Interaction between the muscle metaboreflex and the arterial baroreflex in control of arterial pressure and skeletal muscle blood flow
The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial p...
Saved in:
Published in | American journal of physiology. Heart and circulatory physiology Vol. 311; no. 5; pp. H1268 - H1276 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
01.11.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle. |
---|---|
AbstractList | The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle. We found that carotid baroreceptor unloading during muscle metaboreflex activation results in an additive interaction and causes vasoconstriction of all vascular beds, including ischemic active skeletal muscle. However, there is a larger vasoconstriction in other vascular beds causing redistribution of blood flow toward ischemic active skeletal muscle . The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle. |
Author | Machado, Tiago M Spranger, Marty D Krishnan, Abhinav C Dombrowski, Maryetta D Alvarez, Alberto Hanna, Hanna W O'Leary, Donal S Kaur, Jasdeep Senador, Danielle Altamimi, Yasir H Lovelace, Abe T |
Author_xml | – sequence: 1 givenname: Jasdeep surname: Kaur fullname: Kaur, Jasdeep organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 2 givenname: Alberto surname: Alvarez fullname: Alvarez, Alberto organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 3 givenname: Hanna W surname: Hanna fullname: Hanna, Hanna W organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 4 givenname: Abhinav C surname: Krishnan fullname: Krishnan, Abhinav C organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 5 givenname: Danielle surname: Senador fullname: Senador, Danielle organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 6 givenname: Tiago M surname: Machado fullname: Machado, Tiago M organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 7 givenname: Yasir H surname: Altamimi fullname: Altamimi, Yasir H organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 8 givenname: Abe T surname: Lovelace fullname: Lovelace, Abe T organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 9 givenname: Maryetta D surname: Dombrowski fullname: Dombrowski, Maryetta D organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 10 givenname: Marty D surname: Spranger fullname: Spranger, Marty D organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan – sequence: 11 givenname: Donal S surname: O'Leary fullname: O'Leary, Donal S email: doleary@med.wayne.edu organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan doleary@med.wayne.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27614226$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFJ0BCkdiwydTXjh1ng4SqFipV6gbWlu3cMBk89mAnlL4Az13PtFN-Vqzu4nzn-PrqnJCjEAMS8hroEkCwM7PertCkaUmpoLBkFOQzsigKq0Hw7ogsKJe8lsDFMTnJeU0L2Er-ghyzVkLDmFyQX1dhwmTcNMZQWZxuEUM1rbDazNn5MnAyNiYcPP6sTOj3WnkU02h8ZU06aGOoXAxTir6Kw29imzDnOeHem7-hL3n-EG59jH01-Hj7kjwfjM_46nGeki-XF5_PP9XXNx-vzj9c105wNtUWBtaxoaUKQTWCdr0Fp3jHbAPOKWsUUNM2nRTCiK5vgdm-Z9QoHBrbMMlPyfuH3O1sN9g7LBsbr7dp3Jh0p6MZ9d9KGFf6a_yhBXBackvAu8eAFL_PmCe9GbND703AOGcNStBWccX5f6BcCMZb2RX07T_oOs4plEvsKNlJUEwUij9QLsWcy92f9gaqd5XQh0rofSX0rhLF9ebPLz95Dh3g98qAuLQ |
CODEN | AJPPDI |
CitedBy_id | crossref_primary_10_1097_MCP_0000000000000443 crossref_primary_10_1113_JP279456 crossref_primary_10_1152_ajpheart_00816_2016 crossref_primary_10_3892_etm_2019_7416 crossref_primary_10_1152_ajpheart_00367_2017 crossref_primary_10_1152_ajpregu_00235_2023 crossref_primary_10_1113_EP089053 crossref_primary_10_1113_JP275465 crossref_primary_10_1152_ajpheart_00338_2018 crossref_primary_10_3389_fphys_2022_841076 crossref_primary_10_1152_ajpregu_00129_2021 crossref_primary_10_1152_ajpheart_00303_2023 crossref_primary_10_3389_fphys_2018_01829 crossref_primary_10_1097_ANA_0000000000000760 crossref_primary_10_1152_ajpregu_00007_2022 crossref_primary_10_1152_ajpregu_00040_2020 crossref_primary_10_1152_japplphysiol_00274_2023 crossref_primary_10_25259_IJPP_73_2021 crossref_primary_10_1113_JP284870 crossref_primary_10_1152_ajpheart_00468_2019 crossref_primary_10_3389_fphys_2022_835951 crossref_primary_10_3390_jcm13030895 |
Cites_doi | 10.1152/ajpheart.01040.2004 10.1152/jappl.1988.64.6.2306 10.1007/s12576-011-0163-x 10.1152/ajpheart.1991.260.2.H632 10.1152/ajpheart.2001.280.4.H1645 10.1152/ajpheart.00648.2014 10.1152/ajpheart.1989.257.6.H2017 10.1152/ajpheart.1996.270.3.H951 10.1046/j.1365-201X.1998.00429.x 10.1152/japplphysiol.01243.2009 10.1152/ajpheart.1990.258.2.H305 10.1113/jphysiol.1937.sp003485 10.1152/ajpheart.00152.2002 10.1113/jphysiol.1972.sp009887 10.1152/ajpheart.00679.2015 10.1113/jphysiol.2003.041517 10.1152/ajpheart.00008.2007 10.1152/ajpheart.1980.238.6.H809 10.1152/jappl.1997.82.2.577 10.1152/ajpheart.00869.2005 10.1113/jphysiol.2002.024794 10.1152/jappl.1994.77.6.2761 10.1152/ajpheart.1998.275.3.H767 10.1152/ajpregu.1993.265.5.R1132 10.1152/japplphysiol.00076.2004 10.1152/ajpheart.00909.2009 10.1152/ajpregu.00601.2012 10.1152/ajpheart.00673.2004 10.1152/japplphysiol.01334.2006 10.1152/jappl.1984.57.3.644 10.1152/ajpheart.1980.238.6.H815 10.1152/ajpheart.2001.280.2.H642 10.1161/01.RES.52.3.253 10.1152/ajpheart.1983.245.3.H481 10.1152/ajpheart.00358.2004 10.1152/ajpheart.2000.278.3.H818 10.1249/01.MSS.0000048639.02548.24 10.1161/01.RES.11.3.370 10.1152/ajpheart.1992.263.5.H1499 |
ContentType | Journal Article |
Copyright | Copyright © 2016 the American Physiological Society. Copyright American Physiological Society Nov 1, 2016 Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
Copyright_xml | – notice: Copyright © 2016 the American Physiological Society. – notice: Copyright American Physiological Society Nov 1, 2016 – notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
DOI | 10.1152/ajpheart.00501.2016 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1539 |
EndPage | H1276 |
ExternalDocumentID | 4241904751 10_1152_ajpheart_00501_2016 27614226 |
Genre | Journal Article Feature |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R25 GM058905 – fundername: NHLBI NIH HHS grantid: R01 HL055473 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI) grantid: HL-55473; HL-126706 |
GroupedDBID | --- 23M 2WC 39C 4.4 53G 5GY 5VS 6J9 AAFWJ ABJNI ACBEA ACIWK ACPRK ADBBV AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP BTFSW CGR CUY CVF DIK E3Z EBS ECM EIF EJD EMOBN F5P GX1 H13 ITBOX KQ8 NPM OK1 P2P PQQKQ RAP RHF RHI RPL RPRKH TR2 UKR W8F WH7 WOQ XSW YSK ~02 AAYXX CITATION 7QP 7QR 7TS 7U7 8FD C1K FR3 P64 7X8 5PM |
ID | FETCH-LOGICAL-c532t-b1f292f708e184509db1c8392b41cc8ba810a749655a59d712bdd20a8ef4b4263 |
ISSN | 0363-6135 |
IngestDate | Tue Sep 17 21:23:37 EDT 2024 Fri Oct 25 22:53:43 EDT 2024 Fri Oct 25 01:02:37 EDT 2024 Thu Oct 10 22:07:16 EDT 2024 Thu Sep 12 16:21:00 EDT 2024 Wed Oct 16 00:56:57 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | ischemic active skeletal muscle sympathetic vasoconstriction mild dynamic exercise carotid baroreceptor unloading exercise pressor reflex |
Language | English |
License | Copyright © 2016 the American Physiological Society. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-b1f292f708e184509db1c8392b41cc8ba810a749655a59d712bdd20a8ef4b4263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.physiology.org/doi/pdf/10.1152/ajpheart.00501.2016 |
PMID | 27614226 |
PQID | 1836961825 |
PQPubID | 48261 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5130496 proquest_miscellaneous_1850783833 proquest_miscellaneous_1835523769 proquest_journals_1836961825 crossref_primary_10_1152_ajpheart_00501_2016 pubmed_primary_27614226 |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda – name: Bethesda, MD |
PublicationTitle | American journal of physiology. Heart and circulatory physiology |
PublicationTitleAlternate | Am J Physiol Heart Circ Physiol |
PublicationYear | 2016 |
Publisher | American Physiological Society |
Publisher_xml | – name: American Physiological Society |
References | 8238615 - Am J Physiol. 1993 Nov;265(5 Pt 2):R1132-40 15539416 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1374-80 8780190 - Am J Physiol. 1996 Mar;270(3 Pt 2):H951-6 9853014 - Acta Physiol Scand. 1998 Nov;164(3):269-75 2309900 - Am J Physiol. 1990 Feb;258(2 Pt 2):H305-10 1996706 - Am J Physiol. 1991 Feb;260(2 Pt 2):H632-7 13981593 - Circ Res. 1962 Sep;11:370-80 25539712 - Am J Physiol Heart Circ Physiol. 2015 Mar 1;308(5):H524-9 12730341 - J Physiol. 2003 Jul 1;550(Pt 1):317-24 17308012 - Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2988-96 7896618 - J Appl Physiol (1985). 1994 Dec;77(6):2761-6 9724278 - Am J Physiol. 1998 Sep;275(3 Pt 2):H767-75 11247775 - Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1645-52 12411536 - J Physiol. 2002 Nov 1;544(Pt 3):939-48 10710350 - Am J Physiol Heart Circ Physiol. 2000 Mar;278(3):H818-28 11158962 - Am J Physiol Heart Circ Physiol. 2001 Feb;280(2):H642-8 23427084 - Am J Physiol Regul Integr Comp Physiol. 2013 Apr 15;304(8):R657-63 6825218 - Circ Res. 1983 Mar;52(3):253-62 15576444 - Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1532-8 17412786 - J Appl Physiol (1985). 2007 Jul;103(1):228-33 1443201 - Am J Physiol. 1992 Nov;263(5 Pt 2):H1499-505 21796398 - J Physiol Sci. 2011 Sep;61(5):385-94 6092310 - J Appl Physiol Respir Environ Exerc Physiol. 1984 Sep;57(3):644-50 2603985 - Am J Physiol. 1989 Dec;257(6 Pt 2):H2017-24 5039977 - J Physiol. 1972 Jul;224(1):173-86 6614196 - Am J Physiol. 1983 Sep;245(3):H481-6 7386639 - Am J Physiol. 1980 Jun;238(6):H809-14 12569208 - Med Sci Sports Exerc. 2003 Feb;35(2):221-8; discussion 229 16183724 - Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H751-7 26475591 - Am J Physiol Heart Circ Physiol. 2015 Dec 15;309(12 ):H2145-51 19897706 - Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H245-50 12124197 - Am J Physiol Heart Circ Physiol. 2002 Aug;283(2):H526-32 3136123 - J Appl Physiol (1985). 1988 Jun;64(6):2306-13 20413426 - J Appl Physiol (1985). 2010 Aug;109(2):271-8 15205175 - Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1682-8 9049740 - J Appl Physiol (1985). 1997 Feb;82(2):577-83 15247201 - J Appl Physiol (1985). 2004 Aug;97(2):731-8 7386640 - Am J Physiol. 1980 Jun;238(6):H815-22 16994867 - J Physiol. 1937 Jun 3;89(4):372-83 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B10 B32 B11 B33 B12 B34 B13 B35 B14 B36 B15 B37 B16 B38 B17 B39 B18 B19 B1 B2 B3 B4 B5 B6 B7 B8 B9 |
References_xml | – ident: B18 doi: 10.1152/ajpheart.01040.2004 – ident: B27 doi: 10.1152/jappl.1988.64.6.2306 – ident: B9 doi: 10.1007/s12576-011-0163-x – ident: B22 doi: 10.1152/ajpheart.1991.260.2.H632 – ident: B3 doi: 10.1152/ajpheart.2001.280.4.H1645 – ident: B16 doi: 10.1152/ajpheart.00648.2014 – ident: B37 doi: 10.1152/ajpheart.1989.257.6.H2017 – ident: B21 doi: 10.1152/ajpheart.1996.270.3.H951 – ident: B4 doi: 10.1046/j.1365-201X.1998.00429.x – ident: B6 doi: 10.1152/japplphysiol.01243.2009 – ident: B30 doi: 10.1152/ajpheart.1990.258.2.H305 – ident: B1 doi: 10.1113/jphysiol.1937.sp003485 – ident: B2 doi: 10.1152/ajpheart.00152.2002 – ident: B19 doi: 10.1113/jphysiol.1972.sp009887 – ident: B15 doi: 10.1152/ajpheart.00679.2015 – ident: B23 doi: 10.1113/jphysiol.2003.041517 – ident: B7 doi: 10.1152/ajpheart.00008.2007 – ident: B35 doi: 10.1152/ajpheart.1980.238.6.H809 – ident: B25 doi: 10.1152/jappl.1997.82.2.577 – ident: B28 doi: 10.1152/ajpheart.00869.2005 – ident: B13 doi: 10.1113/jphysiol.2002.024794 – ident: B20 doi: 10.1152/jappl.1994.77.6.2761 – ident: B29 doi: 10.1152/ajpheart.1998.275.3.H767 – ident: B24 doi: 10.1152/ajpregu.1993.265.5.R1132 – ident: B36 doi: 10.1152/japplphysiol.00076.2004 – ident: B11 doi: 10.1152/ajpheart.00909.2009 – ident: B33 doi: 10.1152/ajpregu.00601.2012 – ident: B12 doi: 10.1152/ajpheart.00673.2004 – ident: B31 doi: 10.1152/japplphysiol.01334.2006 – ident: B14 doi: 10.1152/jappl.1984.57.3.644 – ident: B34 doi: 10.1152/ajpheart.1980.238.6.H815 – ident: B5 doi: 10.1152/ajpheart.2001.280.2.H642 – ident: B38 doi: 10.1161/01.RES.52.3.253 – ident: B39 doi: 10.1152/ajpheart.1983.245.3.H481 – ident: B17 doi: 10.1152/ajpheart.00358.2004 – ident: B10 doi: 10.1152/ajpheart.2000.278.3.H818 – ident: B8 doi: 10.1249/01.MSS.0000048639.02548.24 – ident: B26 doi: 10.1161/01.RES.11.3.370 – ident: B32 doi: 10.1152/ajpheart.1992.263.5.H1499 |
SSID | ssj0005763 |
Score | 2.3668296 |
Snippet | The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex... We found that carotid baroreceptor unloading during muscle metaboreflex activation results in an additive interaction and causes vasoconstriction of all... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | H1268 |
SubjectTerms | Animals Arterial Pressure - physiology Baroreflex - physiology Blood pressure Cardiac Output - physiology Carotid Arteries Dogs Exercise Female Heart Rate Hindlimb - blood supply Integrative Cardiovascular Physiology and Pathophysiology Ischemia Ischemia - physiopathology Male Muscle, Skeletal - blood supply Muscular system Myocardial Contraction - physiology Pressoreceptors Reflex Regional Blood Flow - physiology Vasoconstriction - physiology |
Title | Interaction between the muscle metaboreflex and the arterial baroreflex in control of arterial pressure and skeletal muscle blood flow |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27614226 https://www.proquest.com/docview/1836961825 https://search.proquest.com/docview/1835523769 https://search.proquest.com/docview/1850783833 https://pubmed.ncbi.nlm.nih.gov/PMC5130496 |
Volume | 311 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKkBAvCDb-FAYyEuJlpDROnDiPFQJVoCGQNmlvkZ04WkebVmm6DT4A34tvxp1jJykbCHipovjqVL1fzufz7-4IeRHBrmMcyMJTiU68MM8zTxRh7jEtJZZvgyUU850PP0bT4_D9CT8ZDH70WEubWo2yb9fmlfyPVuEe6BWzZP9Bs-2kcAOuQb_wCRqGz7_SsQnn2WbfjnCFjuRiswZJ7A6NKtbFXF-2TEnD4cQwuZKVGzNc9IayjrQAJ2E4su6AYf0FFijMnLSTG8b7QTFfXvT92_YAqFeRwgRPTPR-hFlPVcNpz2YVUmDNGX8n0dp_uakaEu8613rVwnJ-Lqsm5j3B4lz1srOgZZPdZi4O2sgRGrFT24N5orBZ-LkNDNtQhx_ZnD-zUlnzDFtnsNFJ334H1lrP-kfkxhpPfdb07Lm6TnCsOyvPVtg2vB5hFRwMFjRpnz3krBYGOiyOTMpxt2i2VEY3dIPcZGDr0Mh--NwVrIftXGCLXcEzX1_zRCxHbefY9o2ubHh-5e32HKGju-SO3cHQSQPHe2Sgy12yNylBlYuv9CX91Cpzl9w6tNSNPfK9B1ZqwUoBkLTBE-2DlQJAzJiDIu3ASmcltWCly6KTcGA133VgdZMbsFIE631y_O7t0ZupZ5uAeBkPWO0pv2AJK-Kx0L4Iwb3NlZ-hV69CP8uEksIfyxi7HnDJkzz2mcpzNpZCF6HCbgQPyE65LPUjQlUxVrlURawCETIdCJiDsVwIEWRJpsWQvHJ_f7pqar2kZo_MWeoUlxrFpai4Idl3KkrtS7VOYYWMsIkS40PyvB0Gk43ncLLUy42R4RzZaMmfZDgesIsgGJKHjdbb3-TgMiTxFh5aASwZvz1Szk5N6Xju47F69Pi3cz4ht7s3b5_s1NVGPwW3u1bPDLB_Am4v418 |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+between+the+muscle+metaboreflex+and+the+arterial+baroreflex+in+control+of+arterial+pressure+and+skeletal+muscle+blood+flow&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Kaur%2C+Jasdeep&rft.au=Alvarez%2C+Alberto&rft.au=Hanna%2C+Hanna+W&rft.au=Krishnan%2C+Abhinav+C&rft.date=2016-11-01&rft.eissn=1522-1539&rft.volume=311&rft.issue=5&rft.spage=H1268&rft_id=info:doi/10.1152%2Fajpheart.00501.2016&rft_id=info%3Apmid%2F27614226&rft.externalDocID=27614226 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon |