Close relation between quantum interference in molecular conductance and diradical existence

An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 4; pp. E413 - E419
Main Authors Tsuji, Yuta, Hoffmann, Roald, Strange, Mikkel, Solomon, Gemma C.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 26.01.2016
National Acad Sciences
SeriesPNAS Plus
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH₂ groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.
AbstractList An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH₂ groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.
An empirical observation of a relationship between a striking feature of electronic transmission through a p-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a p-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.
It might seem that the existence of a dramatic diminution in molecular conductance across a hydrocarbon (quantum interference, QI) would be unrelated to the existence of an important class of organic molecules with two electrons in two orbitals, diradicals. However, if you add two carbons to a planar π-electron hydrocarbon, you get a diradical if and only if there is a QI feature in conductance when two electrodes are attached to the molecule at the same sites. When you remove the two carbons where the electrodes are attached, you also generate a diradical. The connection, first empirically observed, is proven. Two kinds of diradicals, with different ground state spin consequences, are also easily distinguished by the relationship. An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N -carbon atom N -electron closed-shell hydrocarbon where the matrix elements of the Green’s function vanish. These zeros come in two types, which are called easy and hard. Suppose an N +2 atom, N +2 electron hydrocarbon is formed by substituting 2 CH 2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N +2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.
An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on one hand, and the stability of diradicals on the other, leads to the proof of a general theorem that relates the two. Subject to a number of simplifying assumptions, in a π-electron system, QI occurs when electrodes are attached to those positions of an N-carbon atom N-electron closed-shell hydrocarbon where the matrix elements of the Green's function vanish. These zeros come in two types, which are called easy and hard. Suppose an N+2 atom, N+2 electron hydrocarbon is formed by substituting 2 CH2 groups at two atoms, where the electrodes were. Then, if a QI feature is associated with electrode attachment to the two atoms of the original N atom system, the resulting augmented N+2 molecule will be a diradical. If there is no QI feature, i.e., transmission of current is normal if electrodes are attached to the two atoms, the resulting hydrocarbon will not be a diradical but will have a classical closed-shell electronic structure. Moreover, where a diradical exists, the easy zero is associated with a nondisjoint diradical, and the hard zero is associated with a disjoint one. A related theorem is proven for deletion of two sites from a hydrocarbon.
Author Hoffmann, Roald
Solomon, Gemma C.
Strange, Mikkel
Tsuji, Yuta
Author_xml – sequence: 1
  givenname: Yuta
  surname: Tsuji
  fullname: Tsuji, Yuta
  organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
– sequence: 2
  givenname: Roald
  surname: Hoffmann
  fullname: Hoffmann, Roald
  organization: Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
– sequence: 3
  givenname: Mikkel
  surname: Strange
  fullname: Strange, Mikkel
  organization: Nano-Science Center and Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
– sequence: 4
  givenname: Gemma C.
  surname: Solomon
  fullname: Solomon, Gemma C.
  organization: Nano-Science Center and Department of Chemistry, University of Copenhagen, 2100 Copenhagen Ø, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26755578$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS0URDaBmgo0Eg3NJH6Pp0FCqwSQItGkRLI8njvgldfe2B4e_z6ebLKEFFSWdb9zfK7PCToKMQBCrwk-I7hj57tg8hkRRFEsCWHP0IrgnrSS9_gIrTCmXas45cfoJOcNxrgXCr9Ax1R2QohOrdC3tY8ZmgTeFBdDM0D5BRCam9mEMm8bFwqkCRIEC_XSbKMHO3uTGhvDONtiloEJYzO6ZEZnjW_gt8tlEbxEzyfjM7y6P0_R9eXF9fpze_X105f1x6vWCkZLa7mQjAprAfqRUsUk1N1GRkerRkuxogOF3vDe2IkbK3s1mGmSYCUDOQ3sFH3Y2-7mYQujhVCS8XqX3NakPzoap_-dBPdDf48_Ne84U6SrBu_vDVK8mSEXvXXZgvcmQJyzJp2sv90RRSr67gm6iXMKdbuFEhJXu75Sbx8nOkR5-PcKnO8Bm2LOCaYDQrBemtVLs_pvs1UhniisK3ed1ZWc_4_uIcoyOLxCmOb6gt8Bb_bAJpeYHkXlNSwX7Bbb1r42
CitedBy_id crossref_primary_10_1063_5_0030764
crossref_primary_10_1021_acs_nanolett_0c00605
crossref_primary_10_1039_C7SC00073A
crossref_primary_10_1021_acs_jpcc_1c04242
crossref_primary_10_1021_acs_jpcc_2c07406
crossref_primary_10_1021_acs_jpclett_8b00550
crossref_primary_10_1021_jacs_2c09241
crossref_primary_10_1063_1_4977598
crossref_primary_10_1002_ange_201812989
crossref_primary_10_1002_chem_202301069
crossref_primary_10_1021_acs_orglett_1c02982
crossref_primary_10_1021_acs_joc_6b02037
crossref_primary_10_1039_C9CP06384F
crossref_primary_10_1021_acs_jctc_9b00563
crossref_primary_10_1021_acs_jpcc_6b01828
crossref_primary_10_1002_adfm_202104031
crossref_primary_10_1021_jacs_6b05080
crossref_primary_10_1021_acs_jctc_8b00872
crossref_primary_10_1021_acs_jpca_9b05618
crossref_primary_10_1016_j_jphotochem_2017_10_053
crossref_primary_10_1021_acs_chemrev_7b00733
crossref_primary_10_1016_j_mencom_2021_11_005
crossref_primary_10_1063_1_4972992
crossref_primary_10_1039_D0NR07819K
crossref_primary_10_1021_acsnano_4c10183
crossref_primary_10_1002_smtd_201600034
crossref_primary_10_1039_D1NR01230D
crossref_primary_10_1021_acs_joc_4c01500
crossref_primary_10_3390_molecules25112701
crossref_primary_10_1016_j_xcrp_2021_100329
crossref_primary_10_21517_1992_7223_2019_9_10_101_107
crossref_primary_10_1002_anie_201812989
crossref_primary_10_3390_magnetochemistry6040069
crossref_primary_10_1021_jacs_7b06714
crossref_primary_10_1002_chem_202303456
crossref_primary_10_1016_j_jphotochem_2018_08_014
crossref_primary_10_1021_jacs_1c01305
crossref_primary_10_1038_s41598_018_34132_0
crossref_primary_10_1021_acs_joc_3c01167
crossref_primary_10_1002_chem_201801880
crossref_primary_10_1063_1_4977080
crossref_primary_10_1021_acsomega_0c03735
crossref_primary_10_1063_1_5097330
crossref_primary_10_1038_s41557_022_01107_8
crossref_primary_10_1002_cphc_202100010
crossref_primary_10_1039_C6DT02406H
crossref_primary_10_1088_1361_6463_ad2a12
crossref_primary_10_1039_D0SC04350H
crossref_primary_10_1021_jacs_9b04649
crossref_primary_10_1021_jacs_2c01141
crossref_primary_10_1002_qua_26367
crossref_primary_10_1021_acs_joc_4c00303
crossref_primary_10_1021_acs_chemrev_3c00406
crossref_primary_10_1002_cptc_202000098
crossref_primary_10_1021_acs_jpcc_0c06198
crossref_primary_10_1021_acs_jpcc_1c10502
crossref_primary_10_1063_5_0046404
crossref_primary_10_1021_acs_joc_1c02085
crossref_primary_10_1021_jacs_4c04391
crossref_primary_10_1039_D1CP02504J
crossref_primary_10_1021_acs_jpcc_8b05661
crossref_primary_10_1021_acs_chemrev_9b00260
crossref_primary_10_1134_S1995078019050057
crossref_primary_10_1021_jacs_9b01420
crossref_primary_10_1021_acs_jpcc_9b03177
crossref_primary_10_1063_1_5048955
crossref_primary_10_1021_jacs_9b00558
crossref_primary_10_1063_1_4972131
crossref_primary_10_1063_5_0083486
crossref_primary_10_1063_1_4972572
