cell cycle regulators. YAP1 was confirmed to be a functional target of miR-15a and miR-16-1 in GAC. YAP1 re-expression partly abrogated the inhibitory effect of miR-15a and miR-16-1 in GAC cells. In clinical samples, YAP1 protein expression shows negative correlation with miR-15a and miR-16-1 expression. In conclusion, targeting YAP1 by tumor suppressor miRNA miR-15a and miR-16-1 plays inhibitory effect and this might have a therapeutic potential in GAC.
ArticleNumber 52
Audience Academic
Author Dong, Yujuan
Lung, Raymond WM
Yang, Weiqin
Cheng, Alfred SL
Pang, Jesse CS
Zhao, Junhong
Zhang, Li
Liang, Qiaoyi
To, Ka Fai
Kang, Wei
Pan, Yi
Tong, Joanna HM
Yu, Jun
Author_xml – sequence: 1
  givenname: Wei
  surname: Kang
  fullname: Kang, Wei
– sequence: 2
  givenname: Joanna HM
  surname: Tong
  fullname: Tong, Joanna HM
– sequence: 3
  givenname: Raymond WM
  surname: Lung
  fullname: Lung, Raymond WM
– sequence: 4
  givenname: Yujuan
  surname: Dong
  fullname: Dong, Yujuan
– sequence: 5
  givenname: Junhong
  surname: Zhao
  fullname: Zhao, Junhong
– sequence: 6
  givenname: Qiaoyi
  surname: Liang
  fullname: Liang, Qiaoyi
– sequence: 7
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
– sequence: 8
  givenname: Yi
  surname: Pan
  fullname: Pan, Yi
– sequence: 9
  givenname: Weiqin
  surname: Yang
  fullname: Yang, Weiqin
– sequence: 10
  givenname: Jesse CS
  surname: Pang
  fullname: Pang, Jesse CS
– sequence: 11
  givenname: Alfred SL
  surname: Cheng
  fullname: Cheng, Alfred SL
– sequence: 12
  givenname: Jun
  surname: Yu
  fullname: Yu, Jun
– sequence: 13
  givenname: Ka Fai
  surname: To
  fullname: To, Ka Fai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25743273$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1rFTEUhoNU7If-ADcScONmar4_NsKlWBWKitSFq5DJJNfITHJNZsT--2a4tdyKSBYJJ895Ocn7noKjlJMH4DlG5xgr8bpiohntEOYdooR29BE4wUyKjnGtjg7Ox-C01h8IYakkewKOCZeMEklPQLq2ZevnmLYwB_ht8xnD_gZO0ZX85eOmw9xCm4aDgugw9L99mSuclykXWJfdrvha2zEsyc0xJxgT3No6l-igHXzKzhYXU57sU_A42LH6Z3f7Gfh6-fb64n139endh4vNVec4JXPnhAq07wMXniOuiEJBSqFlr51yCBMc1IAUDtpxQrUYesR6orHQAwmWDAM9A2_2uruln_zgfJqLHc2uxMmWG5NtNA9vUvxutvmXYZQRRWgTeHUnUPLPxdfZTLE6P442-bxUg4VkQiMidUNf7tGtHb2JKeSm6FbcbDjDTCnFUaPO_0G1Nfj2uc3XEFv9QcOLwyfcz_7HuwbgPdCsqbX4cI9gZNZ8mH0-TMuHWfNh1h75V4-Ls109a9PE8T-dt4AWvW0
CitedBy_id crossref_primary_10_1038_srep27945
crossref_primary_10_26599_BSA_2022_9050008
crossref_primary_10_1007_s00018_019_03345_5
crossref_primary_10_1016_j_jneuroim_2016_04_014
crossref_primary_10_18632_oncotarget_5681
crossref_primary_10_3389_fgene_2021_827444
crossref_primary_10_3892_mmr_2019_10568
crossref_primary_10_1016_j_yexcr_2018_06_025
crossref_primary_10_1016_j_biopha_2018_12_099
crossref_primary_10_1093_jb_mvac006
crossref_primary_10_1016_j_neucom_2018_03_003
crossref_primary_10_3748_wjg_v21_i39_10956
crossref_primary_10_1038_onc_2016_151
crossref_primary_10_1155_2017_9645940
crossref_primary_10_1007_s10529_021_03085_2
crossref_primary_10_3390_cells10020448
crossref_primary_10_1002_jcp_29349
crossref_primary_10_3892_etm_2021_9650
crossref_primary_10_1002_jcp_26833
crossref_primary_10_1186_s12943_017_0647_2
crossref_primary_10_3390_biomedicines10102512
crossref_primary_10_1039_D3NR03495J
crossref_primary_10_18632_oncotarget_6504
crossref_primary_10_3892_or_2015_4168
crossref_primary_10_1186_s12943_018_0902_1
crossref_primary_10_1530_ERC_18_0478
crossref_primary_10_1096_fj_202000393R
crossref_primary_10_3390_ijms23074068
crossref_primary_10_3233_HAB_200417
crossref_primary_10_3390_cancers8080076
crossref_primary_10_3390_ijms20071576
crossref_primary_10_1093_narcan_zcaf006
crossref_primary_10_1007_s13277_016_4903_7
crossref_primary_10_34133_jbioxresearch_0010
crossref_primary_10_1016_j_biopha_2018_05_050
crossref_primary_10_1038_s41419_023_06053_y
crossref_primary_10_3724_abbs_2023038
crossref_primary_10_1007_s00432_016_2243_z
crossref_primary_10_1186_s13046_022_02403_4
crossref_primary_10_3390_ijms21051782
crossref_primary_10_3892_ol_2018_8997
crossref_primary_10_1016_j_molmed_2016_08_006
crossref_primary_10_3892_ijo_2016_3503
crossref_primary_10_1038_s41388_018_0430_x
crossref_primary_10_1016_j_abb_2024_109994
crossref_primary_10_3390_ijms20051036
crossref_primary_10_3892_mmr_2017_6699
crossref_primary_10_1038_ncb3623
crossref_primary_10_3748_wjg_v22_i3_1279
crossref_primary_10_7717_peerj_8504
crossref_primary_10_1007_s10120_019_01014_x
crossref_primary_10_3389_fbioe_2022_956563
crossref_primary_10_1007_s10555_020_09905_7
crossref_primary_10_3727_096504016X14685034103194
crossref_primary_10_1007_s13277_016_5271_z
crossref_primary_10_3892_mmr_2018_9074
crossref_primary_10_18632_oncotarget_8056
crossref_primary_10_1007_s12253_017_0263_x
crossref_primary_10_18632_aging_102572
crossref_primary_10_1016_j_archoralbio_2017_12_029
crossref_primary_10_1016_j_cellsig_2020_109858
crossref_primary_10_1038_onc_2017_257
crossref_primary_10_1097_CM9_0000000000000921
crossref_primary_10_1038_s41417_025_00885_w
crossref_primary_10_1186_s12967_023_04366_2
crossref_primary_10_3389_fphar_2021_736323
crossref_primary_10_3892_mmr_2018_9502
crossref_primary_10_1097_MD_0000000000016711
crossref_primary_10_3892_ol_2017_7424
crossref_primary_10_1186_s12885_021_08227_3
crossref_primary_10_18632_oncotarget_12479
crossref_primary_10_1002_ijc_31561
crossref_primary_10_1016_j_genrep_2020_100755
crossref_primary_10_14218_ERHM_2021_00017
crossref_primary_10_1016_j_biopha_2018_05_111
crossref_primary_10_1161_ATVBAHA_115_305748
crossref_primary_10_3390_ijms22073640
crossref_primary_10_3892_ol_2017_6792
crossref_primary_10_1016_j_gene_2017_09_071
crossref_primary_10_1002_mco2_70128
crossref_primary_10_1016_j_yexcr_2016_09_004
crossref_primary_10_3727_096504016X14611963142290
crossref_primary_10_3390_ijms21030717
crossref_primary_10_1038_s41388_017_0029_7
crossref_primary_10_1134_S0362119720010144
crossref_primary_10_3390_cancers13163949
crossref_primary_10_1038_s41419_017_0134_0
crossref_primary_10_1007_s11033_018_4554_4
crossref_primary_10_4252_wjsc_v12_i11_1276
crossref_primary_10_1002_mc_22831
crossref_primary_10_1002_jcp_26301
crossref_primary_10_1111_nan_12532
crossref_primary_10_1186_s12943_019_1079_y
crossref_primary_10_3390_cells11040752
crossref_primary_10_1038_s41388_020_1293_5
crossref_primary_10_1097_MRM_0000000000000203
Cites_doi 10.1016/j.bbrc.2010.03.036
10.1038/onc.2012.156
10.1182/blood-2011-05-351510
10.1186/1479-5876-12-80
10.1371/journal.pone.0033919
10.1136/gutjnl-2011-300411
10.1186/1756-9966-31-27
10.1016/j.pan.2012.02.008
10.1158/1078-0432.CCR-10-2467
10.1038/cdd.2009.69
10.1053/j.gastro.2008.04.003
10.1016/j.ccr.2009.11.019
10.1186/1476-4598-10-55
10.1186/1756-8722-3-46
10.1186/1471-2407-10-240
10.1073/pnas.0506654102
10.1002/ijc.23501
10.1158/0008-5472.CAN-09-2552
10.1038/onc.2012.185
10.1371/journal.pone.0032068
10.1158/1541-7786.MCR-10-0344
10.1016/j.ajpath.2014.01.027
10.1186/s12967-014-0281-3
10.1038/jid.2011.451
10.1038/onc.2011.140
10.1159/000336919
10.1186/1756-9966-30-110
10.1038/nm.1880
10.1111/j.1440-1746.2008.05666.x
ContentType Journal Article
Copyright COPYRIGHT 2015 BioMed Central Ltd.
Kang et al.; licensee BioMed Central. 2015
Copyright_xml – notice: COPYRIGHT 2015 BioMed Central Ltd.
– notice: Kang et al.; licensee BioMed Central. 2015
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1186/s12943-015-0323-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1476-4598
ExternalDocumentID PMC4342823
A541488850
25743273
10_1186_s12943_015_0323_3
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
123
29M
2WC
4.4
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
AASML
AAYXX
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACMJI
ACPRK
ACUHS
ADBBV
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C6C
CCPQU
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
H13
HH5
HMCUK
HYE
IAO
IHR
INH
INR
ITC
KQ8
M1P
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PZZ
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XSB
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7X8
PPXIY
5PM
PJZUB
PUEGO
ID FETCH-LOGICAL-c532t-c68f3bbf56e5058280f77697b9c8c0121f8d081f9c52396db04b29169d2fa2dd3
IEDL.DBID M48
ISSN 1476-4598
IngestDate Tue Sep 02 05:54:42 EDT 2025
Fri Jul 11 02:57:51 EDT 2025
Tue Jun 17 22:05:30 EDT 2025
Tue Jun 10 21:10:07 EDT 2025
Thu Apr 03 07:01:45 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Tue Jul 01 01:01:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c532t-c68f3bbf56e5058280f77697b9c8c0121f8d081f9c52396db04b29169d2fa2dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12943-015-0323-3
PMID 25743273
PQID 1674690279
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4342823
proquest_miscellaneous_1674690279
gale_infotracmisc_A541488850
gale_infotracacademiconefile_A541488850
pubmed_primary_25743273
crossref_primary_10_1186_s12943_015_0323_3
crossref_citationtrail_10_1186_s12943_015_0323_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-22
2015-Feb-22
20150222
PublicationDateYYYYMMDD 2015-02-22
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-22
  day: 22
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular cancer
PublicationTitleAlternate Mol Cancer
PublicationYear 2015
Publisher BioMed Central Ltd
BioMed Central
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
References M Musumeci (323_CR18) 2011; 30
SM Gao (323_CR17) 2011; 30
A Link (323_CR6) 2012; 30
W Kang (323_CR4) 2012; 7
L Xia (323_CR12) 2008; 123
X Li (323_CR3) 2012; 31
R Bhattacharya (323_CR25) 2009; 69
L Xu (323_CR2) 2012; 61
XJ Zhang (323_CR22) 2010; 3
D Bonci (323_CR19) 2008; 14
X Zhao (323_CR9) 2013; 32
M Ofir (323_CR20) 2011; 9
J Shen (323_CR24) 2012; 12
SM Gao (323_CR10) 2012; 31
LR Jiao (323_CR23) 2012; 7
HW Rho (323_CR28) 2010; 10
RI Aqeilan (323_CR13) 2010; 17
AM Liu (323_CR26) 2010; 394
W Kang (323_CR11) 2014; 12
U Klein (323_CR14) 2010; 17
L Poliseno (323_CR8) 2012; 132
W Kang (323_CR27) 2011; 17
D Sampath (323_CR15) 2012; 119
W Kang (323_CR5) 2014; 12
QW Wong (323_CR29) 2008; 135
J Guo (323_CR7) 2009; 24
A Cimmino (323_CR16) 2005; 102
G Lian (323_CR1) 2014; 184
N Bandi (323_CR21) 2011; 10
References_xml – volume: 394
  start-page: 623
  year: 2010
  ident: 323_CR26
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2010.03.036
– volume: 32
  start-page: 1363
  year: 2013
  ident: 323_CR9
  publication-title: Oncogene
  doi: 10.1038/onc.2012.156
– volume: 119
  start-page: 1162
  year: 2012
  ident: 323_CR15
  publication-title: Blood
  doi: 10.1182/blood-2011-05-351510
– volume: 12
  start-page: 80
  year: 2014
  ident: 323_CR5
  publication-title: J Transl Med
  doi: 10.1186/1479-5876-12-80
– volume: 7
  start-page: e33919
  year: 2012
  ident: 323_CR4
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0033919
– volume: 61
  start-page: 977
  year: 2012
  ident: 323_CR2
  publication-title: Gut
  doi: 10.1136/gutjnl-2011-300411
– volume: 31
  start-page: 27
  year: 2012
  ident: 323_CR10
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/1756-9966-31-27
– volume: 12
  start-page: 91
  year: 2012
  ident: 323_CR24
  publication-title: Pancreatology
  doi: 10.1016/j.pan.2012.02.008
– volume: 17
  start-page: 2130
  year: 2011
  ident: 323_CR27
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-10-2467
– volume: 17
  start-page: 215
  year: 2010
  ident: 323_CR13
  publication-title: Cell Death Differ
  doi: 10.1038/cdd.2009.69
– volume: 135
  start-page: 257
  year: 2008
  ident: 323_CR29
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2008.04.003
– volume: 17
  start-page: 28
  year: 2010
  ident: 323_CR14
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.11.019
– volume: 10
  start-page: 55
  year: 2011
  ident: 323_CR21
  publication-title: Mol Cancer
  doi: 10.1186/1476-4598-10-55
– volume: 3
  start-page: 46
  year: 2010
  ident: 323_CR22
  publication-title: J Hematol Oncol
  doi: 10.1186/1756-8722-3-46
– volume: 10
  start-page: 240
  year: 2010
  ident: 323_CR28
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-10-240
– volume: 102
  start-page: 13944
  year: 2005
  ident: 323_CR16
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0506654102
– volume: 123
  start-page: 372
  year: 2008
  ident: 323_CR12
  publication-title: Int J Cancer
  doi: 10.1002/ijc.23501
– volume: 69
  start-page: 9090
  year: 2009
  ident: 323_CR25
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-2552
– volume: 31
  start-page: 3482
  year: 2012
  ident: 323_CR3
  publication-title: Oncogene
  doi: 10.1038/onc.2012.185
– volume: 7
  start-page: e32068
  year: 2012
  ident: 323_CR23
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0032068
– volume: 9
  start-page: 440
  year: 2011
  ident: 323_CR20
  publication-title: Mol Cancer Res
  doi: 10.1158/1541-7786.MCR-10-0344
– volume: 184
  start-page: 1343
  year: 2014
  ident: 323_CR1
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2014.01.027
– volume: 12
  start-page: 281
  year: 2014
  ident: 323_CR11
  publication-title: J Transl Med
  doi: 10.1186/s12967-014-0281-3
– volume: 132
  start-page: 1860
  year: 2012
  ident: 323_CR8
  publication-title: J Invest Dermatol
  doi: 10.1038/jid.2011.451
– volume: 30
  start-page: 4231
  year: 2011
  ident: 323_CR18
  publication-title: Oncogene
  doi: 10.1038/onc.2011.140
– volume: 30
  start-page: 255
  year: 2012
  ident: 323_CR6
  publication-title: Dig Dis
  doi: 10.1159/000336919
– volume: 30
  start-page: 110
  year: 2011
  ident: 323_CR17
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/1756-9966-30-110
– volume: 14
  start-page: 1271
  year: 2008
  ident: 323_CR19
  publication-title: Nat Med
  doi: 10.1038/nm.1880
– volume: 24
  start-page: 652
  year: 2009
  ident: 323_CR7
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/j.1440-1746.2008.05666.x
SSID ssj0017874
Score 2.4493604
Snippet MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric adenocarcinoma...
Background MicroRNAs (miRNAs) have been reported to play an important role in tumorigenesis. In this study, the role of miR-15a and miR-16-1 in gastric...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 52
SubjectTerms Adaptor Proteins, Signal Transducing - genetics
Adenocarcinoma - genetics
Animals
Cell Line, Tumor
Cell Movement - genetics
Cell Proliferation - genetics
Comparative analysis
Development and progression
Down-Regulation - genetics
G1 Phase Cell Cycle Checkpoints - genetics
Gene Expression Regulation, Neoplastic - genetics
Genes
Genes, Tumor Suppressor - physiology
Genetic aspects
Humans
Mice
Mice, Inbred BALB C
Mice, Nude
MicroRNA
MicroRNAs - genetics
Phosphoproteins - genetics
Physiological aspects
Resting Phase, Cell Cycle - genetics
Stomach cancer
Stomach Neoplasms - genetics
Transcription Factors
Title Targeting of YAP1 by microRNA-15a and microRNA-16-1 exerts tumor suppressor function in gastric adenocarcinoma
URI https://www.ncbi.nlm.nih.gov/pubmed/25743273
https://www.proquest.com/docview/1674690279
https://pubmed.ncbi.nlm.nih.gov/PMC4342823
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ra9swED_6YGNfxta9snVBg8FgoM2RZMn6MIY3WkogoXQNZJ-MJNtdoXG6PGD573fnOFk8ymCfbCz5eXf63Vmn-wG8RYTC4zbwMjGeKysDdz4UvFcQc5hTLo9oofBgqM9Gqj-Ox3uwobdqPuD8ztCO-KRGs5sPv36uPqPBf6oNPtEf54hZirKCYh5JIbnch0MEJkN2OlB_JhVQN-tJZmU0V7FNmknOOy_Rgqm_B-sdtGpnUu5A0-kjeNj4lCxdK8Fj2CuqI7i3ZplcHcH9QTN__gSqyzrxG-GKTUv2PT3vMb9iE0rKuximvBc75qp854DmPUasTIs5Wywn0xmbL2_r1FncJUgksbLril054v8IzOEwhug4w9tNJ-4pjE5PLr-e8YZxgYdYigUPOiml92WsC_SMMBiLSmO0Nd6GJFD1tzLJ0YcobcD41ercR8oLdDBtLkon8lw-g4NqWhUvgAUnrY9CjuGlVj0fW2XKwplCxC4urPUdiDYfOAtNOXJixbjJ6rAk0dlaJhnKJCOZZLID77en3K5rcfyr8zuSWkaag9cNrllugE9HFa-ylPjPMfyPow4ct3qifYVW85uN3DNqoqS0qpgu5xkt4NAW43rbgedrPdg-F46ESqJr2AHT0pBtByrr3W6prn_U5b2VxJBQyJf_87av4IGolVdwIY7hYDFbFq_RW1r4LuybsenCYZr2v_Vx--VkeH7Rrf89dGv7-A0TCRJa
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+of+YAP1+by+microRNA-15a+and+microRNA-16-1+exerts+tumor+suppressor+function+in+gastric+adenocarcinoma&rft.jtitle=Molecular+cancer&rft.au=Kang%2C+Wei&rft.au=Tong%2C+Joanna+HM&rft.au=Lung%2C+Raymond+WM&rft.au=Dong%2C+Yujuan&rft.date=2015-02-22&rft.issn=1476-4598&rft.eissn=1476-4598&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1186%2Fs12943-015-0323-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s12943_015_0323_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-4598&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-4598&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-4598&client=summon