PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down
Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPA receptor (AMPAR) abundance are incompletely understood. Furthermore, it remains unclear...
Saved in:
Published in | The Journal of neuroscience Vol. 31; no. 18; pp. 6800 - 6808 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
04.05.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPA receptor (AMPAR) abundance are incompletely understood. Furthermore, it remains unclear to what extent scaling up and scaling down use distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding "slot" that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other membrane-associated guanylate kinases (MAGUKs) drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95 MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast, scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age and was unaffected by a superabundance of PSD-95. Together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95 MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that use distinct protein-protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR. |
---|---|
AbstractList | Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in activity lead to bidirectional adjustments in synaptic AMPA receptor (AMPAR) abundance are incompletely understood. Furthermore, it remains unclear to what extent scaling up and scaling down use distinct molecular machinery. PSD-95 is a scaffold protein proposed to serve as a binding “slot” that determines synaptic AMPAR content, and synaptic PSD-95 abundance is regulated by activity, raising the possibility that activity-dependent changes in the synaptic abundance of PSD-95 or other membrane-associated guanylate kinases (MAGUKs) drives the bidirectional changes in AMPAR accumulation during synaptic scaling. We found that synaptic PSD-95 and SAP102 (but not PSD-93) abundance were bidirectionally regulated by activity, but these changes were not sufficient to drive homeostatic changes in synaptic strength. Although not sufficient, the PSD-95 MAGUKs were necessary for synaptic scaling, but scaling up and down were differentially dependent on PSD-95 and PSD-93. Scaling down was completely blocked by reduced or enhanced PSD-95, through a mechanism that depended on the PDZ1/2 domains. In contrast, scaling up could be supported by either PSD-95 or PSD-93 in a manner that depended on neuronal age and was unaffected by a superabundance of PSD-95. Together, our data suggest that scaling up and down of quantal amplitude is not driven by changes in synaptic abundance of PSD-95 MAGUKs, but rather that the PSD-95 MAGUKs serve as critical synaptic organizers that use distinct protein–protein interactions to mediate homeostatic accumulation and loss of synaptic AMPAR. |
Author | Sun, Qian Turrigiano, Gina G |
Author_xml | – sequence: 1 givenname: Qian surname: Sun fullname: Sun, Qian organization: Department of Biology and Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA – sequence: 2 givenname: Gina G surname: Turrigiano fullname: Turrigiano, Gina G |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21543610$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1PwzAMhiMEgvHxF6bcOHXESZOmFyQ0xpcmhoCdo6xJR1CXlqYF7d_TbgPByZb9-LXl9xjt-9JbhIZARsApu3j3tq3LkLkRFyCirkwJwB4adN00ojGBfTQgNCGRiJP4CB2H8E4ISQgkh-iIAo-ZADJAz08v11HKsfYGb1KGq0KvcVa7xmW6wIu2wcaFxvmswXVZ2ICdx2HtddUBOHSM80vcVhsJU375U3SQ6yLYs108QfObyev4LprObu_HV9Mo44w20YIQnlIaQ061tdxYGmsGRoM1CZWJlJJKZrjRIpU5lVaynAHtSUpZajQ7QZdb3apdrKzJrG9qXaiqditdr1Wpnfrf8e5NLctPxQCYIEkncL4TqMuP1oZGrVzIbFFob8s2KCk4SAki7kixJbPu56G2-e8WIKr3Qz08TubPs5fxver96Mu9H93g8O-Nv2M_BrBvHRiJwQ |
CitedBy_id | crossref_primary_10_1016_j_pnpbp_2018_07_004 crossref_primary_10_3389_fnsyn_2022_748184 crossref_primary_10_1016_j_neuropharm_2014_01_001 crossref_primary_10_1007_s00401_021_02371_7 crossref_primary_10_1016_j_celrep_2017_10_073 crossref_primary_10_1016_j_conb_2021_07_008 crossref_primary_10_1016_j_mcn_2019_04_002 crossref_primary_10_7554_eLife_74277 crossref_primary_10_1038_s41598_020_64874_9 crossref_primary_10_1186_s12864_019_5649_6 crossref_primary_10_1186_s13041_017_0324_9 crossref_primary_10_3389_fnmol_2020_00010 crossref_primary_10_1007_s10571_022_01227_2 crossref_primary_10_1016_j_conb_2017_01_006 crossref_primary_10_1007_s00018_013_1309_1 crossref_primary_10_1016_j_neuron_2014_09_036 crossref_primary_10_1186_1756_6606_5_43 crossref_primary_10_1113_jphysiol_2011_213884 crossref_primary_10_1016_j_nbd_2019_104485 crossref_primary_10_1126_scisignal_aad2441 crossref_primary_10_3389_fnmol_2021_805929 crossref_primary_10_1073_pnas_1512786112 crossref_primary_10_1098_rstb_2013_0134 crossref_primary_10_1523_JNEUROSCI_3888_14_2014 crossref_primary_10_3389_fncir_2020_00057 crossref_primary_10_1073_pnas_1411117111 crossref_primary_10_15252_embj_201899529 crossref_primary_10_1098_rstb_2016_0155 crossref_primary_10_3389_fncel_2020_00050 crossref_primary_10_1016_j_expneurol_2016_07_012 crossref_primary_10_1093_schbul_sbaa139 crossref_primary_10_1016_j_neuron_2013_09_044 crossref_primary_10_1523_JNEUROSCI_2131_13_2013 crossref_primary_10_1016_j_mcn_2019_103465 crossref_primary_10_1016_j_mcn_2018_07_002 crossref_primary_10_1073_pnas_1318860110 crossref_primary_10_1038_nn_3429 crossref_primary_10_1016_j_neuron_2015_07_015 crossref_primary_10_1016_j_arr_2021_101496 crossref_primary_10_1038_s41598_023_38096_8 crossref_primary_10_3389_fnbeh_2021_618397 crossref_primary_10_1155_2016_7969272 crossref_primary_10_15252_embj_201695829 crossref_primary_10_1073_pnas_1208010110 crossref_primary_10_1016_j_nbd_2014_04_016 crossref_primary_10_1111_jnc_13687 crossref_primary_10_1016_j_brainresbull_2020_04_009 crossref_primary_10_1038_s41467_019_12372_6 crossref_primary_10_3389_fncel_2020_00197 crossref_primary_10_1016_j_cub_2021_04_023 crossref_primary_10_1111_ejn_12902 crossref_primary_10_1016_j_eplepsyres_2019_05_013 crossref_primary_10_1016_j_ibneur_2022_10_008 crossref_primary_10_1016_j_conb_2018_08_010 crossref_primary_10_1083_jcb_201306030 crossref_primary_10_1111_neup_12445 crossref_primary_10_1124_mol_115_098509 crossref_primary_10_3389_fnmol_2018_00328 crossref_primary_10_1016_j_neuropharm_2013_07_009 crossref_primary_10_1038_s41467_018_03185_0 crossref_primary_10_3389_fnins_2016_00121 crossref_primary_10_1038_s41593_018_0138_9 crossref_primary_10_1152_physiol_00008_2020 crossref_primary_10_1016_j_bbr_2020_112938 crossref_primary_10_1016_j_neuron_2016_09_058 crossref_primary_10_1523_ENEURO_0407_19_2020 crossref_primary_10_1523_JNEUROSCI_2104_23_2024 crossref_primary_10_3389_fncel_2014_00401 crossref_primary_10_1038_s41467_019_12528_4 crossref_primary_10_1016_j_cub_2021_03_024 crossref_primary_10_3389_fnmol_2020_00031 crossref_primary_10_1248_yakushi_18_00213_4 crossref_primary_10_1523_JNEUROSCI_3077_12_2012 crossref_primary_10_7554_eLife_74899 crossref_primary_10_1074_jbc_M113_513945 crossref_primary_10_5334_1750_2187_11_5 crossref_primary_10_1007_s00018_019_03068_7 crossref_primary_10_1523_JNEUROSCI_5038_14_2015 crossref_primary_10_1038_nn_4140 crossref_primary_10_1523_JNEUROSCI_2181_19_2020 crossref_primary_10_1111_nmo_12834 crossref_primary_10_1111_jnc_14274 crossref_primary_10_3389_fnmol_2019_00008 crossref_primary_10_1523_JNEUROSCI_2757_14_2015 crossref_primary_10_7554_eLife_52939 crossref_primary_10_1016_j_bbr_2013_07_052 crossref_primary_10_1016_j_mcn_2023_103819 crossref_primary_10_1073_pnas_2020810118 crossref_primary_10_1152_jn_00526_2011 crossref_primary_10_1074_jbc_RA119_010331 crossref_primary_10_1016_j_ibneur_2023_01_008 |
Cites_doi | 10.1016/S0896-6273(03)00687-1 10.1016/j.neuron.2008.10.014 10.1038/nrn1517 10.1371/journal.pbio.0040370 10.1016/j.neuron.2007.09.007 10.1083/jcb.200903101 10.1038/36103 10.1016/j.neuron.2007.11.027 10.1038/24790 10.1016/j.neuron.2006.09.012 10.1016/j.neuron.2008.04.011 10.1016/S0896-6273(01)00355-5 10.1523/JNEUROSCI.3753-08.2009 10.1016/j.neuron.2006.08.034 10.1523/JNEUROSCI.4733-03.2004 10.1523/JNEUROSCI.20-03-01260.2000 10.1523/JNEUROSCI.5217-04.2005 10.1146/annurev.neuro.25.112701.142758 10.1523/JNEUROSCI.1841-09.2009 10.1016/j.neuron.2008.04.030 10.1016/j.neuron.2009.05.016 10.1073/pnas.0807970105 10.1016/j.cell.2008.10.008 10.1073/pnas.0608492103 10.1113/jphysiol.2008.163469 10.1523/JNEUROSCI.1853-08.2008 10.1016/j.neuroscience.2007.12.046 10.1016/S0896-6273(03)00422-7 10.1016/j.neuron.2008.02.031 10.1038/35050030 10.1126/science.1123339 10.1038/nn.2249 10.1113/jphysiol.2002.031369 10.1038/nn1013 10.1073/pnas.172511199 10.1016/j.neuron.2010.09.020 10.1016/j.neuron.2010.04.028 10.1016/j.tcb.2007.07.005 10.1038/nature04671 10.1016/j.neuron.2008.03.021 10.1073/pnas.0609307104 10.1016/j.neuron.2006.05.016 10.1002/dneu.20577 10.1523/JNEUROSCI.23-13-05503.2003 10.1107/S1744309109043267 10.1152/jn.00107.2006 10.3389/neuro.02.004.2008 10.1038/nrn1327 10.1126/science.290.5495.1364 10.1073/pnas.0905570106 10.1073/pnas.0811025106 |
ContentType | Journal Article |
Copyright | Copyright © 2011 the authors 0270-6474/11/316800-09$15.00/0 2011 |
Copyright_xml | – notice: Copyright © 2011 the authors 0270-6474/11/316800-09$15.00/0 2011 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1523/jneurosci.5616-10.2011 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 6808 |
ExternalDocumentID | 10_1523_JNEUROSCI_5616_10_2011 21543610 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS036853 – fundername: NINDS NIH HHS grantid: R56 NS036853 – fundername: NINDS NIH HHS grantid: NS 36853 |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW AENEX AFCFT AFFNX AFHIN AFOSN AHWXS AIZTS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CGR CS3 CUY CVF DIK DU5 E3Z EBS ECM EIF EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM NPM OK1 P0W P2P QZG R.V RHF RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK AAYXX CITATION 7X8 5PM AETEA |
ID | FETCH-LOGICAL-c532t-b00592241f2aee5de24a31da1ed7287888283d5da698f28e83f312ee5d2239da3 |
IEDL.DBID | RPM |
ISSN | 0270-6474 |
IngestDate | Tue Sep 17 20:41:20 EDT 2024 Fri Oct 25 22:12:34 EDT 2024 Thu Sep 26 18:36:58 EDT 2024 Sat Sep 28 08:00:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-b00592241f2aee5de24a31da1ed7287888283d5da698f28e83f312ee5d2239da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: Q.S. and G.G.T. designed research; Q.S. performed research; Q.S. analyzed data; Q.S. and G.G.T. wrote the paper. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/31/18/6800.full.pdf |
PMID | 21543610 |
PQID | 865188164 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3113607 proquest_miscellaneous_865188164 crossref_primary_10_1523_JNEUROSCI_5616_10_2011 pubmed_primary_21543610 |
PublicationCentury | 2000 |
PublicationDate | 2011-May-04 2011-05-04 20110504 |
PublicationDateYYYYMMDD | 2011-05-04 |
PublicationDate_xml | – month: 05 year: 2011 text: 2011-May-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2011 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | 21040851 - Neuron. 2010 Nov 4;68(3):512-28 16513974 - Science. 2006 Mar 3;311(5765):1253-6 14735113 - Nat Rev Neurosci. 2004 Feb;5(2):97-107 12843250 - J Neurosci. 2003 Jul 2;23(13):5503-6 11082065 - Science. 2000 Nov 17;290(5495):1364-8 15378037 - Nat Rev Neurosci. 2004 Oct;5(10):771-81 19549880 - Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11348-51 18498738 - Neuron. 2008 May 22;58(4):571-83 12577062 - Nat Neurosci. 2003 Mar;6(3):231-42 17360496 - Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4176-81 18946537 - Front Mol Neurosci. 2008 Mar 28;1:4 19458219 - J Neurosci. 2009 May 20;29(20):6479-89 12563010 - J Physiol. 2003 Feb 1;546(Pt 3):859-67 19524523 - Neuron. 2009 Jun 11;62(5):633-40 17988632 - Neuron. 2007 Nov 8;56(3):488-502 17948240 - Dev Neurobiol. 2008 Feb 1;68(2):143-51 18549786 - Neuron. 2008 Jun 12;58(5):749-62 17148601 - Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19535-40 16547515 - Nature. 2006 Apr 20;440(7087):1054-9 18215622 - Neuron. 2008 Jan 24;57(2):248-62 19081375 - Neuron. 2008 Dec 10;60(5):788-802 18922783 - Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16803-8 20471348 - Neuron. 2010 May 13;66(3):337-51 18984155 - Cell. 2008 Oct 31;135(3):422-35 16815335 - Neuron. 2006 Jul 6;51(1):99-111 18304745 - Neuroscience. 2009 Jan 12;158(1):45-54 17644382 - Trends Cell Biol. 2007 Jul;17(7):343-52 19104036 - Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20953-8 20054121 - Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Dec 1;65(Pt 12):1254-7 19169250 - Nat Neurosci. 2009 Feb;12(2):172-81 18579731 - J Neurosci. 2008 Jun 25;28(26):6583-91 19828799 - J Neurosci. 2009 Oct 14;29(41):12845-54 12052905 - Annu Rev Neurosci. 2002;25:103-26 11140673 - Nature. 2000 Dec 21-28;408(6815):936-43 17088213 - Neuron. 2006 Nov 9;52(3):475-84 11502259 - Neuron. 2001 Aug 2;31(2):289-303 14749436 - J Neurosci. 2004 Jan 28;24(4):916-27 12873384 - Neuron. 2003 Jul 17;39(2):269-81 18367083 - Neuron. 2008 Mar 27;57(6):819-26 9853749 - Nature. 1998 Dec 3;396(6710):433-9 12359873 - Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13902-7 16760351 - J Neurophysiol. 2006 Oct;96(4):2127-33 18936077 - J Physiol. 2008 Dec 15;586(Pt 24):5885-900 15772349 - J Neurosci. 2005 Mar 16;25(11):2895-905 17090216 - PLoS Biol. 2006 Nov;4(11):e370 10648730 - J Neurosci. 2000 Feb 1;20(3):1260-71 9495341 - Nature. 1998 Feb 26;391(6670):892-6 14642282 - Neuron. 2003 Oct 30;40(3):595-607 18498731 - Neuron. 2008 May 22;58(4):472-97 17046693 - Neuron. 2006 Oct 19;52(2):307-20 19596852 - J Cell Biol. 2009 Jul 13;186(1):147-60 2023041303502029000_31.18.6800.46 2023041303502029000_31.18.6800.47 2023041303502029000_31.18.6800.48 2023041303502029000_31.18.6800.49 2023041303502029000_31.18.6800.10 2023041303502029000_31.18.6800.11 2023041303502029000_31.18.6800.12 2023041303502029000_31.18.6800.50 2023041303502029000_31.18.6800.51 Stein (2023041303502029000_31.18.6800.42) 2003; 23 2023041303502029000_31.18.6800.39 2023041303502029000_31.18.6800.36 2023041303502029000_31.18.6800.37 2023041303502029000_31.18.6800.38 2023041303502029000_31.18.6800.43 2023041303502029000_31.18.6800.44 2023041303502029000_31.18.6800.45 2023041303502029000_31.18.6800.40 2023041303502029000_31.18.6800.41 2023041303502029000_31.18.6800.8 2023041303502029000_31.18.6800.9 2023041303502029000_31.18.6800.6 2023041303502029000_31.18.6800.7 2023041303502029000_31.18.6800.28 2023041303502029000_31.18.6800.1 2023041303502029000_31.18.6800.29 2023041303502029000_31.18.6800.4 2023041303502029000_31.18.6800.24 2023041303502029000_31.18.6800.5 2023041303502029000_31.18.6800.25 2023041303502029000_31.18.6800.2 2023041303502029000_31.18.6800.26 2023041303502029000_31.18.6800.3 2023041303502029000_31.18.6800.27 2023041303502029000_31.18.6800.31 2023041303502029000_31.18.6800.32 2023041303502029000_31.18.6800.33 2023041303502029000_31.18.6800.34 2023041303502029000_31.18.6800.30 2023041303502029000_31.18.6800.17 2023041303502029000_31.18.6800.18 2023041303502029000_31.18.6800.19 Sans (2023041303502029000_31.18.6800.35) 2000; 20 2023041303502029000_31.18.6800.13 2023041303502029000_31.18.6800.14 2023041303502029000_31.18.6800.15 2023041303502029000_31.18.6800.16 2023041303502029000_31.18.6800.20 2023041303502029000_31.18.6800.21 2023041303502029000_31.18.6800.22 2023041303502029000_31.18.6800.23 |
References_xml | – ident: 2023041303502029000_31.18.6800.7 doi: 10.1016/S0896-6273(03)00687-1 – ident: 2023041303502029000_31.18.6800.43 doi: 10.1016/j.neuron.2008.10.014 – ident: 2023041303502029000_31.18.6800.22 doi: 10.1038/nrn1517 – ident: 2023041303502029000_31.18.6800.18 doi: 10.1371/journal.pbio.0040370 – ident: 2023041303502029000_31.18.6800.23 doi: 10.1016/j.neuron.2007.09.007 – ident: 2023041303502029000_31.18.6800.29 doi: 10.1083/jcb.200903101 – ident: 2023041303502029000_31.18.6800.48 doi: 10.1038/36103 – ident: 2023041303502029000_31.18.6800.51 doi: 10.1016/j.neuron.2007.11.027 – ident: 2023041303502029000_31.18.6800.25 doi: 10.1038/24790 – ident: 2023041303502029000_31.18.6800.13 doi: 10.1016/j.neuron.2006.09.012 – ident: 2023041303502029000_31.18.6800.6 doi: 10.1016/j.neuron.2008.04.011 – ident: 2023041303502029000_31.18.6800.30 doi: 10.1016/S0896-6273(01)00355-5 – ident: 2023041303502029000_31.18.6800.16 doi: 10.1523/JNEUROSCI.3753-08.2009 – ident: 2023041303502029000_31.18.6800.40 doi: 10.1016/j.neuron.2006.08.034 – ident: 2023041303502029000_31.18.6800.9 doi: 10.1523/JNEUROSCI.4733-03.2004 – volume: 20 start-page: 1260 year: 2000 ident: 2023041303502029000_31.18.6800.35 article-title: A developmental change in NMDA receptor-associated proteins at hippocampal synapses publication-title: J Neurosci doi: 10.1523/JNEUROSCI.20-03-01260.2000 contributor: fullname: Sans – ident: 2023041303502029000_31.18.6800.49 doi: 10.1523/JNEUROSCI.5217-04.2005 – ident: 2023041303502029000_31.18.6800.24 doi: 10.1146/annurev.neuro.25.112701.142758 – ident: 2023041303502029000_31.18.6800.45 doi: 10.1523/JNEUROSCI.1841-09.2009 – ident: 2023041303502029000_31.18.6800.27 doi: 10.1016/j.neuron.2008.04.030 – ident: 2023041303502029000_31.18.6800.41 doi: 10.1016/j.neuron.2009.05.016 – ident: 2023041303502029000_31.18.6800.21 doi: 10.1073/pnas.0807970105 – ident: 2023041303502029000_31.18.6800.46 doi: 10.1016/j.cell.2008.10.008 – ident: 2023041303502029000_31.18.6800.2 doi: 10.1073/pnas.0608492103 – ident: 2023041303502029000_31.18.6800.4 doi: 10.1113/jphysiol.2008.163469 – ident: 2023041303502029000_31.18.6800.38 doi: 10.1523/JNEUROSCI.1853-08.2008 – ident: 2023041303502029000_31.18.6800.34 doi: 10.1016/j.neuroscience.2007.12.046 – ident: 2023041303502029000_31.18.6800.32 doi: 10.1016/S0896-6273(03)00422-7 – ident: 2023041303502029000_31.18.6800.19 doi: 10.1016/j.neuron.2008.02.031 – ident: 2023041303502029000_31.18.6800.5 doi: 10.1038/35050030 – ident: 2023041303502029000_31.18.6800.28 doi: 10.1126/science.1123339 – ident: 2023041303502029000_31.18.6800.3 doi: 10.1038/nn.2249 – ident: 2023041303502029000_31.18.6800.1 doi: 10.1113/jphysiol.2002.031369 – ident: 2023041303502029000_31.18.6800.8 doi: 10.1038/nn1013 – ident: 2023041303502029000_31.18.6800.37 doi: 10.1073/pnas.172511199 – ident: 2023041303502029000_31.18.6800.17 doi: 10.1016/j.neuron.2010.09.020 – ident: 2023041303502029000_31.18.6800.31 doi: 10.1016/j.neuron.2010.04.028 – ident: 2023041303502029000_31.18.6800.12 doi: 10.1016/j.tcb.2007.07.005 – ident: 2023041303502029000_31.18.6800.44 doi: 10.1038/nature04671 – ident: 2023041303502029000_31.18.6800.39 doi: 10.1016/j.neuron.2008.03.021 – ident: 2023041303502029000_31.18.6800.10 doi: 10.1073/pnas.0609307104 – ident: 2023041303502029000_31.18.6800.36 doi: 10.1016/j.neuron.2006.05.016 – ident: 2023041303502029000_31.18.6800.33 doi: 10.1002/dneu.20577 – volume: 23 start-page: 5503 year: 2003 ident: 2023041303502029000_31.18.6800.42 article-title: Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression publication-title: J Neurosci doi: 10.1523/JNEUROSCI.23-13-05503.2003 contributor: fullname: Stein – ident: 2023041303502029000_31.18.6800.15 doi: 10.1107/S1744309109043267 – ident: 2023041303502029000_31.18.6800.50 doi: 10.1152/jn.00107.2006 – ident: 2023041303502029000_31.18.6800.20 doi: 10.3389/neuro.02.004.2008 – ident: 2023041303502029000_31.18.6800.47 doi: 10.1038/nrn1327 – ident: 2023041303502029000_31.18.6800.11 doi: 10.1126/science.290.5495.1364 – ident: 2023041303502029000_31.18.6800.26 doi: 10.1073/pnas.0905570106 – ident: 2023041303502029000_31.18.6800.14 doi: 10.1073/pnas.0811025106 |
SSID | ssj0007017 |
Score | 2.4111514 |
Snippet | Synaptic scaling stabilizes neuronal firing through the homeostatic regulation of postsynaptic strength, but the mechanisms by which chronic changes in... |
SourceID | pubmedcentral proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 6800 |
SubjectTerms | Analysis of Variance Animals Cells, Cultured Disks Large Homolog 4 Protein Immunohistochemistry Intracellular Signaling Peptides and Proteins - metabolism Membrane Proteins - metabolism Neuronal Plasticity - physiology Neurons - cytology Neurons - metabolism Patch-Clamp Techniques Rats Receptors, AMPA - metabolism Synapses - metabolism Synaptic Transmission - physiology Visual Cortex - cytology Visual Cortex - metabolism |
Title | PSD-95 and PSD-93 play critical but distinct roles in synaptic scaling up and down |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21543610 https://search.proquest.com/docview/865188164 https://pubmed.ncbi.nlm.nih.gov/PMC3113607 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swED7EmboUbdO0btqAQ9FNliw-RI2pnSBNkcCJayCbQPGBGogZo5EH__seKcnIY8smSBQhHE-87yM_3gF8t3UpWWnrhFKXIUGRLqlFJhPtXMHqQusylum8vBLnC3Zxy2_3gPdnYaJoX9fLkb9bjfzyb9RWrlc67XVi6exyQkMhkqxIBzBAB-0pejf9Flkss4t0C3kRK1h3LBgJV3pxFeRx88mvEaIGkQQZNLp3zAfMGRXhFO3j4PQCcT4XTj6KRGfv4G0HIclJ-6nvYc_6D3Bw4pE-r7bkB4mizrhafgA3s_k0KTlR3pB4ScnsTm1JX-GA_Nw0ZBr-c68bchOyO5GlJ_OtVziXaDLHNhjcyGIdu5giZ_8Ii7PTP5PzpCujkGhO86YtsRMitcuVtdzYnCk6NmpsTYF8CSkwQgzDjRKldLm0kjo6zkNLhA6lUfQQ9v29t5-BOFMIXdZSaKsZ1wh2pFHGlcxZkefSDCHt7Vet22wZVWAZaPxqZ_wqGD_cDsYfAunNXKFjh90K5e395qGSIuSKQzY3hE-t1Xdd9sM1hOLJeOwahJzZT5-gK8Xc2Z3rfHn1m0fwpl1W5knGvsJ-829jvyEuaepjGPy-lsfRG_8DEnrf5g |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwGP00xgO8MGAwOm5-QLzl0thJnMfRMnVjrap1RXuLHF9ExepWkAqVX89nJ6m28QRvUexYso4v5zjH3wfwQVcFZ4WuAkpNjAKFm6DKYh5IY3JW5VIWPk3neJKN5uz8Or3eg7S7C-NN-7JahPZmGdrFN--tXC9l1PnEoul4QF0ikjiPHsBDnK8x60R6uwDnsU-0i4ILlRHLWXsxGCVXdD5xBrnZ4CxE3pAFzgiNA9xHBE4Zzdw92tvb01-c87518tZedHoAX7teNBaU7-GmrkL5-16Ax3_u5lN40rJTctIUP4M9bZ_D4YlFZb7cko_E-0X9QfwhXE5nw6BIibCK-EdKpjdiS7rkCeTTpiZDt4RYWZNLFziKLCyZba3AZUqSGdbBfZPM176J4eqXfQHz089Xg1HQZmgIZEqTusne40iASYTWqdIJE7SvRF-rHKUYqmtkLypVIiu4Sbjm1NB-4moiKymUoC9h366sfgXEqDyTRcUzqSVLJfIoroQyBTM6SxKuehB1wJTrJhBH6QQMolruUC0dqu61Q7UHpMOvxDnjfoQIq1ebnyXPXBg6FIo9OGrg3DXZjYMe5HeA3lVw4bjvliB8Pix3C9fxf3_5Hh6NrsYX5cXZ5MtreNycXqdBzN7Afv1jo98i_amrd36w_wFixwDr |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6CISFexmVcytUPiLc0aew4zuNoqbbBqmql0sRL5PgiKla3GqlQ-fUcO0nVjbe9RcmJpejz5fucz-cAfDRVIVhhqohSm6BAETaqeCIiZW3OqlypIpTpPJ_wkzk7u8wu90p9BdO-qhZ9d7Xsu8XP4K1cL1Xc-cTi6fmQ-kIkSR6vtY3vwwMcswnvhHo7CedJKLaLogvVEctZezgYZVd8NvEmudnwtI_cgUfeDI2dPGQFzhjl_izt_hL1H--8bZ_cW4_Gj-FH9yWNDeVXf1NXffX3VpLHO33qEzhsWSo5bkKewj3jnsHRsUOFvtySTyT4RsOG_BFcTGejqMiIdJqES0qmV3JLuiIK5POmJiM_lThVkwufQIosHJltncTpSpEZxuD6Sebr0MRo9cc9h_n4y_fhSdRWaohURtO6qeLjyYBNpTGZNimTdKDlwOgcJRmqbGQxOtOSF8Kmwghq6SD1kchOCi3pCzhwK2deAbE656qoBFdGsUwhnxJaalswa3iaCt2DuAOnXDcJOUovZBDZcods6ZH1tz2yPSAdhiWOHf9DRDqz2vwuBffp6FAw9uBlA-muya4v9CC_AfYuwKflvvkEIQzpuVvIXt_5zQ_wcDoal99OJ1_fwKNmEzuLEvYWDurrjXmHLKiu3of-_g-TyQNr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PSD-95+and+PSD-93+play+critical+but+distinct+roles+in+synaptic+scaling+up+and+down&rft.jtitle=The+Journal+of+neuroscience&rft.au=Sun%2C+Qian&rft.au=Turrigiano%2C+Gina+G&rft.date=2011-05-04&rft.eissn=1529-2401&rft.volume=31&rft.issue=18&rft.spage=6800&rft.epage=6808&rft_id=info:doi/10.1523%2FJNEUROSCI.5616-10.2011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |