Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops

• Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need f...

Full description

Saved in:
Bibliographic Details
Published inAnnals of botany Vol. 112; no. 7; pp. 1209 - 1221
Main Author Shabala, Sergey
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.11.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract • Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. • Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na⁺ sequestration; increasing the efficiency of internal Na⁺ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K⁺ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na⁺ transport to the shoot.
AbstractList Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na ⁺ sequestration; increasing the efficiency of internal Na ⁺ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K ⁺ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na ⁺ transport to the shoot.
Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops.BACKGROUNDGlobal annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops.This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.SCOPE AND CONCLUSIONSThis review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.
• Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. • Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na⁺ sequestration; increasing the efficiency of internal Na⁺ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K⁺ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na⁺ transport to the shoot.
Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na super(+) sequestration; increasing the efficiency of internal Na super(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K super(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na super(+) transport to the shoot.
Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.
Author Shabala, Sergey
AuthorAffiliation School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
AuthorAffiliation_xml – name: School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
Author_xml – sequence: 1
  givenname: Sergey
  surname: Shabala
  fullname: Shabala, Sergey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24085482$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEUxYNU7Gt1417JUgpjM_mYZFwIUuoHPHCj65DM3HkvJZOMSV6h_70ZXltUBF1dyPndk3uTc4ZOQgyA0MuWvG1Jzy5NtJfzUCgRT9CmnohG0Z6coA1hRDSSdfwUneV8QwihXd8-Q6eUEyW4ohvktmBScGGHpxRnvDc-Lvu7AvkdrjW76OPODcZja7LL2IQR55JMgZ2DjEvEbl5SvAVsrIvFDasKeVU8JBMGwC7gIcUlP0dPJ-MzvLiv5-j7x-tvV5-b7ddPX64-bJtBMFoaw4wa5aTYOCnS87FVTEpmJCjSdZbQlkvL-cSFtGzkknajUExYSqUFai2wc_T-6Lsc7AzjAKHO6_WS3GzSnY7G6d-V4PZ6F281qzcIxqvBm3uDFH8cIBc9uzyA9yZAPGTddh0TSvZc_RvlPe0oazn7D5SLvvJidX396waPoz_8WgXIEagPm3OCSQ-umOLiupDzuiV6DYauwdDHYNSWiz9aHlz_Cr86wje5xPRIcqpIK1TPfgIzUMXT
CitedBy_id crossref_primary_10_1080_15226514_2021_2025206
crossref_primary_10_1007_s12229_015_9153_7
crossref_primary_10_1007_s13580_021_00362_x
crossref_primary_10_1038_s41396_023_01516_8
crossref_primary_10_1007_s00344_022_10840_w
crossref_primary_10_3390_agronomy11101907
crossref_primary_10_1093_aob_mcu248
crossref_primary_10_1038_s41598_021_81698_3
crossref_primary_10_1007_s13205_021_03092_0
crossref_primary_10_1134_S1021443719040046
crossref_primary_10_1016_j_plaphy_2015_07_005
crossref_primary_10_1186_s12863_017_0545_z
crossref_primary_10_3390_phycology2010007
crossref_primary_10_1016_j_indcrop_2022_115199
crossref_primary_10_1080_1343943X_2019_1682462
crossref_primary_10_1016_j_plaphy_2016_10_011
crossref_primary_10_1016_j_molp_2021_12_003
crossref_primary_10_1111_plb_12704
crossref_primary_10_1111_nph_18420
crossref_primary_10_1016_j_envexpbot_2021_104754
crossref_primary_10_3389_fpls_2019_01361
crossref_primary_10_1186_s12870_020_02680_1
crossref_primary_10_3389_fpls_2019_01121
crossref_primary_10_3389_fpls_2023_1170641
crossref_primary_10_1111_nph_16247
crossref_primary_10_1007_s00425_014_2117_z
crossref_primary_10_3390_plants9020227
crossref_primary_10_1016_j_plaphy_2018_06_029
crossref_primary_10_3389_fpls_2022_814755
crossref_primary_10_1016_j_scienta_2018_08_045
crossref_primary_10_1016_j_plantsci_2018_12_002
crossref_primary_10_1111_ppl_12758
crossref_primary_10_1002_fsn3_4755
crossref_primary_10_1007_s00122_018_3146_y
crossref_primary_10_1016_j_plantsci_2016_08_009
crossref_primary_10_1016_j_envexpbot_2019_103812
crossref_primary_10_1007_s10725_024_01122_4
crossref_primary_10_1007_s11104_018_3868_2
crossref_primary_10_1007_s10722_022_01511_6
crossref_primary_10_1016_j_envexpbot_2020_104123
crossref_primary_10_1111_nph_18411
crossref_primary_10_1007_s10725_022_00942_6
crossref_primary_10_1111_pbi_13443
crossref_primary_10_32615_bp_2019_126
crossref_primary_10_1016_j_ecolind_2021_107488
crossref_primary_10_1016_j_scienta_2021_110762
crossref_primary_10_3389_fevo_2024_1361124
crossref_primary_10_1007_s41365_017_0341_5
crossref_primary_10_1016_j_plaphy_2014_06_010
crossref_primary_10_3389_fphys_2017_00509
crossref_primary_10_1007_s12892_022_00173_1
crossref_primary_10_1515_opag_2022_0368
crossref_primary_10_1007_s11104_022_05551_w
crossref_primary_10_1007_s42729_024_02199_6
crossref_primary_10_1038_s41598_019_51178_w
crossref_primary_10_1071_FP16187
crossref_primary_10_3389_fpls_2018_01954
crossref_primary_10_1111_tpj_13595
crossref_primary_10_3390_f8040136
crossref_primary_10_1016_j_envexpbot_2020_104236
crossref_primary_10_3389_fpls_2023_1154051
crossref_primary_10_1007_s00425_023_04275_0
crossref_primary_10_4236_ajps_2013_412A3010
crossref_primary_10_1016_j_envexpbot_2021_104652
crossref_primary_10_1016_j_envexpbot_2020_104254
crossref_primary_10_3389_fenvs_2023_1198540
crossref_primary_10_3389_fpls_2014_00154
crossref_primary_10_3390_agriculture6020026
crossref_primary_10_1016_j_agrcom_2024_100050
crossref_primary_10_1002_2017WR022319
crossref_primary_10_1016_j_plantsci_2023_111602
crossref_primary_10_1071_FP17049
crossref_primary_10_1016_j_envexpbot_2024_105690
crossref_primary_10_1016_j_envexpbot_2020_104124
crossref_primary_10_1093_aob_mcaa063
crossref_primary_10_1111_nph_19619
crossref_primary_10_1093_plphys_kiae040
crossref_primary_10_1016_j_stress_2024_100595
crossref_primary_10_1007_s42535_023_00696_0
crossref_primary_10_1093_pcp_pcaa061
crossref_primary_10_3390_genes10121039
crossref_primary_10_3390_plants13101330
crossref_primary_10_3769_radioisotopes_72_235
crossref_primary_10_1134_S1021443719020109
crossref_primary_10_3390_agronomy12081947
crossref_primary_10_1111_tpj_14424
crossref_primary_10_1007_s00299_023_03104_8
crossref_primary_10_3389_fpls_2016_00351
crossref_primary_10_3390_plants12071454
crossref_primary_10_1038_s41598_022_26903_7
crossref_primary_10_1093_jxb_erv465
crossref_primary_10_3389_fpls_2019_01040
crossref_primary_10_3389_fpls_2022_849553
crossref_primary_10_1016_j_pld_2019_07_002
crossref_primary_10_3389_fgene_2017_00197
crossref_primary_10_1007_s00299_023_03087_6
crossref_primary_10_1016_j_flora_2016_04_013
crossref_primary_10_1016_j_plantsci_2023_111747
crossref_primary_10_3390_agriculture15030254
crossref_primary_10_1007_s00344_023_10912_5
crossref_primary_10_1007_s42977_020_00019_3
crossref_primary_10_1007_s00425_015_2317_1
crossref_primary_10_1016_j_plaphy_2021_06_021
crossref_primary_10_1093_aob_mcu177
crossref_primary_10_1007_s00425_022_04035_6
crossref_primary_10_3390_agronomy12051053
crossref_primary_10_1016_j_xinn_2020_100017
crossref_primary_10_1007_s10653_021_01165_w
crossref_primary_10_3390_su15031804
crossref_primary_10_1007_s11104_023_06170_9
crossref_primary_10_1016_j_scitotenv_2021_150544
crossref_primary_10_3390_agronomy9110687
crossref_primary_10_1016_j_envexpbot_2020_104146
crossref_primary_10_3389_fpls_2022_886862
crossref_primary_10_1007_s42729_022_00854_4
crossref_primary_10_1186_s12870_020_02734_4
crossref_primary_10_1186_s43141_022_00327_2
crossref_primary_10_3389_fpls_2022_1012186
crossref_primary_10_1016_j_plaphy_2017_04_014
crossref_primary_10_1111_pce_13759
crossref_primary_10_1071_FP21336
crossref_primary_10_1016_j_ijbiomac_2024_133084
crossref_primary_10_1590_1519_6984_277342
crossref_primary_10_1111_plb_12521
crossref_primary_10_3389_fpls_2018_01515
crossref_primary_10_1016_j_sjbs_2018_08_006
crossref_primary_10_1071_FP18046
crossref_primary_10_1016_j_envexpbot_2021_104692
crossref_primary_10_3390_genes13010033
crossref_primary_10_1007_s11104_021_04889_x
crossref_primary_10_1016_j_envexpbot_2023_105468
crossref_primary_10_3390_plants12010092
crossref_primary_10_1007_s40995_020_01035_7
crossref_primary_10_1080_17429145_2020_1722266
crossref_primary_10_1080_01904167_2017_1385811
crossref_primary_10_1016_j_sajb_2016_04_006
crossref_primary_10_1080_1343943X_2019_1698968
crossref_primary_10_1093_pcp_pcx026
crossref_primary_10_1093_pcp_pcz205
crossref_primary_10_3390_plants10040625
crossref_primary_10_1093_pcp_pcac158
crossref_primary_10_1007_s11104_019_04152_4
crossref_primary_10_1016_j_jplph_2016_10_009
crossref_primary_10_1071_FP18295
crossref_primary_10_1186_s12870_019_2006_5
crossref_primary_10_1186_s12870_019_1686_1
crossref_primary_10_1007_s00344_021_10460_w
crossref_primary_10_1016_j_stress_2025_100768
crossref_primary_10_1007_s10528_019_09930_4
crossref_primary_10_3389_fpls_2020_00457
crossref_primary_10_1016_j_scienta_2019_01_038
crossref_primary_10_1093_aob_mcu194
crossref_primary_10_24326_asphc_2021_4_1
crossref_primary_10_1016_j_ecoleng_2019_105593
crossref_primary_10_1002_csc2_20949
crossref_primary_10_3389_fpls_2023_1218184
crossref_primary_10_1186_s12870_023_04358_w
crossref_primary_10_1111_pce_13857
crossref_primary_10_1016_j_envexpbot_2018_11_020
crossref_primary_10_1111_pce_12768
crossref_primary_10_1007_s11738_018_2745_1
crossref_primary_10_1038_s41598_022_17377_8
crossref_primary_10_1007_s11105_020_01255_6
crossref_primary_10_1111_1442_1984_12132
crossref_primary_10_1071_FP16120
crossref_primary_10_3389_fmicb_2024_1470081
crossref_primary_10_3390_microorganisms10091836
crossref_primary_10_3390_agronomy14020242
crossref_primary_10_1002_pld3_535
crossref_primary_10_1016_j_cj_2024_01_005
crossref_primary_10_1016_j_crope_2023_03_002
crossref_primary_10_1080_15592324_2024_2370724
crossref_primary_10_3389_fpls_2016_00139
crossref_primary_10_1134_S102144372003019X
crossref_primary_10_1111_jipb_13008
crossref_primary_10_3390_ijms19082252
crossref_primary_10_3390_plants13141954
crossref_primary_10_1016_j_isci_2021_103547
crossref_primary_10_1111_pce_12776
crossref_primary_10_1007_s10725_024_01257_4
crossref_primary_10_1016_j_pbi_2018_07_015
crossref_primary_10_1071_FP15288
crossref_primary_10_3389_fpls_2015_00071
crossref_primary_10_1071_FP15284
crossref_primary_10_1186_s12870_024_05743_9
crossref_primary_10_1071_FPv43n7_FO
crossref_primary_10_1007_s11756_023_01554_9
crossref_primary_10_1007_s11738_016_2121_y
crossref_primary_10_3390_ijms24020941
crossref_primary_10_1016_j_foodchem_2021_129370
crossref_primary_10_3390_biology11040597
crossref_primary_10_1002_jpln_202000148
crossref_primary_10_1080_1343943X_2016_1221320
crossref_primary_10_1016_j_tifs_2014_08_005
crossref_primary_10_13080_z_a_2016_103_030
crossref_primary_10_3390_plants11243450
crossref_primary_10_1016_j_jia_2023_07_015
crossref_primary_10_1111_pce_12995
crossref_primary_10_3390_plants9060786
crossref_primary_10_1016_j_flora_2016_07_009
crossref_primary_10_3389_fpls_2017_00582
crossref_primary_10_1007_s11356_018_2442_z
crossref_primary_10_18006_2017_5_Spl_1_SAFSAW__S41_S49
crossref_primary_10_3390_agronomy8100231
crossref_primary_10_1016_j_envexpbot_2021_104431
crossref_primary_10_3389_fmicb_2019_01849
crossref_primary_10_1016_j_scitotenv_2022_153028
crossref_primary_10_1146_annurev_arplant_042916_040936
crossref_primary_10_1111_plb_12693
crossref_primary_10_1155_2019_4262013
crossref_primary_10_1071_FP15381
crossref_primary_10_3390_molecules27010028
crossref_primary_10_1007_s11104_018_3793_4
crossref_primary_10_3390_membranes13100845
crossref_primary_10_3389_fpls_2018_00100
crossref_primary_10_1016_j_plaphy_2021_11_030
crossref_primary_10_1016_j_scienta_2025_114031
crossref_primary_10_3389_fpls_2020_613936
crossref_primary_10_1093_jxb_erv493
crossref_primary_10_1080_1343943X_2019_1647788
crossref_primary_10_1016_j_plaphy_2024_109125
crossref_primary_10_1111_1365_2435_13202
crossref_primary_10_1007_s00468_022_02274_4
crossref_primary_10_1016_j_cj_2024_02_007
crossref_primary_10_1016_j_envexpbot_2021_104708
crossref_primary_10_15835_nbha50112615
crossref_primary_10_3390_plants13233332
crossref_primary_10_1007_s13580_023_00511_4
crossref_primary_10_3390_plants13162322
crossref_primary_10_1071_BT16014
crossref_primary_10_1016_j_aquaculture_2024_741388
crossref_primary_10_3390_plants12213747
crossref_primary_10_1071_FP17133
crossref_primary_10_3389_fpls_2018_00249
crossref_primary_10_3390_cells12101431
crossref_primary_10_1016_j_indcrop_2021_114502
crossref_primary_10_3389_fpls_2021_713984
crossref_primary_10_1007_s10811_022_02897_7
crossref_primary_10_1111_jac_12587
crossref_primary_10_3390_ijms24044062
crossref_primary_10_3390_agriculture13061198
crossref_primary_10_1111_jipb_12238
crossref_primary_10_3390_plants10081513
crossref_primary_10_1660_062_122_0105
crossref_primary_10_51758_AGJSR_02_2019_0006
crossref_primary_10_1007_s00344_020_10259_1
crossref_primary_10_3390_plants9040422
crossref_primary_10_1016_j_heliyon_2023_e14403
crossref_primary_10_1016_j_scienta_2023_112508
crossref_primary_10_1093_pcp_pcy187
crossref_primary_10_1093_aob_mcae168
crossref_primary_10_1016_j_envexpbot_2014_05_006
crossref_primary_10_1111_jipb_13562
crossref_primary_10_3390_ijms21144882
crossref_primary_10_1016_j_envexpbot_2021_104600
crossref_primary_10_1590_1983_21252024v3712423rc
crossref_primary_10_3389_fpls_2022_989946
crossref_primary_10_1016_j_jplph_2016_06_010
crossref_primary_10_3390_agronomy9040176
crossref_primary_10_1111_jac_12122
crossref_primary_10_1111_ppl_13413
crossref_primary_10_3389_fpls_2016_00050
crossref_primary_10_1016_j_plaphy_2017_12_008
crossref_primary_10_1111_jac_12242
crossref_primary_10_1111_ppl_12447
crossref_primary_10_3390_plants11212992
crossref_primary_10_3389_fpls_2016_01146
crossref_primary_10_1016_j_envexpbot_2015_12_006
crossref_primary_10_3390_microorganisms12122587
crossref_primary_10_36610_j_jsab_2020_080200110x
crossref_primary_10_14302_issn_2576_6694_jbbs_20_3525
crossref_primary_10_1007_s11104_022_05769_8
crossref_primary_10_1016_j_envexpbot_2014_11_010
crossref_primary_10_7717_peerj_18236
crossref_primary_10_3389_fpls_2021_745422
crossref_primary_10_3389_fmicb_2021_681567
crossref_primary_10_3389_fpls_2017_00155
crossref_primary_10_1016_j_cj_2024_03_001
crossref_primary_10_1111_plb_13348
crossref_primary_10_1071_FP19303
crossref_primary_10_3389_fpls_2018_00256
crossref_primary_10_1007_s13562_021_00656_2
crossref_primary_10_1111_ppl_12217
crossref_primary_10_1007_s11738_023_03598_5
crossref_primary_10_1007_s11104_020_04436_0
crossref_primary_10_1016_j_envexpbot_2020_104328
crossref_primary_10_1016_j_hpj_2024_01_005
crossref_primary_10_1016_j_fcr_2016_03_010
crossref_primary_10_1111_ppl_13663
crossref_primary_10_3390_ijms19061634
crossref_primary_10_1016_j_plaphy_2025_109578
crossref_primary_10_1080_07388551_2022_2042481
crossref_primary_10_3390_app12073586
crossref_primary_10_3389_fpls_2016_01372
crossref_primary_10_1016_j_plaphy_2023_108075
crossref_primary_10_1007_s10725_014_9941_9
crossref_primary_10_1093_pcp_pcu105
crossref_primary_10_1007_s12229_016_9173_y
crossref_primary_10_33581_2957_5060_2022_2_4_18
crossref_primary_10_61186_jcb_16_3_64
crossref_primary_10_1186_s12870_016_0797_1
crossref_primary_10_1007_s00300_020_02768_2
crossref_primary_10_1080_15226514_2018_1452184
crossref_primary_10_3389_fpls_2023_1091292
crossref_primary_10_3390_stresses1040017
crossref_primary_10_1071_FP15312
crossref_primary_10_3389_fpls_2015_00581
crossref_primary_10_3390_antiox14030353
crossref_primary_10_1080_11263504_2019_1610114
crossref_primary_10_1016_j_plaphy_2021_09_039
crossref_primary_10_1016_j_plaphy_2023_108063
crossref_primary_10_1016_j_plaphy_2023_108182
crossref_primary_10_3389_fmicb_2018_00148
crossref_primary_10_1111_ppl_13280
crossref_primary_10_1631_jzus_B1900510
crossref_primary_10_1371_journal_pone_0164711
crossref_primary_10_1007_s10725_021_00788_4
crossref_primary_10_1016_j_envexpbot_2015_11_010
crossref_primary_10_1007_s11356_023_28162_z
crossref_primary_10_1016_j_jaridenv_2025_105321
crossref_primary_10_1038_s41598_020_64925_1
crossref_primary_10_3389_fpls_2016_01071
crossref_primary_10_1007_s10725_015_0063_9
crossref_primary_10_1016_j_tplants_2014_09_001
crossref_primary_10_3390_agronomy14010039
crossref_primary_10_1111_nph_13414
crossref_primary_10_1111_nph_13535
crossref_primary_10_1111_ppl_13166
crossref_primary_10_1016_j_flora_2018_05_001
crossref_primary_10_1270_jsbbs_20123
crossref_primary_10_3389_fpls_2020_00713
crossref_primary_10_1134_S1021443723602513
crossref_primary_10_3389_fhort_2023_1130702
crossref_primary_10_3390_plants11050691
crossref_primary_10_1016_j_envexpbot_2016_04_002
crossref_primary_10_1007_s11104_023_05926_7
crossref_primary_10_3390_f13122178
crossref_primary_10_1080_0972060X_2016_1194774
crossref_primary_10_3389_fpls_2022_1097076
crossref_primary_10_4025_actasciagron_v44i1_54364
crossref_primary_10_1093_jxb_erx142
crossref_primary_10_3390_ijms26062599
crossref_primary_10_1016_j_cj_2018_01_003
crossref_primary_10_3389_fpls_2016_02035
crossref_primary_10_1111_gfs_12410
crossref_primary_10_3389_fpls_2021_743964
crossref_primary_10_3389_fsci_2024_1416023
crossref_primary_10_1038_s41598_018_23116_9
crossref_primary_10_3390_ijms222312848
crossref_primary_10_1016_j_sajb_2024_10_059
crossref_primary_10_1186_s12864_017_4104_9
crossref_primary_10_3390_ijms21041516
crossref_primary_10_1007_s13762_018_1705_z
crossref_primary_10_1111_nph_13519
crossref_primary_10_3389_fpls_2021_646175
crossref_primary_10_1016_j_flora_2016_09_006
crossref_primary_10_1080_11263504_2020_1837277
crossref_primary_10_1016_j_sajb_2021_09_015
crossref_primary_10_1016_j_plaphy_2021_03_055
crossref_primary_10_1016_j_molp_2015_10_006
crossref_primary_10_3390_plants11050672
crossref_primary_10_1016_j_plaphy_2023_108276
crossref_primary_10_36610_j_jsab_2020_080200110
crossref_primary_10_3389_fpls_2022_957735
crossref_primary_10_1016_j_jplph_2021_153432
crossref_primary_10_1111_plb_13271
crossref_primary_10_1016_j_foodchem_2020_127525
crossref_primary_10_1111_ppl_13359
crossref_primary_10_1016_j_scienta_2024_113172
crossref_primary_10_1186_s43141_023_00483_z
crossref_primary_10_3390_ijms22094921
crossref_primary_10_1016_j_envexpbot_2017_07_002
crossref_primary_10_3390_agriculture13030734
crossref_primary_10_3390_horticulturae10060598
crossref_primary_10_1007_s11738_019_2935_5
crossref_primary_10_3906_tar_1701_94
crossref_primary_10_3389_fpls_2023_1137211
crossref_primary_10_3389_fpls_2021_697692
crossref_primary_10_1007_s11356_018_2530_0
crossref_primary_10_1016_j_envexpbot_2022_104896
crossref_primary_10_29328_journal_jpsp_1001058
crossref_primary_10_1007_s00344_018_9830_y
crossref_primary_10_3390_plants11223114
crossref_primary_10_3390_plants13050721
crossref_primary_10_1016_j_plantsci_2015_02_011
crossref_primary_10_1016_j_plaphy_2022_02_019
crossref_primary_10_1016_j_plaphy_2019_03_014
crossref_primary_10_3390_plants10071449
crossref_primary_10_3389_fpls_2022_978304
crossref_primary_10_1016_j_plaphy_2024_108569
crossref_primary_10_1186_s13007_019_0397_9
crossref_primary_10_3390_plants11111516
crossref_primary_10_1111_ppl_13244
crossref_primary_10_1016_j_envexpbot_2018_10_001
crossref_primary_10_3390_ijms242316831
crossref_primary_10_36899_japs_2023_5_0718
crossref_primary_10_1016_j_envexpbot_2016_12_003
crossref_primary_10_3389_fmicb_2023_1085787
crossref_primary_10_3390_ijms24065171
crossref_primary_10_1016_j_plantsci_2016_03_003
crossref_primary_10_1002_csc2_20249
crossref_primary_10_1016_j_aquabot_2018_01_001
crossref_primary_10_1007_s00128_021_03130_w
crossref_primary_10_3390_ijms19092520
crossref_primary_10_1016_j_xplc_2023_100571
crossref_primary_10_1016_j_plantsci_2014_10_002
crossref_primary_10_1080_1343943X_2017_1279528
crossref_primary_10_1016_j_tplants_2018_11_003
crossref_primary_10_1111_ppl_12165
crossref_primary_10_1002_ldr_2819
crossref_primary_10_1093_jxb_erz367
crossref_primary_10_4236_ajps_2020_1111127
crossref_primary_10_1093_aobpla_plv136
crossref_primary_10_1186_s12864_025_11409_z
crossref_primary_10_3389_fpls_2022_844449
crossref_primary_10_1016_j_flora_2020_151748
crossref_primary_10_1111_ppl_14356
crossref_primary_10_1016_j_aquabot_2020_103292
crossref_primary_10_1007_s00792_022_01268_x
crossref_primary_10_1021_acs_jafc_0c00346
crossref_primary_10_3906_tar_1611_82
crossref_primary_10_1093_jxb_eraa158
crossref_primary_10_1071_FP21151
crossref_primary_10_1071_FP20185
crossref_primary_10_32615_bp_2020_075
crossref_primary_10_3390_ijms24010242
crossref_primary_10_1016_j_jplph_2015_08_002
crossref_primary_10_1111_pce_14279
crossref_primary_10_3390_ijms20133167
crossref_primary_10_1016_j_agwat_2022_107832
crossref_primary_10_1007_s10725_017_0262_7
crossref_primary_10_3390_agriculture13010001
crossref_primary_10_1016_j_envexpbot_2019_103885
crossref_primary_10_1007_s11033_024_09539_w
crossref_primary_10_1007_s00425_020_03395_1
crossref_primary_10_1016_j_envexpbot_2016_03_011
crossref_primary_10_1016_j_envexpbot_2020_104075
crossref_primary_10_3390_agronomy12030562
crossref_primary_10_1016_j_envexpbot_2020_104191
crossref_primary_10_1007_s11099_017_0763_7
crossref_primary_10_1093_treephys_tpab072
crossref_primary_10_1007_s10343_022_00692_5
crossref_primary_10_1186_s12870_019_1827_6
crossref_primary_10_1134_S1021443723603695
crossref_primary_10_3390_agronomy10070938
crossref_primary_10_1016_j_envpol_2019_04_078
crossref_primary_10_1093_aobpla_plu023
crossref_primary_10_1093_plphys_kiae516
crossref_primary_10_1016_j_plaphy_2024_108642
crossref_primary_10_3389_fpls_2015_00630
crossref_primary_10_3389_fpls_2015_00873
crossref_primary_10_1016_j_bbrc_2018_07_123
crossref_primary_10_1093_jxb_erab388
crossref_primary_10_1007_s12298_018_0551_2
crossref_primary_10_3390_plants11192653
crossref_primary_10_3390_ijms22073294
crossref_primary_10_3390_plants10020309
crossref_primary_10_3390_plants10020307
crossref_primary_10_1007_s11738_019_2993_8
crossref_primary_10_1016_j_envres_2021_111228
crossref_primary_10_3389_fpls_2023_1161539
crossref_primary_10_1007_s10265_015_0715_x
crossref_primary_10_3390_ijms18112444
crossref_primary_10_3390_plants10061100
crossref_primary_10_1007_s00709_019_01378_y
crossref_primary_10_1093_jxb_ery194
crossref_primary_10_1071_CP16311
crossref_primary_10_1016_j_sajb_2017_09_007
crossref_primary_10_1093_jxb_erac224
crossref_primary_10_3390_ijms221910733
crossref_primary_10_1016_j_stress_2022_100061
crossref_primary_10_1007_s11104_016_2809_1
crossref_primary_10_3390_biology12020176
crossref_primary_10_1080_13102818_2015_1060868
crossref_primary_10_1080_11263504_2019_1635221
crossref_primary_10_1016_j_febslet_2014_09_003
crossref_primary_10_1016_j_plaphy_2017_09_006
crossref_primary_10_1016_j_flora_2020_151705
crossref_primary_10_1007_s11274_024_04217_2
crossref_primary_10_3390_plants11081051
crossref_primary_10_1007_s13580_018_0095_y
crossref_primary_10_1016_j_envexpbot_2023_105550
crossref_primary_10_1016_j_scitotenv_2018_07_187
crossref_primary_10_1007_s11738_021_03211_7
crossref_primary_10_1007_s10725_015_0028_z
crossref_primary_10_1111_nph_15240
crossref_primary_10_1111_pbi_12498
crossref_primary_10_1071_FP23133
crossref_primary_10_3390_land10050481
crossref_primary_10_1016_j_plaphy_2019_11_025
crossref_primary_10_1111_mec_17457
crossref_primary_10_1007_s00425_017_2762_0
crossref_primary_10_1016_j_tplants_2024_10_002
crossref_primary_10_1007_s13562_023_00868_8
crossref_primary_10_1016_j_envdev_2020_100545
crossref_primary_10_1139_cjfr_2018_0491
crossref_primary_10_3390_ijpb13040032
crossref_primary_10_14720_aas_2017_109_3_09
crossref_primary_10_3390_plants11030416
crossref_primary_10_21597_jist_915426
crossref_primary_10_3390_ijms19113446
crossref_primary_10_3390_stresses3010027
crossref_primary_10_1007_s10265_021_01285_5
crossref_primary_10_1038_s41598_023_48947_z
crossref_primary_10_1007_s10725_014_0013_y
crossref_primary_10_3389_fpls_2016_00977
crossref_primary_10_1016_j_cj_2021_02_010
crossref_primary_10_1111_ppl_14170
crossref_primary_10_1186_s12864_015_1243_8
crossref_primary_10_1071_FP23266
crossref_primary_10_1093_aob_mcu217
crossref_primary_10_1093_treephys_tpab158
crossref_primary_10_3390_plants13050565
crossref_primary_10_1093_aob_mcu219
crossref_primary_10_1007_s12298_017_0483_2
crossref_primary_10_1007_s00709_018_1289_y
crossref_primary_10_1264_jsme2_ME20072
crossref_primary_10_3390_ijms23063293
crossref_primary_10_1007_s11103_020_01011_0
crossref_primary_10_3390_plants11030409
crossref_primary_10_1111_pce_13391
crossref_primary_10_1007_s40333_024_0062_7
crossref_primary_10_3389_fpls_2014_00605
crossref_primary_10_1093_treephys_tpw127
crossref_primary_10_1093_jxb_erae456
crossref_primary_10_3389_fpls_2016_00848
crossref_primary_10_1007_s40502_019_0434_8
crossref_primary_10_3390_antiox10040611
crossref_primary_10_1007_s11738_018_2616_9
crossref_primary_10_1111_tpj_16549
crossref_primary_10_3389_fpls_2016_00609
crossref_primary_10_3390_agronomy13051327
crossref_primary_10_1093_aob_mcu229
crossref_primary_10_3390_world5010003
crossref_primary_10_1016_j_envexpbot_2018_07_022
crossref_primary_10_1007_s11738_022_03418_2
crossref_primary_10_1080_01904167_2020_1724307
crossref_primary_10_3390_ijms22042112
crossref_primary_10_1016_j_plantsci_2015_10_003
crossref_primary_10_1007_s11104_020_04463_x
crossref_primary_10_1080_15226514_2023_2282044
crossref_primary_10_3390_ijms20051085
crossref_primary_10_3390_ijms22010428
crossref_primary_10_1007_s11240_015_0900_6
crossref_primary_10_3390_stresses3010003
crossref_primary_10_1038_cr_2017_124
crossref_primary_10_1016_j_envexpbot_2024_105921
crossref_primary_10_1016_j_envexpbot_2019_103949
crossref_primary_10_3389_fpls_2017_00829
crossref_primary_10_3390_ijms21031017
crossref_primary_10_1080_07352689_2023_2285536
crossref_primary_10_1007_s40415_023_00974_w
crossref_primary_10_1016_j_jplph_2022_153662
crossref_primary_10_1080_15592324_2019_1665455
crossref_primary_10_1016_j_scienta_2021_110309
crossref_primary_10_1016_j_plaphy_2024_108507
crossref_primary_10_1186_1471_2229_14_113
crossref_primary_10_3389_fpls_2021_667458
Cites_doi 10.1016/j.agee.2008.10.014
10.1126/science.285.5431.1256
10.1146/annurev.pp.34.060183.002301
10.1016/0014-5793(89)81067-1
10.1016/j.pbi.2006.11.004
10.1016/j.jplph.2013.01.014
10.1093/jexbot/51.348.1243
10.1007/s0023200100073
10.1093/jexbot/51.344.497
10.1105/tpc.12.4.465
10.1104/pp.115.4.1707
10.1104/pp.107.110262
10.1105/tpc.010371
10.1073/pnas.231476498
10.1126/science.1154102
10.1086/415032
10.1046/j.1365-313x.1997.12061387.x
10.1111/j.1757-1707.2011.01111.x
10.1111/j.1365-313X.2007.03048.x
10.1134/S102144370706012X
10.1007/s12033-012-9538-3
10.1007/BF01373866
10.1016/S0378-3774(01)00166-4
10.1105/tpc.104.028472
10.1023/A:1022597102282
10.1146/annurev.arplant.59.032607.092911
10.1146/annurev.pp.28.060177.000513
10.1016/j.pbi.2011.10.010
10.1186/1471-2229-12-188
10.1021/ie100270x
10.1007/s11183-005-0094-6
10.1126/science.210.4468.399
10.1093/jxb/28.4.894
10.1111/j.1469-8137.1987.tb00873.x
10.1111/j.1469-8137.2010.03208.x
10.1007/s11104-007-9457-4
10.1016/S0065-2296(10)53004-0
10.1007/BF02182232
10.1007/BF00010921
10.1046/j.1469-8137.1998.00111.x
10.2134/jeq2004.1271
10.1046/j.1469-8137.1998.00159.x
10.1080/07352689.2010.524517
10.1093/jxb/erp391
10.1016/j.agrformet.2008.11.010
10.1111/j.1469-8137.1985.tb02816.x
10.1104/pp.105.3.799
10.1071/FP09051
10.1093/aob/mcm119
10.1105/tpc.106.044834
10.1093/jxb/erm253
10.1111/j.1365-2494.2007.00623.x
10.1104/pp.111.4.1321
10.1071/EA01111
10.1093/jxb/erj108
10.1111/j.1365-3040.2007.01674.x
10.1111/j.1469-8137.2008.02531.x
10.1038/90824
10.1016/j.febslet.2007.04.014
10.1046/j.1365-313X.1998.00147.x
10.1016/j.jplph.2004.11.011
10.5367/oa.2010.0001
10.1146/annurev.arplant.59.032607.092949
10.1111/j.1365-313X.2009.04110.x
10.1104/pp.105.067850
10.1007/s00425-007-0606-z
10.1046/j.1365-3040.2003.00930.x
10.1515/BMC.2011.032
10.1111/j.1438-8677.1981.tb00411.x
10.1016/j.jplph.2007.04.001
10.1016/j.pbi.2009.07.015
10.1007/s00438-003-0843-1
10.1104/pp.63.1.156
10.1071/FP11088
10.1016/B978-0-12-387692-8.00005-9
10.1073/pnas.0913035107
10.1016/j.agee.2011.01.012
10.1007/s11103-005-2417-6
10.1007/s11738-008-0254-3
10.1111/j.1365-3040.2011.02291.x
10.1071/FP09269
10.1104/pp.109.2.549
10.1104/pp.117.2.375
10.1006/jare.1997.0320
10.1016/j.envexpbot.2012.07.003
10.1007/s00425-004-1269-7
10.1093/jxb/43.9.1219
10.1071/PP9950101
10.1093/jxb/47.1.25
10.1146/annurev.ph.51.030189.002303
10.1080/01140671.2006.9514382
10.1016/S0065-2571(98)00010-7
10.1006/jare.1997.0253
10.1104/pp.113.216572
10.1146/annurev.physiol.64.081501.155847
10.1007/s11099-010-0059-7
10.1093/emboj/16.19.5855
10.1034/j.1399-3054.2000.100317.x
10.1007/s11183-005-0115-5
10.1081/FRI-120018880
10.1111/j.1095-8339.1988.tb01705.x
10.1071/FPv37n7_FO
10.1007/s11356-009-0224-3
10.1016/0167-8809(93)90090-C
10.1016/j.pbi.2003.09.009
10.1081/CSS-120003078
10.1007/BF02182250
10.1139/G09-041
10.1016/S0014-5793(00)01093-0
10.1071/EA04162
10.1002/bies.200800231
10.1104/pp.114.1.185
10.1242/jcs.064352
10.1111/j.1365-3040.1994.tb00300.x
10.1081/FRI-120018884
10.1038/329833a0
10.1071/FP09229
10.3390/ijms14059267
10.1016/B978-0-12-385859-7.00002-1
10.1007/s10535-005-1304-y
10.1002/ldr.853
10.1146/annurev.pp.44.060193.001105
10.1104/pp.103.027086
10.1073/pnas.96.4.1480
10.1242/dev.122.3.997
10.1046/j.0016-8025.2001.00808.x
10.1007/s004250050501
10.1098/rstb.1998.0303
10.1111/j.1399-3054.2007.01008.x
10.1104/pp.78.1.163
10.2307/2443026
10.1079/9781845939953.0000
10.1093/jxb/erh003
10.1007/s11104-012-1133-7
10.1016/0377-8401(92)90109-J
10.1093/jxb/eri235
10.1093/jexbot/52.365.2355
10.1146/annurev.pp.31.060180.001053
10.1080/15226514.2010.532241
10.1111/j.1469-8137.2009.02903.x
10.1007/s00344-010-9161-0
10.1007/s10265-002-0070-6
10.1080/14735903.2012.646731
10.1093/jexbot/53.371.1055
10.1134/S1021443712040036
10.1071/PP9950875
10.1034/j.1399-3054.1998.1020304.x
10.1016/S0735-2689(99)00388-3
10.1111/j.1469-8137.1992.tb05665.x
10.1111/j.1469-8137.2008.02461.x
10.1016/j.jplph.2006.06.008
10.1111/j.1399-3054.2012.01599.x
ContentType Journal Article
Copyright Annals of Botany Company 2013
The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013
Copyright_xml – notice: Annals of Botany Company 2013
– notice: The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7ST
7U6
C1K
7S9
L.6
5PM
DOI 10.1093/aob/mct205
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

Environment Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1095-8290
EndPage 1221
ExternalDocumentID PMC3806534
24085482
10_1093_aob_mct205
42801589
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
1TH
1~5
23M
2WC
2~F
4.4
482
48X
4G.
5GY
5VS
5WA
5WD
6J9
7-5
70D
79B
A8Z
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
ABBHK
ABDBF
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACHIC
ACIWK
ACNCT
ACPRK
ACUFI
ACUHS
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKRWK
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
AOIJS
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
COF
CS3
CZ4
DAKXR
DATOO
DILTD
D~K
E3Z
EBD
EBS
EDH
EE~
EJD
EMOBN
ESX
F5P
F9B
FDB
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HYE
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O-L
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RPM
RUSNO
RW1
RXO
SA0
SV3
TCN
TEORI
TLC
TN5
TR2
UPT
W8F
WH7
WOQ
X7H
Y6R
YAYTL
YKOAZ
YSK
YXANX
YZZ
ZKX
~02
~91
~KM
AAYXX
CITATION
--K
1B1
53G
71M
AAEDT
AALCJ
AALRI
AAQFI
AAQXK
AAWDT
AAXUO
AAYWO
ABDPE
ABEFU
ABIME
ABNGD
ABPIB
ABSMQ
ABWVN
ABZEO
ACFRR
ACPQN
ACRPL
ACUKT
ACVCV
ACZBC
ADFGL
ADMUD
ADNMO
ADXHL
AEHUL
AEKPW
AETEA
AFFNX
AFSHK
AFSWV
AFYAG
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
C1A
CAG
CGR
CUY
CVF
CXTWN
DFGAJ
DM4
ECM
EIF
ELUNK
FA8
FEDTE
FGOYB
FIRID
HVGLF
IHE
LG5
MBTAY
NEJ
NPM
NTWIH
OHT
OZT
O~Y
PB-
QBD
R2-
RIG
RNI
RPZ
RZF
RZO
SSZ
UHS
VH1
XOL
XPP
ZCG
ZMT
7X8
7ST
7U6
C1K
7S9
L.6
5PM
ID FETCH-LOGICAL-c532t-a3a8d7f83df8094d183773a7e8066b02147b44f457b3d4726d5835b227be2bbe3
ISSN 0305-7364
1095-8290
IngestDate Thu Aug 21 17:52:34 EDT 2025
Thu Jul 10 17:55:15 EDT 2025
Thu Jul 10 22:39:20 EDT 2025
Thu Jul 10 21:22:29 EDT 2025
Mon Jul 21 05:48:58 EDT 2025
Tue Jul 01 01:39:14 EDT 2025
Thu Apr 24 22:55:53 EDT 2025
Sun Aug 24 12:10:32 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords stomata
vacuole
drought
membrane potential
trichome
epidermal bladder
osmotic adjustment
cytosolic potassium
sodium sequestration
xylem loading
Salinity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c532t-a3a8d7f83df8094d183773a7e8066b02147b44f457b3d4726d5835b227be2bbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://academic.oup.com/aob/article-pdf/112/7/1209/17009277/mct205.pdf
PMID 24085482
PQID 1445914958
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3806534
proquest_miscellaneous_1663587948
proquest_miscellaneous_1492623143
proquest_miscellaneous_1445914958
pubmed_primary_24085482
crossref_citationtrail_10_1093_aob_mct205
crossref_primary_10_1093_aob_mct205
jstor_primary_42801589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Annals of botany
PublicationTitleAlternate Ann Bot
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Cosentino ( key 20170512172148_MCT205C31) 2010; 186
Apse ( key 20170512172148_MCT205C7) 2007; 581
Pottosin ( key 20170512172148_MCT205C107) 2001; 181
Bruggemann ( key 20170512172148_MCT205C23) 1999; 50
Colmer ( key 20170512172148_MCT205C30) 2005; 45
Adams ( key 20170512172148_MCT205C1) 1998; 138
Manousaki ( key 20170512172148_MCT205C81) 2011; 50
Rea ( key 20170512172148_MCT205C112) 1993; 44
Agarwal ( key 20170512172148_MCT205C3) 2013; 54
Bonales-Alatorre ( key 20170512172148_MCT205C18) 2013; 162
Shabala ( key 20170512172148_MCT205C132) 2010; 61
Rengasamy ( key 20170512172148_MCT205C115) 2006; 57
Cuin ( key 20170512172148_MCT205C34) 2010; 37
Koyro ( key 20170512172148_MCT205C71) 2008; 302
Omami ( key 20170512172148_MCT205C97) 2006; 34
Serna ( key 20170512172148_MCT205C123) 1997; 114
Zeiger ( key 20170512172148_MCT205C154) 1983; 34
Gaxiola ( key 20170512172148_MCT205C47) 1999; 96
Flowers ( key 20170512172148_MCT205C42) 2008; 179
Traw ( key 20170512172148_MCT205C142) 2003; 133
Boughalleb ( key 20170512172148_MCT205C20) 2009; 31
Krebs ( key 20170512172148_MCT205C72) 2010; 107
Guimil ( key 20170512172148_MCT205C57) 2007; 58
Shabala ( key 20170512172148_MCT205C129) 2011; 2
Mathur ( key 20170512172148_MCT205C88) 2000; 12
Eshel ( key 20170512172148_MCT205C39) 2010
Thomas ( key 20170512172148_MCT205C160) 1998; 102
Kobayashi ( key 20170512172148_MCT205C70) 2010; 29
Maughan ( key 20170512172148_MCT205C89) 2009; 52
Munns ( key 20170512172148_MCT205C92) 2008; 59
Khan ( key 20170512172148_MCT205C69) 2009; 129
Shabala ( key 20170512172148_MCT205C126) 2012
Thomson ( key 20170512172148_MCT205C140) 1988
Rodriguez-Rosales ( key 20170512172148_MCT205C119) 2008; 179
Lacombe ( key 20170512172148_MCT205C73) 2000; 466
Vera-Estrella ( key 20170512172148_MCT205C145) 1999; 207
Jordan ( key 20170512172148_MCT205C66) 2009; 149
Rozema ( key 20170512172148_MCT205C120) 1981; 30
Karimi ( key 20170512172148_MCT205C67) 2005; 49
O'Leary ( key 20170512172148_MCT205C96) 1985; 89
Hedrich ( key 20170512172148_MCT205C61) 1987; 329
Lutts ( key 20170512172148_MCT205C76) 2004; 33
Adolf ( key 20170512172148_MCT205C2) 2012; 357
Pesch ( key 20170512172148_MCT205C104) 2009; 12
Naz ( key 20170512172148_MCT205C93) 2010; 48
Blume ( key 20170512172148_MCT205C15) 2012; 59
Sugimoto-Shirasu ( key 20170512172148_MCT205C139) 2003; 6
Demidchik ( key 20170512172148_MCT205C37) 2010; 123
Shabala ( key 20170512172148_MCT205C134) 2013; 170
Ueda ( key 20170512172148_MCT205C143) 2003; 116
Balnokin ( key 20170512172148_MCT205C10) 2005; 52
Chen ( key 20170512172148_MCT205C25) 2007; 145
Flowers ( key 20170512172148_MCT205C45) 1986; 61
Norman ( key 20170512172148_MCT205C159) 2008; 63
Shabala ( key 20170512172148_MCT205C133) 2012; 146
Marschner ( key 20170512172148_MCT205C85) 1995
Flowers ( key 20170512172148_MCT205C43) 1995; 22
Munns ( key 20170512172148_MCT205C91) 2002; 25
Redondo-Gomez ( key 20170512172148_MCT205C113) 2007; 100
Cuin ( key 20170512172148_MCT205C33) 2009; 36
MacRobbie ( key 20170512172148_MCT205C78) 1998; 353
Jacobsen ( key 20170512172148_MCT205C65) 2010; 39
Oh ( key 20170512172148_MCT205C95) 2010; 61
Shabala ( key 20170512172148_MCT205C127) 2008; 133
Flowers ( key 20170512172148_MCT205C41) 2004; 55
Pantoja ( key 20170512172148_MCT205C99) 1989; 255
Wegner ( key 20170512172148_MCT205C150) 1997; 115
Pilot ( key 20170512172148_MCT205C105) 2003; 51
Wang ( key 20170512172148_MCT205C148) 2001; 52
Glover ( key 20170512172148_MCT205C53) 2000; 51
Greenway ( key 20170512172148_MCT205C56) 1980; 31
Ishida ( key 20170512172148_MCT205C63) 2008; 59
Raven ( key 20170512172148_MCT205C111) 1985; 101
Delpire ( key 20170512172148_MCT205C36) 2002; 64
Shabala ( key 20170512172148_MCT205C131) 2007; 227
Wegner ( key 20170512172148_MCT205C151) 1994; 105
Epstein ( key 20170512172148_MCT205C38) 1980; 210
Vera-Estrella ( key 20170512172148_MCT205C146) 2005; 139
Asad ( key 20170512172148_MCT205C8) 2002; 33
Clipson ( key 20170512172148_MCT205C28) 1987; 105
Harling ( key 20170512172148_MCT205C60) 1997; 16
Barrett-Lennard ( key 20170512172148_MCT205C14) 2010; 37
Orsini ( key 20170512172148_MCT205C98) 2011; 38
Manousaki ( key 20170512172148_MCT205C82) 2011; 13
Shi ( key 20170512172148_MCT205C135) 2002; 14
De Boer ( key 20170512172148_MCT205C35) 2003; 26
Norman ( key 20170512172148_MCT205C94) 2013; 92
Chien ( key 20170512172148_MCT205C26) 1996; 111
Cuin ( key 20170512172148_MCT205C32) 2007; 30
Chaudhri ( key 20170512172148_MCT205C24) 1964; 21
Manousaki ( key 20170512172148_MCT205C80) 2009; 16
Bonales-Alatorre ( key 20170512172148_MCT205C17) 2013; 14
Maathuis ( key 20170512172148_MCT205C77) 1992; 43
Flowers ( key 20170512172148_MCT205C46) 2010; 37
Guo ( key 20170512172148_MCT205C58) 2006; 60
Wegner ( key 20170512172148_MCT205C152) 2011; 34
Balnokin ( key 20170512172148_MCT205C11) 2007; 54
Maricle ( key 20170512172148_MCT205C84) 2009; 184
Zhao ( key 20170512172148_MCT205C158) 1991; 135
Boyer ( key 20170512172148_MCT205C21) 1997; 114
Storey ( key 20170512172148_MCT205C138) 1995; 22
Ruan ( key 20170512172148_MCT205C121) 2010; 29
Zhao ( key 20170512172148_MCT205C157) 2007; 164
Ghnaya ( key 20170512172148_MCT205C48) 2005; 162
Perera ( key 20170512172148_MCT205C103) 1994; 17
Barkla ( key 20170512172148_MCT205C12) 1995; 109
Ayala ( key 20170512172148_MCT205C9) 1996; 47
Zhang ( key 20170512172148_MCT205C155) 2001; 19
Parks ( key 20170512172148_MCT205C100) 2002; 53
Ramadan ( key 20170512172148_MCT205C110) 2004; 219
Watson ( key 20170512172148_MCT205C149) 1993; 43
Flowers ( key 20170512172148_MCT205C44) 1977; 28
Riadh ( key 20170512172148_MCT205C117) 2010; 53
Valentine ( key 20170512172148_MCT205C144) 2012; 4
Serna ( key 20170512172148_MCT205C125) 2009; 31
Martinez ( key 20170512172148_MCT205C87) 2005; 56
Soliz ( key 20170512172148_MCT205C136) 2011; 140
Glenn ( key 20170512172148_MCT205C51) 1998; 38
Greenboim-Wainberg ( key 20170512172148_MCT205C55) 2005; 17
Churchman ( key 20170512172148_MCT205C27) 2006; 18
Apse ( key 20170512172148_MCT205C6) 1999; 285
Shabala ( key 20170512172148_MCT205C128) 2011; 57
Serna ( key 20170512172148_MCT205C124) 2000; 109
Repo-Carrasco ( key 20170512172148_MCT205C116) 2003; 19
Glenn ( key 20170512172148_MCT205C52) 1999; 18
Lun'kov ( key 20170512172148_MCT205C75) 2005; 52
Tominaga-Wada ( key 20170512172148_MCT205C141) 2011; 286
Hughes ( key 20170512172148_MCT205C62) 1999; 39
Bose ( key 20170512172148_MCT205C19) 2013
Shabala ( key 20170512172148_MCT205C130) 2000; 51
Marcum ( key 20170512172148_MCT205C83) 1992; 120
Kemp ( key 20170512172148_MCT205C68) 1981; 68
Larkin ( key 20170512172148_MCT205C74) 1996; 122
Pottosin ( key 20170512172148_MCT205C106) 1997; 12
Rengasamy ( key 20170512172148_MCT205C114) 2002; 42
Brown ( key 20170512172148_MCT205C22) 2008; 319
Yadav ( key 20170512172148_MCT205C153); 12
Zhang ( key 20170512172148_MCT205C156) 2001; 98
Very ( key 20170512172148_MCT205C147) 1998; 14
Flowers ( key 20170512172148_MCT205C40) 1985; 89
Blumwald ( key 20170512172148_MCT205C16) 1985; 78
Glenn ( key 20170512172148_MCT205C49) 1992; 40
Robinson ( key 20170512172148_MCT205C118) 1996
Colmenero-Flores ( key 20170512172148_MCT205C29) 2007; 50
Martin ( key 20170512172148_MCT205C86) 2007; 10
Storey ( key 20170512172148_MCT205C137) 1979; 63
Barrett-Lennard ( key 20170512172148_MCT205C13) 2002; 53
Anderson ( key 20170512172148_MCT205C5) 1977; 28
Perazza ( key 20170512172148_MCT205C102) 1998; 117
Schwab ( key 20170512172148_MCT205C122) 2003; 269
Malcolm ( key 20170512172148_MCT205C79) 1986; 5
Jacobsen ( key 20170512172148_MCT205C64) 2003; 19
Passardi ( key 20170512172148_MCT205C101) 2007; 164
Millar ( key 20170512172148_MCT205C90) 2012; 10
Qadir ( key 20170512172148_MCT205C108) 2008; 19
Grebe ( key 20170512172148_MCT205C54) 2012; 15
Amarasinghe ( key 20170512172148_MCT205C4) 1988; 98
Haas ( key 20170512172148_MCT205C59) 1989; 51
Glenn ( key 20170512172148_MCT205C50) 1997; 36
Ramadan ( key 20170512172148_MCT205C109) 1998; 139
References_xml – volume: 129
  start-page: 542
  year: 2009
  ident: key 20170512172148_MCT205C69
  article-title: Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas
  publication-title: Agriculture Ecosystems and Environment
  doi: 10.1016/j.agee.2008.10.014
– volume: 285
  start-page: 1256
  year: 1999
  ident: key 20170512172148_MCT205C6
  article-title: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis
  publication-title: Science
  doi: 10.1126/science.285.5431.1256
– volume: 34
  start-page: 441
  year: 1983
  ident: key 20170512172148_MCT205C154
  article-title: The biology of stomatal guard cells
  publication-title: Annual Review of Plant Physiology
  doi: 10.1146/annurev.pp.34.060183.002301
– volume: 255
  start-page: 92
  year: 1989
  ident: key 20170512172148_MCT205C99
  article-title: Ion channels in vacuoles from halophytes and glycophytes
  publication-title: FEBS Letters
  doi: 10.1016/0014-5793(89)81067-1
– volume: 10
  start-page: 70
  year: 2007
  ident: key 20170512172148_MCT205C86
  article-title: Functional aspects of cell patterning in aerial epidermis
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2006.11.004
– volume: 170
  start-page: 906
  year: 2013
  ident: key 20170512172148_MCT205C134
  article-title: Genotypic difference in salinity tolerance in quinoa (Chenopodium quinoa) is determined by differential control of xylem Na+ loading and stomatal density
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2013.01.014
– volume: 51
  start-page: 1243
  year: 2000
  ident: key 20170512172148_MCT205C130
  article-title: Ion-specific mechanisms of osmoregulation in bean mesophyll cells
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/51.348.1243
– volume: 181
  start-page: 55
  year: 2001
  ident: key 20170512172148_MCT205C107
  article-title: Conduction of monovalent and divalent cations in the slow vacuolar channel
  publication-title: Journal of Membrane Biology
  doi: 10.1007/s0023200100073
– volume: 51
  start-page: 497
  year: 2000
  ident: key 20170512172148_MCT205C53
  article-title: Differentiation in plant epidermal cells
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/51.344.497
– volume: 12
  start-page: 465
  year: 2000
  ident: key 20170512172148_MCT205C88
  article-title: Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes
  publication-title: The Plant Cell
  doi: 10.1105/tpc.12.4.465
– volume: 115
  start-page: 1707
  year: 1997
  ident: key 20170512172148_MCT205C150
  article-title: Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling
  publication-title: Plant Physiology
  doi: 10.1104/pp.115.4.1707
– volume: 145
  start-page: 1714
  year: 2007
  ident: key 20170512172148_MCT205C25
  article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.110262
– volume: 14
  start-page: 465
  year: 2002
  ident: key 20170512172148_MCT205C135
  article-title: The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants
  publication-title: The Plant Cell
  doi: 10.1105/tpc.010371
– volume: 98
  start-page: 12832
  year: 2001
  ident: key 20170512172148_MCT205C156
  article-title: Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.231476498
– volume: 319
  start-page: 580
  year: 2008
  ident: key 20170512172148_MCT205C22
  article-title: Climate – food security under climate change
  publication-title: Science
  doi: 10.1126/science.1154102
– volume: 61
  start-page: 313
  year: 1986
  ident: key 20170512172148_MCT205C45
  article-title: Halophytes
  publication-title: Quarterly Review of Biology
  doi: 10.1086/415032
– volume: 12
  start-page: 1387
  year: 1997
  ident: key 20170512172148_MCT205C106
  article-title: Slowly activating vacuolar channels cannot mediate Ca2+-induced Ca2+ release
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313x.1997.12061387.x
– volume: 4
  start-page: 1
  year: 2012
  ident: key 20170512172148_MCT205C144
  article-title: Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production
  publication-title: Global Change Biology Bioenergy
  doi: 10.1111/j.1757-1707.2011.01111.x
– volume: 50
  start-page: 278
  year: 2007
  ident: key 20170512172148_MCT205C29
  article-title: Identification and functional characterization of cation–chloride cotransporters in plants
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2007.03048.x
– volume: 54
  start-page: 797
  year: 2007
  ident: key 20170512172148_MCT205C11
  article-title: Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport
  publication-title: Russian Journal of Plant Physiology
  doi: 10.1134/S102144370706012X
– volume: 54
  start-page: 102
  year: 2013
  ident: key 20170512172148_MCT205C3
  article-title: Bioengineering for salinity tolerance in plants: state of the art
  publication-title: Molecular Biotechnology
  doi: 10.1007/s12033-012-9538-3
– volume: 21
  start-page: 1
  year: 1964
  ident: key 20170512172148_MCT205C24
  article-title: Investigations on the role of Suaeda fruticose Forsk in the reclamation of saline and alkaline soils in West Pakistan plains
  publication-title: Plant and Soil
  doi: 10.1007/BF01373866
– volume: 53
  start-page: 213
  year: 2002
  ident: key 20170512172148_MCT205C13
  article-title: Restoration of saline land through revegetation
  publication-title: Agricultural Water Management
  doi: 10.1016/S0378-3774(01)00166-4
– volume: 17
  start-page: 92
  year: 2005
  ident: key 20170512172148_MCT205C55
  article-title: Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling
  publication-title: The Plant Cell
  doi: 10.1105/tpc.104.028472
– volume: 51
  start-page: 773
  year: 2003
  ident: key 20170512172148_MCT205C105
  article-title: Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1022597102282
– volume: 59
  start-page: 651
  year: 2008
  ident: key 20170512172148_MCT205C92
  article-title: Mechanisms of salinity tolerance
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092911
– volume: 28
  start-page: 89
  year: 1977
  ident: key 20170512172148_MCT205C44
  article-title: Mechanism of salt tolerance in halophytes
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.pp.28.060177.000513
– volume: 15
  start-page: 31
  year: 2012
  ident: key 20170512172148_MCT205C54
  article-title: The patterning of epidermal hairs in Arabidopsis – updated
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2011.10.010
– start-page: 498
  volume-title: Solute transport in plant cells and tissues
  year: 1988
  ident: key 20170512172148_MCT205C140
  article-title: Salt glands
– volume: 12
  start-page: 188
  ident: key 20170512172148_MCT205C153
  article-title: The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-12-188
– volume: 50
  start-page: 656
  year: 2011
  ident: key 20170512172148_MCT205C81
  article-title: Halophytes present new opportunities in phytoremediation of heavy metals and saline soils
  publication-title: Industrial and Engineering Chemistry Research
  doi: 10.1021/ie100270x
– volume: 52
  start-page: 635
  year: 2005
  ident: key 20170512172148_MCT205C75
  article-title: Functional identification of H+-ATPase and Na+/H+ antiporter in the plasma membrane isolated from the root cells of salt-accumulating halophyte Suaeda altissima
  publication-title: Russian Journal of Plant Physiology
  doi: 10.1007/s11183-005-0094-6
– volume: 210
  start-page: 399
  year: 1980
  ident: key 20170512172148_MCT205C38
  article-title: Saline culture of crops – a genetic approach
  publication-title: Science
  doi: 10.1126/science.210.4468.399
– volume: 28
  start-page: 894
  year: 1977
  ident: key 20170512172148_MCT205C5
  article-title: Electrophysiological measurements on root of Atriplex hastata
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/28.4.894
– volume: 105
  start-page: 359
  year: 1987
  ident: key 20170512172148_MCT205C28
  article-title: Salt tolerance in the halophyte Suaeda maritima (L) Dum – the effect of salinity on the concentration of sodium in the xylem
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1987.tb00873.x
– volume: 186
  start-page: 669
  year: 2010
  ident: key 20170512172148_MCT205C31
  article-title: Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03208.x
– volume: 302
  start-page: 79
  year: 2008
  ident: key 20170512172148_MCT205C71
  article-title: Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd
  publication-title: Plant and Soil
  doi: 10.1007/s11104-007-9457-4
– volume: 53
  start-page: 117
  year: 2010
  ident: key 20170512172148_MCT205C117
  article-title: Responses of halophytes to environmental stresses with special emphasis to salinity
  publication-title: Advances in Botanical Research
  doi: 10.1016/S0065-2296(10)53004-0
– volume: 89
  start-page: 41
  year: 1985
  ident: key 20170512172148_MCT205C40
  article-title: Physiology of halophytes
  publication-title: Plant and Soil
  doi: 10.1007/BF02182232
– volume: 135
  start-page: 303
  year: 1991
  ident: key 20170512172148_MCT205C158
  article-title: Desalinization of saline soils by Suaeda salsa
  publication-title: Plant and Soil
  doi: 10.1007/BF00010921
– volume: 138
  start-page: 171
  year: 1998
  ident: key 20170512172148_MCT205C1
  article-title: Growth and development of Mesembryanthemum crystallinum (Aizoaceae)
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.1998.00111.x
– volume: 33
  start-page: 1271
  year: 2004
  ident: key 20170512172148_MCT205C76
  article-title: Heavy metal accumulation by the halophyte species Mediterranean saltbush
  publication-title: Journal of Environmental Quality
  doi: 10.2134/jeq2004.1271
– volume: 139
  start-page: 273
  year: 1998
  ident: key 20170512172148_MCT205C109
  article-title: Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella
  publication-title: New Phytologist
  doi: 10.1046/j.1469-8137.1998.00159.x
– volume: 29
  start-page: 329
  year: 2010
  ident: key 20170512172148_MCT205C121
  article-title: Halophyte improvement for a salinized world
  publication-title: Critical Reviews in Plant Sciences
  doi: 10.1080/07352689.2010.524517
– volume: 61
  start-page: 1205
  year: 2010
  ident: key 20170512172148_MCT205C95
  article-title: Intracellular consequences of SOS1 deficiency during salt stress
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erp391
– volume: 149
  start-page: 899
  year: 2009
  ident: key 20170512172148_MCT205C66
  article-title: Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district
  publication-title: Agricultural and Forest Meteorology
  doi: 10.1016/j.agrformet.2008.11.010
– volume: 101
  start-page: 25
  year: 1985
  ident: key 20170512172148_MCT205C111
  article-title: Regulation of pH and generation of osmolarity in vascular plants – a cost–benefit analysis in relation to efficiency of use of energy, nitrogen and water
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1985.tb02816.x
– volume: 105
  start-page: 799
  year: 1994
  ident: key 20170512172148_MCT205C151
  article-title: Ion channels in the xylem parenchyma of barley roots – a procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels
  publication-title: Plant Physiology
  doi: 10.1104/pp.105.3.799
– volume: 36
  start-page: 1110
  year: 2009
  ident: key 20170512172148_MCT205C33
  article-title: Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions
  publication-title: Functional Plant Biology
  doi: 10.1071/FP09051
– volume: 100
  start-page: 555
  year: 2007
  ident: key 20170512172148_MCT205C113
  article-title: Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcm119
– volume: 18
  start-page: 3145
  year: 2006
  ident: key 20170512172148_MCT205C27
  article-title: SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana
  publication-title: The Plant Cell
  doi: 10.1105/tpc.106.044834
– volume: 58
  start-page: 3829
  year: 2007
  ident: key 20170512172148_MCT205C57
  article-title: Cell growth and differentiation in Arabidopsis epidermal cells
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erm253
– volume: 63
  start-page: 179
  year: 2008
  ident: key 20170512172148_MCT205C159
  article-title: Effect of supplementation with grain, hay or straw on the performance of weaner Merino sheep grazing old man (Atriplex nummularia) or river (Atriplex amnicola) saltbush
  publication-title: Grass and Forage Science
  doi: 10.1111/j.1365-2494.2007.00623.x
– volume: 111
  start-page: 1321
  year: 1996
  ident: key 20170512172148_MCT205C26
  article-title: Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L) Heynh
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.4.1321
– start-page: 362
  year: 2010
  ident: key 20170512172148_MCT205C39
  article-title: Biomass production by desert halophytes: alleviating the pressure on food production
  publication-title: Recent advances in energy and environment
– volume: 42
  start-page: 351
  year: 2002
  ident: key 20170512172148_MCT205C114
  article-title: Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview
  publication-title: Australian Journal of Experimental Agriculture
  doi: 10.1071/EA01111
– volume: 57
  start-page: 1017
  year: 2006
  ident: key 20170512172148_MCT205C115
  article-title: World salinization with emphasis on Australia
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erj108
– volume: 30
  start-page: 875
  year: 2007
  ident: key 20170512172148_MCT205C32
  article-title: Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.2007.01674.x
– volume: 179
  start-page: 945
  year: 2008
  ident: key 20170512172148_MCT205C42
  article-title: Salinity tolerance in halophytes
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02531.x
– volume: 19
  start-page: 765
  year: 2001
  ident: key 20170512172148_MCT205C155
  article-title: Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit
  publication-title: Nature Biotechnology
  doi: 10.1038/90824
– volume: 581
  start-page: 2247
  year: 2007
  ident: key 20170512172148_MCT205C7
  article-title: Na+ transport in plants
  publication-title: FEBS Letters
  doi: 10.1016/j.febslet.2007.04.014
– volume: 14
  start-page: 509
  year: 1998
  ident: key 20170512172148_MCT205C147
  article-title: Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.1998.00147.x
– volume: 162
  start-page: 1133
  year: 2005
  ident: key 20170512172148_MCT205C48
  article-title: Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2004.11.011
– volume: 39
  start-page: 223
  year: 2010
  ident: key 20170512172148_MCT205C65
  article-title: Weed harrowing and inter-row hoeing in organic grown quinoa (Chenopodium quinoa Willd.)
  publication-title: Outlook on Agriculture
  doi: 10.5367/oa.2010.0001
– volume: 59
  start-page: 365
  year: 2008
  ident: key 20170512172148_MCT205C63
  article-title: A genetic regulatory network in the development of trichomes and root hairs
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev.arplant.59.032607.092949
– volume: 61
  start-page: 839
  year: 2010
  ident: key 20170512172148_MCT205C132
  article-title: Xylem ionic relations and salinity tolerance in barley
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2009.04110.x
– volume: 139
  start-page: 1507
  year: 2005
  ident: key 20170512172148_MCT205C146
  article-title: Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance
  publication-title: Plant Physiology
  doi: 10.1104/pp.105.067850
– volume: 227
  start-page: 189
  year: 2007
  ident: key 20170512172148_MCT205C131
  article-title: Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress
  publication-title: Planta
  doi: 10.1007/s00425-007-0606-z
– volume: 26
  start-page: 87
  year: 2003
  ident: key 20170512172148_MCT205C35
  article-title: Logistics of water and salt transport through the plant: structure and functioning of the xylem
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.1365-3040.2003.00930.x
– volume: 2
  start-page: 407
  year: 2011
  ident: key 20170512172148_MCT205C129
  article-title: Ion transport and osmotic adjustment in plants and bacteria
  publication-title: BioMolecular Concepts
  doi: 10.1515/BMC.2011.032
– volume: 30
  start-page: 309
  year: 1981
  ident: key 20170512172148_MCT205C120
  article-title: Sodium concentration in xylem sap in relation to ion exclusion, accumulation and secretion in halophytes
  publication-title: Acta Botanica Neerlandica
  doi: 10.1111/j.1438-8677.1981.tb00411.x
– volume: 164
  start-page: 1377
  year: 2007
  ident: key 20170512172148_MCT205C157
  article-title: Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2007.04.001
– volume: 12
  start-page: 587
  year: 2009
  ident: key 20170512172148_MCT205C104
  article-title: One, two, three … models for trichome patterning in Arabidopsis?
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2009.07.015
– volume: 269
  start-page: 350
  year: 2003
  ident: key 20170512172148_MCT205C122
  article-title: Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules
  publication-title: Molecular Genetics and Genomics
  doi: 10.1007/s00438-003-0843-1
– volume: 63
  start-page: 156
  year: 1979
  ident: key 20170512172148_MCT205C137
  article-title: Responses of Atriplex spongiosa and Suaeda monoica to salinity
  publication-title: Plant Physiology
  doi: 10.1104/pp.63.1.156
– volume: 38
  start-page: 818
  year: 2011
  ident: key 20170512172148_MCT205C98
  article-title: Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism
  publication-title: Functional Plant Biology
  doi: 10.1071/FP11088
– volume: 57
  start-page: 151
  year: 2011
  ident: key 20170512172148_MCT205C128
  article-title: Ion transport in halophytes
  publication-title: Advances in Botanical Research
  doi: 10.1016/B978-0-12-387692-8.00005-9
– volume: 107
  start-page: 3251
  year: 2010
  ident: key 20170512172148_MCT205C72
  article-title: Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.0913035107
– volume: 140
  start-page: 473
  year: 2011
  ident: key 20170512172148_MCT205C136
  article-title: Water consumption, irrigation efficiency and nutritional value of Atriplex lentiformis grown on reverse osmosis brine in a desert irrigation district
  publication-title: Agriculture Ecosystems and Environment
  doi: 10.1016/j.agee.2011.01.012
– volume: 60
  start-page: 41
  year: 2006
  ident: key 20170512172148_MCT205C58
  article-title: Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-005-2417-6
– volume-title: Sodium-induced stomatal closure in the maritime halophyte
  year: 1996
  ident: key 20170512172148_MCT205C118
– volume: 114
  start-page: 280
  year: 1997
  ident: key 20170512172148_MCT205C123
  article-title: Stomata pattern in Arabidopsis is modulated by ethylene
  publication-title: Plant Physiology
– volume: 31
  start-page: 463
  year: 2009
  ident: key 20170512172148_MCT205C20
  article-title: Photosystem II photochemistry and physiological parameters of three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea under salt stress
  publication-title: Acta Physiologiae Plantarum
  doi: 10.1007/s11738-008-0254-3
– volume: 34
  start-page: 859
  year: 2011
  ident: key 20170512172148_MCT205C152
  article-title: Sequential depolarization of root cortical and stelar cells induced by an acute salt shock – implications for Na+ and K+ transport into xylem vessels
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.2011.02291.x
– volume: 37
  start-page: 604
  year: 2010
  ident: key 20170512172148_MCT205C46
  article-title: Evolution of halophytes: multiple origins of salt tolerance in land plants
  publication-title: Functional Plant Biology
  doi: 10.1071/FP09269
– volume: 109
  start-page: 549
  year: 1995
  ident: key 20170512172148_MCT205C12
  article-title: Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.2.549
– volume: 117
  start-page: 375
  year: 1998
  ident: key 20170512172148_MCT205C102
  article-title: Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.117.2.375
– volume: 38
  start-page: 45
  year: 1998
  ident: key 20170512172148_MCT205C51
  article-title: Water use, productivity and forage quality of the halophyte Atriplex nummularia grown on saline waste water in a desert environment
  publication-title: Journal of Arid Environments
  doi: 10.1006/jare.1997.0320
– volume: 92
  start-page: 96
  year: 2013
  ident: key 20170512172148_MCT205C94
  article-title: Halophytes as forages in saline landscapes: interactions between plant genotype and environment change their feeding value to ruminants
  publication-title: Environmental and Experimental Botany
  doi: 10.1016/j.envexpbot.2012.07.003
– volume: 219
  start-page: 639
  year: 2004
  ident: key 20170512172148_MCT205C110
  article-title: Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L
  publication-title: Planta
  doi: 10.1007/s00425-004-1269-7
– volume: 43
  start-page: 1219
  year: 1992
  ident: key 20170512172148_MCT205C77
  article-title: Sodium-chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima (L) dum and its relation to tonoplast permeability
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/43.9.1219
– volume: 22
  start-page: 101
  year: 1995
  ident: key 20170512172148_MCT205C138
  article-title: Salt tolerance, ion relations and the effect of root medium on the response of citrus to salinity
  publication-title: Australian Journal of Plant Physiology
  doi: 10.1071/PP9950101
– volume: 47
  start-page: 25
  year: 1996
  ident: key 20170512172148_MCT205C9
  article-title: Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/47.1.25
– volume: 51
  start-page: 443
  year: 1989
  ident: key 20170512172148_MCT205C59
  article-title: Properties and diversity of (Na–K–Cl) cotransporters
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev.ph.51.030189.002303
– volume: 34
  start-page: 11
  year: 2006
  ident: key 20170512172148_MCT205C97
  article-title: Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes
  publication-title: New Zealand Journal of Crop and Horticultural Science
  doi: 10.1080/01140671.2006.9514382
– volume: 39
  start-page: 157
  year: 1999
  ident: key 20170512172148_MCT205C62
  article-title: Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo
  publication-title: Advances in Enzyme Regulation
  doi: 10.1016/S0065-2571(98)00010-7
– volume: 36
  start-page: 711
  year: 1997
  ident: key 20170512172148_MCT205C50
  article-title: Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment
  publication-title: Journal of Arid Environments
  doi: 10.1006/jare.1997.0253
– volume: 162
  start-page: 940
  year: 2013
  ident: key 20170512172148_MCT205C18
  article-title: Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.216572
– volume: 64
  start-page: 803
  year: 2002
  ident: key 20170512172148_MCT205C36
  article-title: Human and murine phenotypes associated with defects in cation–chloride cotransport
  publication-title: Annual Review of Physiology
  doi: 10.1146/annurev.physiol.64.081501.155847
– volume: 48
  start-page: 446
  year: 2010
  ident: key 20170512172148_MCT205C93
  article-title: Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity
  publication-title: Photosynthetica
  doi: 10.1007/s11099-010-0059-7
– volume: 16
  start-page: 5855
  year: 1997
  ident: key 20170512172148_MCT205C60
  article-title: A plant cation–chloride co-transporter promoting auxin-independent tobacco protoplast division
  publication-title: EMBO Journal
  doi: 10.1093/emboj/16.19.5855
– volume: 109
  start-page: 351
  year: 2000
  ident: key 20170512172148_MCT205C124
  article-title: Stomatal development and patterning in Arabidopsis leaves
  publication-title: Physiologia Plantarum
  doi: 10.1034/j.1399-3054.2000.100317.x
– volume: 52
  start-page: 779
  year: 2005
  ident: key 20170512172148_MCT205C10
  article-title: Significance of Na+ and K+ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae
  publication-title: Russian Journal of Plant Physiology
  doi: 10.1007/s11183-005-0115-5
– volume: 19
  start-page: 139
  year: 2003
  ident: key 20170512172148_MCT205C64
  article-title: The global potential for quinoa and other Andean crops
  publication-title: Food Reviews International
  doi: 10.1081/FRI-120018880
– volume: 98
  start-page: 303
  year: 1988
  ident: key 20170512172148_MCT205C4
  article-title: Comparative ultrastructure of microhairs in grasses
  publication-title: Botanical Journal of the Linnean Society
  doi: 10.1111/j.1095-8339.1988.tb01705.x
– volume: 37
  year: 2010
  ident: key 20170512172148_MCT205C14
  article-title: Developing saline agriculture: moving from traits and genes to systems
  publication-title: Functional Plant Biology
  doi: 10.1071/FPv37n7_FO
– volume: 16
  start-page: 844
  year: 2009
  ident: key 20170512172148_MCT205C80
  article-title: Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-009-0224-3
– volume: 43
  start-page: 255
  year: 1993
  ident: key 20170512172148_MCT205C149
  article-title: Performance of Atriplex species in the San Joaquin valley, California, under irrigation and with mechanical harvests
  publication-title: Agriculture Ecosystems and Environment
  doi: 10.1016/0167-8809(93)90090-C
– volume: 6
  start-page: 544
  year: 2003
  ident: key 20170512172148_MCT205C139
  article-title: ‘Big it up’: endoreduplication and cell-size control in plants
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2003.09.009
– volume: 50
  start-page: 873
  year: 1999
  ident: key 20170512172148_MCT205C23
  article-title: Selectivity of the fast activating vacuolar cation channel
  publication-title: Journal of Experimental Botany
– volume: 33
  start-page: 973
  year: 2002
  ident: key 20170512172148_MCT205C8
  article-title: Growing Atriplex and Maireana species in saline sodic and waterlogged soils
  publication-title: Communications in Soil Science and Plant Analysis
  doi: 10.1081/CSS-120003078
– volume: 89
  start-page: 311
  year: 1985
  ident: key 20170512172148_MCT205C96
  article-title: Agricultural production of halophytes irrigated with seawater
  publication-title: Plant and Soil
  doi: 10.1007/BF02182250
– volume: 52
  start-page: 647
  year: 2009
  ident: key 20170512172148_MCT205C89
  article-title: Characterization of Salt Overly Sensitive 1 (SOS 1) gene homoeologs in quinoa (Chenopodium quinoa Wilid.)
  publication-title: Genome
  doi: 10.1139/G09-041
– volume: 466
  start-page: 351
  year: 2000
  ident: key 20170512172148_MCT205C73
  article-title: pH control of the plant outwardly-rectifying potassium channel SKOR
  publication-title: FEBS Letters
  doi: 10.1016/S0014-5793(00)01093-0
– volume: 45
  start-page: 1425
  year: 2005
  ident: key 20170512172148_MCT205C30
  article-title: Improving salt tolerance of wheat and barley: future prospects
  publication-title: Australian Journal of Experimental Agriculture
  doi: 10.1071/EA04162
– volume: 31
  start-page: 865
  year: 2009
  ident: key 20170512172148_MCT205C125
  article-title: Cell fate transitions during stomatal development
  publication-title: Bioessays
  doi: 10.1002/bies.200800231
– volume: 114
  start-page: 185
  year: 1997
  ident: key 20170512172148_MCT205C21
  article-title: CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials
  publication-title: Plant Physiology
  doi: 10.1104/pp.114.1.185
– volume: 5
  start-page: 343
  year: 1986
  ident: key 20170512172148_MCT205C79
  article-title: Production from salt affected soils
  publication-title: Reclamation and Revegetation Research
– volume-title: Mineral nutrition of higher plants
  year: 1995
  ident: key 20170512172148_MCT205C85
– volume: 123
  start-page: 1468
  year: 2010
  ident: key 20170512172148_MCT205C37
  article-title: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.064352
– volume: 17
  start-page: 335
  year: 1994
  ident: key 20170512172148_MCT205C103
  article-title: Stomatal responses to sodium-ions in Aster tripolium – a new hypothesis to explain salinity regulation in aboveground tissues
  publication-title: Plant, Cell and Environment
  doi: 10.1111/j.1365-3040.1994.tb00300.x
– volume: 19
  start-page: 179
  year: 2003
  ident: key 20170512172148_MCT205C116
  article-title: Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule)
  publication-title: Food Reviews International
  doi: 10.1081/FRI-120018884
– volume: 329
  start-page: 833
  year: 1987
  ident: key 20170512172148_MCT205C61
  article-title: Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles
  publication-title: Nature
  doi: 10.1038/329833a0
– year: 2013
  ident: key 20170512172148_MCT205C19
  article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to ROS: physiological traits that differentiate salinity tolerance between pea and barley
  publication-title: Plant, Cell and Environment
– volume: 37
  start-page: 656
  year: 2010
  ident: key 20170512172148_MCT205C34
  article-title: Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium
  publication-title: Functional Plant Biology
  doi: 10.1071/FP09229
– volume: 14
  start-page: 9267
  year: 2013
  ident: key 20170512172148_MCT205C17
  article-title: Plasma and vacuolar membrane transporters conferring genotypic difference in salinity tolerance in a halophyte species, Chenopodium quinoa
  publication-title: International Journal of Molecular Science
  doi: 10.3390/ijms14059267
– volume: 286
  start-page: 67
  year: 2011
  ident: key 20170512172148_MCT205C141
  article-title: New insights into the mechanism of development of arabidopsis root hairs and trichomes
  publication-title: International Review of Cell and Molecular Biology
  doi: 10.1016/B978-0-12-385859-7.00002-1
– volume: 49
  start-page: 301
  year: 2005
  ident: key 20170512172148_MCT205C67
  article-title: The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrata
  publication-title: Biologia Plantarum
  doi: 10.1007/s10535-005-1304-y
– volume: 19
  start-page: 429
  year: 2008
  ident: key 20170512172148_MCT205C108
  article-title: Productivity enhancement of salt-affected environments through crop diversification
  publication-title: Land Degradation and Development
  doi: 10.1002/ldr.853
– volume: 44
  start-page: 157
  year: 1993
  ident: key 20170512172148_MCT205C112
  article-title: Vacuolar H+-translocating pyrophosphatase
  publication-title: Annual Review of Plant Physiology and Plant Molecular Biology
  doi: 10.1146/annurev.pp.44.060193.001105
– volume: 133
  start-page: 1367
  year: 2003
  ident: key 20170512172148_MCT205C142
  article-title: Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.027086
– volume: 96
  start-page: 1480
  year: 1999
  ident: key 20170512172148_MCT205C47
  article-title: The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.96.4.1480
– volume: 122
  start-page: 997
  year: 1996
  ident: key 20170512172148_MCT205C74
  article-title: The control of trichome spacing and number in Arabidopsis
  publication-title: Development
  doi: 10.1242/dev.122.3.997
– volume: 25
  start-page: 239
  year: 2002
  ident: key 20170512172148_MCT205C91
  article-title: Comparative physiology of salt and water stress
  publication-title: Plant, Cell and Environment
  doi: 10.1046/j.0016-8025.2001.00808.x
– volume: 207
  start-page: 426
  year: 1999
  ident: key 20170512172148_MCT205C145
  article-title: Salt stress in Mesembryanthemum crystallinum L cell suspensions activates adaptive mechanisms similar to those observed in the whole plant
  publication-title: Planta
  doi: 10.1007/s004250050501
– volume: 353
  start-page: 1475
  year: 1998
  ident: key 20170512172148_MCT205C78
  article-title: Signal transduction and ion channels in guard cells
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
  doi: 10.1098/rstb.1998.0303
– volume: 133
  start-page: 651
  year: 2008
  ident: key 20170512172148_MCT205C127
  article-title: Potassium transport and plant salt tolerance
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.2007.01008.x
– volume: 78
  start-page: 163
  year: 1985
  ident: key 20170512172148_MCT205C16
  article-title: Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris
  publication-title: Plant Physiology
  doi: 10.1104/pp.78.1.163
– volume: 68
  start-page: 507
  year: 1981
  ident: key 20170512172148_MCT205C68
  article-title: Light, temperature and salinity effects on growth, leaf anatomy and photosynthesis of Distichlis spicata (L) greene
  publication-title: American Journal of Botany
  doi: 10.2307/2443026
– volume-title: Plant stress physiology
  year: 2012
  ident: key 20170512172148_MCT205C126
  doi: 10.1079/9781845939953.0000
– volume: 55
  start-page: 307
  year: 2004
  ident: key 20170512172148_MCT205C41
  article-title: Improving crop salt tolerance
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erh003
– volume: 357
  start-page: 117
  year: 2012
  ident: key 20170512172148_MCT205C2
  article-title: Varietal differences of quinoa's tolerance to saline conditions
  publication-title: Plant and Soil
  doi: 10.1007/s11104-012-1133-7
– volume: 40
  start-page: 21
  year: 1992
  ident: key 20170512172148_MCT205C49
  article-title: Salicornia bigelovii Torr – a seawater-irrigated forage for goats
  publication-title: Animal Feed Science and Technology
  doi: 10.1016/0377-8401(92)90109-J
– volume: 56
  start-page: 2421
  year: 2005
  ident: key 20170512172148_MCT205C87
  article-title: NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eri235
– volume: 52
  start-page: 2355
  year: 2001
  ident: key 20170512172148_MCT205C148
  article-title: Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/52.365.2355
– volume: 31
  start-page: 149
  year: 1980
  ident: key 20170512172148_MCT205C56
  article-title: Mechanisms of salt tolerance in non-halophytes
  publication-title: Annual Review of Plant Physiology
  doi: 10.1146/annurev.pp.31.060180.001053
– volume: 13
  start-page: 959
  year: 2011
  ident: key 20170512172148_MCT205C82
  article-title: Halophytes – an emerging trend in phytoremediation
  publication-title: International Journal of Phytoremediation
  doi: 10.1080/15226514.2010.532241
– volume: 184
  start-page: 216
  year: 2009
  ident: key 20170512172148_MCT205C84
  article-title: Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C-4 genus Spartina (Poaceae)
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2009.02903.x
– volume: 29
  start-page: 506
  year: 2010
  ident: key 20170512172148_MCT205C70
  article-title: Exogenous methyl jasmonate alters trichome density on leaf surfaces of Rhodes Grass (Chloris gayana Kunth)
  publication-title: Journal of Plant Growth Regulation
  doi: 10.1007/s00344-010-9161-0
– volume: 116
  start-page: 65
  year: 2003
  ident: key 20170512172148_MCT205C143
  article-title: Photosynthetic limitations of a halophyte sea aster (Aster tripolium L) under water stress and NaCl stress
  publication-title: Journal of Plant Research
  doi: 10.1007/s10265-002-0070-6
– volume: 10
  start-page: 25
  year: 2012
  ident: key 20170512172148_MCT205C90
  article-title: Changes in Australian agriculture and land use: implications for future food security
  publication-title: International Journal of Agricultural Sustainability
  doi: 10.1080/14735903.2012.646731
– volume: 53
  start-page: 1055
  year: 2002
  ident: key 20170512172148_MCT205C100
  article-title: Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jexbot/53.371.1055
– volume: 59
  start-page: 515
  year: 2012
  ident: key 20170512172148_MCT205C15
  article-title: Effects of phytohormones on the cytoskeleton of the plant cell
  publication-title: Russian Journal of Plant Physiology
  doi: 10.1134/S1021443712040036
– volume: 22
  start-page: 875
  year: 1995
  ident: key 20170512172148_MCT205C43
  article-title: Breeding for salinity resistance in crop plants: where next?
  publication-title: Australian Journal of Plant Physiology
  doi: 10.1071/PP9950875
– volume: 102
  start-page: 360
  year: 1998
  ident: key 20170512172148_MCT205C160
  article-title: Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum
  publication-title: Physiologia Plantarum
  doi: 10.1034/j.1399-3054.1998.1020304.x
– volume: 18
  start-page: 227
  year: 1999
  ident: key 20170512172148_MCT205C52
  article-title: Salt tolerance and crop potential of halophytes
  publication-title: Critical Reviews in Plant Sciences
  doi: 10.1016/S0735-2689(99)00388-3
– volume: 120
  start-page: 281
  year: 1992
  ident: key 20170512172148_MCT205C83
  article-title: Salt tolerance of the coastal salt-marsh grass, Sporobolus virginicus (L) kunth
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1992.tb05665.x
– volume: 179
  start-page: 366
  year: 2008
  ident: key 20170512172148_MCT205C119
  article-title: Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02461.x
– volume: 164
  start-page: 980
  year: 2007
  ident: key 20170512172148_MCT205C101
  article-title: Morphological and physiological traits of three major Arabidopsis thaliana accessions
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2006.06.008
– volume: 146
  start-page: 26
  year: 2012
  ident: key 20170512172148_MCT205C133
  article-title: Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa)
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.2012.01599.x
SSID ssj0002691
Score 2.5993276
SecondaryResourceType review_article
Snippet • Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant...
Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of...
Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1209
SubjectTerms abiotic stress
Adaptation, Physiological
crops
Epidermal cells
genes
genetic variation
Halophytes
INVITED REVIEW
metabolism
physiology
plant breeding
Plant cells
Plant physiology
Plant Stomata
Plant Stomata - physiology
Plants
potassium
Quinoa
Salinity
Salt tolerance
Salt-Tolerant Plants
Salt-Tolerant Plants - physiology
shoots
sodium
Sodium Chloride
Sodium Chloride - metabolism
stomata
stress tolerance
Stress, Physiological
tonoplast
Trichomes
vacuoles
Vacuoles - metabolism
water use efficiency
Xylem
Title Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
URI https://www.jstor.org/stable/42801589
https://www.ncbi.nlm.nih.gov/pubmed/24085482
https://www.proquest.com/docview/1445914958
https://www.proquest.com/docview/1492623143
https://www.proquest.com/docview/1663587948
https://pubmed.ncbi.nlm.nih.gov/PMC3806534
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZg48AFjR9jZYCM4IJQttV26oTbQJsmVoYEregtsh1Hi1SSqfUO8NfzbMf5AdU0uFhV8mRF_tzn79nvfUbojd3aTxQwN-AeKmJay0gIoaJJKlIpUiXG2hY4f76YnM3Zp0W8CNe7N9UlRh6oXxvrSv4HVXgGuNoq2X9Atu0UHsBvwBdaQBjaW2E8DfsarkjkUixrGDTjs9zclkXr2WCxKr0a89oEcQhLO0u3p6DfCVnWVrq1KR0x9VKvXDGBTVNf1VfrPontRJdlbYIzcTKPQoqlY6PfbFHnz_6Wwpg2tXWd5wEnEHHq5cUPtPeMwMUie-o6cJ1j0psjvOcIbUlub1EdE18H_ZfD9mJWopbQ_lCGHMXdwhQO4y--ZKfz6TSbnSxmd9E2gYAAPNr28fnX7-ftqksm_nbE8OlBijalh9D7oe97QD58_ummyOLPBNke45jtoAdNqICPPe4P0R1dPUL3Prghf4zKAD624OMO_Pd4AD120GOAHnfQY1PjBnrcQI899LiFHpcVdtA_QfPTk9nHs6i5NyNSMSUmElQkOS8SmhcJRO85eG3OqeA6AX4prUgel4wVLOaS5oyTSR4DD5eEcKmJlJruoq2qrvQewoWUOSnyRMeCsyOgLlIJQXWqbKpdLOMRehsGNFONqLy922SZ-eQGmsHgZ37wR-h1a3vlpVQ2Wu06XFoTiI-BsibpCL0KQGXgAu25lqh0fb2G6JXFqY30k5tsrDAmhejgBhvLvhNYoKCfp34CtF_hlABZQkaID6ZGa2Bl2odvqvLSybVTm7tA2bNbfNs-ut_9H5-jLbO61i-A9Br5spnvvwEkPLXw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+halophytes%3A+physiological+basis+and+strategies+to+improve+abiotic+stress+tolerance+in+crops&rft.jtitle=Annals+of+botany&rft.au=Shabala%2C+Sergey&rft.date=2013-11-01&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=112&rft.issue=7&rft.spage=1209&rft.epage=1221&rft_id=info:doi/10.1093%2Faob%2Fmct205&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon