Structure and Dynamics of the First Archaeal Parvulin Reveal a New Functionally Important Loop in Parvulin-type Prolyl Isomerases
Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14...
Saved in:
Published in | The Journal of biological chemistry Vol. 286; no. 8; pp. 6554 - 6565 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.02.2011
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α3-β-α-β2 fold typical for all parvulin structures known so far, but with helix III being a short 310-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 310-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for 1H-15N-HSQC titrations. Again, the flexible region around 310-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. |
---|---|
AbstractList | Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Aa within the secondary structure elements. The overall fold of PinA comprises the beta - alpha 3- beta - alpha - beta 2 fold typical for all parvulin structures known so far, but with helix II delta being a short 310-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 310-helix II delta exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for 1H-15N-HSQC titrations. Again, the flexible region around 310-helix II delta as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α(3)-β-α-β(2) fold typical for all parvulin structures known so far, but with helix III being a short 3(10)-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 3(10)-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for (1)H-(15)N-HSQC titrations. Again, the flexible region around 3(10)-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α(3)-β-α-β(2) fold typical for all parvulin structures known so far, but with helix III being a short 3(10)-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 3(10)-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for (1)H-(15)N-HSQC titrations. Again, the flexible region around 3(10)-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases.Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α(3)-β-α-β(2) fold typical for all parvulin structures known so far, but with helix III being a short 3(10)-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 3(10)-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for (1)H-(15)N-HSQC titrations. Again, the flexible region around 3(10)-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α₃-β-α-β₂ fold typical for all parvulin structures known so far, but with helix III being a short 3₁₀-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 3₁₀-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for ¹H-¹⁵N-HSQC titrations. Again, the flexible region around 3₁₀-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 a< within the secondary structure elements. The overall fold of PinA comprises the I2-I-3-I2-I--I22 fold typical for all parvulin structures known so far, but with helix II delta being a short 310-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 310-helix II delta exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for 1H-15N-HSQC titrations. Again, the flexible region around 310-helix II delta as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α 3 -β-α-β 2 fold typical for all parvulin structures known so far, but with helix III being a short 3 10 -helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 3 10 -helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for 1 H- 15 N-HSQC titrations. Again, the flexible region around 3 10 -helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the psychrophilic archaeon Cenarchaeum symbiosum is a parvulin-like PPIase. Due to its striking similarity to the human parvulins Pin1 and Par14, PinA constitutes an interesting subject for structural and functional studies. Here, we present the first high resolution NMR structure of an archaeal parvulin, PinA, based on 1798 conformational restraints. Structure calculation yields an ensemble of 20 convergent low energy structures with a backbone r.m.s.d. value of 0.6 Å within the secondary structure elements. The overall fold of PinA comprises the β-α3-β-α-β2 fold typical for all parvulin structures known so far, but with helix III being a short 310-helix. A detailed comparison of this high resolution structure of the first archaeal PinA protein with bacterial and eukaryotic parvulin PPIase structures reveals an atypically large catalytic binding site. This feature provides an explanation for cold-adapted protein function. Moreover, the residues in and around 310-helix III exhibit strong intramolecular dynamics on a microsecond to millisecond timescale and display structural heterogeneity within the NMR ensemble. A putative peptide ligand was found for PinA by phage display and was used for 1H-15N-HSQC titrations. Again, the flexible region around 310-helix III as well as residues of the peptide binding pocket showed the strongest chemical shift perturbations upon peptide binding. The local flexibility of this region also was modulated by ligand binding. A glycine and two positively charged residues are conserved in most parvulin proteins in this flexible loop region, which may be of general functional importance for parvulin-type PPIases. |
Author | Zhukov, Igor Ejchart, Andrzej Bayer, Peter Jaremko, Łukasz Elfaki, Imadeldin Jaremko, Mariusz Mueller, Jonathan W. |
Author_xml | – sequence: 1 givenname: Łukasz surname: Jaremko fullname: Jaremko, Łukasz organization: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland – sequence: 2 givenname: Mariusz surname: Jaremko fullname: Jaremko, Mariusz organization: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland – sequence: 3 givenname: Imadeldin surname: Elfaki fullname: Elfaki, Imadeldin organization: Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology, ZMB, University of Duisburg-Essen, Universitaetstrasse 2, 45117 Essen, Germany – sequence: 4 givenname: Jonathan W. surname: Mueller fullname: Mueller, Jonathan W. organization: Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology, ZMB, University of Duisburg-Essen, Universitaetstrasse 2, 45117 Essen, Germany – sequence: 5 givenname: Andrzej surname: Ejchart fullname: Ejchart, Andrzej organization: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland – sequence: 6 givenname: Peter surname: Bayer fullname: Bayer, Peter email: peter.bayer@uni-due.de organization: Institute for Structural and Medicinal Biochemistry, Center for Medical Biotechnology, ZMB, University of Duisburg-Essen, Universitaetstrasse 2, 45117 Essen, Germany – sequence: 7 givenname: Igor surname: Zhukov fullname: Zhukov, Igor email: igor.zhukov@ki.si organization: Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21138844$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFDEYxoNU7LZ69qa56WXafM1k9iKU6urCqsVa8BYymXe6KTPJmmRW9uh_boZtiwoWcwkhv-fh_XiO0IHzDhB6TskJJVKc3jTm5COdXhWRlD9CM0pqXvCSfjtAM0IYLeasrA_RUYw3JB8xp0_QIaOU17UQM_TzMoXRpDEA1q7Fb3dOD9ZE7Duc1oAXNsSEz4JZa9A9vtBhO_bW4S-wnd4af4IfeDE6k6x3uu93eDlsfEjaJbzyfoMzeycq0m4D-CL4ftfjZfQDBB0hPkWPO91HeHZ7H6Orxbuv5x-K1ef3y_OzVWFKzlLRQKu1YC2HpqKyqmRHOjCkhMo0oqq6UjS1aSWHGqSohS47ybtOshoY7yra8mP0Zu-7GZsBWgMuBd2rTbCDDjvltVV__ji7Vtd-qzgpZc1ZNnh1axD89xFiUoONBvpeO_BjVHWukwkmeCZfP0hSmRsQQnD6vyiX84y--L2B-8rvlpmB0z1ggo8xQHePUKKmuKgcFzXFRe3jkhXlXwpjk552mSdg-wd0L_e6Tnulr4ON6uqSEcoJnYuKldOw5nsC8kq3FoKKxoIz0NoAJqnW23-6_wJH3uLk |
CitedBy_id | crossref_primary_10_1080_07391102_2018_1461686 crossref_primary_10_3389_fmicb_2021_751049 crossref_primary_10_1007_s10858_024_00449_4 crossref_primary_10_1021_ja2086195 crossref_primary_10_4137_EBO_S7683 crossref_primary_10_3390_cimb43030130 crossref_primary_10_1093_nar_gky1299 crossref_primary_10_1080_14789450_2025_2456046 crossref_primary_10_1186_s12915_016_0274_1 crossref_primary_10_1021_acs_jpclett_4c01800 crossref_primary_10_1074_jbc_M114_593228 crossref_primary_10_1002_bkcs_11581 crossref_primary_10_7124_bc_0008A1 crossref_primary_10_3390_ijms21155268 crossref_primary_10_3389_fmicb_2016_01408 crossref_primary_10_1016_j_str_2013_07_016 crossref_primary_10_3389_fmicb_2021_739000 crossref_primary_10_1038_srep44504 crossref_primary_10_3390_jpm11090861 crossref_primary_10_1007_s10858_012_9652_3 crossref_primary_10_3390_ijms12085261 crossref_primary_10_1080_07391102_2020_1750486 crossref_primary_10_1098_rsif_2019_0075 crossref_primary_10_1016_j_bbagrm_2014_02_001 |
Cites_doi | 10.1016/S0006-291X(02)02721-3 10.1126/science.278.5345.1957 10.1038/nrmicro1852 10.1023/A:1008398416292 10.1016/j.jmr.2008.07.025 10.1021/bi00012a023 10.1016/j.bbrc.2010.04.039 10.1111/j.1432-1033.2004.04049.x 10.1016/0022-2836(91)90755-U 10.1016/S0022-2836(02)00241-3 10.1007/s10822-010-9365-1 10.1007/BF00228148 10.4137/PMC.S496 10.2741/1361 10.1186/1471-2199-7-9 10.1002/jcc.20084 10.1074/jbc.M507026200 10.1093/bioinformatics/16.6.566 10.1110/ps.04756704 10.1371/journal.pbio.0040095 10.1021/ja800622p 10.1006/jmbi.1997.1284 10.1007/s10858-009-9333-z 10.1186/1472-6807-9-17 10.1007/BF00197809 10.1038/35054051 10.1007/s10858-009-9395-y 10.1016/0263-7855(90)80070-V 10.1007/s10858-004-7563-7 10.1021/bi00471a022 10.1074/jbc.M300721200 10.1021/bi00138a005 10.1006/jmbi.1997.0989 10.1021/ja017461k 10.1016/0263-7855(96)00009-4 10.1146/annurev.biochem.75.103004.142723 10.1021/bi00133a003 10.1016/j.febslet.2006.02.042 10.1074/jbc.M801633200 10.1038/nsb0901-756 10.1006/jmbi.2000.4013 10.1016/S0092-8674(00)80273-1 10.1046/j.1432-1033.2002.03222.x 10.1038/nprot.2007.406 10.1186/1741-7007-5-37 10.1073/pnas.93.13.6241 10.1021/ja049049l 10.1021/ja00381a009 |
ContentType | Journal Article |
Copyright | 2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. 2011 by The American Society for Biochemistry and Molecular Biology, Inc. |
Copyright_xml | – notice: 2011 © 2011 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology. – notice: 2011 by The American Society for Biochemistry and Molecular Biology, Inc. |
DBID | 6I. AAFTH FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL C1K 7X8 5PM |
DOI | 10.1074/jbc.M110.160713 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Bacteriology Abstracts (Microbiology B) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Bacteriology Abstracts (Microbiology B) MEDLINE MEDLINE - Academic Bacteriology Abstracts (Microbiology B) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
DocumentTitleAlternate | Structure and Dynamics of the First Archaeal Parvulin |
EISSN | 1083-351X |
EndPage | 6565 |
ExternalDocumentID | PMC3057832 21138844 10_1074_jbc_M110_160713 US201301946252 S0021925820520310 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -ET -~X 0SF 18M 29J 2WC 34G 39C 4.4 53G 5BI 5GY 5RE 5VS 6I. 79B 85S AAEDW AAFTH AAFWJ AARDX AAXUO ABDNZ ABOCM ABPPZ ABRJW ACGFO ACNCT ADBBV ADIYS ADNWM AENEX AEXQZ AFOSN AFPKN ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BAWUL BTFSW C1A CJ0 CS3 DIK DU5 E3Z EBS EJD F5P FDB FRP GROUPED_DOAJ GX1 HH5 HYE IH2 KQ8 L7B N9A OK1 P-O P0W P2P R.V RHF RHI RNS ROL RPM SJN TBC TN5 TR2 UHB UKR UPT VQA W8F WH7 WOQ XFK XSW YQT YSK YWH YZZ ZA5 ~02 ~KM .55 .GJ 186 3O- 41~ 6TJ AAYJJ AAYOK ABFSI ABPTK ABTAH ACSFO ACYGS AEQTP AFDAS AFFNX AFMIJ AI. E.L F20 FA8 FBQ J5H MVM NHB OHT QZG UQL VH1 WHG X7M XJT Y6R YYP ZE2 ZGI ZY4 .7T 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN ADXHL AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION H13 CGR CUY CVF ECM EIF NPM Z5M 7QL C1K 7X8 5PM |
ID | FETCH-LOGICAL-c532t-bedaa42d3eb617667f0fec05e6cb466f54b8cd73e8e7484a5f73ff728e23f61d3 |
ISSN | 0021-9258 1083-351X |
IngestDate | Thu Aug 21 18:02:14 EDT 2025 Fri Jul 11 03:53:31 EDT 2025 Thu Jul 10 22:57:26 EDT 2025 Fri Jul 11 15:32:03 EDT 2025 Wed Feb 19 02:29:59 EST 2025 Tue Jul 01 01:53:52 EDT 2025 Thu Apr 24 23:05:14 EDT 2025 Wed Dec 27 19:18:12 EST 2023 Fri Feb 23 02:46:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | NMR Archaebacteria Cold-adapted Protein Protein Structure Thaumarchaeota Protein Folding Prolyl Isomerase |
Language | English |
License | This is an open access article under the CC BY license. http://creativecommons.org/licenses/by/4.0 https://www.elsevier.com/tdm/userlicense/1.0 Creative Commons Attribution Non-Commercial License applies to Author Choice Articles Author's Choice—Final version full access. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-bedaa42d3eb617667f0fec05e6cb466f54b8cd73e8e7484a5f73ff728e23f61d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Both authors contributed equally in this work. Fellow of Deutscher Akademischer Austauschdienst. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3057832 |
PMID | 21138844 |
PQID | 1776644379 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3057832 proquest_miscellaneous_853224243 proquest_miscellaneous_1776644431 proquest_miscellaneous_1776644379 pubmed_primary_21138844 crossref_primary_10_1074_jbc_M110_160713 crossref_citationtrail_10_1074_jbc_M110_160713 fao_agris_US201301946252 elsevier_sciencedirect_doi_10_1074_jbc_M110_160713 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-25 |
PublicationDateYYYYMMDD | 2011-02-25 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 9650 Rockville Pike, Bethesda, MD 20814, U.S.A |
PublicationTitle | The Journal of biological chemistry |
PublicationTitleAlternate | J Biol Chem |
PublicationYear | 2011 |
Publisher | Elsevier Inc American Society for Biochemistry and Molecular Biology |
Publisher_xml | – name: Elsevier Inc – name: American Society for Biochemistry and Molecular Biology |
References | Bayer, Goettsch, Mueller, Griewel, Guiberman, Mayr, Bayer (bib11) 2003; 278 Brunger (bib24) 2007; 2 Ding, Gronenborn (bib39) 2004; 126 Rudrabhatla, Zheng, Amin, Kesavapany, Albers, Pant (bib3) 2008; 283 Wong, Fersht, Freund (bib45) 1997; 268 Holm, Park (bib50) 2000; 16 Sekerina, Rahfeld, Müller, Fanghänel, Rascher, Fischer, Bayer (bib36) 2000; 301 Suzuki, Haruki, Takano, Morikawa, Kanaya (bib13) 2004; 271 Yaffe, Schutkowski, Shen, Zhou, Stukenberg, Rahfeld, Xu, Kuang, Kirschner, Fischer, Cantley, Lu (bib12) 1997; 278 Ghalebani, Kotsyubynskyy, Kowalewski (bib46) 2008; 195 Karner, DeLong, Karl (bib7) 2001; 409 Grum, van den Boom, Neumann, Matena, Link, Mueller (bib16) 2010; 395 Heikkinen, Seppala, Tossavainen, Heikkinen, Koskela, Permi, Kilpeläinen (bib43) 2009; 9 Güntert, Qian, Otting, Müller, Gehring, Wüthrich (bib23) 1991; 217 Barbato, Ikura, Kay, Pastor, Bax (bib32) 1992; 31 Lipari, Szabo (bib31) 1982; 104 Kneller, Lu, Bracken (bib47) 2002; 124 Rak, Kalinin, Shcherbakov, Bayer (bib14) 2002; 299 Koźmiński, Zhukov, Pecul, Sadlej (bib40) 2005; 31 Maruyama, Suzuki, Furutani (bib4) 2004; 9 Siddiqui, Cavicchioli (bib49) 2006; 75 Shen, Delaglio, Cornilescu, Bax (bib25) 2009; 44 Preston, Wu, Molinski, DeLong (bib5) 1996; 93 Shen, Bax (bib41) 2010; 46 Stone, Fairbrother, Palmer, Reizer, Saier, Wright (bib33) 1992; 31 Kazimierczuk, Zawadzka, Koźmiński, Zhukov (bib38) 2008; 130 Kay, Nicholson, Delaglio, Bax, Torchia (bib18) 1992; 97 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib29) 2004; 25 Marion, Ikura, Tschudin, Bax (bib17) 1989; 85 Güntert, Mumenthaler, Wüthrich (bib21) 1997; 273 Vriend (bib27) 1990; 8 Ye, Serganov, Hu, Garber, Patel (bib15) 2002; 269 Laskowski, Rullmannn, MacArthur, Kaptein, Thornton (bib26) 1996; 8 Delaglio, Grzesiek, Vuister, Zhu, Pfeifer, Bax (bib19) 1995; 6 Mueller, Kessler, Neumann, Stratmann, Papatheodorou, Hartmann-Fatu, Bayer (bib9) 2006; 7 Koradi, Billeter, Wüthrich (bib28) 1996; 14 Fushman (bib30) 2003 Brochier-Armanet, Boussau, Gribaldo, Forterre (bib8) 2008; 6 Yongye, Bender, Martinez-Mayorga (bib51) 2010; 24 Kessler, Papatheodorou, Stratmann, Dian, Hartmann-Fatu, Rassow, Bayer, Mueller (bib10) 2007; 5 Ikura, Kay, Bax (bib20) 1990; 29 Sharma, Rajarathnam (bib35) 2000; 18 Ayed, Mulder, Yi, Lu, Kay, Arrowsmith (bib34) 2001; 8 Mueller, Bayer (bib1) 2008; 2 Tossavainen, Permi, Purhonen, Sarvas, Kilpeläinen, Seppala (bib42) 2006; 580 Buck, Boyd, Redfield, MacKenzie, Jeenes, Archer, Dobson (bib44) 1995; 34 Herrmann, Güntert, Wüthrich (bib22) 2002; 319 Ryo, Togo, Nakai, Hirai, Nishi, Yamaguchi, Suzuki, Hirayasu, Kobayashi, Perrem, Liou, Aoki (bib2) 2006; 281 Hallam, Mincer, Schleper, Preston, Roberts, Richardson, DeLong (bib6) 2006; 4 Kühlewein, Voll, Hernandez, Alvarez, Kessler, Fischer, Rahfeld, Gemmecker (bib37) 2004; 13 Ranganathan, Lu, Hunter, Noel (bib48) 1997; 89 Kessler (10.1074/jbc.M110.160713_bib10) 2007; 5 Delaglio (10.1074/jbc.M110.160713_bib19) 1995; 6 Ding (10.1074/jbc.M110.160713_bib39) 2004; 126 Hallam (10.1074/jbc.M110.160713_bib6) 2006; 4 Güntert (10.1074/jbc.M110.160713_bib23) 1991; 217 Sharma (10.1074/jbc.M110.160713_bib35) 2000; 18 Ghalebani (10.1074/jbc.M110.160713_bib46) 2008; 195 Koradi (10.1074/jbc.M110.160713_bib28) 1996; 14 Ryo (10.1074/jbc.M110.160713_bib2) 2006; 281 Siddiqui (10.1074/jbc.M110.160713_bib49) 2006; 75 Holm (10.1074/jbc.M110.160713_bib50) 2000; 16 Ikura (10.1074/jbc.M110.160713_bib20) 1990; 29 Shen (10.1074/jbc.M110.160713_bib25) 2009; 44 Fushman (10.1074/jbc.M110.160713_bib30) 2003 Rak (10.1074/jbc.M110.160713_bib14) 2002; 299 Grum (10.1074/jbc.M110.160713_bib16) 2010; 395 Ranganathan (10.1074/jbc.M110.160713_bib48) 1997; 89 Ye (10.1074/jbc.M110.160713_bib15) 2002; 269 Vriend (10.1074/jbc.M110.160713_bib27) 1990; 8 Maruyama (10.1074/jbc.M110.160713_bib4) 2004; 9 Yaffe (10.1074/jbc.M110.160713_bib12) 1997; 278 Kühlewein (10.1074/jbc.M110.160713_bib37) 2004; 13 Laskowski (10.1074/jbc.M110.160713_bib26) 1996; 8 Karner (10.1074/jbc.M110.160713_bib7) 2001; 409 Ayed (10.1074/jbc.M110.160713_bib34) 2001; 8 Shen (10.1074/jbc.M110.160713_bib41) 2010; 46 Sekerina (10.1074/jbc.M110.160713_bib36) 2000; 301 Brunger (10.1074/jbc.M110.160713_bib24) 2007; 2 Bayer (10.1074/jbc.M110.160713_bib11) 2003; 278 Güntert (10.1074/jbc.M110.160713_bib21) 1997; 273 Wong (10.1074/jbc.M110.160713_bib45) 1997; 268 Heikkinen (10.1074/jbc.M110.160713_bib43) 2009; 9 Buck (10.1074/jbc.M110.160713_bib44) 1995; 34 Stone (10.1074/jbc.M110.160713_bib33) 1992; 31 Preston (10.1074/jbc.M110.160713_bib5) 1996; 93 Herrmann (10.1074/jbc.M110.160713_bib22) 2002; 319 Rudrabhatla (10.1074/jbc.M110.160713_bib3) 2008; 283 Mueller (10.1074/jbc.M110.160713_bib9) 2006; 7 Barbato (10.1074/jbc.M110.160713_bib32) 1992; 31 Marion (10.1074/jbc.M110.160713_bib17) 1989; 85 Mueller (10.1074/jbc.M110.160713_bib1) 2008; 2 Brochier-Armanet (10.1074/jbc.M110.160713_bib8) 2008; 6 Lipari (10.1074/jbc.M110.160713_bib31) 1982; 104 Kay (10.1074/jbc.M110.160713_bib18) 1992; 97 Koźmiński (10.1074/jbc.M110.160713_bib40) 2005; 31 Yongye (10.1074/jbc.M110.160713_bib51) 2010; 24 Kneller (10.1074/jbc.M110.160713_bib47) 2002; 124 Kazimierczuk (10.1074/jbc.M110.160713_bib38) 2008; 130 Pettersen (10.1074/jbc.M110.160713_bib29) 2004; 25 Tossavainen (10.1074/jbc.M110.160713_bib42) 2006; 580 Suzuki (10.1074/jbc.M110.160713_bib13) 2004; 271 |
References_xml | – volume: 46 start-page: 199 year: 2010 end-page: 204 ident: bib41 publication-title: J. Biomol. NMR – volume: 299 start-page: 710 year: 2002 end-page: 714 ident: bib14 publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 9 year: 2006 ident: bib9 publication-title: BMC. Mol. Biol. – volume: 44 start-page: 213 year: 2009 end-page: 223 ident: bib25 publication-title: J. Biomol. NMR – volume: 16 start-page: 566 year: 2000 end-page: 567 ident: bib50 publication-title: Bioinformatics. – volume: 281 start-page: 4117 year: 2006 end-page: 4125 ident: bib2 publication-title: J. Biol. Chem. – volume: 104 start-page: 4546 year: 1982 end-page: 4559 ident: bib31 publication-title: J. Am. Chem. Soc. – volume: 271 start-page: 1372 year: 2004 end-page: 1381 ident: bib13 publication-title: Eur. J. Biochem. – volume: 269 start-page: 5182 year: 2002 end-page: 5191 ident: bib15 publication-title: Eur. J. Biochem. – volume: 278 start-page: 26183 year: 2003 end-page: 26193 ident: bib11 publication-title: J. Biol. Chem. – volume: 124 start-page: 1852 year: 2002 end-page: 1853 ident: bib47 publication-title: J. Am. Chem. Soc. – volume: 31 start-page: 87 year: 2005 end-page: 95 ident: bib40 publication-title: J. Biomol. NMR – volume: 29 start-page: 4659 year: 1990 end-page: 4667 ident: bib20 publication-title: Biochemistry – volume: 301 start-page: 1003 year: 2000 end-page: 1017 ident: bib36 publication-title: J. Mol. Biol. – volume: 6 start-page: 277 year: 1995 end-page: 293 ident: bib19 publication-title: J. Biomol. NMR – volume: 126 start-page: 6232 year: 2004 end-page: 6233 ident: bib39 publication-title: J. Am. Chem. Soc. – volume: 273 start-page: 283 year: 1997 end-page: 298 ident: bib21 publication-title: J. Mol. Biol. – volume: 85 start-page: 393 year: 1989 end-page: 399 ident: bib17 publication-title: J. Magn. Reson. – volume: 18 start-page: 165 year: 2000 end-page: 171 ident: bib35 publication-title: J. Biomol. NMR – volume: 268 start-page: 494 year: 1997 end-page: 511 ident: bib45 publication-title: J. Mol. Biol. – volume: 24 start-page: 675 year: 2010 end-page: 686 ident: bib51 publication-title: J. Comput. Aided Mol. Des. – volume: 4 start-page: e95 year: 2006 ident: bib6 publication-title: PLoS. Biol. – volume: 319 start-page: 209 year: 2002 end-page: 227 ident: bib22 publication-title: J. Mol. Biol. – volume: 278 start-page: 1957 year: 1997 end-page: 1960 ident: bib12 publication-title: Science – volume: 31 start-page: 4394 year: 1992 end-page: 4406 ident: bib33 publication-title: Biochemistry – volume: 2 start-page: 11 year: 2008 end-page: 20 ident: bib1 publication-title: Perspect. Medicin. Chem. – volume: 93 start-page: 6241 year: 1996 end-page: 6246 ident: bib5 publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib29 publication-title: J. Comput. Chem. – volume: 34 start-page: 4041 year: 1995 end-page: 4055 ident: bib44 publication-title: Biochemistry – volume: 217 start-page: 531 year: 1991 end-page: 540 ident: bib23 publication-title: J. Mol. Biol. – volume: 5 start-page: 37 year: 2007 ident: bib10 publication-title: BMC Biol. – volume: 130 start-page: 5404 year: 2008 end-page: 5405 ident: bib38 publication-title: J. Am. Chem. Soc. – volume: 409 start-page: 507 year: 2001 end-page: 510 ident: bib7 publication-title: Nature – volume: 14 start-page: 51 year: 1996 end-page: 55 ident: bib28 publication-title: J. Mol. Graph. – volume: 283 start-page: 26737 year: 2008 end-page: 26747 ident: bib3 publication-title: J. Biol. Chem. – volume: 31 start-page: 5269 year: 1992 end-page: 5278 ident: bib32 publication-title: Biochemistry – volume: 9 start-page: 17 year: 2009 ident: bib43 publication-title: BMC. Struct. Biol. – volume: 9 start-page: 1680 year: 2004 end-page: 1720 ident: bib4 publication-title: Front Biosci. – volume: 89 start-page: 875 year: 1997 end-page: 886 ident: bib48 publication-title: Cell – volume: 580 start-page: 1822 year: 2006 end-page: 1826 ident: bib42 publication-title: FEBS Lett. – volume: 97 start-page: 359 year: 1992 end-page: 375 ident: bib18 publication-title: J. Magn. Reson. – volume: 395 start-page: 420 year: 2010 end-page: 425 ident: bib16 publication-title: Biochem. Biophys. Res. Commun. – volume: 195 start-page: 1 year: 2008 end-page: 8 ident: bib46 publication-title: J. Magn Reson. – volume: 75 start-page: 403 year: 2006 end-page: 433 ident: bib49 publication-title: Annu. Rev. Biochem. – volume: 8 start-page: 477 year: 1996 end-page: 486 ident: bib26 publication-title: J. Biomol. NMR – volume: 8 start-page: 52 year: 1990 end-page: 56 ident: bib27 publication-title: J. Mol. Graph. – volume: 13 start-page: 2378 year: 2004 end-page: 2387 ident: bib37 publication-title: Protein Sci. – year: 2003 ident: bib30 publication-title: BioNMR in Drug Research – volume: 8 start-page: 756 year: 2001 end-page: 760 ident: bib34 publication-title: Nat. Struct. Biol. – volume: 6 start-page: 245 year: 2008 end-page: 252 ident: bib8 publication-title: Nat. Rev. Microbiol. – volume: 2 start-page: 2728 year: 2007 end-page: 2733 ident: bib24 publication-title: Nat. Protoc. – volume: 299 start-page: 710 year: 2002 ident: 10.1074/jbc.M110.160713_bib14 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/S0006-291X(02)02721-3 – volume: 278 start-page: 1957 year: 1997 ident: 10.1074/jbc.M110.160713_bib12 publication-title: Science doi: 10.1126/science.278.5345.1957 – volume: 6 start-page: 245 year: 2008 ident: 10.1074/jbc.M110.160713_bib8 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1852 – volume: 18 start-page: 165 year: 2000 ident: 10.1074/jbc.M110.160713_bib35 publication-title: J. Biomol. NMR doi: 10.1023/A:1008398416292 – volume: 195 start-page: 1 year: 2008 ident: 10.1074/jbc.M110.160713_bib46 publication-title: J. Magn Reson. doi: 10.1016/j.jmr.2008.07.025 – volume: 34 start-page: 4041 year: 1995 ident: 10.1074/jbc.M110.160713_bib44 publication-title: Biochemistry doi: 10.1021/bi00012a023 – volume: 395 start-page: 420 year: 2010 ident: 10.1074/jbc.M110.160713_bib16 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2010.04.039 – volume: 271 start-page: 1372 year: 2004 ident: 10.1074/jbc.M110.160713_bib13 publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.2004.04049.x – year: 2003 ident: 10.1074/jbc.M110.160713_bib30 – volume: 217 start-page: 531 year: 1991 ident: 10.1074/jbc.M110.160713_bib23 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(91)90755-U – volume: 319 start-page: 209 year: 2002 ident: 10.1074/jbc.M110.160713_bib22 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)00241-3 – volume: 24 start-page: 675 year: 2010 ident: 10.1074/jbc.M110.160713_bib51 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10822-010-9365-1 – volume: 8 start-page: 477 year: 1996 ident: 10.1074/jbc.M110.160713_bib26 publication-title: J. Biomol. NMR doi: 10.1007/BF00228148 – volume: 2 start-page: 11 year: 2008 ident: 10.1074/jbc.M110.160713_bib1 publication-title: Perspect. Medicin. Chem. doi: 10.4137/PMC.S496 – volume: 9 start-page: 1680 year: 2004 ident: 10.1074/jbc.M110.160713_bib4 publication-title: Front Biosci. doi: 10.2741/1361 – volume: 7 start-page: 9 year: 2006 ident: 10.1074/jbc.M110.160713_bib9 publication-title: BMC. Mol. Biol. doi: 10.1186/1471-2199-7-9 – volume: 25 start-page: 1605 year: 2004 ident: 10.1074/jbc.M110.160713_bib29 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 281 start-page: 4117 year: 2006 ident: 10.1074/jbc.M110.160713_bib2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507026200 – volume: 16 start-page: 566 year: 2000 ident: 10.1074/jbc.M110.160713_bib50 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/16.6.566 – volume: 13 start-page: 2378 year: 2004 ident: 10.1074/jbc.M110.160713_bib37 publication-title: Protein Sci. doi: 10.1110/ps.04756704 – volume: 4 start-page: e95 year: 2006 ident: 10.1074/jbc.M110.160713_bib6 publication-title: PLoS. Biol. doi: 10.1371/journal.pbio.0040095 – volume: 85 start-page: 393 year: 1989 ident: 10.1074/jbc.M110.160713_bib17 publication-title: J. Magn. Reson. – volume: 130 start-page: 5404 year: 2008 ident: 10.1074/jbc.M110.160713_bib38 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800622p – volume: 273 start-page: 283 year: 1997 ident: 10.1074/jbc.M110.160713_bib21 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1284 – volume: 44 start-page: 213 year: 2009 ident: 10.1074/jbc.M110.160713_bib25 publication-title: J. Biomol. NMR doi: 10.1007/s10858-009-9333-z – volume: 9 start-page: 17 year: 2009 ident: 10.1074/jbc.M110.160713_bib43 publication-title: BMC. Struct. Biol. doi: 10.1186/1472-6807-9-17 – volume: 6 start-page: 277 year: 1995 ident: 10.1074/jbc.M110.160713_bib19 publication-title: J. Biomol. NMR doi: 10.1007/BF00197809 – volume: 409 start-page: 507 year: 2001 ident: 10.1074/jbc.M110.160713_bib7 publication-title: Nature doi: 10.1038/35054051 – volume: 46 start-page: 199 year: 2010 ident: 10.1074/jbc.M110.160713_bib41 publication-title: J. Biomol. NMR doi: 10.1007/s10858-009-9395-y – volume: 8 start-page: 52 year: 1990 ident: 10.1074/jbc.M110.160713_bib27 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(90)80070-V – volume: 31 start-page: 87 year: 2005 ident: 10.1074/jbc.M110.160713_bib40 publication-title: J. Biomol. NMR doi: 10.1007/s10858-004-7563-7 – volume: 29 start-page: 4659 year: 1990 ident: 10.1074/jbc.M110.160713_bib20 publication-title: Biochemistry doi: 10.1021/bi00471a022 – volume: 278 start-page: 26183 year: 2003 ident: 10.1074/jbc.M110.160713_bib11 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M300721200 – volume: 31 start-page: 5269 year: 1992 ident: 10.1074/jbc.M110.160713_bib32 publication-title: Biochemistry doi: 10.1021/bi00138a005 – volume: 268 start-page: 494 year: 1997 ident: 10.1074/jbc.M110.160713_bib45 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.0989 – volume: 124 start-page: 1852 year: 2002 ident: 10.1074/jbc.M110.160713_bib47 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja017461k – volume: 14 start-page: 51 year: 1996 ident: 10.1074/jbc.M110.160713_bib28 publication-title: J. Mol. Graph. doi: 10.1016/0263-7855(96)00009-4 – volume: 75 start-page: 403 year: 2006 ident: 10.1074/jbc.M110.160713_bib49 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.75.103004.142723 – volume: 31 start-page: 4394 year: 1992 ident: 10.1074/jbc.M110.160713_bib33 publication-title: Biochemistry doi: 10.1021/bi00133a003 – volume: 580 start-page: 1822 year: 2006 ident: 10.1074/jbc.M110.160713_bib42 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2006.02.042 – volume: 283 start-page: 26737 year: 2008 ident: 10.1074/jbc.M110.160713_bib3 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M801633200 – volume: 8 start-page: 756 year: 2001 ident: 10.1074/jbc.M110.160713_bib34 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0901-756 – volume: 97 start-page: 359 year: 1992 ident: 10.1074/jbc.M110.160713_bib18 publication-title: J. Magn. Reson. – volume: 301 start-page: 1003 year: 2000 ident: 10.1074/jbc.M110.160713_bib36 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2000.4013 – volume: 89 start-page: 875 year: 1997 ident: 10.1074/jbc.M110.160713_bib48 publication-title: Cell doi: 10.1016/S0092-8674(00)80273-1 – volume: 269 start-page: 5182 year: 2002 ident: 10.1074/jbc.M110.160713_bib15 publication-title: Eur. J. Biochem. doi: 10.1046/j.1432-1033.2002.03222.x – volume: 2 start-page: 2728 year: 2007 ident: 10.1074/jbc.M110.160713_bib24 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.406 – volume: 5 start-page: 37 year: 2007 ident: 10.1074/jbc.M110.160713_bib10 publication-title: BMC Biol. doi: 10.1186/1741-7007-5-37 – volume: 93 start-page: 6241 year: 1996 ident: 10.1074/jbc.M110.160713_bib5 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.93.13.6241 – volume: 126 start-page: 6232 year: 2004 ident: 10.1074/jbc.M110.160713_bib39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja049049l – volume: 104 start-page: 4546 year: 1982 ident: 10.1074/jbc.M110.160713_bib31 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00381a009 |
SSID | ssj0000491 |
Score | 2.154444 |
Snippet | Parvulins are a group of peptidyl-prolyl isomerases (PPIases) responsible for important biological processes in all kingdoms of life. The PinA protein from the... |
SourceID | pubmedcentral proquest pubmed crossref fao elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6554 |
SubjectTerms | Archaeal Proteins - chemistry Archaebacteria Cenarchaeum symbiosum Cold-adapted Protein Crenarchaeota - enzymology Humans NIMA-Interacting Peptidylprolyl Isomerase NMR Nuclear Magnetic Resonance, Biomolecular Peptidylprolyl Isomerase - chemistry Prolyl Isomerase Protein Folding Protein Structure Protein Structure and Folding Protein Structure, Secondary Structural Homology, Protein Thaumarchaeota |
Title | Structure and Dynamics of the First Archaeal Parvulin Reveal a New Functionally Important Loop in Parvulin-type Prolyl Isomerases |
URI | https://dx.doi.org/10.1074/jbc.M110.160713 https://www.ncbi.nlm.nih.gov/pubmed/21138844 https://www.proquest.com/docview/1776644379 https://www.proquest.com/docview/1776644431 https://www.proquest.com/docview/853224243 https://pubmed.ncbi.nlm.nih.gov/PMC3057832 |
Volume | 286 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELbKeIAXBBuw8ktGAoRUpVvsxEkfp7JqA4YG28TeIiexoaxNpv6Y1L3xn3MXx0k6tQL2EjWJ0yb5vtp357vPhLwRKXe1n0onFXHsoAPhSF_3UAkTeobAC0WhpXf0RRyceR_P_fNWq6kQPJ_F3eR6ZV3JbVCFY4ArVsn-B7LVl8IB-Az4whYQhu0_YXxSiL_aKYAPZnH5qZ32HwzBsuugtKxE9eBjObkq0s6_qSvcl0Vu4wDGNRMOHC1QKhit8WzW-ZznlxgKsRc5Raj2eJKPFqPO4TTHUNa0TD_8VROuYd4adSejP2IXlavSdeREjS-KIO3bvg_G7PxCTq9XnD0CT35en9kfaWmW2T4co7xlOsxqwihb1GgnBDrfu82YBgZpmWPqn02gzRbbLOWCmmwSZpTeu8r012BBYjHCebNDZ6W4tmFu2OiehW8Uq8uhHmxZf-UwAnYVDiNx0j1ycR9F-Hg9YlZ5jDjV7eItMUwn4ljqd5eBv4JLaXz6WsvWgxtmlm4sn8BqTAXezo0fWWce3dEyX-UE3czlbRhHpw_JgxJ2umco-oi0VLZJtvYAh3y8oO9okWdcTOBsknt9S4ct8rtiMAUGU8tgmmsKDKYFg6llMLVkpIbBVFJgMG0ymFYMpshgCm2XGEwNg2nN4MfkbLB_2j9wykVBnMTnbObEKpXSYylXsUBx00DvapXs-koksSeE9r04TNKAq1ChTC50PAHXOmChYlwLN-VPyEaWZ2qbUK1D0eMuT4MU0wVEGPdSLV1fcCEk-Plt0rVYREmpmI8Lt4yiInMj8CIAL0LwIgNem7yvLrg0YjHrmzILblTausaGjYCD6y_aBhpE8geM_9HZCcOsA7fnCeazNnltuREBhjjrJzOVz6eRG8Bb8lB29K9twJloE7qmDdj1DGvJ4C6eGspVz8hcl4eh57VJsETGqgFq2C-fyYY_Cy17MDcCMCqe3eZ1PCf3687jBdkAxqqX4CLM4lfF3-8PvccTwg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure+and+Dynamics+of+the+First+Archaeal+Parvulin+Reveal+a+New+Functionally+Important+Loop+in+Parvulin-type+Prolyl+Isomerases&rft.jtitle=The+Journal+of+biological+chemistry&rft.au=Jaremko%2C+%C5%81ukasz&rft.au=Jaremko%2C+Mariusz&rft.au=Elfaki%2C+Imadeldin&rft.au=Mueller%2C+Jonathan+W.&rft.date=2011-02-25&rft.pub=Elsevier+Inc&rft.issn=0021-9258&rft.eissn=1083-351X&rft.volume=286&rft.issue=8&rft.spage=6554&rft.epage=6565&rft_id=info:doi/10.1074%2Fjbc.M110.160713&rft.externalDocID=S0021925820520310 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9258&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9258&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9258&client=summon |