crossref_primary_10_1002_smll_202002808
crossref_primary_10_1016_j_comptc_2019_03_006
crossref_primary_10_1021_acs_jpcc_7b02274
crossref_primary_10_1021_jacs_4c09771
crossref_primary_10_1021_acs_jpcc_7b03493
crossref_primary_10_1021_jacsau_3c00845
crossref_primary_10_1039_C7CP03872K
crossref_primary_10_1021_acs_jpcc_8b12380
crossref_primary_10_1103_PhysRevB_103_125307
Cites_doi 10.1007/BF00527654
10.2307/3620776
10.1063/1.468314
10.1103/PhysRevB.31.6207
10.1088/0022-3719/4/8/018
10.1007/978-3-7091-5695-7
10.1021/ja0398215
10.1039/C5CP03193A
10.1103/PhysRevLett.82.2358
10.1063/1.2958275
10.1002/9780470666975
10.1021/ja000264l
10.1021/ja405354x
10.1063/1.432316
10.1021/jp407452p
10.1063/1.444233
10.1063/1.4913415
10.1021/jacs.5b04629
10.1021/ja9706615
10.1021/ja01315a105
10.1021/acs.jpcc.5b10407
10.1039/c4cc90186j
10.1016/j.cplett.2015.04.043
10.1021/ja111021e
10.1021/ic50187a054
10.1002/jcc.23781
10.1002/cphc.200290006
10.1007/BF01328601
10.1039/C4CS00203B
10.1017/S0305004100017163
10.1063/1.1744702
10.1021/nl101688a
10.1021/ja00832a001
10.1021/ja00300a063
10.1246/bcsj.53.3418
10.1021/ja00131a014
10.1103/PhysRevB.90.125413
10.1021/ja00417a056
10.3762/bjnano.2.95
10.1063/1.4903043
10.1021/jo4015062
10.1021/ja00850a018
10.1021/cr400056a
10.1063/1.1731065
10.1039/c0cp02786c
10.1021/ja512483y
10.1103/PhysRev.79.350
10.1021/acs.jpcc.5b10395
10.1016/S0031-8914(34)90023-9
10.1007/BF00549259
10.1021/ja00028a055
10.1021/cr00028a002
10.1021/ja8044053
10.1021/ja4081887
10.1021/ja00456a010
10.1016/0304-4173(85)90014-X
10.1017/CBO9780511805776
10.1021/ja067255i
10.1021/ja2033926
10.1021/ja00857a019
10.1039/c3cc45125a
10.1021/ar00040a004
10.1246/cl.131115
10.1016/j.ccr.2015.05.013
10.1038/nchem.546
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences Jan 26, 2016
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences Jan 26, 2016
DBID AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1518206113
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Quantum interference and diradicals
EISSN 1091-6490
EndPage E419
ExternalDocumentID PMC4743817
3954873501
26755578
10_1073_pnas_1518206113
113_4_E413
26467545
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: Det Frie Forskningsråd (Danish Council for Independent Research)
  grantid: none
– fundername: NSF | MPS | Division of Chemistry (CHE)
  grantid: CHE-1305872
– fundername: European Union Seventh Framework Programme
  grantid: 258806
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: none
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
ADZLD
ASUFR
DNJUQ
DOOOF
DWIUU
DZ
F20
JSODD
KM
PQEST
RHF
VQA
X
XHC
ZA5
AAYXX
AFOSN
CITATION
NPM
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c532t-c456325ccee9d22836e073d32dc8dc2082b2e9a49acf4ac698baff6ec63e6fb3
ISSN 0027-8424
IngestDate Thu Aug 21 18:08:00 EDT 2025
Sun Aug 24 04:04:07 EDT 2025
Mon Jun 30 07:49:13 EDT 2025
Wed Feb 19 01:57:18 EST 2025
Thu Apr 24 22:53:29 EDT 2025
Tue Jul 01 01:53:39 EDT 2025
Wed Nov 11 00:29:26 EST 2020
Sun Aug 24 12:10:33 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords diradicals
determinants
nonbonding orbitals
quantum interference
molecular conductance
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-c456325ccee9d22836e073d32dc8dc2082b2e9a49acf4ac698baff6ec63e6fb3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: Y.T. and R.H. designed research; Y.T., M.S., and G.C.S. performed research; Y.T., R.H., M.S., and G.C.S. contributed new reagents/analytic tools; Y.T., R.H., M.S., and G.C.S. analyzed data; and Y.T., R.H., M.S., and G.C.S. wrote the paper.
Edited by Ernest Davidson, University of Washington, Seattle, WA, and approved December 4, 2015 (received for review September 12, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/113/4/E413.full.pdf
PMID 26755578
PQID 1765601739
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4743817
pnas_primary_113_4_E413
proquest_journals_1765601739
proquest_miscellaneous_1761077181
crossref_primary_10_1073_pnas_1518206113
crossref_citationtrail_10_1073_pnas_1518206113
pubmed_primary_26755578
jstor_primary_26467545
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-26
PublicationDateYYYYMMDD 2016-01-26
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationSeriesTitle PNAS Plus
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_50_2
Felthouse TR (e_1_3_3_44_2) 1978; 17
e_1_3_3_71_2
Dewar MJS (e_1_3_3_26_2) 1969
Crutchley RJ (e_1_3_3_45_2) 1994
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
Dewar MJS (e_1_3_3_56_2) 1952; 214
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
Borden WT (e_1_3_3_1_2) 1982
e_1_3_3_65_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_51_2
e_1_3_3_70_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
24060285 - J Am Chem Soc. 2013 Oct 2;135(39):14713-25
26287641 - Phys Chem Chem Phys. 2015 Sep 28;17(36):23378-83
21614391 - Phys Chem Chem Phys. 2011 Jul 7;13(25):11792-813
25494753 - J Chem Phys. 2014 Dec 14;141(22):224311
26153657 - J Am Chem Soc. 2015 Jul 29;137(29):9222-5
21434667 - J Am Chem Soc. 2011 Apr 20;133(15):5955-65
25747057 - J Chem Phys. 2015 Mar 7;142(9):094103
25255961 - Chem Soc Rev. 2015 Feb 21;44(4):875-88
23984941 - J Org Chem. 2013 Sep 20;78(18):9282-90
25894840 - J Am Chem Soc. 2015 May 13;137(18):5923-9
25382464 - J Comput Chem. 2015 Feb 5;36(4):201-9
21124481 - Nat Chem. 2010 Mar;2(3):223-8
20879779 - Nano Lett. 2010 Oct 13;10(10):4260-5
15113229 - J Am Chem Soc. 2004 May 5;126(17):5577-84
9935492 - Phys Rev B Condens Matter. 1985 May 15;31(10):6207-6215
18698915 - J Chem Phys. 2008 Aug 7;129(5):054701
22259770 - Beilstein J Nanotechnol. 2011;2:862-71
23995380 - Chem Commun (Camb). 2013 Nov 18;49(89):10456-8
12516215 - Chemphyschem. 2002 Dec 16;3(12):1035-7
17263429 - J Am Chem Soc. 2007 Feb 7;129(5):1434-44
21740028 - J Am Chem Soc. 2011 Aug 3;133(30):11426-9
19053483 - J Am Chem Soc. 2008 Dec 24;130(51):17301-8
23883325 - Chem Rev. 2013 Sep 11;113(9):7011-88
24187945 - J Am Chem Soc. 2013 Nov 13;135(45):17144-54
24881678 - Chem Commun (Camb). 2014 Jul 18;50(56):7401-2
References_xml – ident: e_1_3_3_59_2
  doi: 10.1007/BF00527654
– ident: e_1_3_3_53_2
  doi: 10.2307/3620776
– volume: 214
  start-page: 482
  year: 1952
  ident: e_1_3_3_56_2
  article-title: The correspondence between the resonance and molecular orbital theories
  publication-title: Proc R Soc A Math Phys Sci
– ident: e_1_3_3_63_2
  doi: 10.1063/1.468314
– ident: e_1_3_3_23_2
– ident: e_1_3_3_20_2
  doi: 10.1103/PhysRevB.31.6207
– ident: e_1_3_3_62_2
  doi: 10.1088/0022-3719/4/8/018
– ident: e_1_3_3_31_2
  doi: 10.1007/978-3-7091-5695-7
– ident: e_1_3_3_49_2
  doi: 10.1021/ja0398215
– ident: e_1_3_3_50_2
  doi: 10.1039/C5CP03193A
– ident: e_1_3_3_5_2
  doi: 10.1103/PhysRevLett.82.2358
– ident: e_1_3_3_6_2
  doi: 10.1063/1.2958275
– ident: e_1_3_3_27_2
  doi: 10.1002/9780470666975
– ident: e_1_3_3_43_2
  doi: 10.1021/ja000264l
– ident: e_1_3_3_51_2
  doi: 10.1021/ja405354x
– ident: e_1_3_3_60_2
  doi: 10.1063/1.432316
– ident: e_1_3_3_14_2
  doi: 10.1021/jp407452p
– ident: e_1_3_3_33_2
  doi: 10.1063/1.444233
– ident: e_1_3_3_64_2
  doi: 10.1063/1.4913415
– ident: e_1_3_3_13_2
  doi: 10.1021/jacs.5b04629
– ident: e_1_3_3_48_2
  doi: 10.1021/ja9706615
– ident: e_1_3_3_58_2
  doi: 10.1021/ja01315a105
– volume-title: Diradicals
  year: 1982
  ident: e_1_3_3_1_2
– ident: e_1_3_3_69_2
  doi: 10.1021/acs.jpcc.5b10407
– ident: e_1_3_3_34_2
  doi: 10.1039/c4cc90186j
– ident: e_1_3_3_65_2
  doi: 10.1016/j.cplett.2015.04.043
– ident: e_1_3_3_10_2
  doi: 10.1021/ja111021e
– volume: 17
  start-page: 2636
  year: 1978
  ident: e_1_3_3_44_2
  article-title: Magnetic exchange interactions in binuclear transition-metal complexes. 17. Benzidine and p-phenylenediamine, extended aromatic diamine bridging ligands in binuclear copper (II) 2, 2′, 2′′-triaminotriethylamine and vanadyl bis (hexafluoroacetylacetonate) complexes
  publication-title: Inorg Chem
  doi: 10.1021/ic50187a054
– volume-title: The Molecular Orbital Theory of Organic Chemistry
  year: 1969
  ident: e_1_3_3_26_2
– ident: e_1_3_3_18_2
  doi: 10.1002/jcc.23781
– ident: e_1_3_3_7_2
  doi: 10.1002/cphc.200290006
– ident: e_1_3_3_38_2
  doi: 10.1007/BF01328601
– ident: e_1_3_3_4_2
  doi: 10.1039/C4CS00203B
– ident: e_1_3_3_55_2
  doi: 10.1017/S0305004100017163
– ident: e_1_3_3_57_2
  doi: 10.1063/1.1744702
– ident: e_1_3_3_9_2
  doi: 10.1021/nl101688a
– ident: e_1_3_3_71_2
  doi: 10.1021/ja00832a001
– start-page: 273
  volume-title: Advances in Inorganic Chemistry
  year: 1994
  ident: e_1_3_3_45_2
– ident: e_1_3_3_66_2
  doi: 10.1021/ja00300a063
– ident: e_1_3_3_61_2
  doi: 10.1246/bcsj.53.3418
– ident: e_1_3_3_47_2
  doi: 10.1021/ja00131a014
– ident: e_1_3_3_25_2
  doi: 10.1103/PhysRevB.90.125413
– ident: e_1_3_3_68_2
  doi: 10.1021/ja00417a056
– ident: e_1_3_3_24_2
  doi: 10.3762/bjnano.2.95
– ident: e_1_3_3_21_2
  doi: 10.1063/1.4903043
– ident: e_1_3_3_15_2
  doi: 10.1021/jo4015062
– ident: e_1_3_3_39_2
  doi: 10.1021/ja00850a018
– ident: e_1_3_3_3_2
  doi: 10.1021/cr400056a
– ident: e_1_3_3_42_2
  doi: 10.1063/1.1731065
– ident: e_1_3_3_30_2
  doi: 10.1039/c0cp02786c
– ident: e_1_3_3_35_2
  doi: 10.1021/ja512483y
– ident: e_1_3_3_41_2
  doi: 10.1103/PhysRev.79.350
– ident: e_1_3_3_54_2
  doi: 10.1021/acs.jpcc.5b10395
– ident: e_1_3_3_40_2
  doi: 10.1016/S0031-8914(34)90023-9
– ident: e_1_3_3_32_2
  doi: 10.1007/BF00549259
– ident: e_1_3_3_67_2
  doi: 10.1021/ja00028a055
– ident: e_1_3_3_2_2
  doi: 10.1021/cr00028a002
– ident: e_1_3_3_22_2
  doi: 10.1021/ja8044053
– ident: e_1_3_3_52_2
– ident: e_1_3_3_12_2
  doi: 10.1021/ja4081887
– ident: e_1_3_3_28_2
  doi: 10.1021/ja00456a010
– ident: e_1_3_3_37_2
  doi: 10.1016/0304-4173(85)90014-X
– ident: e_1_3_3_19_2
  doi: 10.1017/CBO9780511805776
– ident: e_1_3_3_46_2
  doi: 10.1021/ja067255i
– ident: e_1_3_3_11_2
  doi: 10.1021/ja2033926
– ident: e_1_3_3_70_2
  doi: 10.1021/ja00857a019
– ident: e_1_3_3_17_2
  doi: 10.1039/c3cc45125a
– ident: e_1_3_3_29_2
  doi: 10.1021/ar00040a004
– ident: e_1_3_3_16_2
  doi: 10.1246/cl.131115
– ident: e_1_3_3_36_2
  doi: 10.1016/j.ccr.2015.05.013
– ident: e_1_3_3_8_2
  doi: 10.1038/nchem.546
– reference: 24187945 - J Am Chem Soc. 2013 Nov 13;135(45):17144-54
– reference: 26287641 - Phys Chem Chem Phys. 2015 Sep 28;17(36):23378-83
– reference: 12516215 - Chemphyschem. 2002 Dec 16;3(12):1035-7
– reference: 20879779 - Nano Lett. 2010 Oct 13;10(10):4260-5
– reference: 23984941 - J Org Chem. 2013 Sep 20;78(18):9282-90
– reference: 25494753 - J Chem Phys. 2014 Dec 14;141(22):224311
– reference: 19053483 - J Am Chem Soc. 2008 Dec 24;130(51):17301-8
– reference: 25747057 - J Chem Phys. 2015 Mar 7;142(9):094103
– reference: 25255961 - Chem Soc Rev. 2015 Feb 21;44(4):875-88
– reference: 17263429 - J Am Chem Soc. 2007 Feb 7;129(5):1434-44
– reference: 23883325 - Chem Rev. 2013 Sep 11;113(9):7011-88
– reference: 18698915 - J Chem Phys. 2008 Aug 7;129(5):054701
– reference: 24060285 - J Am Chem Soc. 2013 Oct 2;135(39):14713-25
– reference: 22259770 - Beilstein J Nanotechnol. 2011;2:862-71
– reference: 21434667 - J Am Chem Soc. 2011 Apr 20;133(15):5955-65
– reference: 23995380 - Chem Commun (Camb). 2013 Nov 18;49(89):10456-8
– reference: 26153657 - J Am Chem Soc. 2015 Jul 29;137(29):9222-5
– reference: 15113229 - J Am Chem Soc. 2004 May 5;126(17):5577-84
– reference: 21124481 - Nat Chem. 2010 Mar;2(3):223-8
– reference: 21614391 - Phys Chem Chem Phys. 2011 Jul 7;13(25):11792-813
– reference: 25894840 - J Am Chem Soc. 2015 May 13;137(18):5923-9
– reference: 25382464 - J Comput Chem. 2015 Feb 5;36(4):201-9
– reference: 9935492 - Phys Rev B Condens Matter. 1985 May 15;31(10):6207-6215
– reference: 21740028 - J Am Chem Soc. 2011 Aug 3;133(30):11426-9
– reference: 24881678 - Chem Commun (Camb). 2014 Jul 18;50(56):7401-2
SSID ssj0009580
Score 2.4761882
Snippet An empirical observation of a relationship between a striking feature of electronic transmission through a π-system, destructive quantum interference (QI), on...
It might seem that the existence of a dramatic diminution in molecular conductance across a hydrocarbon (quantum interference, QI) would be unrelated to the...
An empirical observation of a relationship between a striking feature of electronic transmission through a p-system, destructive quantum interference (QI), on...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage E413
SubjectTerms Electrodes
Electrons
Hydrocarbons
Physical Sciences
PNAS Plus
Quantum theory
Theorems
Title Close relation between quantum interference in molecular conductance and diradical existence
URI https://www.jstor.org/stable/26467545
http://www.pnas.org/content/113/4/E413.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26755578
https://www.proquest.com/docview/1765601739
https://www.proquest.com/docview/1761077181
https://pubmed.ncbi.nlm.nih.gov/PMC4743817
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKeOEFMWAQGMhIPAxVKY0_8vE4TYMKiWqCIg0JKXIcRxtr0tE2L7zyj3P-iJuWTQJeojY-O5Xv1_Odc_4dQq8LWlbjktIwqzgEKGnEQ5HyMhzzIpIZlywROlD8OI0nX9iHc34-GPzqZS2162Ikf954ruR_tAr3QK_6lOw_aNYPCjfgM-gXrqBhuP6Vjk_mOtt86fLZfM7Vjxamq60NFcSy45G9bIZ1VwpX55prnld_XAAWNmFf2GhmTONG973WM7_Krbqcgmm3iXi8OZLi7MRqGA7PppsCx7NV-93kDHxt134RmCyqqnYFmj8txLz0Wz3rpT7vYFP6r66UzwD5DGa6tjkC71VdC7e_63YsIrNjQRzftbWy4KSEMbN1Qr0ZtmdSHd5Yz6ieMtv0h7UH86RLFDdiNQLHRTPRR9uSoK7r2iifQGDEua0WtEOw3TXdQXcJxBrEWPc-c3M67jihEvp252maTNr13_JsbHKrZswF-Zuil90k3J5XM3uA7rtwBB9bbO2jgWoeov1OkfjIsZK_eYS-GbDhDmzYgQ07sOE-2OAL9mDDPbBhABv2YMMebI_R7N3p7GQSutIcoeSUrEMJfjclXAL4slIzKMUKJqekpJRpKQn4lQVRmWCZkBUTMs7SQlRVrGRMVVwV9ADtNYtGPUU4k2kkFQcQc8Vg1RZVqb1kQhlRCYllgEbdrObS0dbr6inz3KRPJDTXM5xvNBKgI9_h2jK23C56YNTk5SA6AGUyHqAnRtT3j2jOco3DAB12qsydJYARE01hFSU0C9Ar3wx2Wr98E41atEYGfgJ4gpEe3Gi-91iLoAAlW5jwApoDfrulubwwXPAs0Rx9ybNbx3yO7m3-g4dob71s1Qvwo9fFS4Pz30e-y3c
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Close+relation+between+quantum+interference+in+molecular+conductance+and+diradical+existence&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Tsuji%2C+Yuta&rft.au=Hoffmann%2C+Roald&rft.au=Strange%2C+Mikkel&rft.au=Solomon%2C+Gemma+C&rft.date=2016-01-26&rft.eissn=1091-6490&rft.volume=113&rft.issue=4&rft.spage=E413&rft_id=info:doi/10.1073%2Fpnas.1518206113&rft_id=info%3Apmid%2F26755578&rft.externalDocID=26755578
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F113%2F4.cover.gif