Interaction between the muscle metaboreflex and the arterial baroreflex in control of arterial pressure and skeletal muscle blood flow

The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial p...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of physiology. Heart and circulatory physiology Vol. 311; no. 5; pp. H1268 - H1276
Main Authors Kaur, Jasdeep, Alvarez, Alberto, Hanna, Hanna W, Krishnan, Abhinav C, Senador, Danielle, Machado, Tiago M, Altamimi, Yasir H, Lovelace, Abe T, Dombrowski, Maryetta D, Spranger, Marty D, O'Leary, Donal S
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 01.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.
AbstractList The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.
We found that carotid baroreceptor unloading during muscle metaboreflex activation results in an additive interaction and causes vasoconstriction of all vascular beds, including ischemic active skeletal muscle. However, there is a larger vasoconstriction in other vascular beds causing redistribution of blood flow toward ischemic active skeletal muscle . The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.
Author Machado, Tiago M
Spranger, Marty D
Krishnan, Abhinav C
Dombrowski, Maryetta D
Alvarez, Alberto
Hanna, Hanna W
O'Leary, Donal S
Kaur, Jasdeep
Senador, Danielle
Altamimi, Yasir H
Lovelace, Abe T
Author_xml – sequence: 1
  givenname: Jasdeep
  surname: Kaur
  fullname: Kaur, Jasdeep
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 2
  givenname: Alberto
  surname: Alvarez
  fullname: Alvarez, Alberto
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 3
  givenname: Hanna W
  surname: Hanna
  fullname: Hanna, Hanna W
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 4
  givenname: Abhinav C
  surname: Krishnan
  fullname: Krishnan, Abhinav C
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 5
  givenname: Danielle
  surname: Senador
  fullname: Senador, Danielle
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 6
  givenname: Tiago M
  surname: Machado
  fullname: Machado, Tiago M
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 7
  givenname: Yasir H
  surname: Altamimi
  fullname: Altamimi, Yasir H
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 8
  givenname: Abe T
  surname: Lovelace
  fullname: Lovelace, Abe T
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 9
  givenname: Maryetta D
  surname: Dombrowski
  fullname: Dombrowski, Maryetta D
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 10
  givenname: Marty D
  surname: Spranger
  fullname: Spranger, Marty D
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan
– sequence: 11
  givenname: Donal S
  surname: O'Leary
  fullname: O'Leary, Donal S
  email: doleary@med.wayne.edu
  organization: Department of Physiology and Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan doleary@med.wayne.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27614226$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFJ0BCkdiwydTXjh1ng4SqFipV6gbWlu3cMBk89mAnlL4Az13PtFN-Vqzu4nzn-PrqnJCjEAMS8hroEkCwM7PertCkaUmpoLBkFOQzsigKq0Hw7ogsKJe8lsDFMTnJeU0L2Er-ghyzVkLDmFyQX1dhwmTcNMZQWZxuEUM1rbDazNn5MnAyNiYcPP6sTOj3WnkU02h8ZU06aGOoXAxTir6Kw29imzDnOeHem7-hL3n-EG59jH01-Hj7kjwfjM_46nGeki-XF5_PP9XXNx-vzj9c105wNtUWBtaxoaUKQTWCdr0Fp3jHbAPOKWsUUNM2nRTCiK5vgdm-Z9QoHBrbMMlPyfuH3O1sN9g7LBsbr7dp3Jh0p6MZ9d9KGFf6a_yhBXBackvAu8eAFL_PmCe9GbND703AOGcNStBWccX5f6BcCMZb2RX07T_oOs4plEvsKNlJUEwUij9QLsWcy92f9gaqd5XQh0rofSX0rhLF9ebPLz95Dh3g98qAuLQ
CODEN AJPPDI
CitedBy_id crossref_primary_10_1097_MCP_0000000000000443
crossref_primary_10_1113_JP279456
crossref_primary_10_1152_ajpheart_00816_2016
crossref_primary_10_3892_etm_2019_7416
crossref_primary_10_1152_ajpheart_00367_2017
crossref_primary_10_1152_ajpregu_00235_2023
crossref_primary_10_1113_EP089053
crossref_primary_10_1113_JP275465
crossref_primary_10_1152_ajpheart_00338_2018
crossref_primary_10_3389_fphys_2022_841076
crossref_primary_10_1152_ajpregu_00129_2021
crossref_primary_10_1152_ajpheart_00303_2023
crossref_primary_10_3389_fphys_2018_01829
crossref_primary_10_1097_ANA_0000000000000760
crossref_primary_10_1152_ajpregu_00007_2022
crossref_primary_10_1152_ajpregu_00040_2020
crossref_primary_10_1152_japplphysiol_00274_2023
crossref_primary_10_25259_IJPP_73_2021
crossref_primary_10_1113_JP284870
crossref_primary_10_1152_ajpheart_00468_2019
crossref_primary_10_3389_fphys_2022_835951
crossref_primary_10_3390_jcm13030895
Cites_doi 10.1152/ajpheart.01040.2004
10.1152/jappl.1988.64.6.2306
10.1007/s12576-011-0163-x
10.1152/ajpheart.1991.260.2.H632
10.1152/ajpheart.2001.280.4.H1645
10.1152/ajpheart.00648.2014
10.1152/ajpheart.1989.257.6.H2017
10.1152/ajpheart.1996.270.3.H951
10.1046/j.1365-201X.1998.00429.x
10.1152/japplphysiol.01243.2009
10.1152/ajpheart.1990.258.2.H305
10.1113/jphysiol.1937.sp003485
10.1152/ajpheart.00152.2002
10.1113/jphysiol.1972.sp009887
10.1152/ajpheart.00679.2015
10.1113/jphysiol.2003.041517
10.1152/ajpheart.00008.2007
10.1152/ajpheart.1980.238.6.H809
10.1152/jappl.1997.82.2.577
10.1152/ajpheart.00869.2005
10.1113/jphysiol.2002.024794
10.1152/jappl.1994.77.6.2761
10.1152/ajpheart.1998.275.3.H767
10.1152/ajpregu.1993.265.5.R1132
10.1152/japplphysiol.00076.2004
10.1152/ajpheart.00909.2009
10.1152/ajpregu.00601.2012
10.1152/ajpheart.00673.2004
10.1152/japplphysiol.01334.2006
10.1152/jappl.1984.57.3.644
10.1152/ajpheart.1980.238.6.H815
10.1152/ajpheart.2001.280.2.H642
10.1161/01.RES.52.3.253
10.1152/ajpheart.1983.245.3.H481
10.1152/ajpheart.00358.2004
10.1152/ajpheart.2000.278.3.H818
10.1249/01.MSS.0000048639.02548.24
10.1161/01.RES.11.3.370
10.1152/ajpheart.1992.263.5.H1499
ContentType Journal Article
Copyright Copyright © 2016 the American Physiological Society.
Copyright American Physiological Society Nov 1, 2016
Copyright © 2016 the American Physiological Society 2016 American Physiological Society
Copyright_xml – notice: Copyright © 2016 the American Physiological Society.
– notice: Copyright American Physiological Society Nov 1, 2016
– notice: Copyright © 2016 the American Physiological Society 2016 American Physiological Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
DOI 10.1152/ajpheart.00501.2016
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database

CrossRef
MEDLINE
Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1539
EndPage H1276
ExternalDocumentID 4241904751
10_1152_ajpheart_00501_2016
27614226
Genre Journal Article
Feature
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R25 GM058905
– fundername: NHLBI NIH HHS
  grantid: R01 HL055473
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
  grantid: HL-55473; HL-126706
GroupedDBID ---
23M
2WC
39C
4.4
53G
5GY
5VS
6J9
AAFWJ
ABJNI
ACBEA
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BKOMP
BTFSW
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
EJD
EMOBN
F5P
GX1
H13
ITBOX
KQ8
NPM
OK1
P2P
PQQKQ
RAP
RHF
RHI
RPL
RPRKH
TR2
UKR
W8F
WH7
WOQ
XSW
YSK
~02
AAYXX
CITATION
7QP
7QR
7TS
7U7
8FD
C1K
FR3
P64
7X8
5PM
ID FETCH-LOGICAL-c532t-b1f292f708e184509db1c8392b41cc8ba810a749655a59d712bdd20a8ef4b4263
ISSN 0363-6135
IngestDate Tue Sep 17 21:23:37 EDT 2024
Fri Oct 25 22:53:43 EDT 2024
Fri Oct 25 01:02:37 EDT 2024
Thu Oct 10 22:07:16 EDT 2024
Thu Sep 12 16:21:00 EDT 2024
Wed Oct 16 00:56:57 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords ischemic active skeletal muscle
sympathetic vasoconstriction
mild dynamic exercise
carotid baroreceptor unloading
exercise pressor reflex
Language English
License Copyright © 2016 the American Physiological Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-b1f292f708e184509db1c8392b41cc8ba810a749655a59d712bdd20a8ef4b4263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.physiology.org/doi/pdf/10.1152/ajpheart.00501.2016
PMID 27614226
PQID 1836961825
PQPubID 48261
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5130496
proquest_miscellaneous_1850783833
proquest_miscellaneous_1835523769
proquest_journals_1836961825
crossref_primary_10_1152_ajpheart_00501_2016
pubmed_primary_27614226
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Bethesda, MD
PublicationTitle American journal of physiology. Heart and circulatory physiology
PublicationTitleAlternate Am J Physiol Heart Circ Physiol
PublicationYear 2016
Publisher American Physiological Society
Publisher_xml – name: American Physiological Society
References 8238615 - Am J Physiol. 1993 Nov;265(5 Pt 2):R1132-40
15539416 - Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1374-80
8780190 - Am J Physiol. 1996 Mar;270(3 Pt 2):H951-6
9853014 - Acta Physiol Scand. 1998 Nov;164(3):269-75
2309900 - Am J Physiol. 1990 Feb;258(2 Pt 2):H305-10
1996706 - Am J Physiol. 1991 Feb;260(2 Pt 2):H632-7
13981593 - Circ Res. 1962 Sep;11:370-80
25539712 - Am J Physiol Heart Circ Physiol. 2015 Mar 1;308(5):H524-9
12730341 - J Physiol. 2003 Jul 1;550(Pt 1):317-24
17308012 - Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2988-96
7896618 - J Appl Physiol (1985). 1994 Dec;77(6):2761-6
9724278 - Am J Physiol. 1998 Sep;275(3 Pt 2):H767-75
11247775 - Am J Physiol Heart Circ Physiol. 2001 Apr;280(4):H1645-52
12411536 - J Physiol. 2002 Nov 1;544(Pt 3):939-48
10710350 - Am J Physiol Heart Circ Physiol. 2000 Mar;278(3):H818-28
11158962 - Am J Physiol Heart Circ Physiol. 2001 Feb;280(2):H642-8
23427084 - Am J Physiol Regul Integr Comp Physiol. 2013 Apr 15;304(8):R657-63
6825218 - Circ Res. 1983 Mar;52(3):253-62
15576444 - Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1532-8
17412786 - J Appl Physiol (1985). 2007 Jul;103(1):228-33
1443201 - Am J Physiol. 1992 Nov;263(5 Pt 2):H1499-505
21796398 - J Physiol Sci. 2011 Sep;61(5):385-94
6092310 - J Appl Physiol Respir Environ Exerc Physiol. 1984 Sep;57(3):644-50
2603985 - Am J Physiol. 1989 Dec;257(6 Pt 2):H2017-24
5039977 - J Physiol. 1972 Jul;224(1):173-86
6614196 - Am J Physiol. 1983 Sep;245(3):H481-6
7386639 - Am J Physiol. 1980 Jun;238(6):H809-14
12569208 - Med Sci Sports Exerc. 2003 Feb;35(2):221-8; discussion 229
16183724 - Am J Physiol Heart Circ Physiol. 2006 Feb;290(2):H751-7
26475591 - Am J Physiol Heart Circ Physiol. 2015 Dec 15;309(12 ):H2145-51
19897706 - Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H245-50
12124197 - Am J Physiol Heart Circ Physiol. 2002 Aug;283(2):H526-32
3136123 - J Appl Physiol (1985). 1988 Jun;64(6):2306-13
20413426 - J Appl Physiol (1985). 2010 Aug;109(2):271-8
15205175 - Am J Physiol Heart Circ Physiol. 2004 Oct;287(4):H1682-8
9049740 - J Appl Physiol (1985). 1997 Feb;82(2):577-83
15247201 - J Appl Physiol (1985). 2004 Aug;97(2):731-8
7386640 - Am J Physiol. 1980 Jun;238(6):H815-22
16994867 - J Physiol. 1937 Jun 3;89(4):372-83
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
References_xml – ident: B18
  doi: 10.1152/ajpheart.01040.2004
– ident: B27
  doi: 10.1152/jappl.1988.64.6.2306
– ident: B9
  doi: 10.1007/s12576-011-0163-x
– ident: B22
  doi: 10.1152/ajpheart.1991.260.2.H632
– ident: B3
  doi: 10.1152/ajpheart.2001.280.4.H1645
– ident: B16
  doi: 10.1152/ajpheart.00648.2014
– ident: B37
  doi: 10.1152/ajpheart.1989.257.6.H2017
– ident: B21
  doi: 10.1152/ajpheart.1996.270.3.H951
– ident: B4
  doi: 10.1046/j.1365-201X.1998.00429.x
– ident: B6
  doi: 10.1152/japplphysiol.01243.2009
– ident: B30
  doi: 10.1152/ajpheart.1990.258.2.H305
– ident: B1
  doi: 10.1113/jphysiol.1937.sp003485
– ident: B2
  doi: 10.1152/ajpheart.00152.2002
– ident: B19
  doi: 10.1113/jphysiol.1972.sp009887
– ident: B15
  doi: 10.1152/ajpheart.00679.2015
– ident: B23
  doi: 10.1113/jphysiol.2003.041517
– ident: B7
  doi: 10.1152/ajpheart.00008.2007
– ident: B35
  doi: 10.1152/ajpheart.1980.238.6.H809
– ident: B25
  doi: 10.1152/jappl.1997.82.2.577
– ident: B28
  doi: 10.1152/ajpheart.00869.2005
– ident: B13
  doi: 10.1113/jphysiol.2002.024794
– ident: B20
  doi: 10.1152/jappl.1994.77.6.2761
– ident: B29
  doi: 10.1152/ajpheart.1998.275.3.H767
– ident: B24
  doi: 10.1152/ajpregu.1993.265.5.R1132
– ident: B36
  doi: 10.1152/japplphysiol.00076.2004
– ident: B11
  doi: 10.1152/ajpheart.00909.2009
– ident: B33
  doi: 10.1152/ajpregu.00601.2012
– ident: B12
  doi: 10.1152/ajpheart.00673.2004
– ident: B31
  doi: 10.1152/japplphysiol.01334.2006
– ident: B14
  doi: 10.1152/jappl.1984.57.3.644
– ident: B34
  doi: 10.1152/ajpheart.1980.238.6.H815
– ident: B5
  doi: 10.1152/ajpheart.2001.280.2.H642
– ident: B38
  doi: 10.1161/01.RES.52.3.253
– ident: B39
  doi: 10.1152/ajpheart.1983.245.3.H481
– ident: B17
  doi: 10.1152/ajpheart.00358.2004
– ident: B10
  doi: 10.1152/ajpheart.2000.278.3.H818
– ident: B8
  doi: 10.1249/01.MSS.0000048639.02548.24
– ident: B26
  doi: 10.1161/01.RES.11.3.370
– ident: B32
  doi: 10.1152/ajpheart.1992.263.5.H1499
SSID ssj0005763
Score 2.3668296
Snippet The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex...
We found that carotid baroreceptor unloading during muscle metaboreflex activation results in an additive interaction and causes vasoconstriction of all...
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage H1268
SubjectTerms Animals
Arterial Pressure - physiology
Baroreflex - physiology
Blood pressure
Cardiac Output - physiology
Carotid Arteries
Dogs
Exercise
Female
Heart Rate
Hindlimb - blood supply
Integrative Cardiovascular Physiology and Pathophysiology
Ischemia
Ischemia - physiopathology
Male
Muscle, Skeletal - blood supply
Muscular system
Myocardial Contraction - physiology
Pressoreceptors
Reflex
Regional Blood Flow - physiology
Vasoconstriction - physiology
Title Interaction between the muscle metaboreflex and the arterial baroreflex in control of arterial pressure and skeletal muscle blood flow
URI https://www.ncbi.nlm.nih.gov/pubmed/27614226
https://www.proquest.com/docview/1836961825
https://search.proquest.com/docview/1835523769
https://search.proquest.com/docview/1850783833
https://pubmed.ncbi.nlm.nih.gov/PMC5130496
Volume 311
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKkBAvCDb-FAYyEuJlpDROnDiPFQJVoCGQNmlvkZ04WkebVmm6DT4A34tvxp1jJykbCHipovjqVL1fzufz7-4IeRHBrmMcyMJTiU68MM8zTxRh7jEtJZZvgyUU850PP0bT4_D9CT8ZDH70WEubWo2yb9fmlfyPVuEe6BWzZP9Bs-2kcAOuQb_wCRqGz7_SsQnn2WbfjnCFjuRiswZJ7A6NKtbFXF-2TEnD4cQwuZKVGzNc9IayjrQAJ2E4su6AYf0FFijMnLSTG8b7QTFfXvT92_YAqFeRwgRPTPR-hFlPVcNpz2YVUmDNGX8n0dp_uakaEu8613rVwnJ-Lqsm5j3B4lz1srOgZZPdZi4O2sgRGrFT24N5orBZ-LkNDNtQhx_ZnD-zUlnzDFtnsNFJ334H1lrP-kfkxhpPfdb07Lm6TnCsOyvPVtg2vB5hFRwMFjRpnz3krBYGOiyOTMpxt2i2VEY3dIPcZGDr0Mh--NwVrIftXGCLXcEzX1_zRCxHbefY9o2ubHh-5e32HKGju-SO3cHQSQPHe2Sgy12yNylBlYuv9CX91Cpzl9w6tNSNPfK9B1ZqwUoBkLTBE-2DlQJAzJiDIu3ASmcltWCly6KTcGA133VgdZMbsFIE631y_O7t0ZupZ5uAeBkPWO0pv2AJK-Kx0L4Iwb3NlZ-hV69CP8uEksIfyxi7HnDJkzz2mcpzNpZCF6HCbgQPyE65LPUjQlUxVrlURawCETIdCJiDsVwIEWRJpsWQvHJ_f7pqar2kZo_MWeoUlxrFpai4Idl3KkrtS7VOYYWMsIkS40PyvB0Gk43ncLLUy42R4RzZaMmfZDgesIsgGJKHjdbb3-TgMiTxFh5aASwZvz1Szk5N6Xju47F69Pi3cz4ht7s3b5_s1NVGPwW3u1bPDLB_Am4v418
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interaction+between+the+muscle+metaboreflex+and+the+arterial+baroreflex+in+control+of+arterial+pressure+and+skeletal+muscle+blood+flow&rft.jtitle=American+journal+of+physiology.+Heart+and+circulatory+physiology&rft.au=Kaur%2C+Jasdeep&rft.au=Alvarez%2C+Alberto&rft.au=Hanna%2C+Hanna+W&rft.au=Krishnan%2C+Abhinav+C&rft.date=2016-11-01&rft.eissn=1522-1539&rft.volume=311&rft.issue=5&rft.spage=H1268&rft_id=info:doi/10.1152%2Fajpheart.00501.2016&rft_id=info%3Apmid%2F27614226&rft.externalDocID=27614226
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-6135&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-6135&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-6135&client=summon