Genotyping Informatics and Quality Control for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort
The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California—San Francisco, undertook genome-wide genotyping of >100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort....
Saved in:
Published in | Genetics (Austin) Vol. 200; no. 4; pp. 1051 - 1060 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Genetics Society of America
01.08.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California—San Francisco, undertook genome-wide genotyping of >100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The project, which generated >70 billion genotypes, represents the first large-scale use of the Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with a range of 92.1–95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions. |
---|---|
AbstractList | The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California-San Francisco, undertook genome-wide genotyping of >100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The project, which generated >70 billion genotypes, represents the first large-scale use of the Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with a range of 92.1-95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions.The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California-San Francisco, undertook genome-wide genotyping of >100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The project, which generated >70 billion genotypes, represents the first large-scale use of the Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with a range of 92.1-95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions. The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California-San Francisco, undertook genome-wide genotyping of >100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The project, which generated >70 billion genotypes, represents the first large-scale use of the Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with a range of 92.1-95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions. The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California—San Francisco, undertook genome-wide genotyping of >100,000 subjects that constitute the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. The project, which generated >70 billion genotypes, represents the first large-scale use of the Affymetrix Axiom Genotyping Solution. Because genotyping took place over a short 14-month period, creating a near-real-time analysis pipeline for experimental assay quality control and final optimized analyses was critical. Because of the multi-ethnic nature of the cohort, four different ethnic-specific arrays were employed to enhance genome-wide coverage. All assays were performed on DNA extracted from saliva samples. To improve sample call rates and significantly increase genotype concordance, we partitioned the cohort into disjoint packages of plates with similar assay contexts. Using strict QC criteria, the overall genotyping success rate was 103,067 of 109,837 samples assayed (93.8%), with a range of 92.1–95.4% for the four different arrays. Similarly, the SNP genotyping success rate ranged from 98.1 to 99.4% across the four arrays, the variation depending mostly on how many SNPs were included as single copy vs. double copy on a particular array. The high quality and large scale of genotype data created on this cohort, in conjunction with comprehensive longitudinal data from the KP electronic health records of participants, will enable a broad range of highly powered genome-wide association studies on a diversity of traits and conditions. |
Author | Sadler, Marianne Miles, Sunita Shenoy, Tanu McGuire, William B Gollub, Jeremy Quesenberry, Charles P Zau, Chia Wong, Simon Sakoda, Lori C Walter, Lawrence Cao, Yang Connell, Sheryl Patil, Mohini Chan, David Iribarren, Carlos Lao, Richard Shapero, Michael Van Den Eeden, Stephen K Eshragh, Jasmin Mathauda, Gurpreet K Schaefer, Catherine Ludwig, Dana Kvale, Mark N Hoffmann, Thomas J Hesselson, Stephanie Croen, Lisa A Somkin, Carol P Jorgenson, Eric Kwok, Pui-Yan Finn, Andrea Mei, Gangwu Shen, Ling Dispensa, Brad P Wan, Eunice Risch, Neil Kushi, Lawrence H Smethurst, David Lu, Yontao Mittman, Michael Ranatunga, Dilrini Webster, Teresa Whitmer, Rachel A Rowell, Sarah Zhan, Yiping |
Author_xml | – sequence: 1 givenname: Mark N surname: Kvale fullname: Kvale, Mark N – sequence: 2 givenname: Stephanie surname: Hesselson fullname: Hesselson, Stephanie – sequence: 3 givenname: Thomas J surname: Hoffmann fullname: Hoffmann, Thomas J – sequence: 4 givenname: Yang surname: Cao fullname: Cao, Yang – sequence: 5 givenname: David surname: Chan fullname: Chan, David – sequence: 6 givenname: Sheryl surname: Connell fullname: Connell, Sheryl – sequence: 7 givenname: Lisa A surname: Croen fullname: Croen, Lisa A – sequence: 8 givenname: Brad P surname: Dispensa fullname: Dispensa, Brad P – sequence: 9 givenname: Jasmin surname: Eshragh fullname: Eshragh, Jasmin – sequence: 10 givenname: Andrea surname: Finn fullname: Finn, Andrea – sequence: 11 givenname: Jeremy surname: Gollub fullname: Gollub, Jeremy – sequence: 12 givenname: Carlos surname: Iribarren fullname: Iribarren, Carlos – sequence: 13 givenname: Eric surname: Jorgenson fullname: Jorgenson, Eric – sequence: 14 givenname: Lawrence H surname: Kushi fullname: Kushi, Lawrence H – sequence: 15 givenname: Richard surname: Lao fullname: Lao, Richard – sequence: 16 givenname: Yontao surname: Lu fullname: Lu, Yontao – sequence: 17 givenname: Dana surname: Ludwig fullname: Ludwig, Dana – sequence: 18 givenname: Gurpreet K surname: Mathauda fullname: Mathauda, Gurpreet K – sequence: 19 givenname: William B surname: McGuire fullname: McGuire, William B – sequence: 20 givenname: Gangwu surname: Mei fullname: Mei, Gangwu – sequence: 21 givenname: Sunita surname: Miles fullname: Miles, Sunita – sequence: 22 givenname: Michael surname: Mittman fullname: Mittman, Michael – sequence: 23 givenname: Mohini surname: Patil fullname: Patil, Mohini – sequence: 24 givenname: Charles P surname: Quesenberry fullname: Quesenberry, Charles P – sequence: 25 givenname: Dilrini surname: Ranatunga fullname: Ranatunga, Dilrini – sequence: 26 givenname: Sarah surname: Rowell fullname: Rowell, Sarah – sequence: 27 givenname: Marianne surname: Sadler fullname: Sadler, Marianne – sequence: 28 givenname: Lori C surname: Sakoda fullname: Sakoda, Lori C – sequence: 29 givenname: Michael surname: Shapero fullname: Shapero, Michael – sequence: 30 givenname: Ling surname: Shen fullname: Shen, Ling – sequence: 31 givenname: Tanu surname: Shenoy fullname: Shenoy, Tanu – sequence: 32 givenname: David surname: Smethurst fullname: Smethurst, David – sequence: 33 givenname: Carol P surname: Somkin fullname: Somkin, Carol P – sequence: 34 givenname: Stephen K surname: Van Den Eeden fullname: Van Den Eeden, Stephen K – sequence: 35 givenname: Lawrence surname: Walter fullname: Walter, Lawrence – sequence: 36 givenname: Eunice surname: Wan fullname: Wan, Eunice – sequence: 37 givenname: Teresa surname: Webster fullname: Webster, Teresa – sequence: 38 givenname: Rachel A surname: Whitmer fullname: Whitmer, Rachel A – sequence: 39 givenname: Simon surname: Wong fullname: Wong, Simon – sequence: 40 givenname: Chia surname: Zau fullname: Zau, Chia – sequence: 41 givenname: Yiping surname: Zhan fullname: Zhan, Yiping – sequence: 42 givenname: Catherine surname: Schaefer fullname: Schaefer, Catherine – sequence: 43 givenname: Pui-Yan surname: Kwok fullname: Kwok, Pui-Yan – sequence: 44 givenname: Neil surname: Risch fullname: Risch, Neil |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26092718$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkttq3DAQhk1JaQ7tExSKoDcpdLc6WLZ0E1iWzSYQKE3bayHLY1uLV9pacmHfoQ9dOZstaS5KryQx_3wzo_nPsxPnHWTZW4LnhLP8UwsOojVhTgifk1JIzF9kZ0TmbEYLRk6e3E-z8xA2GONCcvEqO6UFlrQk4iz7tQbn435nXYtuXeOHrZ6YSLsafRl1b-MeLb2Lg-9RiiKC8cfEQV_HagMmBmQdih2g9aEZtNrZGrbW977do3sIoAfTIe_Qoh77iG5A97F7oC_aqeblenW_-JBKdH6Ir7OXje4DvHk8L7Lv16tvy5vZ3ef17XJxNzOc0TjTooGS8FJzY2QuRcErCUamlwBd1bLCDdM1BQ1UCiwKSkspKiYZL_Oq5oJdZFcH7m6stlAbSPPpXu0Gu9XDXnlt1d8RZzvV-p8qTwSaywS4fAQM_scIIaqtDQb6XjvwY1CkpJSURSnwf0hxzjjHjCTp-2fSjR8Hl35iUpUFYySnSfXuafN_uj7uNAnkQWAGH8IAjTI2pq1OW9S2VwSryT_q6B-V_KMO_km57FnuEf-vrN-86MtR |
CODEN | GENTAE |
CitedBy_id | crossref_primary_10_1093_hmg_ddac003 crossref_primary_10_1016_j_jaci_2018_11_037 crossref_primary_10_1016_j_procs_2017_06_119 crossref_primary_10_2337_db17_0187 crossref_primary_10_1371_journal_pone_0182438 crossref_primary_10_1080_07347332_2023_2238192 crossref_primary_10_1038_s41467_021_21446_3 crossref_primary_10_3389_fgene_2023_1113058 crossref_primary_10_1038_mp_2017_101 crossref_primary_10_1038_s41467_021_25181_7 crossref_primary_10_1038_s41371_023_00835_9 crossref_primary_10_1038_s42003_020_1037_7 crossref_primary_10_1016_j_ajhg_2020_03_004 crossref_primary_10_3389_fendo_2023_1110523 crossref_primary_10_1093_jb_mvab060 crossref_primary_10_1001_jamaophthalmol_2022_2762 crossref_primary_10_1186_s12885_021_09067_x crossref_primary_10_1016_j_jaci_2017_11_040 crossref_primary_10_1038_ncomms14248 crossref_primary_10_1093_jnci_djz174 crossref_primary_10_1093_bib_bbaf048 crossref_primary_10_1016_j_ajhg_2020_07_006 crossref_primary_10_1126_scitranslmed_aaa9364 crossref_primary_10_2139_ssrn_4185925 crossref_primary_10_1534_genetics_118_301479 crossref_primary_10_1002_cpt_1439 crossref_primary_10_3389_fnut_2022_907789 crossref_primary_10_1093_aje_kww120 crossref_primary_10_1093_hmg_ddy081 crossref_primary_10_1016_j_labinv_2024_100325 crossref_primary_10_1038_ejhg_2015_247 crossref_primary_10_1038_s41467_023_36013_1 crossref_primary_10_1016_j_jdin_2023_11_005 crossref_primary_10_3390_jpm14030246 crossref_primary_10_1136_gpsych_2022_100877 crossref_primary_10_1073_pnas_1809872115 crossref_primary_10_2217_pme_2016_0101 crossref_primary_10_1038_s41588_018_0064_5 crossref_primary_10_1038_ng_3571 crossref_primary_10_1007_s11764_022_01235_7 crossref_primary_10_1093_aje_kwv204 crossref_primary_10_1186_s13058_023_01685_6 crossref_primary_10_1093_hmg_ddab252 crossref_primary_10_3390_nu11051085 crossref_primary_10_1093_hmg_ddz197 crossref_primary_10_1038_s41598_018_25128_x crossref_primary_10_1534_genetics_116_193987 crossref_primary_10_1007_s00262_018_2168_2 crossref_primary_10_1038_s41576_024_00794_y crossref_primary_10_1371_journal_pgen_1008500 crossref_primary_10_1111_cea_14007 crossref_primary_10_1161_CIRCGENETICS_116_001522 crossref_primary_10_1371_journal_pone_0170422 crossref_primary_10_1016_j_ophtha_2022_01_005 crossref_primary_10_1161_CIRCGEN_119_002804 crossref_primary_10_1016_j_ajhg_2018_11_006 crossref_primary_10_1038_s41591_023_02277_9 crossref_primary_10_1053_j_gastro_2019_12_012 crossref_primary_10_1093_genetics_iyac157 crossref_primary_10_3389_fgene_2023_1075824 crossref_primary_10_1093_neuonc_noy077 crossref_primary_10_1038_s42003_022_03301_3 crossref_primary_10_1093_g3journal_jkae143 crossref_primary_10_1038_s41588_024_01921_5 crossref_primary_10_1002_pros_23283 crossref_primary_10_1136_thoraxjnl_2021_217674 crossref_primary_10_1136_gutjnl_2020_323868 crossref_primary_10_1016_j_ophtha_2023_08_023 crossref_primary_10_1097_FPC_0000000000000383 crossref_primary_10_1111_cea_13829 crossref_primary_10_1016_j_mayocpiqo_2018_07_004 crossref_primary_10_1146_annurev_genom_090314_024956 crossref_primary_10_1038_ng_3715 crossref_primary_10_1038_s41467_020_17668_6 crossref_primary_10_1126_sciadv_aay5034 crossref_primary_10_1038_ng_3679 crossref_primary_10_1111_anec_12888 crossref_primary_10_1167_iovs_64_10_19 crossref_primary_10_1371_journal_pone_0171745 crossref_primary_10_1016_j_tma_2019_11_004 crossref_primary_10_1038_s41366_023_01371_9 crossref_primary_10_1016_j_ophtha_2024_01_033 crossref_primary_10_1371_journal_pgen_1007808 crossref_primary_10_1016_j_jid_2017_09_034 crossref_primary_10_1038_s10038_020_0750_x crossref_primary_10_1371_journal_pbio_2002458 crossref_primary_10_1016_j_ajhg_2020_12_006 crossref_primary_10_1038_s41467_021_23873_8 crossref_primary_10_1002_cpt_2715 crossref_primary_10_1016_j_aopr_2024_10_003 crossref_primary_10_1534_g3_116_028563 crossref_primary_10_1097_EE9_0000000000000049 crossref_primary_10_1016_j_ajhg_2022_12_006 crossref_primary_10_1093_bib_bbad232 crossref_primary_10_1007_s40257_023_00797_1 crossref_primary_10_1007_s13273_022_00226_0 crossref_primary_10_1038_s41467_020_18883_x crossref_primary_10_1093_bioinformatics_bty925 crossref_primary_10_1038_s41576_020_0224_1 crossref_primary_10_1177_25158163251323245 crossref_primary_10_1016_j_jaci_2019_06_044 crossref_primary_10_1016_j_xgen_2024_100582 crossref_primary_10_1038_ejhg_2016_152 crossref_primary_10_7554_eLife_82546 crossref_primary_10_1038_s42003_021_02356_y crossref_primary_10_1093_bib_bbab322 crossref_primary_10_1038_s41467_020_18246_6 crossref_primary_10_1038_s41588_020_0599_0 crossref_primary_10_1093_aje_kwz033 crossref_primary_10_1016_j_jaci_2021_11_025 crossref_primary_10_1186_s40246_024_00588_7 crossref_primary_10_1111_cts_12787 crossref_primary_10_1161_HCG_0000000000000046 crossref_primary_10_1371_journal_pone_0229241 crossref_primary_10_2196_60709 crossref_primary_10_1038_s41467_021_21288_z crossref_primary_10_1038_ncomms10130 crossref_primary_10_1080_23808993_2016_1157686 crossref_primary_10_1371_journal_pone_0277680 crossref_primary_10_1038_nrg_2015_36 crossref_primary_10_1038_s41525_019_0109_4 crossref_primary_10_1016_j_xhgg_2025_100413 crossref_primary_10_1038_s41398_021_01244_7 crossref_primary_10_1002_gepi_22436 crossref_primary_10_1038_s41588_022_01222_9 crossref_primary_10_1038_s41467_017_01913_6 crossref_primary_10_1001_jamanetworkopen_2021_33861 crossref_primary_10_1038_s42003_021_01784_0 crossref_primary_10_1161_CIRCULATIONAHA_122_063481 crossref_primary_10_1038_s41467_024_48105_7 crossref_primary_10_1371_journal_pgen_1006371 crossref_primary_10_3390_cells9102257 crossref_primary_10_1371_journal_pgen_1007186 crossref_primary_10_1183_23120541_00566_2023 crossref_primary_10_1093_bib_bbac038 crossref_primary_10_1007_s40120_022_00398_w crossref_primary_10_1158_0008_5472_CAN_20_2635 crossref_primary_10_1016_j_ebiom_2023_104551 crossref_primary_10_1158_1055_9965_EPI_22_0817 crossref_primary_10_1186_s12885_022_09252_6 crossref_primary_10_1158_1055_9965_EPI_19_0348 crossref_primary_10_1016_j_jaci_2023_08_002 crossref_primary_10_1212_NXG_0000000000000097 crossref_primary_10_1093_hmg_ddaa098 crossref_primary_10_1038_s41467_018_04555_4 crossref_primary_10_1016_j_xgen_2024_100526 crossref_primary_10_1038_s41380_020_01006_9 crossref_primary_10_1016_j_jid_2016_01_013 crossref_primary_10_1097_CCE_0000000000000997 crossref_primary_10_1038_s41433_019_0632_7 crossref_primary_10_1158_0008_5472_CAN_20_3459 crossref_primary_10_1038_s41591_024_02858_2 crossref_primary_10_1038_s42003_020_01461_8 crossref_primary_10_1158_1055_9965_EPI_24_1247 |
Cites_doi | 10.1186/1471-2458-6-172 10.1145/1961189.1961199 10.1016/j.ygeno.2011.04.005 10.1016/j.ygeno.2011.08.007 |
ContentType | Journal Article |
Copyright | Copyright © 2015 by the Genetics Society of America. Copyright Genetics Society of America Aug 2015 Copyright © 2015 by the Genetics Society of America 2015 |
Copyright_xml | – notice: Copyright © 2015 by the Genetics Society of America. – notice: Copyright Genetics Society of America Aug 2015 – notice: Copyright © 2015 by the Genetics Society of America 2015 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 4T- 4U- 7QP 7SS 7TK 7TM 7X2 7X7 7XB 88A 88E 88I 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9- K9. LK8 M0K M0R M0S M1P M2O M2P M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1534/genetics.115.178905 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Docstoc University Readers Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection Consumer Health Database (Alumni Edition) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Agricultural Science Database ProQuest - Consumer Health Database ProQuest Health & Medical Collection Medical Database ProQuest Research Library Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Family Health ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Docstoc Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) University Readers Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Family Health (Alumni Edition) ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts Agricultural Science Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1943-2631 |
EndPage | 1060 |
ExternalDocumentID | PMC4574249 3789842891 26092718 10_1534_genetics_115_178905 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAAA NIH HHS grantid: R21 AA021223 – fundername: NIA NIH HHS grantid: RC2 AG036607 |
GroupedDBID | --- --Z -DZ -~X 0R~ 18M 29H 2KS 2WC 34G 36B 39C 53G 5GY 5RE 5VS 5WD 7X2 7X7 85S 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 A8Z AABZA AACZT AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABDNZ ABEJV ABGNP ABMNT ABNHQ ABPPZ ABPTD ABUWG ABVGC ABXVV ABXZS ACFRR ACGOD ACIHN ACIPB ACNCT ACPRK ACUTJ ADBBV ADGKP ADIPN ADQBN ADVEK AEAQA AENEX AEUYN AFFZL AFGWE AFKRA AFRAH AGORE AHMBA AHMMS AJEEA AJNCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALXQX AOIJS APEBS ATCPS ATGXG AZQEC BAWUL BBNVY BCRHZ BENPR BES BEYMZ BHPHI BKNYI BKOMP BPHCQ BTFSW BVXVI CCPQU CITATION CJ0 CS3 D0L DIK DU5 DWQXO E3Z EBD EBS EJD EMB EMOBN F5P F8P F9R FD6 FLUFQ FOEOM FRP FYUFA GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HYE INIJC JXSIZ K9- KBUDW KOP KQ8 KSI KSN L7B LK8 M0K M0R M1P M2O M2P M7P MV1 NOMLY OBOKY OCZFY OJZSN OK1 OMK OPAEJ OWPYF PHGZM PHGZT PQQKQ PROAC PSQYO Q2X QF4 QM4 QM9 QN7 QO4 R0Z RHI ROX RXW SJN SV3 TAE TGS TH9 TN5 TR2 TWZ U5U UHB UKHRP UKR UNMZH UPT W8F WH7 WOQ XSW YHG YKV YSK YZZ ZCA ~KM .-4 .55 .GJ 186 9M8 AAUTI AAYOK ABJNI ABTAH ACPVT ACVCV ACYGS AFFDN AFFNX AGMDO APJGH C1A CGR CUY CVF ECM EIF H~9 MVM NHB NPM OHT WHG X7M XOL YYP YYQ ZGI ZXP ZY4 3V. 4T- 4U- 7QP 7SS 7TK 7TM 7XB 88A 8FD 8FK FR3 K9. M7N MBDVC P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c532t-a8fe7157a5cc949865b9ec95cc8eabd9b0f3ad2eae29808622798b393574bd583 |
IEDL.DBID | 7X7 |
ISSN | 1943-2631 0016-6731 |
IngestDate | Thu Aug 21 18:20:45 EDT 2025 Thu Jul 10 17:21:04 EDT 2025 Fri Jul 11 08:34:09 EDT 2025 Fri Jul 25 10:44:27 EDT 2025 Thu Apr 03 07:00:46 EDT 2025 Tue Jul 01 01:55:32 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Affymetrix Axiom genome-wide genotyping quality control GERA cohort saliva DNA |
Language | English |
License | https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model Copyright © 2015 by the Genetics Society of America. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c532t-a8fe7157a5cc949865b9ec95cc8eabd9b0f3ad2eae29808622798b393574bd583 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.genetics.org/content/genetics/200/4/1051.full.pdf |
PMID | 26092718 |
PQID | 1707633142 |
PQPubID | 47453 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4574249 proquest_miscellaneous_1722176780 proquest_miscellaneous_1704355031 proquest_journals_1707633142 pubmed_primary_26092718 crossref_citationtrail_10_1534_genetics_115_178905 crossref_primary_10_1534_genetics_115_178905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Bethesda |
PublicationTitle | Genetics (Austin) |
PublicationTitleAlternate | Genetics |
PublicationYear | 2015 |
Publisher | Genetics Society of America |
Publisher_xml | – name: Genetics Society of America |
References | Chang (2023042119040647800_bib4) 2011; 2 Hoffmann (2023042119040647800_bib7) 2011; 98 Hoffmann (2023042119040647800_bib6) 2011; 98 2023042119040647800_bib3 Enger (2023042119040647800_bib5) 2006; 6 2023042119040647800_bib1 2023042119040647800_bib2 21565264 - Genomics. 2011 Aug;98(2):79-89 21903159 - Genomics. 2011 Dec;98(6):422-30 16813653 - BMC Public Health. 2006;6:172 |
References_xml | – volume: 6 start-page: 172 year: 2006 ident: 2023042119040647800_bib5 article-title: California Men’s Health Study (CMHS): a multiethnic cohort in a managed care setting. publication-title: BMC Public Health doi: 10.1186/1471-2458-6-172 – volume: 2 start-page: 1 year: 2011 ident: 2023042119040647800_bib4 article-title: LIBSVM: a library for support vector machines. publication-title: ACM Trans. Intell. Syst. Technol. doi: 10.1145/1961189.1961199 – ident: 2023042119040647800_bib1 – ident: 2023042119040647800_bib2 – volume: 98 start-page: 79 year: 2011 ident: 2023042119040647800_bib6 article-title: Next generation genome-wide association tool: design and coverage of a high-throughput European-optimized SNP array. publication-title: Genomics doi: 10.1016/j.ygeno.2011.04.005 – volume: 98 start-page: 422 year: 2011 ident: 2023042119040647800_bib7 article-title: Design and coverage of high throughput genotyping arrays optimized for individuals of East Asian, African American, and Latino race/ethnicity using imputation and a novel hybrid SNP selection algorithm. publication-title: Genomics doi: 10.1016/j.ygeno.2011.08.007 – ident: 2023042119040647800_bib3 – reference: 16813653 - BMC Public Health. 2006;6:172 – reference: 21565264 - Genomics. 2011 Aug;98(2):79-89 – reference: 21903159 - Genomics. 2011 Dec;98(6):422-30 |
SSID | ssj0006958 |
Score | 2.5411632 |
Snippet | The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California—San Francisco,... The Kaiser Permanente (KP) Research Program on Genes, Environment and Health (RPGEH), in collaboration with the University of California-San Francisco,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1051 |
SubjectTerms | Adult Aging Aging - genetics Body fluids Cohort Studies Computational Biology - methods Deoxyribonucleic acid DNA Epidemiology Female Genomes Genotype & phenotype Genotypes Genotyping Techniques - methods Health Humans Investigations Male Molecular Epidemiology Oligonucleotide Array Sequence Analysis Polymorphism, Single Nucleotide Quality Control |
Title | Genotyping Informatics and Quality Control for 100,000 Subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) Cohort |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26092718 https://www.proquest.com/docview/1707633142 https://www.proquest.com/docview/1704355031 https://www.proquest.com/docview/1722176780 https://pubmed.ncbi.nlm.nih.gov/PMC4574249 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED62lsFexn7PXVc02MMG9WrZliU9jSykKYOVUVbIm5FshRaG3DXpQ_6H_dG7s2Rv2SAvgSAlln2nu_vku-8A3hEFuONOp6blVYpKUabWapNKYcjjt7kRVJz89bw6uyy_LMQiHritYlrlYBN7Q912DZ2Rn3CJiLsoeJl_uvmZUtcoersaW2jch32iLiOtlosRcGWVFtESV5TiziPrkCjKE5QOFQmu0GSIj5yqQcW2Z_ov3Pw3a_IvN3T6GB7F-JFNgsCfwD3nn8KD0FFy8wx-zZ3v1hsqgmKx0oiuz4xvWaDL2LBpyE5nOMp4lh3jLTC0H3Qgs2LXnmFIyOZh4Wz2p4Hshg1ZeqzzbEK8HSwUMfX_PqFuR-z9fHYx-YCXuMKw_jlcns6-T8_S2HAhbUSRr1Ojlk5yIVE-jS61qoTVrtH4TTljW22zZWHa3BmXa0VYKJdaWSrulaVthSpewJ7vvHsFDKMOJ6gotsL4wS6XBpFY20hplFGNLaoE8uFh101kI6emGD9qQiUooXqQEGIUUQcJJXA8_ugmkHHsnn44SLGOOxOHRz1K4O04jHuKXpQY77q7fg5GkQLt3a45OaI5dPVZAi-DYoxrQoyoc3T6CcgtlRknEKf39oi_vuq5vUt8lIiID3Yv_TU8xMBNhETEQ9hb3965Nxgcre1RvwPwU035Eex_np1_u_gNp2IQ9A |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIgQXxD-BAoMEEkgN3ThxEh8QWi3b3dKfA2ql3lI78aqVqqRlt0J5B56FZ2QmTlIWpL31GNlJnMx4_I093wzAO04BbgOrfF0EsU9KEfnGKO0nUvOKXwgtmZy8fxBPj6Jvx_J4DX53XBgOq-xsYmOoiyrnPfKtICGPOwyDSHy5uPS5ahSfrnYlNJxa7Nr6J7ls8887X0m-74XYHh-Opn5bVcDPZSgWvk5nNglkQoPIVaTSWBplc0VXqdWmUGYwC3UhrLZCpQz4RaJSwwzWJDKFTEN67i24HYU0NZmZProOKYmVbC1_zCH1QZvlSIbRFmkDkxLnZKLkp4DZp3J5JfwP3v4bpfnXsrf9AO63eBWHTsEewpotH8EdV8Gyfgy_JrasFjWTrrBlNvH7UZcFuvQcNY5cNDxSKwaDwSZ9ApK94g2gOZ6VSBAUJ27gOL4uWFtjFxWIVYlDzhOCjjTVPH3I1ZXww2T8ffiRXnFKbsQTOLoRUTyF9bIq7XNAQjlWMgk3JrxiZjNNnl-RJ4lOdZqbMPZAdD87y9vs51yE4zxjL4gklHUSIp9IZk5CHmz2N1245B-ru290UsxaS0DNvd568LZvpjnMBzO6tNVV04dQqyT7uqqPIO-RoMXAg2dOMfoxkU-qBIEMD5Illek7cA7x5Zby7LTJJR7RryQP_MXqob-Bu9PD_b1sb-dg9yXcI9AoXRDkBqwvflzZVwTMFuZ1MxsQTm56-v0ByPhLsA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFD7UitIX8W606ggKCo27mWQyMw8iy3Z3W6tFxELf4kwyoYWSVHeL5D_4i_x1npNJtq7CvvUxzCSZ5Fzm-5JzAXhJJcBd5HRoiigNUSmS0FptQikM7fgFN4KSkz8dpntHyYdjcbwBv_tcGAqr7H1i66iLOqdv5INIIuOO4yjhg7ILi_i8O31__j2kDlL0p7Vvp-FV5MA1P5G-zd_t76KsX3E-nXwd74Vdh4EwFzFfhEaVTkZC4oJynWiVCqtdrvFIOWMLbYdlbArujONaEfjnUitL2awysYVQMV73GlyXsVRkY2p8GV6SatHtAimF10ddxSMRJwPUDEpQnKO7Em8jykQVq7vif1D334jNv7bA6W241WFXNvLKdgc2XHUXbvhuls09-DVzVb1oKAGLdVlOdH9mqoL5Uh0NG_vIeIajLBoOd_ARGPou-hg0Z6cVQzjKZn7hbHLZvLZhfYQgqys2opohzCdQtVcfUacl9no2-TJ6g7c4QUpxH46uRBQPYLOqK_cIGCIeJyghN0XsYsvSIAsscimNMiq3cRoA7192lneV0Kkhx1lGjAgllPUSQn4kMi-hAHaWJ537QiDrp2_3Usw6r4DDSx0O4MVyGO2ZftKYytUX7RxEsAJ97bo5HJkkwoxhAA-9YizXhPxUcwQcAcgVlVlOoHriqyPV6UlbVzzBV4ls_PH6pT-Hm2h42cf9w4MnsIX4Ufh4yG3YXPy4cE8Roy3ss9YYGHy7auv7AyPyT-Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genotyping+Informatics+and+Quality+Control+for+100%2C000+Subjects+in+the+Genetic+Epidemiology+Research+on+Adult+Health+and+Aging+%28GERA%29+Cohort&rft.jtitle=Genetics+%28Austin%29&rft.au=Kvale%2C+Mark+N&rft.au=Hesselson%2C+Stephanie&rft.au=Hoffmann%2C+Thomas+J&rft.au=Cao%2C+Yang&rft.date=2015-08-01&rft.issn=1943-2631&rft.eissn=1943-2631&rft.volume=200&rft.issue=4&rft.spage=1051&rft_id=info:doi/10.1534%2Fgenetics.115.178905&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-2631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-2631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-2631&client=summon |