Close relation between quantum interference in molecular conductance and diradical existence
An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 4; pp. E413 - E419 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
26.01.2016
National Acad Sciences |
Series | PNAS Plus |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH₂ groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon. |
---|---|
AbstractList | An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH₂ groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon. An empirical observation of a relationship between a striking feature of electronic transmission through a p-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a p-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon. It might seem that the existence of a dramatic diminution in molecular conductance across a hydrocarbon (quantum interference, QI) would be unrelated to the existence of an important class of organic molecules with two electrons in two orbitals, diradicals. However, if you add two carbons to a planar π-electron hydrocarbon, you get a diradical if and only if there is a QI feature in conductance when two electrodes are attached to the molecule at the same sites. When you remove the two carbons where the electrodes are attached, you also generate a diradical. The connection, first empirically observed, is proven. Two kinds of diradicals, with different ground state spin consequences, are also easily distinguished by the relationship. An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N -carbon atom N -electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N +2 atom, N +2 electron hydrocarbon is formed by substituting 2 CH 2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N +2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon. An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon. |
Author | Hoffmann, Roald Solomon, Gemma C. Strange, Mikkel Tsuji, Yuta |
Author_xml | – sequence: 1 givenname: Yuta surname: Tsuji fullname: Tsuji, Yuta organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 – sequence: 2 givenname: Roald surname: Hoffmann fullname: Hoffmann, Roald organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853 – sequence: 3 givenname: Mikkel surname: Strange fullname: Strange, Mikkel organization: Nano-Science Center and Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark – sequence: 4 givenname: Gemma C. surname: Solomon fullname: Solomon, Gemma C. organization: Nano-Science Center and Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26755578$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS0URDaBmgo0Eg3NJH6Pp0FCqwSQItGkRLI8njvgldfe2B4e_z6ebLKEFFSWdb9zfK7PCToKMQBCrwk-I7hj57tg8hkRRFEsCWHP0IrgnrSS9_gIrTCmXas45cfoJOcNxrgXCr9Ax1R2QohOrdC3tY8ZmgTeFBdDM0D5BRCam9mEMm8bFwqkCRIEC_XSbKMHO3uTGhvDONtiloEJYzO6ZEZnjW_gt8tlEbxEzyfjM7y6P0_R9eXF9fpze_X105f1x6vWCkZLa7mQjAprAfqRUsUk1N1GRkerRkuxogOF3vDe2IkbK3s1mGmSYCUDOQ3sFH3Y2-7mYQujhVCS8XqX3NakPzoap_-dBPdDf48_Ne84U6SrBu_vDVK8mSEXvXXZgvcmQJyzJp2sv90RRSr67gm6iXMKdbuFEhJXu75Sbx8nOkR5-PcKnO8Bm2LOCaYDQrBemtVLs_pvs1UhniisK3ed1ZWc_4_uIcoyOLxCmOb6gt8Bb_bAJpeYHkXlNSwX7Bbb1r42 |
CitedBy_id | crossref_primary_10_1063_5_0030764 crossref_primary_10_1021_acs_nanolett_0c00605 crossref_primary_10_1039_C7SC00073A crossref_primary_10_1021_acs_jpcc_1c04242 crossref_primary_10_1021_acs_jpcc_2c07406 crossref_primary_10_1021_acs_jpclett_8b00550 crossref_primary_10_1021_jacs_2c09241 crossref_primary_10_1063_1_4977598 crossref_primary_10_1002_ange_201812989 crossref_primary_10_1002_chem_202301069 crossref_primary_10_1021_acs_orglett_1c02982 crossref_primary_10_1021_acs_joc_6b02037 crossref_primary_10_1039_C9CP06384F crossref_primary_10_1021_acs_jctc_9b00563 crossref_primary_10_1021_acs_jpcc_6b01828 crossref_primary_10_1002_adfm_202104031 crossref_primary_10_1021_jacs_6b05080 crossref_primary_10_1021_acs_jctc_8b00872 crossref_primary_10_1021_acs_jpca_9b05618 crossref_primary_10_1016_j_jphotochem_2017_10_053 crossref_primary_10_1021_acs_chemrev_7b00733 crossref_primary_10_1016_j_mencom_2021_11_005 crossref_primary_10_1063_1_4972992 crossref_primary_10_1039_D0NR07819K crossref_primary_10_1021_acsnano_4c10183 crossref_primary_10_1002_smtd_201600034 crossref_primary_10_1039_D1NR01230D crossref_primary_10_1021_acs_joc_4c01500 crossref_primary_10_3390_molecules25112701 crossref_primary_10_1016_j_xcrp_2021_100329 crossref_primary_10_21517_1992_7223_2019_9_10_101_107 crossref_primary_10_1002_anie_201812989 crossref_primary_10_3390_magnetochemistry6040069 crossref_primary_10_1021_jacs_7b06714 crossref_primary_10_1002_chem_202303456 crossref_primary_10_1016_j_jphotochem_2018_08_014 crossref_primary_10_1021_jacs_1c01305 crossref_primary_10_1038_s41598_018_34132_0 crossref_primary_10_1021_acs_joc_3c01167 crossref_primary_10_1002_chem_201801880 crossref_primary_10_1063_1_4977080 crossref_primary_10_1021_acsomega_0c03735 crossref_primary_10_1063_1_5097330 crossref_primary_10_1038_s41557_022_01107_8 crossref_primary_10_1002_cphc_202100010 crossref_primary_10_1039_C6DT02406H crossref_primary_10_1088_1361_6463_ad2a12 crossref_primary_10_1039_D0SC04350H crossref_primary_10_1021_jacs_9b04649 crossref_primary_10_1021_jacs_2c01141 crossref_primary_10_1002_qua_26367 crossref_primary_10_1021_acs_joc_4c00303 crossref_primary_10_1021_acs_chemrev_3c00406 crossref_primary_10_1002_cptc_202000098 crossref_primary_10_1021_acs_jpcc_0c06198 crossref_primary_10_1021_acs_jpcc_1c10502 crossref_primary_10_1063_5_0046404 crossref_primary_10_1021_acs_joc_1c02085 crossref_primary_10_1021_jacs_4c04391 crossref_primary_10_1039_D1CP02504J crossref_primary_10_1021_acs_jpcc_8b05661 crossref_primary_10_1021_acs_chemrev_9b00260 crossref_primary_10_1134_S1995078019050057 crossref_primary_10_1021_jacs_9b01420 crossref_primary_10_1021_acs_jpcc_9b03177 crossref_primary_10_1063_1_5048955 crossref_primary_10_1021_jacs_9b00558 crossref_primary_10_1063_1_4972131 crossref_primary_10_1063_5_0083486 crossref_primary_10_1063_1_4972572 crossref_primary_10_1002_smll_202002808 crossref_primary_10_1016_j_comptc_2019_03_006 crossref_primary_10_1021_acs_jpcc_7b02274 crossref_primary_10_1021_jacs_4c09771 crossref_primary_10_1021_acs_jpcc_7b03493 crossref_primary_10_1021_jacsau_3c00845 crossref_primary_10_1039_C7CP03872K crossref_primary_10_1021_acs_jpcc_8b12380 crossref_primary_10_1103_PhysRevB_103_125307 |
Cites_doi | 10.1007/BF00527654 10.2307/3620776 10.1063/1.468314 10.1103/PhysRevB.31.6207 10.1088/0022-3719/4/8/018 10.1007/978-3-7091-5695-7 10.1021/ja0398215 10.1039/C5CP03193A 10.1103/PhysRevLett.82.2358 10.1063/1.2958275 10.1002/9780470666975 10.1021/ja000264l 10.1021/ja405354x 10.1063/1.432316 10.1021/jp407452p 10.1063/1.444233 10.1063/1.4913415 10.1021/jacs.5b04629 10.1021/ja9706615 10.1021/ja01315a105 10.1021/acs.jpcc.5b10407 10.1039/c4cc90186j 10.1016/j.cplett.2015.04.043 10.1021/ja111021e 10.1021/ic50187a054 10.1002/jcc.23781 10.1002/cphc.200290006 10.1007/BF01328601 10.1039/C4CS00203B 10.1017/S0305004100017163 10.1063/1.1744702 10.1021/nl101688a 10.1021/ja00832a001 10.1021/ja00300a063 10.1246/bcsj.53.3418 10.1021/ja00131a014 10.1103/PhysRevB.90.125413 10.1021/ja00417a056 10.3762/bjnano.2.95 10.1063/1.4903043 10.1021/jo4015062 10.1021/ja00850a018 10.1021/cr400056a 10.1063/1.1731065 10.1039/c0cp02786c 10.1021/ja512483y 10.1103/PhysRev.79.350 10.1021/acs.jpcc.5b10395 10.1016/S0031-8914(34)90023-9 10.1007/BF00549259 10.1021/ja00028a055 10.1021/cr00028a002 10.1021/ja8044053 10.1021/ja4081887 10.1021/ja00456a010 10.1016/0304-4173(85)90014-X 10.1017/CBO9780511805776 10.1021/ja067255i 10.1021/ja2033926 10.1021/ja00857a019 10.1039/c3cc45125a 10.1021/ar00040a004 10.1246/cl.131115 10.1016/j.ccr.2015.05.013 10.1038/nchem.546 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles Copyright National Academy of Sciences Jan 26, 2016 |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles – notice: Copyright National Academy of Sciences Jan 26, 2016 |
DBID | AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1518206113 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Quantum interference and diradicals |
EISSN | 1091-6490 |
EndPage | E419 |
ExternalDocumentID | PMC4743817 3954873501 26755578 10_1073_pnas_1518206113 113_4_E413 26467545 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: Det Frie Forskningsråd (Danish Council for Independent Research) grantid: none – fundername: NSF | MPS | Division of Chemistry (CHE) grantid: CHE-1305872 – fundername: European Union Seventh Framework Programme grantid: 258806 – fundername: Japan Society for the Promotion of Science (JSPS) grantid: none |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ ADULT AENEX AEUPB AEXZC AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM - 02 0R 1AW 55 AAPBV ABFLS ABPTK ADACO ADZLD ASUFR DNJUQ DOOOF DWIUU DZ F20 JSODD KM PQEST RHF VQA X XHC ZA5 AAYXX AFOSN CITATION NPM YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c532t-c456325ccee9d22836e073d32dc8dc2082b2e9a49acf4ac698baff6ec63e6fb3 |
ISSN | 0027-8424 |
IngestDate | Thu Aug 21 18:08:00 EDT 2025 Sun Aug 24 04:04:07 EDT 2025 Mon Jun 30 07:49:13 EDT 2025 Wed Feb 19 01:57:18 EST 2025 Thu Apr 24 22:53:29 EDT 2025 Tue Jul 01 01:53:39 EDT 2025 Wed Nov 11 00:29:26 EST 2020 Sun Aug 24 12:10:33 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | diradicals determinants nonbonding orbitals quantum interference molecular conductance |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-c456325ccee9d22836e073d32dc8dc2082b2e9a49acf4ac698baff6ec63e6fb3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: Y.T. and R.H. designed research; Y.T., M.S., and G.C.S. performed research; Y.T., R.H., M.S., and G.C.S. contributed new reagents/analytic tools; Y.T., R.H., M.S., and G.C.S. analyzed data; and Y.T., R.H., M.S., and G.C.S. wrote the paper. Edited by Ernest Davidson, University of Washington, Seattle, WA, and approved December 4, 2015 (received for review September 12, 2015) |
OpenAccessLink | https://www.pnas.org/content/pnas/113/4/E413.full.pdf |
PMID | 26755578 |
PQID | 1765601739 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743817 pnas_primary_113_4_E413 proquest_journals_1765601739 proquest_miscellaneous_1761077181 crossref_primary_10_1073_pnas_1518206113 crossref_citationtrail_10_1073_pnas_1518206113 pubmed_primary_26755578 jstor_primary_26467545 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-26 |
PublicationDateYYYYMMDD | 2016-01-26 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationSeriesTitle | PNAS Plus |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_50_2 Felthouse TR (e_1_3_3_44_2) 1978; 17 e_1_3_3_71_2 Dewar MJS (e_1_3_3_26_2) 1969 Crutchley RJ (e_1_3_3_45_2) 1994 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 Dewar MJS (e_1_3_3_56_2) 1952; 214 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 Borden WT (e_1_3_3_1_2) 1982 e_1_3_3_65_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_51_2 e_1_3_3_70_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 24060285 - J Am Chem Soc. 2013 Oct 2;135(39):14713-25 26287641 - Phys Chem Chem Phys. 2015 Sep 28;17(36):23378-83 21614391 - Phys Chem Chem Phys. 2011 Jul 7;13(25):11792-813 25494753 - J Chem Phys. 2014 Dec 14;141(22):224311 26153657 - J Am Chem Soc. 2015 Jul 29;137(29):9222-5 21434667 - J Am Chem Soc. 2011 Apr 20;133(15):5955-65 25747057 - J Chem Phys. 2015 Mar 7;142(9):094103 25255961 - Chem Soc Rev. 2015 Feb 21;44(4):875-88 23984941 - J Org Chem. 2013 Sep 20;78(18):9282-90 25894840 - J Am Chem Soc. 2015 May 13;137(18):5923-9 25382464 - J Comput Chem. 2015 Feb 5;36(4):201-9 21124481 - Nat Chem. 2010 Mar;2(3):223-8 20879779 - Nano Lett. 2010 Oct 13;10(10):4260-5 15113229 - J Am Chem Soc. 2004 May 5;126(17):5577-84 9935492 - Phys Rev B Condens Matter. 1985 May 15;31(10):6207-6215 18698915 - J Chem Phys. 2008 Aug 7;129(5):054701 22259770 - Beilstein J Nanotechnol. 2011;2:862-71 23995380 - Chem Commun (Camb). 2013 Nov 18;49(89):10456-8 12516215 - Chemphyschem. 2002 Dec 16;3(12):1035-7 17263429 - J Am Chem Soc. 2007 Feb 7;129(5):1434-44 21740028 - J Am Chem Soc. 2011 Aug 3;133(30):11426-9 19053483 - J Am Chem Soc. 2008 Dec 24;130(51):17301-8 23883325 - Chem Rev. 2013 Sep 11;113(9):7011-88 24187945 - J Am Chem Soc. 2013 Nov 13;135(45):17144-54 24881678 - Chem Commun (Camb). 2014 Jul 18;50(56):7401-2 |
References_xml | – ident: e_1_3_3_59_2 doi: 10.1007/BF00527654 – ident: e_1_3_3_53_2 doi: 10.2307/3620776 – volume: 214 start-page: 482 year: 1952 ident: e_1_3_3_56_2 article-title: The correspondence between the resonance and molecular orbital theories publication-title: Proc R Soc A Math Phys Sci – ident: e_1_3_3_63_2 doi: 10.1063/1.468314 – ident: e_1_3_3_23_2 – ident: e_1_3_3_20_2 doi: 10.1103/PhysRevB.31.6207 – ident: e_1_3_3_62_2 doi: 10.1088/0022-3719/4/8/018 – ident: e_1_3_3_31_2 doi: 10.1007/978-3-7091-5695-7 – ident: e_1_3_3_49_2 doi: 10.1021/ja0398215 – ident: e_1_3_3_50_2 doi: 10.1039/C5CP03193A – ident: e_1_3_3_5_2 doi: 10.1103/PhysRevLett.82.2358 – ident: e_1_3_3_6_2 doi: 10.1063/1.2958275 – ident: e_1_3_3_27_2 doi: 10.1002/9780470666975 – ident: e_1_3_3_43_2 doi: 10.1021/ja000264l – ident: e_1_3_3_51_2 doi: 10.1021/ja405354x – ident: e_1_3_3_60_2 doi: 10.1063/1.432316 – ident: e_1_3_3_14_2 doi: 10.1021/jp407452p – ident: e_1_3_3_33_2 doi: 10.1063/1.444233 – ident: e_1_3_3_64_2 doi: 10.1063/1.4913415 – ident: e_1_3_3_13_2 doi: 10.1021/jacs.5b04629 – ident: e_1_3_3_48_2 doi: 10.1021/ja9706615 – ident: e_1_3_3_58_2 doi: 10.1021/ja01315a105 – volume-title: Diradicals year: 1982 ident: e_1_3_3_1_2 – ident: e_1_3_3_69_2 doi: 10.1021/acs.jpcc.5b10407 – ident: e_1_3_3_34_2 doi: 10.1039/c4cc90186j – ident: e_1_3_3_65_2 doi: 10.1016/j.cplett.2015.04.043 – ident: e_1_3_3_10_2 doi: 10.1021/ja111021e – volume: 17 start-page: 2636 year: 1978 ident: e_1_3_3_44_2 article-title: Magnetic exchange interactions in binuclear transition-metal complexes. 17. Benzidine and p-phenylenediamine, extended aromatic diamine bridging ligands in binuclear copper (II) 2, 2′, 2′′-triaminotriethylamine and vanadyl bis (hexafluoroacetylacetonate) complexes publication-title: Inorg Chem doi: 10.1021/ic50187a054 – volume-title: The Molecular Orbital Theory of Organic Chemistry year: 1969 ident: e_1_3_3_26_2 – ident: e_1_3_3_18_2 doi: 10.1002/jcc.23781 – ident: e_1_3_3_7_2 doi: 10.1002/cphc.200290006 – ident: e_1_3_3_38_2 doi: 10.1007/BF01328601 – ident: e_1_3_3_4_2 doi: 10.1039/C4CS00203B – ident: e_1_3_3_55_2 doi: 10.1017/S0305004100017163 – ident: e_1_3_3_57_2 doi: 10.1063/1.1744702 – ident: e_1_3_3_9_2 doi: 10.1021/nl101688a – ident: e_1_3_3_71_2 doi: 10.1021/ja00832a001 – start-page: 273 volume-title: Advances in Inorganic Chemistry year: 1994 ident: e_1_3_3_45_2 – ident: e_1_3_3_66_2 doi: 10.1021/ja00300a063 – ident: e_1_3_3_61_2 doi: 10.1246/bcsj.53.3418 – ident: e_1_3_3_47_2 doi: 10.1021/ja00131a014 – ident: e_1_3_3_25_2 doi: 10.1103/PhysRevB.90.125413 – ident: e_1_3_3_68_2 doi: 10.1021/ja00417a056 – ident: e_1_3_3_24_2 doi: 10.3762/bjnano.2.95 – ident: e_1_3_3_21_2 doi: 10.1063/1.4903043 – ident: e_1_3_3_15_2 doi: 10.1021/jo4015062 – ident: e_1_3_3_39_2 doi: 10.1021/ja00850a018 – ident: e_1_3_3_3_2 doi: 10.1021/cr400056a – ident: e_1_3_3_42_2 doi: 10.1063/1.1731065 – ident: e_1_3_3_30_2 doi: 10.1039/c0cp02786c – ident: e_1_3_3_35_2 doi: 10.1021/ja512483y – ident: e_1_3_3_41_2 doi: 10.1103/PhysRev.79.350 – ident: e_1_3_3_54_2 doi: 10.1021/acs.jpcc.5b10395 – ident: e_1_3_3_40_2 doi: 10.1016/S0031-8914(34)90023-9 – ident: e_1_3_3_32_2 doi: 10.1007/BF00549259 – ident: e_1_3_3_67_2 doi: 10.1021/ja00028a055 – ident: e_1_3_3_2_2 doi: 10.1021/cr00028a002 – ident: e_1_3_3_22_2 doi: 10.1021/ja8044053 – ident: e_1_3_3_52_2 – ident: e_1_3_3_12_2 doi: 10.1021/ja4081887 – ident: e_1_3_3_28_2 doi: 10.1021/ja00456a010 – ident: e_1_3_3_37_2 doi: 10.1016/0304-4173(85)90014-X – ident: e_1_3_3_19_2 doi: 10.1017/CBO9780511805776 – ident: e_1_3_3_46_2 doi: 10.1021/ja067255i – ident: e_1_3_3_11_2 doi: 10.1021/ja2033926 – ident: e_1_3_3_70_2 doi: 10.1021/ja00857a019 – ident: e_1_3_3_17_2 doi: 10.1039/c3cc45125a – ident: e_1_3_3_29_2 doi: 10.1021/ar00040a004 – ident: e_1_3_3_16_2 doi: 10.1246/cl.131115 – ident: e_1_3_3_36_2 doi: 10.1016/j.ccr.2015.05.013 – ident: e_1_3_3_8_2 doi: 10.1038/nchem.546 – reference: 24187945 - J Am Chem Soc. 2013 Nov 13;135(45):17144-54 – reference: 26287641 - Phys Chem Chem Phys. 2015 Sep 28;17(36):23378-83 – reference: 12516215 - Chemphyschem. 2002 Dec 16;3(12):1035-7 – reference: 20879779 - Nano Lett. 2010 Oct 13;10(10):4260-5 – reference: 23984941 - J Org Chem. 2013 Sep 20;78(18):9282-90 – reference: 25494753 - J Chem Phys. 2014 Dec 14;141(22):224311 – reference: 19053483 - J Am Chem Soc. 2008 Dec 24;130(51):17301-8 – reference: 25747057 - J Chem Phys. 2015 Mar 7;142(9):094103 – reference: 25255961 - Chem Soc Rev. 2015 Feb 21;44(4):875-88 – reference: 17263429 - J Am Chem Soc. 2007 Feb 7;129(5):1434-44 – reference: 23883325 - Chem Rev. 2013 Sep 11;113(9):7011-88 – reference: 18698915 - J Chem Phys. 2008 Aug 7;129(5):054701 – reference: 24060285 - J Am Chem Soc. 2013 Oct 2;135(39):14713-25 – reference: 22259770 - Beilstein J Nanotechnol. 2011;2:862-71 – reference: 21434667 - J Am Chem Soc. 2011 Apr 20;133(15):5955-65 – reference: 23995380 - Chem Commun (Camb). 2013 Nov 18;49(89):10456-8 – reference: 26153657 - J Am Chem Soc. 2015 Jul 29;137(29):9222-5 – reference: 15113229 - J Am Chem Soc. 2004 May 5;126(17):5577-84 – reference: 21124481 - Nat Chem. 2010 Mar;2(3):223-8 – reference: 21614391 - Phys Chem Chem Phys. 2011 Jul 7;13(25):11792-813 – reference: 25894840 - J Am Chem Soc. 2015 May 13;137(18):5923-9 – reference: 25382464 - J Comput Chem. 2015 Feb 5;36(4):201-9 – reference: 9935492 - Phys Rev B Condens Matter. 1985 May 15;31(10):6207-6215 – reference: 21740028 - J Am Chem Soc. 2011 Aug 3;133(30):11426-9 – reference: 24881678 - Chem Commun (Camb). 2014 Jul 18;50(56):7401-2 |
SSID | ssj0009580 |
Score | 2.4761882 |
Snippet | An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on... It might seem that the existence of a dramatic diminution in molecular conductance across a hydrocarbon (quantum interference, QI) would be unrelated to the... An empirical observation of a relationship between a striking feature of electronic transmission through a p-system, destructive quantum interference (QI), on... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | E413 |
SubjectTerms | Electrodes Electrons Hydrocarbons Physical Sciences PNAS Plus Quantum theory Theorems |
Title | Close relation between quantum interference in molecular conductance and diradical existence |
URI | https://www.jstor.org/stable/26467545 http://www.pnas.org/content/113/4/E413.abstract https://www.ncbi.nlm.nih.gov/pubmed/26755578 https://www.proquest.com/docview/1765601739 https://www.proquest.com/docview/1761077181 https://pubmed.ncbi.nlm.nih.gov/PMC4743817 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKY0_8vE4TYMKiWqCIg0JKXIcRxtr0tE2L7zyj3P-iJuWTQJeojY-O5Xv1_Odc_4dQq8LWlbjktIwqzgEKGnEQ5HyMhzzIpIZlywROlD8OI0nX9iHc34-GPzqZS2162Ikf954ruR_tAr3QK_6lOw_aNYPCjfgM-gXrqBhuP6Vjk_mOtt86fLZfM7Vjxamq60NFcSy45G9bIZ1VwpX55prnld_XAAWNmFf2GhmTONG973WM7_Krbqcgmm3iXi8OZLi7MRqGA7PppsCx7NV-93kDHxt134RmCyqqnYFmj8txLz0Wz3rpT7vYFP6r66UzwD5DGa6tjkC71VdC7e_63YsIrNjQRzftbWy4KSEMbN1Qr0ZtmdSHd5Yz6ieMtv0h7UH86RLFDdiNQLHRTPRR9uSoK7r2iifQGDEua0WtEOw3TXdQXcJxBrEWPc-c3M67jihEvp252maTNr13_JsbHKrZswF-Zuil90k3J5XM3uA7rtwBB9bbO2jgWoeov1OkfjIsZK_eYS-GbDhDmzYgQ07sOE-2OAL9mDDPbBhABv2YMMebI_R7N3p7GQSutIcoeSUrEMJfjclXAL4slIzKMUKJqekpJRpKQn4lQVRmWCZkBUTMs7SQlRVrGRMVVwV9ADtNYtGPUU4k2kkFQcQc8Vg1RZVqb1kQhlRCYllgEbdrObS0dbr6inz3KRPJDTXM5xvNBKgI9_h2jK23C56YNTk5SA6AGUyHqAnRtT3j2jOco3DAB12qsydJYARE01hFSU0C9Ar3wx2Wr98E41atEYGfgJ4gpEe3Gi-91iLoAAlW5jwApoDfrulubwwXPAs0Rx9ybNbx3yO7m3-g4dob71s1Qvwo9fFS4Pz30e-y3c |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Close+relation+between+quantum+interference+in+molecular+conductance+and+diradical+existence&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tsuji%2C+Yuta&rft.au=Hoffmann%2C+Roald&rft.au=Strange%2C+Mikkel&rft.au=Solomon%2C+Gemma+C&rft.date=2016-01-26&rft.eissn=1091-6490&rft.volume=113&rft.issue=4&rft.spage=E413&rft_id=info:doi/10.1073%2Fpnas.1518206113&rft_id=info%3Apmid%2F26755578&rft.externalDocID=26755578 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif |