Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops
• Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need f...
Saved in:
Published in | Annals of botany Vol. 112; no. 7; pp. 1209 - 1221 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | • Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. • Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na⁺ sequestration; increasing the efficiency of internal Na⁺ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K⁺ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na⁺ transport to the shoot. |
---|---|
AbstractList | Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na ⁺ sequestration; increasing the efficiency of internal Na ⁺ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K ⁺ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na ⁺ transport to the shoot. Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops.BACKGROUNDGlobal annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops.This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.SCOPE AND CONCLUSIONSThis review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot. • Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. • Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na⁺ sequestration; increasing the efficiency of internal Na⁺ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K⁺ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na⁺ transport to the shoot. Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. Scope and Conclusions This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na super(+) sequestration; increasing the efficiency of internal Na super(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K super(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na super(+) transport to the shoot. Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot. |
Author | Shabala, Sergey |
AuthorAffiliation | School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia |
AuthorAffiliation_xml | – name: School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia |
Author_xml | – sequence: 1 givenname: Sergey surname: Shabala fullname: Shabala, Sergey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24085482$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFTEUxYNU7Gt1417JUgpjM_mYZFwIUuoHPHCj65DM3HkvJZOMSV6h_70ZXltUBF1dyPndk3uTc4ZOQgyA0MuWvG1Jzy5NtJfzUCgRT9CmnohG0Z6coA1hRDSSdfwUneV8QwihXd8-Q6eUEyW4ohvktmBScGGHpxRnvDc-Lvu7AvkdrjW76OPODcZja7LL2IQR55JMgZ2DjEvEbl5SvAVsrIvFDasKeVU8JBMGwC7gIcUlP0dPJ-MzvLiv5-j7x-tvV5-b7ddPX64-bJtBMFoaw4wa5aTYOCnS87FVTEpmJCjSdZbQlkvL-cSFtGzkknajUExYSqUFai2wc_T-6Lsc7AzjAKHO6_WS3GzSnY7G6d-V4PZ6F281qzcIxqvBm3uDFH8cIBc9uzyA9yZAPGTddh0TSvZc_RvlPe0oazn7D5SLvvJidX396waPoz_8WgXIEagPm3OCSQ-umOLiupDzuiV6DYauwdDHYNSWiz9aHlz_Cr86wje5xPRIcqpIK1TPfgIzUMXT |
CitedBy_id | crossref_primary_10_1080_15226514_2021_2025206 crossref_primary_10_1007_s12229_015_9153_7 crossref_primary_10_1007_s13580_021_00362_x crossref_primary_10_1038_s41396_023_01516_8 crossref_primary_10_1007_s00344_022_10840_w crossref_primary_10_3390_agronomy11101907 crossref_primary_10_1093_aob_mcu248 crossref_primary_10_1038_s41598_021_81698_3 crossref_primary_10_1007_s13205_021_03092_0 crossref_primary_10_1134_S1021443719040046 crossref_primary_10_1016_j_plaphy_2015_07_005 crossref_primary_10_1186_s12863_017_0545_z crossref_primary_10_3390_phycology2010007 crossref_primary_10_1016_j_indcrop_2022_115199 crossref_primary_10_1080_1343943X_2019_1682462 crossref_primary_10_1016_j_plaphy_2016_10_011 crossref_primary_10_1016_j_molp_2021_12_003 crossref_primary_10_1111_plb_12704 crossref_primary_10_1111_nph_18420 crossref_primary_10_1016_j_envexpbot_2021_104754 crossref_primary_10_3389_fpls_2019_01361 crossref_primary_10_1186_s12870_020_02680_1 crossref_primary_10_3389_fpls_2019_01121 crossref_primary_10_3389_fpls_2023_1170641 crossref_primary_10_1111_nph_16247 crossref_primary_10_1007_s00425_014_2117_z crossref_primary_10_3390_plants9020227 crossref_primary_10_1016_j_plaphy_2018_06_029 crossref_primary_10_3389_fpls_2022_814755 crossref_primary_10_1016_j_scienta_2018_08_045 crossref_primary_10_1016_j_plantsci_2018_12_002 crossref_primary_10_1111_ppl_12758 crossref_primary_10_1002_fsn3_4755 crossref_primary_10_1007_s00122_018_3146_y crossref_primary_10_1016_j_plantsci_2016_08_009 crossref_primary_10_1016_j_envexpbot_2019_103812 crossref_primary_10_1007_s10725_024_01122_4 crossref_primary_10_1007_s11104_018_3868_2 crossref_primary_10_1007_s10722_022_01511_6 crossref_primary_10_1016_j_envexpbot_2020_104123 crossref_primary_10_1111_nph_18411 crossref_primary_10_1007_s10725_022_00942_6 crossref_primary_10_1111_pbi_13443 crossref_primary_10_32615_bp_2019_126 crossref_primary_10_1016_j_ecolind_2021_107488 crossref_primary_10_1016_j_scienta_2021_110762 crossref_primary_10_3389_fevo_2024_1361124 crossref_primary_10_1007_s41365_017_0341_5 crossref_primary_10_1016_j_plaphy_2014_06_010 crossref_primary_10_3389_fphys_2017_00509 crossref_primary_10_1007_s12892_022_00173_1 crossref_primary_10_1515_opag_2022_0368 crossref_primary_10_1007_s11104_022_05551_w crossref_primary_10_1007_s42729_024_02199_6 crossref_primary_10_1038_s41598_019_51178_w crossref_primary_10_1071_FP16187 crossref_primary_10_3389_fpls_2018_01954 crossref_primary_10_1111_tpj_13595 crossref_primary_10_3390_f8040136 crossref_primary_10_1016_j_envexpbot_2020_104236 crossref_primary_10_3389_fpls_2023_1154051 crossref_primary_10_1007_s00425_023_04275_0 crossref_primary_10_4236_ajps_2013_412A3010 crossref_primary_10_1016_j_envexpbot_2021_104652 crossref_primary_10_1016_j_envexpbot_2020_104254 crossref_primary_10_3389_fenvs_2023_1198540 crossref_primary_10_3389_fpls_2014_00154 crossref_primary_10_3390_agriculture6020026 crossref_primary_10_1016_j_agrcom_2024_100050 crossref_primary_10_1002_2017WR022319 crossref_primary_10_1016_j_plantsci_2023_111602 crossref_primary_10_1071_FP17049 crossref_primary_10_1016_j_envexpbot_2024_105690 crossref_primary_10_1016_j_envexpbot_2020_104124 crossref_primary_10_1093_aob_mcaa063 crossref_primary_10_1111_nph_19619 crossref_primary_10_1093_plphys_kiae040 crossref_primary_10_1016_j_stress_2024_100595 crossref_primary_10_1007_s42535_023_00696_0 crossref_primary_10_1093_pcp_pcaa061 crossref_primary_10_3390_genes10121039 crossref_primary_10_3390_plants13101330 crossref_primary_10_3769_radioisotopes_72_235 crossref_primary_10_1134_S1021443719020109 crossref_primary_10_3390_agronomy12081947 crossref_primary_10_1111_tpj_14424 crossref_primary_10_1007_s00299_023_03104_8 crossref_primary_10_3389_fpls_2016_00351 crossref_primary_10_3390_plants12071454 crossref_primary_10_1038_s41598_022_26903_7 crossref_primary_10_1093_jxb_erv465 crossref_primary_10_3389_fpls_2019_01040 crossref_primary_10_3389_fpls_2022_849553 crossref_primary_10_1016_j_pld_2019_07_002 crossref_primary_10_3389_fgene_2017_00197 crossref_primary_10_1007_s00299_023_03087_6 crossref_primary_10_1016_j_flora_2016_04_013 crossref_primary_10_1016_j_plantsci_2023_111747 crossref_primary_10_3390_agriculture15030254 crossref_primary_10_1007_s00344_023_10912_5 crossref_primary_10_1007_s42977_020_00019_3 crossref_primary_10_1007_s00425_015_2317_1 crossref_primary_10_1016_j_plaphy_2021_06_021 crossref_primary_10_1093_aob_mcu177 crossref_primary_10_1007_s00425_022_04035_6 crossref_primary_10_3390_agronomy12051053 crossref_primary_10_1016_j_xinn_2020_100017 crossref_primary_10_1007_s10653_021_01165_w crossref_primary_10_3390_su15031804 crossref_primary_10_1007_s11104_023_06170_9 crossref_primary_10_1016_j_scitotenv_2021_150544 crossref_primary_10_3390_agronomy9110687 crossref_primary_10_1016_j_envexpbot_2020_104146 crossref_primary_10_3389_fpls_2022_886862 crossref_primary_10_1007_s42729_022_00854_4 crossref_primary_10_1186_s12870_020_02734_4 crossref_primary_10_1186_s43141_022_00327_2 crossref_primary_10_3389_fpls_2022_1012186 crossref_primary_10_1016_j_plaphy_2017_04_014 crossref_primary_10_1111_pce_13759 crossref_primary_10_1071_FP21336 crossref_primary_10_1016_j_ijbiomac_2024_133084 crossref_primary_10_1590_1519_6984_277342 crossref_primary_10_1111_plb_12521 crossref_primary_10_3389_fpls_2018_01515 crossref_primary_10_1016_j_sjbs_2018_08_006 crossref_primary_10_1071_FP18046 crossref_primary_10_1016_j_envexpbot_2021_104692 crossref_primary_10_3390_genes13010033 crossref_primary_10_1007_s11104_021_04889_x crossref_primary_10_1016_j_envexpbot_2023_105468 crossref_primary_10_3390_plants12010092 crossref_primary_10_1007_s40995_020_01035_7 crossref_primary_10_1080_17429145_2020_1722266 crossref_primary_10_1080_01904167_2017_1385811 crossref_primary_10_1016_j_sajb_2016_04_006 crossref_primary_10_1080_1343943X_2019_1698968 crossref_primary_10_1093_pcp_pcx026 crossref_primary_10_1093_pcp_pcz205 crossref_primary_10_3390_plants10040625 crossref_primary_10_1093_pcp_pcac158 crossref_primary_10_1007_s11104_019_04152_4 crossref_primary_10_1016_j_jplph_2016_10_009 crossref_primary_10_1071_FP18295 crossref_primary_10_1186_s12870_019_2006_5 crossref_primary_10_1186_s12870_019_1686_1 crossref_primary_10_1007_s00344_021_10460_w crossref_primary_10_1016_j_stress_2025_100768 crossref_primary_10_1007_s10528_019_09930_4 crossref_primary_10_3389_fpls_2020_00457 crossref_primary_10_1016_j_scienta_2019_01_038 crossref_primary_10_1093_aob_mcu194 crossref_primary_10_24326_asphc_2021_4_1 crossref_primary_10_1016_j_ecoleng_2019_105593 crossref_primary_10_1002_csc2_20949 crossref_primary_10_3389_fpls_2023_1218184 crossref_primary_10_1186_s12870_023_04358_w crossref_primary_10_1111_pce_13857 crossref_primary_10_1016_j_envexpbot_2018_11_020 crossref_primary_10_1111_pce_12768 crossref_primary_10_1007_s11738_018_2745_1 crossref_primary_10_1038_s41598_022_17377_8 crossref_primary_10_1007_s11105_020_01255_6 crossref_primary_10_1111_1442_1984_12132 crossref_primary_10_1071_FP16120 crossref_primary_10_3389_fmicb_2024_1470081 crossref_primary_10_3390_microorganisms10091836 crossref_primary_10_3390_agronomy14020242 crossref_primary_10_1002_pld3_535 crossref_primary_10_1016_j_cj_2024_01_005 crossref_primary_10_1016_j_crope_2023_03_002 crossref_primary_10_1080_15592324_2024_2370724 crossref_primary_10_3389_fpls_2016_00139 crossref_primary_10_1134_S102144372003019X crossref_primary_10_1111_jipb_13008 crossref_primary_10_3390_ijms19082252 crossref_primary_10_3390_plants13141954 crossref_primary_10_1016_j_isci_2021_103547 crossref_primary_10_1111_pce_12776 crossref_primary_10_1007_s10725_024_01257_4 crossref_primary_10_1016_j_pbi_2018_07_015 crossref_primary_10_1071_FP15288 crossref_primary_10_3389_fpls_2015_00071 crossref_primary_10_1071_FP15284 crossref_primary_10_1186_s12870_024_05743_9 crossref_primary_10_1071_FPv43n7_FO crossref_primary_10_1007_s11756_023_01554_9 crossref_primary_10_1007_s11738_016_2121_y crossref_primary_10_3390_ijms24020941 crossref_primary_10_1016_j_foodchem_2021_129370 crossref_primary_10_3390_biology11040597 crossref_primary_10_1002_jpln_202000148 crossref_primary_10_1080_1343943X_2016_1221320 crossref_primary_10_1016_j_tifs_2014_08_005 crossref_primary_10_13080_z_a_2016_103_030 crossref_primary_10_3390_plants11243450 crossref_primary_10_1016_j_jia_2023_07_015 crossref_primary_10_1111_pce_12995 crossref_primary_10_3390_plants9060786 crossref_primary_10_1016_j_flora_2016_07_009 crossref_primary_10_3389_fpls_2017_00582 crossref_primary_10_1007_s11356_018_2442_z crossref_primary_10_18006_2017_5_Spl_1_SAFSAW__S41_S49 crossref_primary_10_3390_agronomy8100231 crossref_primary_10_1016_j_envexpbot_2021_104431 crossref_primary_10_3389_fmicb_2019_01849 crossref_primary_10_1016_j_scitotenv_2022_153028 crossref_primary_10_1146_annurev_arplant_042916_040936 crossref_primary_10_1111_plb_12693 crossref_primary_10_1155_2019_4262013 crossref_primary_10_1071_FP15381 crossref_primary_10_3390_molecules27010028 crossref_primary_10_1007_s11104_018_3793_4 crossref_primary_10_3390_membranes13100845 crossref_primary_10_3389_fpls_2018_00100 crossref_primary_10_1016_j_plaphy_2021_11_030 crossref_primary_10_1016_j_scienta_2025_114031 crossref_primary_10_3389_fpls_2020_613936 crossref_primary_10_1093_jxb_erv493 crossref_primary_10_1080_1343943X_2019_1647788 crossref_primary_10_1016_j_plaphy_2024_109125 crossref_primary_10_1111_1365_2435_13202 crossref_primary_10_1007_s00468_022_02274_4 crossref_primary_10_1016_j_cj_2024_02_007 crossref_primary_10_1016_j_envexpbot_2021_104708 crossref_primary_10_15835_nbha50112615 crossref_primary_10_3390_plants13233332 crossref_primary_10_1007_s13580_023_00511_4 crossref_primary_10_3390_plants13162322 crossref_primary_10_1071_BT16014 crossref_primary_10_1016_j_aquaculture_2024_741388 crossref_primary_10_3390_plants12213747 crossref_primary_10_1071_FP17133 crossref_primary_10_3389_fpls_2018_00249 crossref_primary_10_3390_cells12101431 crossref_primary_10_1016_j_indcrop_2021_114502 crossref_primary_10_3389_fpls_2021_713984 crossref_primary_10_1007_s10811_022_02897_7 crossref_primary_10_1111_jac_12587 crossref_primary_10_3390_ijms24044062 crossref_primary_10_3390_agriculture13061198 crossref_primary_10_1111_jipb_12238 crossref_primary_10_3390_plants10081513 crossref_primary_10_1660_062_122_0105 crossref_primary_10_51758_AGJSR_02_2019_0006 crossref_primary_10_1007_s00344_020_10259_1 crossref_primary_10_3390_plants9040422 crossref_primary_10_1016_j_heliyon_2023_e14403 crossref_primary_10_1016_j_scienta_2023_112508 crossref_primary_10_1093_pcp_pcy187 crossref_primary_10_1093_aob_mcae168 crossref_primary_10_1016_j_envexpbot_2014_05_006 crossref_primary_10_1111_jipb_13562 crossref_primary_10_3390_ijms21144882 crossref_primary_10_1016_j_envexpbot_2021_104600 crossref_primary_10_1590_1983_21252024v3712423rc crossref_primary_10_3389_fpls_2022_989946 crossref_primary_10_1016_j_jplph_2016_06_010 crossref_primary_10_3390_agronomy9040176 crossref_primary_10_1111_jac_12122 crossref_primary_10_1111_ppl_13413 crossref_primary_10_3389_fpls_2016_00050 crossref_primary_10_1016_j_plaphy_2017_12_008 crossref_primary_10_1111_jac_12242 crossref_primary_10_1111_ppl_12447 crossref_primary_10_3390_plants11212992 crossref_primary_10_3389_fpls_2016_01146 crossref_primary_10_1016_j_envexpbot_2015_12_006 crossref_primary_10_3390_microorganisms12122587 crossref_primary_10_36610_j_jsab_2020_080200110x crossref_primary_10_14302_issn_2576_6694_jbbs_20_3525 crossref_primary_10_1007_s11104_022_05769_8 crossref_primary_10_1016_j_envexpbot_2014_11_010 crossref_primary_10_7717_peerj_18236 crossref_primary_10_3389_fpls_2021_745422 crossref_primary_10_3389_fmicb_2021_681567 crossref_primary_10_3389_fpls_2017_00155 crossref_primary_10_1016_j_cj_2024_03_001 crossref_primary_10_1111_plb_13348 crossref_primary_10_1071_FP19303 crossref_primary_10_3389_fpls_2018_00256 crossref_primary_10_1007_s13562_021_00656_2 crossref_primary_10_1111_ppl_12217 crossref_primary_10_1007_s11738_023_03598_5 crossref_primary_10_1007_s11104_020_04436_0 crossref_primary_10_1016_j_envexpbot_2020_104328 crossref_primary_10_1016_j_hpj_2024_01_005 crossref_primary_10_1016_j_fcr_2016_03_010 crossref_primary_10_1111_ppl_13663 crossref_primary_10_3390_ijms19061634 crossref_primary_10_1016_j_plaphy_2025_109578 crossref_primary_10_1080_07388551_2022_2042481 crossref_primary_10_3390_app12073586 crossref_primary_10_3389_fpls_2016_01372 crossref_primary_10_1016_j_plaphy_2023_108075 crossref_primary_10_1007_s10725_014_9941_9 crossref_primary_10_1093_pcp_pcu105 crossref_primary_10_1007_s12229_016_9173_y crossref_primary_10_33581_2957_5060_2022_2_4_18 crossref_primary_10_61186_jcb_16_3_64 crossref_primary_10_1186_s12870_016_0797_1 crossref_primary_10_1007_s00300_020_02768_2 crossref_primary_10_1080_15226514_2018_1452184 crossref_primary_10_3389_fpls_2023_1091292 crossref_primary_10_3390_stresses1040017 crossref_primary_10_1071_FP15312 crossref_primary_10_3389_fpls_2015_00581 crossref_primary_10_3390_antiox14030353 crossref_primary_10_1080_11263504_2019_1610114 crossref_primary_10_1016_j_plaphy_2021_09_039 crossref_primary_10_1016_j_plaphy_2023_108063 crossref_primary_10_1016_j_plaphy_2023_108182 crossref_primary_10_3389_fmicb_2018_00148 crossref_primary_10_1111_ppl_13280 crossref_primary_10_1631_jzus_B1900510 crossref_primary_10_1371_journal_pone_0164711 crossref_primary_10_1007_s10725_021_00788_4 crossref_primary_10_1016_j_envexpbot_2015_11_010 crossref_primary_10_1007_s11356_023_28162_z crossref_primary_10_1016_j_jaridenv_2025_105321 crossref_primary_10_1038_s41598_020_64925_1 crossref_primary_10_3389_fpls_2016_01071 crossref_primary_10_1007_s10725_015_0063_9 crossref_primary_10_1016_j_tplants_2014_09_001 crossref_primary_10_3390_agronomy14010039 crossref_primary_10_1111_nph_13414 crossref_primary_10_1111_nph_13535 crossref_primary_10_1111_ppl_13166 crossref_primary_10_1016_j_flora_2018_05_001 crossref_primary_10_1270_jsbbs_20123 crossref_primary_10_3389_fpls_2020_00713 crossref_primary_10_1134_S1021443723602513 crossref_primary_10_3389_fhort_2023_1130702 crossref_primary_10_3390_plants11050691 crossref_primary_10_1016_j_envexpbot_2016_04_002 crossref_primary_10_1007_s11104_023_05926_7 crossref_primary_10_3390_f13122178 crossref_primary_10_1080_0972060X_2016_1194774 crossref_primary_10_3389_fpls_2022_1097076 crossref_primary_10_4025_actasciagron_v44i1_54364 crossref_primary_10_1093_jxb_erx142 crossref_primary_10_3390_ijms26062599 crossref_primary_10_1016_j_cj_2018_01_003 crossref_primary_10_3389_fpls_2016_02035 crossref_primary_10_1111_gfs_12410 crossref_primary_10_3389_fpls_2021_743964 crossref_primary_10_3389_fsci_2024_1416023 crossref_primary_10_1038_s41598_018_23116_9 crossref_primary_10_3390_ijms222312848 crossref_primary_10_1016_j_sajb_2024_10_059 crossref_primary_10_1186_s12864_017_4104_9 crossref_primary_10_3390_ijms21041516 crossref_primary_10_1007_s13762_018_1705_z crossref_primary_10_1111_nph_13519 crossref_primary_10_3389_fpls_2021_646175 crossref_primary_10_1016_j_flora_2016_09_006 crossref_primary_10_1080_11263504_2020_1837277 crossref_primary_10_1016_j_sajb_2021_09_015 crossref_primary_10_1016_j_plaphy_2021_03_055 crossref_primary_10_1016_j_molp_2015_10_006 crossref_primary_10_3390_plants11050672 crossref_primary_10_1016_j_plaphy_2023_108276 crossref_primary_10_36610_j_jsab_2020_080200110 crossref_primary_10_3389_fpls_2022_957735 crossref_primary_10_1016_j_jplph_2021_153432 crossref_primary_10_1111_plb_13271 crossref_primary_10_1016_j_foodchem_2020_127525 crossref_primary_10_1111_ppl_13359 crossref_primary_10_1016_j_scienta_2024_113172 crossref_primary_10_1186_s43141_023_00483_z crossref_primary_10_3390_ijms22094921 crossref_primary_10_1016_j_envexpbot_2017_07_002 crossref_primary_10_3390_agriculture13030734 crossref_primary_10_3390_horticulturae10060598 crossref_primary_10_1007_s11738_019_2935_5 crossref_primary_10_3906_tar_1701_94 crossref_primary_10_3389_fpls_2023_1137211 crossref_primary_10_3389_fpls_2021_697692 crossref_primary_10_1007_s11356_018_2530_0 crossref_primary_10_1016_j_envexpbot_2022_104896 crossref_primary_10_29328_journal_jpsp_1001058 crossref_primary_10_1007_s00344_018_9830_y crossref_primary_10_3390_plants11223114 crossref_primary_10_3390_plants13050721 crossref_primary_10_1016_j_plantsci_2015_02_011 crossref_primary_10_1016_j_plaphy_2022_02_019 crossref_primary_10_1016_j_plaphy_2019_03_014 crossref_primary_10_3390_plants10071449 crossref_primary_10_3389_fpls_2022_978304 crossref_primary_10_1016_j_plaphy_2024_108569 crossref_primary_10_1186_s13007_019_0397_9 crossref_primary_10_3390_plants11111516 crossref_primary_10_1111_ppl_13244 crossref_primary_10_1016_j_envexpbot_2018_10_001 crossref_primary_10_3390_ijms242316831 crossref_primary_10_36899_japs_2023_5_0718 crossref_primary_10_1016_j_envexpbot_2016_12_003 crossref_primary_10_3389_fmicb_2023_1085787 crossref_primary_10_3390_ijms24065171 crossref_primary_10_1016_j_plantsci_2016_03_003 crossref_primary_10_1002_csc2_20249 crossref_primary_10_1016_j_aquabot_2018_01_001 crossref_primary_10_1007_s00128_021_03130_w crossref_primary_10_3390_ijms19092520 crossref_primary_10_1016_j_xplc_2023_100571 crossref_primary_10_1016_j_plantsci_2014_10_002 crossref_primary_10_1080_1343943X_2017_1279528 crossref_primary_10_1016_j_tplants_2018_11_003 crossref_primary_10_1111_ppl_12165 crossref_primary_10_1002_ldr_2819 crossref_primary_10_1093_jxb_erz367 crossref_primary_10_4236_ajps_2020_1111127 crossref_primary_10_1093_aobpla_plv136 crossref_primary_10_1186_s12864_025_11409_z crossref_primary_10_3389_fpls_2022_844449 crossref_primary_10_1016_j_flora_2020_151748 crossref_primary_10_1111_ppl_14356 crossref_primary_10_1016_j_aquabot_2020_103292 crossref_primary_10_1007_s00792_022_01268_x crossref_primary_10_1021_acs_jafc_0c00346 crossref_primary_10_3906_tar_1611_82 crossref_primary_10_1093_jxb_eraa158 crossref_primary_10_1071_FP21151 crossref_primary_10_1071_FP20185 crossref_primary_10_32615_bp_2020_075 crossref_primary_10_3390_ijms24010242 crossref_primary_10_1016_j_jplph_2015_08_002 crossref_primary_10_1111_pce_14279 crossref_primary_10_3390_ijms20133167 crossref_primary_10_1016_j_agwat_2022_107832 crossref_primary_10_1007_s10725_017_0262_7 crossref_primary_10_3390_agriculture13010001 crossref_primary_10_1016_j_envexpbot_2019_103885 crossref_primary_10_1007_s11033_024_09539_w crossref_primary_10_1007_s00425_020_03395_1 crossref_primary_10_1016_j_envexpbot_2016_03_011 crossref_primary_10_1016_j_envexpbot_2020_104075 crossref_primary_10_3390_agronomy12030562 crossref_primary_10_1016_j_envexpbot_2020_104191 crossref_primary_10_1007_s11099_017_0763_7 crossref_primary_10_1093_treephys_tpab072 crossref_primary_10_1007_s10343_022_00692_5 crossref_primary_10_1186_s12870_019_1827_6 crossref_primary_10_1134_S1021443723603695 crossref_primary_10_3390_agronomy10070938 crossref_primary_10_1016_j_envpol_2019_04_078 crossref_primary_10_1093_aobpla_plu023 crossref_primary_10_1093_plphys_kiae516 crossref_primary_10_1016_j_plaphy_2024_108642 crossref_primary_10_3389_fpls_2015_00630 crossref_primary_10_3389_fpls_2015_00873 crossref_primary_10_1016_j_bbrc_2018_07_123 crossref_primary_10_1093_jxb_erab388 crossref_primary_10_1007_s12298_018_0551_2 crossref_primary_10_3390_plants11192653 crossref_primary_10_3390_ijms22073294 crossref_primary_10_3390_plants10020309 crossref_primary_10_3390_plants10020307 crossref_primary_10_1007_s11738_019_2993_8 crossref_primary_10_1016_j_envres_2021_111228 crossref_primary_10_3389_fpls_2023_1161539 crossref_primary_10_1007_s10265_015_0715_x crossref_primary_10_3390_ijms18112444 crossref_primary_10_3390_plants10061100 crossref_primary_10_1007_s00709_019_01378_y crossref_primary_10_1093_jxb_ery194 crossref_primary_10_1071_CP16311 crossref_primary_10_1016_j_sajb_2017_09_007 crossref_primary_10_1093_jxb_erac224 crossref_primary_10_3390_ijms221910733 crossref_primary_10_1016_j_stress_2022_100061 crossref_primary_10_1007_s11104_016_2809_1 crossref_primary_10_3390_biology12020176 crossref_primary_10_1080_13102818_2015_1060868 crossref_primary_10_1080_11263504_2019_1635221 crossref_primary_10_1016_j_febslet_2014_09_003 crossref_primary_10_1016_j_plaphy_2017_09_006 crossref_primary_10_1016_j_flora_2020_151705 crossref_primary_10_1007_s11274_024_04217_2 crossref_primary_10_3390_plants11081051 crossref_primary_10_1007_s13580_018_0095_y crossref_primary_10_1016_j_envexpbot_2023_105550 crossref_primary_10_1016_j_scitotenv_2018_07_187 crossref_primary_10_1007_s11738_021_03211_7 crossref_primary_10_1007_s10725_015_0028_z crossref_primary_10_1111_nph_15240 crossref_primary_10_1111_pbi_12498 crossref_primary_10_1071_FP23133 crossref_primary_10_3390_land10050481 crossref_primary_10_1016_j_plaphy_2019_11_025 crossref_primary_10_1111_mec_17457 crossref_primary_10_1007_s00425_017_2762_0 crossref_primary_10_1016_j_tplants_2024_10_002 crossref_primary_10_1007_s13562_023_00868_8 crossref_primary_10_1016_j_envdev_2020_100545 crossref_primary_10_1139_cjfr_2018_0491 crossref_primary_10_3390_ijpb13040032 crossref_primary_10_14720_aas_2017_109_3_09 crossref_primary_10_3390_plants11030416 crossref_primary_10_21597_jist_915426 crossref_primary_10_3390_ijms19113446 crossref_primary_10_3390_stresses3010027 crossref_primary_10_1007_s10265_021_01285_5 crossref_primary_10_1038_s41598_023_48947_z crossref_primary_10_1007_s10725_014_0013_y crossref_primary_10_3389_fpls_2016_00977 crossref_primary_10_1016_j_cj_2021_02_010 crossref_primary_10_1111_ppl_14170 crossref_primary_10_1186_s12864_015_1243_8 crossref_primary_10_1071_FP23266 crossref_primary_10_1093_aob_mcu217 crossref_primary_10_1093_treephys_tpab158 crossref_primary_10_3390_plants13050565 crossref_primary_10_1093_aob_mcu219 crossref_primary_10_1007_s12298_017_0483_2 crossref_primary_10_1007_s00709_018_1289_y crossref_primary_10_1264_jsme2_ME20072 crossref_primary_10_3390_ijms23063293 crossref_primary_10_1007_s11103_020_01011_0 crossref_primary_10_3390_plants11030409 crossref_primary_10_1111_pce_13391 crossref_primary_10_1007_s40333_024_0062_7 crossref_primary_10_3389_fpls_2014_00605 crossref_primary_10_1093_treephys_tpw127 crossref_primary_10_1093_jxb_erae456 crossref_primary_10_3389_fpls_2016_00848 crossref_primary_10_1007_s40502_019_0434_8 crossref_primary_10_3390_antiox10040611 crossref_primary_10_1007_s11738_018_2616_9 crossref_primary_10_1111_tpj_16549 crossref_primary_10_3389_fpls_2016_00609 crossref_primary_10_3390_agronomy13051327 crossref_primary_10_1093_aob_mcu229 crossref_primary_10_3390_world5010003 crossref_primary_10_1016_j_envexpbot_2018_07_022 crossref_primary_10_1007_s11738_022_03418_2 crossref_primary_10_1080_01904167_2020_1724307 crossref_primary_10_3390_ijms22042112 crossref_primary_10_1016_j_plantsci_2015_10_003 crossref_primary_10_1007_s11104_020_04463_x crossref_primary_10_1080_15226514_2023_2282044 crossref_primary_10_3390_ijms20051085 crossref_primary_10_3390_ijms22010428 crossref_primary_10_1007_s11240_015_0900_6 crossref_primary_10_3390_stresses3010003 crossref_primary_10_1038_cr_2017_124 crossref_primary_10_1016_j_envexpbot_2024_105921 crossref_primary_10_1016_j_envexpbot_2019_103949 crossref_primary_10_3389_fpls_2017_00829 crossref_primary_10_3390_ijms21031017 crossref_primary_10_1080_07352689_2023_2285536 crossref_primary_10_1007_s40415_023_00974_w crossref_primary_10_1016_j_jplph_2022_153662 crossref_primary_10_1080_15592324_2019_1665455 crossref_primary_10_1016_j_scienta_2021_110309 crossref_primary_10_1016_j_plaphy_2024_108507 crossref_primary_10_1186_1471_2229_14_113 crossref_primary_10_3389_fpls_2021_667458 |
Cites_doi | 10.1016/j.agee.2008.10.014 10.1126/science.285.5431.1256 10.1146/annurev.pp.34.060183.002301 10.1016/0014-5793(89)81067-1 10.1016/j.pbi.2006.11.004 10.1016/j.jplph.2013.01.014 10.1093/jexbot/51.348.1243 10.1007/s0023200100073 10.1093/jexbot/51.344.497 10.1105/tpc.12.4.465 10.1104/pp.115.4.1707 10.1104/pp.107.110262 10.1105/tpc.010371 10.1073/pnas.231476498 10.1126/science.1154102 10.1086/415032 10.1046/j.1365-313x.1997.12061387.x 10.1111/j.1757-1707.2011.01111.x 10.1111/j.1365-313X.2007.03048.x 10.1134/S102144370706012X 10.1007/s12033-012-9538-3 10.1007/BF01373866 10.1016/S0378-3774(01)00166-4 10.1105/tpc.104.028472 10.1023/A:1022597102282 10.1146/annurev.arplant.59.032607.092911 10.1146/annurev.pp.28.060177.000513 10.1016/j.pbi.2011.10.010 10.1186/1471-2229-12-188 10.1021/ie100270x 10.1007/s11183-005-0094-6 10.1126/science.210.4468.399 10.1093/jxb/28.4.894 10.1111/j.1469-8137.1987.tb00873.x 10.1111/j.1469-8137.2010.03208.x 10.1007/s11104-007-9457-4 10.1016/S0065-2296(10)53004-0 10.1007/BF02182232 10.1007/BF00010921 10.1046/j.1469-8137.1998.00111.x 10.2134/jeq2004.1271 10.1046/j.1469-8137.1998.00159.x 10.1080/07352689.2010.524517 10.1093/jxb/erp391 10.1016/j.agrformet.2008.11.010 10.1111/j.1469-8137.1985.tb02816.x 10.1104/pp.105.3.799 10.1071/FP09051 10.1093/aob/mcm119 10.1105/tpc.106.044834 10.1093/jxb/erm253 10.1111/j.1365-2494.2007.00623.x 10.1104/pp.111.4.1321 10.1071/EA01111 10.1093/jxb/erj108 10.1111/j.1365-3040.2007.01674.x 10.1111/j.1469-8137.2008.02531.x 10.1038/90824 10.1016/j.febslet.2007.04.014 10.1046/j.1365-313X.1998.00147.x 10.1016/j.jplph.2004.11.011 10.5367/oa.2010.0001 10.1146/annurev.arplant.59.032607.092949 10.1111/j.1365-313X.2009.04110.x 10.1104/pp.105.067850 10.1007/s00425-007-0606-z 10.1046/j.1365-3040.2003.00930.x 10.1515/BMC.2011.032 10.1111/j.1438-8677.1981.tb00411.x 10.1016/j.jplph.2007.04.001 10.1016/j.pbi.2009.07.015 10.1007/s00438-003-0843-1 10.1104/pp.63.1.156 10.1071/FP11088 10.1016/B978-0-12-387692-8.00005-9 10.1073/pnas.0913035107 10.1016/j.agee.2011.01.012 10.1007/s11103-005-2417-6 10.1007/s11738-008-0254-3 10.1111/j.1365-3040.2011.02291.x 10.1071/FP09269 10.1104/pp.109.2.549 10.1104/pp.117.2.375 10.1006/jare.1997.0320 10.1016/j.envexpbot.2012.07.003 10.1007/s00425-004-1269-7 10.1093/jxb/43.9.1219 10.1071/PP9950101 10.1093/jxb/47.1.25 10.1146/annurev.ph.51.030189.002303 10.1080/01140671.2006.9514382 10.1016/S0065-2571(98)00010-7 10.1006/jare.1997.0253 10.1104/pp.113.216572 10.1146/annurev.physiol.64.081501.155847 10.1007/s11099-010-0059-7 10.1093/emboj/16.19.5855 10.1034/j.1399-3054.2000.100317.x 10.1007/s11183-005-0115-5 10.1081/FRI-120018880 10.1111/j.1095-8339.1988.tb01705.x 10.1071/FPv37n7_FO 10.1007/s11356-009-0224-3 10.1016/0167-8809(93)90090-C 10.1016/j.pbi.2003.09.009 10.1081/CSS-120003078 10.1007/BF02182250 10.1139/G09-041 10.1016/S0014-5793(00)01093-0 10.1071/EA04162 10.1002/bies.200800231 10.1104/pp.114.1.185 10.1242/jcs.064352 10.1111/j.1365-3040.1994.tb00300.x 10.1081/FRI-120018884 10.1038/329833a0 10.1071/FP09229 10.3390/ijms14059267 10.1016/B978-0-12-385859-7.00002-1 10.1007/s10535-005-1304-y 10.1002/ldr.853 10.1146/annurev.pp.44.060193.001105 10.1104/pp.103.027086 10.1073/pnas.96.4.1480 10.1242/dev.122.3.997 10.1046/j.0016-8025.2001.00808.x 10.1007/s004250050501 10.1098/rstb.1998.0303 10.1111/j.1399-3054.2007.01008.x 10.1104/pp.78.1.163 10.2307/2443026 10.1079/9781845939953.0000 10.1093/jxb/erh003 10.1007/s11104-012-1133-7 10.1016/0377-8401(92)90109-J 10.1093/jxb/eri235 10.1093/jexbot/52.365.2355 10.1146/annurev.pp.31.060180.001053 10.1080/15226514.2010.532241 10.1111/j.1469-8137.2009.02903.x 10.1007/s00344-010-9161-0 10.1007/s10265-002-0070-6 10.1080/14735903.2012.646731 10.1093/jexbot/53.371.1055 10.1134/S1021443712040036 10.1071/PP9950875 10.1034/j.1399-3054.1998.1020304.x 10.1016/S0735-2689(99)00388-3 10.1111/j.1469-8137.1992.tb05665.x 10.1111/j.1469-8137.2008.02461.x 10.1016/j.jplph.2006.06.008 10.1111/j.1399-3054.2012.01599.x |
ContentType | Journal Article |
Copyright | Annals of Botany Company 2013 The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013 |
Copyright_xml | – notice: Annals of Botany Company 2013 – notice: The Author 2013. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7ST 7U6 C1K 7S9 L.6 5PM |
DOI | 10.1093/aob/mct205 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Environment Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1095-8290 |
EndPage | 1221 |
ExternalDocumentID | PMC3806534 24085482 10_1093_aob_mct205 42801589 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 1TH 1~5 23M 2WC 2~F 4.4 482 48X 4G. 5GY 5VS 5WA 5WD 6J9 7-5 70D 79B A8Z AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN ABBHK ABDBF ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACHIC ACIWK ACNCT ACPRK ACUFI ACUHS ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKRWK AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE COF CS3 CZ4 DAKXR DATOO DILTD D~K E3Z EBD EBS EDH EE~ EJD EMOBN ESX F5P F9B FDB FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z N9A NGC NLBLG NOMLY NU- NVLIB O-L O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 ROL ROX ROZ RPM RUSNO RW1 RXO SA0 SV3 TCN TEORI TLC TN5 TR2 UPT W8F WH7 WOQ X7H Y6R YAYTL YKOAZ YSK YXANX YZZ ZKX ~02 ~91 ~KM AAYXX CITATION --K 1B1 53G 71M AAEDT AALCJ AALRI AAQFI AAQXK AAWDT AAXUO AAYWO ABDPE ABEFU ABIME ABNGD ABPIB ABSMQ ABWVN ABZEO ACFRR ACPQN ACRPL ACUKT ACVCV ACZBC ADFGL ADMUD ADNMO ADXHL AEHUL AEKPW AETEA AFFNX AFSHK AFSWV AFYAG AGKRT AGMDO AGQPQ AHGBF AI. AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN C1A CAG CGR CUY CVF CXTWN DFGAJ DM4 ECM EIF ELUNK FA8 FEDTE FGOYB FIRID HVGLF IHE LG5 MBTAY NEJ NPM NTWIH OHT OZT O~Y PB- QBD R2- RIG RNI RPZ RZF RZO SSZ UHS VH1 XOL XPP ZCG ZMT 7X8 7ST 7U6 C1K 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c532t-a3a8d7f83df8094d183773a7e8066b02147b44f457b3d4726d5835b227be2bbe3 |
ISSN | 0305-7364 1095-8290 |
IngestDate | Thu Aug 21 17:52:34 EDT 2025 Thu Jul 10 17:55:15 EDT 2025 Thu Jul 10 22:39:20 EDT 2025 Thu Jul 10 21:22:29 EDT 2025 Mon Jul 21 05:48:58 EDT 2025 Tue Jul 01 01:39:14 EDT 2025 Thu Apr 24 22:55:53 EDT 2025 Sun Aug 24 12:10:32 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | stomata vacuole drought membrane potential trichome epidermal bladder osmotic adjustment cytosolic potassium sodium sequestration xylem loading Salinity |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c532t-a3a8d7f83df8094d183773a7e8066b02147b44f457b3d4726d5835b227be2bbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://academic.oup.com/aob/article-pdf/112/7/1209/17009277/mct205.pdf |
PMID | 24085482 |
PQID | 1445914958 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3806534 proquest_miscellaneous_1663587948 proquest_miscellaneous_1492623143 proquest_miscellaneous_1445914958 pubmed_primary_24085482 crossref_citationtrail_10_1093_aob_mct205 crossref_primary_10_1093_aob_mct205 jstor_primary_42801589 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Annals of botany |
PublicationTitleAlternate | Ann Bot |
PublicationYear | 2013 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Cosentino ( key 20170512172148_MCT205C31) 2010; 186 Apse ( key 20170512172148_MCT205C7) 2007; 581 Pottosin ( key 20170512172148_MCT205C107) 2001; 181 Bruggemann ( key 20170512172148_MCT205C23) 1999; 50 Colmer ( key 20170512172148_MCT205C30) 2005; 45 Adams ( key 20170512172148_MCT205C1) 1998; 138 Manousaki ( key 20170512172148_MCT205C81) 2011; 50 Rea ( key 20170512172148_MCT205C112) 1993; 44 Agarwal ( key 20170512172148_MCT205C3) 2013; 54 Bonales-Alatorre ( key 20170512172148_MCT205C18) 2013; 162 Shabala ( key 20170512172148_MCT205C132) 2010; 61 Rengasamy ( key 20170512172148_MCT205C115) 2006; 57 Cuin ( key 20170512172148_MCT205C34) 2010; 37 Koyro ( key 20170512172148_MCT205C71) 2008; 302 Omami ( key 20170512172148_MCT205C97) 2006; 34 Serna ( key 20170512172148_MCT205C123) 1997; 114 Zeiger ( key 20170512172148_MCT205C154) 1983; 34 Gaxiola ( key 20170512172148_MCT205C47) 1999; 96 Flowers ( key 20170512172148_MCT205C42) 2008; 179 Traw ( key 20170512172148_MCT205C142) 2003; 133 Boughalleb ( key 20170512172148_MCT205C20) 2009; 31 Krebs ( key 20170512172148_MCT205C72) 2010; 107 Guimil ( key 20170512172148_MCT205C57) 2007; 58 Shabala ( key 20170512172148_MCT205C129) 2011; 2 Mathur ( key 20170512172148_MCT205C88) 2000; 12 Eshel ( key 20170512172148_MCT205C39) 2010 Thomas ( key 20170512172148_MCT205C160) 1998; 102 Kobayashi ( key 20170512172148_MCT205C70) 2010; 29 Maughan ( key 20170512172148_MCT205C89) 2009; 52 Munns ( key 20170512172148_MCT205C92) 2008; 59 Khan ( key 20170512172148_MCT205C69) 2009; 129 Shabala ( key 20170512172148_MCT205C126) 2012 Thomson ( key 20170512172148_MCT205C140) 1988 Rodriguez-Rosales ( key 20170512172148_MCT205C119) 2008; 179 Lacombe ( key 20170512172148_MCT205C73) 2000; 466 Vera-Estrella ( key 20170512172148_MCT205C145) 1999; 207 Jordan ( key 20170512172148_MCT205C66) 2009; 149 Rozema ( key 20170512172148_MCT205C120) 1981; 30 Karimi ( key 20170512172148_MCT205C67) 2005; 49 O'Leary ( key 20170512172148_MCT205C96) 1985; 89 Hedrich ( key 20170512172148_MCT205C61) 1987; 329 Lutts ( key 20170512172148_MCT205C76) 2004; 33 Adolf ( key 20170512172148_MCT205C2) 2012; 357 Pesch ( key 20170512172148_MCT205C104) 2009; 12 Naz ( key 20170512172148_MCT205C93) 2010; 48 Blume ( key 20170512172148_MCT205C15) 2012; 59 Sugimoto-Shirasu ( key 20170512172148_MCT205C139) 2003; 6 Demidchik ( key 20170512172148_MCT205C37) 2010; 123 Shabala ( key 20170512172148_MCT205C134) 2013; 170 Ueda ( key 20170512172148_MCT205C143) 2003; 116 Balnokin ( key 20170512172148_MCT205C10) 2005; 52 Chen ( key 20170512172148_MCT205C25) 2007; 145 Flowers ( key 20170512172148_MCT205C45) 1986; 61 Norman ( key 20170512172148_MCT205C159) 2008; 63 Shabala ( key 20170512172148_MCT205C133) 2012; 146 Marschner ( key 20170512172148_MCT205C85) 1995 Flowers ( key 20170512172148_MCT205C43) 1995; 22 Munns ( key 20170512172148_MCT205C91) 2002; 25 Redondo-Gomez ( key 20170512172148_MCT205C113) 2007; 100 Cuin ( key 20170512172148_MCT205C33) 2009; 36 MacRobbie ( key 20170512172148_MCT205C78) 1998; 353 Jacobsen ( key 20170512172148_MCT205C65) 2010; 39 Oh ( key 20170512172148_MCT205C95) 2010; 61 Shabala ( key 20170512172148_MCT205C127) 2008; 133 Flowers ( key 20170512172148_MCT205C41) 2004; 55 Pantoja ( key 20170512172148_MCT205C99) 1989; 255 Wegner ( key 20170512172148_MCT205C150) 1997; 115 Pilot ( key 20170512172148_MCT205C105) 2003; 51 Wang ( key 20170512172148_MCT205C148) 2001; 52 Glover ( key 20170512172148_MCT205C53) 2000; 51 Greenway ( key 20170512172148_MCT205C56) 1980; 31 Ishida ( key 20170512172148_MCT205C63) 2008; 59 Raven ( key 20170512172148_MCT205C111) 1985; 101 Delpire ( key 20170512172148_MCT205C36) 2002; 64 Shabala ( key 20170512172148_MCT205C131) 2007; 227 Wegner ( key 20170512172148_MCT205C151) 1994; 105 Epstein ( key 20170512172148_MCT205C38) 1980; 210 Vera-Estrella ( key 20170512172148_MCT205C146) 2005; 139 Asad ( key 20170512172148_MCT205C8) 2002; 33 Clipson ( key 20170512172148_MCT205C28) 1987; 105 Harling ( key 20170512172148_MCT205C60) 1997; 16 Barrett-Lennard ( key 20170512172148_MCT205C14) 2010; 37 Orsini ( key 20170512172148_MCT205C98) 2011; 38 Manousaki ( key 20170512172148_MCT205C82) 2011; 13 Shi ( key 20170512172148_MCT205C135) 2002; 14 De Boer ( key 20170512172148_MCT205C35) 2003; 26 Norman ( key 20170512172148_MCT205C94) 2013; 92 Chien ( key 20170512172148_MCT205C26) 1996; 111 Cuin ( key 20170512172148_MCT205C32) 2007; 30 Chaudhri ( key 20170512172148_MCT205C24) 1964; 21 Manousaki ( key 20170512172148_MCT205C80) 2009; 16 Bonales-Alatorre ( key 20170512172148_MCT205C17) 2013; 14 Maathuis ( key 20170512172148_MCT205C77) 1992; 43 Flowers ( key 20170512172148_MCT205C46) 2010; 37 Guo ( key 20170512172148_MCT205C58) 2006; 60 Wegner ( key 20170512172148_MCT205C152) 2011; 34 Balnokin ( key 20170512172148_MCT205C11) 2007; 54 Maricle ( key 20170512172148_MCT205C84) 2009; 184 Zhao ( key 20170512172148_MCT205C158) 1991; 135 Boyer ( key 20170512172148_MCT205C21) 1997; 114 Storey ( key 20170512172148_MCT205C138) 1995; 22 Ruan ( key 20170512172148_MCT205C121) 2010; 29 Zhao ( key 20170512172148_MCT205C157) 2007; 164 Ghnaya ( key 20170512172148_MCT205C48) 2005; 162 Perera ( key 20170512172148_MCT205C103) 1994; 17 Barkla ( key 20170512172148_MCT205C12) 1995; 109 Ayala ( key 20170512172148_MCT205C9) 1996; 47 Zhang ( key 20170512172148_MCT205C155) 2001; 19 Parks ( key 20170512172148_MCT205C100) 2002; 53 Ramadan ( key 20170512172148_MCT205C110) 2004; 219 Watson ( key 20170512172148_MCT205C149) 1993; 43 Flowers ( key 20170512172148_MCT205C44) 1977; 28 Riadh ( key 20170512172148_MCT205C117) 2010; 53 Valentine ( key 20170512172148_MCT205C144) 2012; 4 Serna ( key 20170512172148_MCT205C125) 2009; 31 Martinez ( key 20170512172148_MCT205C87) 2005; 56 Soliz ( key 20170512172148_MCT205C136) 2011; 140 Glenn ( key 20170512172148_MCT205C51) 1998; 38 Greenboim-Wainberg ( key 20170512172148_MCT205C55) 2005; 17 Churchman ( key 20170512172148_MCT205C27) 2006; 18 Apse ( key 20170512172148_MCT205C6) 1999; 285 Shabala ( key 20170512172148_MCT205C128) 2011; 57 Serna ( key 20170512172148_MCT205C124) 2000; 109 Repo-Carrasco ( key 20170512172148_MCT205C116) 2003; 19 Glenn ( key 20170512172148_MCT205C52) 1999; 18 Lun'kov ( key 20170512172148_MCT205C75) 2005; 52 Tominaga-Wada ( key 20170512172148_MCT205C141) 2011; 286 Hughes ( key 20170512172148_MCT205C62) 1999; 39 Bose ( key 20170512172148_MCT205C19) 2013 Shabala ( key 20170512172148_MCT205C130) 2000; 51 Marcum ( key 20170512172148_MCT205C83) 1992; 120 Kemp ( key 20170512172148_MCT205C68) 1981; 68 Larkin ( key 20170512172148_MCT205C74) 1996; 122 Pottosin ( key 20170512172148_MCT205C106) 1997; 12 Rengasamy ( key 20170512172148_MCT205C114) 2002; 42 Brown ( key 20170512172148_MCT205C22) 2008; 319 Yadav ( key 20170512172148_MCT205C153); 12 Zhang ( key 20170512172148_MCT205C156) 2001; 98 Very ( key 20170512172148_MCT205C147) 1998; 14 Flowers ( key 20170512172148_MCT205C40) 1985; 89 Blumwald ( key 20170512172148_MCT205C16) 1985; 78 Glenn ( key 20170512172148_MCT205C49) 1992; 40 Robinson ( key 20170512172148_MCT205C118) 1996 Colmenero-Flores ( key 20170512172148_MCT205C29) 2007; 50 Martin ( key 20170512172148_MCT205C86) 2007; 10 Storey ( key 20170512172148_MCT205C137) 1979; 63 Barrett-Lennard ( key 20170512172148_MCT205C13) 2002; 53 Anderson ( key 20170512172148_MCT205C5) 1977; 28 Perazza ( key 20170512172148_MCT205C102) 1998; 117 Schwab ( key 20170512172148_MCT205C122) 2003; 269 Malcolm ( key 20170512172148_MCT205C79) 1986; 5 Jacobsen ( key 20170512172148_MCT205C64) 2003; 19 Passardi ( key 20170512172148_MCT205C101) 2007; 164 Millar ( key 20170512172148_MCT205C90) 2012; 10 Qadir ( key 20170512172148_MCT205C108) 2008; 19 Grebe ( key 20170512172148_MCT205C54) 2012; 15 Amarasinghe ( key 20170512172148_MCT205C4) 1988; 98 Haas ( key 20170512172148_MCT205C59) 1989; 51 Glenn ( key 20170512172148_MCT205C50) 1997; 36 Ramadan ( key 20170512172148_MCT205C109) 1998; 139 |
References_xml | – volume: 129 start-page: 542 year: 2009 ident: key 20170512172148_MCT205C69 article-title: Panicum turgidum, a potentially sustainable cattle feed alternative to maize for saline areas publication-title: Agriculture Ecosystems and Environment doi: 10.1016/j.agee.2008.10.014 – volume: 285 start-page: 1256 year: 1999 ident: key 20170512172148_MCT205C6 article-title: Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis publication-title: Science doi: 10.1126/science.285.5431.1256 – volume: 34 start-page: 441 year: 1983 ident: key 20170512172148_MCT205C154 article-title: The biology of stomatal guard cells publication-title: Annual Review of Plant Physiology doi: 10.1146/annurev.pp.34.060183.002301 – volume: 255 start-page: 92 year: 1989 ident: key 20170512172148_MCT205C99 article-title: Ion channels in vacuoles from halophytes and glycophytes publication-title: FEBS Letters doi: 10.1016/0014-5793(89)81067-1 – volume: 10 start-page: 70 year: 2007 ident: key 20170512172148_MCT205C86 article-title: Functional aspects of cell patterning in aerial epidermis publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2006.11.004 – volume: 170 start-page: 906 year: 2013 ident: key 20170512172148_MCT205C134 article-title: Genotypic difference in salinity tolerance in quinoa (Chenopodium quinoa) is determined by differential control of xylem Na+ loading and stomatal density publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2013.01.014 – volume: 51 start-page: 1243 year: 2000 ident: key 20170512172148_MCT205C130 article-title: Ion-specific mechanisms of osmoregulation in bean mesophyll cells publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/51.348.1243 – volume: 181 start-page: 55 year: 2001 ident: key 20170512172148_MCT205C107 article-title: Conduction of monovalent and divalent cations in the slow vacuolar channel publication-title: Journal of Membrane Biology doi: 10.1007/s0023200100073 – volume: 51 start-page: 497 year: 2000 ident: key 20170512172148_MCT205C53 article-title: Differentiation in plant epidermal cells publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/51.344.497 – volume: 12 start-page: 465 year: 2000 ident: key 20170512172148_MCT205C88 article-title: Microtubule stabilization leads to growth reorientation in Arabidopsis trichomes publication-title: The Plant Cell doi: 10.1105/tpc.12.4.465 – volume: 115 start-page: 1707 year: 1997 ident: key 20170512172148_MCT205C150 article-title: Properties of two outward-rectifying channels in root xylem parenchyma cells suggest a role in K+ homeostasis and long-distance signaling publication-title: Plant Physiology doi: 10.1104/pp.115.4.1707 – volume: 145 start-page: 1714 year: 2007 ident: key 20170512172148_MCT205C25 article-title: Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley publication-title: Plant Physiology doi: 10.1104/pp.107.110262 – volume: 14 start-page: 465 year: 2002 ident: key 20170512172148_MCT205C135 article-title: The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants publication-title: The Plant Cell doi: 10.1105/tpc.010371 – volume: 98 start-page: 12832 year: 2001 ident: key 20170512172148_MCT205C156 article-title: Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.231476498 – volume: 319 start-page: 580 year: 2008 ident: key 20170512172148_MCT205C22 article-title: Climate – food security under climate change publication-title: Science doi: 10.1126/science.1154102 – volume: 61 start-page: 313 year: 1986 ident: key 20170512172148_MCT205C45 article-title: Halophytes publication-title: Quarterly Review of Biology doi: 10.1086/415032 – volume: 12 start-page: 1387 year: 1997 ident: key 20170512172148_MCT205C106 article-title: Slowly activating vacuolar channels cannot mediate Ca2+-induced Ca2+ release publication-title: The Plant Journal doi: 10.1046/j.1365-313x.1997.12061387.x – volume: 4 start-page: 1 year: 2012 ident: key 20170512172148_MCT205C144 article-title: Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production publication-title: Global Change Biology Bioenergy doi: 10.1111/j.1757-1707.2011.01111.x – volume: 50 start-page: 278 year: 2007 ident: key 20170512172148_MCT205C29 article-title: Identification and functional characterization of cation–chloride cotransporters in plants publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2007.03048.x – volume: 54 start-page: 797 year: 2007 ident: key 20170512172148_MCT205C11 article-title: Pinocytosis in the root cells of a salt-accumulating halophyte Suaeda altissima and its possible involvement in chloride transport publication-title: Russian Journal of Plant Physiology doi: 10.1134/S102144370706012X – volume: 54 start-page: 102 year: 2013 ident: key 20170512172148_MCT205C3 article-title: Bioengineering for salinity tolerance in plants: state of the art publication-title: Molecular Biotechnology doi: 10.1007/s12033-012-9538-3 – volume: 21 start-page: 1 year: 1964 ident: key 20170512172148_MCT205C24 article-title: Investigations on the role of Suaeda fruticose Forsk in the reclamation of saline and alkaline soils in West Pakistan plains publication-title: Plant and Soil doi: 10.1007/BF01373866 – volume: 53 start-page: 213 year: 2002 ident: key 20170512172148_MCT205C13 article-title: Restoration of saline land through revegetation publication-title: Agricultural Water Management doi: 10.1016/S0378-3774(01)00166-4 – volume: 17 start-page: 92 year: 2005 ident: key 20170512172148_MCT205C55 article-title: Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling publication-title: The Plant Cell doi: 10.1105/tpc.104.028472 – volume: 51 start-page: 773 year: 2003 ident: key 20170512172148_MCT205C105 article-title: Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant publication-title: Plant Molecular Biology doi: 10.1023/A:1022597102282 – volume: 59 start-page: 651 year: 2008 ident: key 20170512172148_MCT205C92 article-title: Mechanisms of salinity tolerance publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.59.032607.092911 – volume: 28 start-page: 89 year: 1977 ident: key 20170512172148_MCT205C44 article-title: Mechanism of salt tolerance in halophytes publication-title: Annual Review of Plant Physiology and Plant Molecular Biology doi: 10.1146/annurev.pp.28.060177.000513 – volume: 15 start-page: 31 year: 2012 ident: key 20170512172148_MCT205C54 article-title: The patterning of epidermal hairs in Arabidopsis – updated publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2011.10.010 – start-page: 498 volume-title: Solute transport in plant cells and tissues year: 1988 ident: key 20170512172148_MCT205C140 article-title: Salt glands – volume: 12 start-page: 188 ident: key 20170512172148_MCT205C153 article-title: The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco publication-title: BMC Plant Biology doi: 10.1186/1471-2229-12-188 – volume: 50 start-page: 656 year: 2011 ident: key 20170512172148_MCT205C81 article-title: Halophytes present new opportunities in phytoremediation of heavy metals and saline soils publication-title: Industrial and Engineering Chemistry Research doi: 10.1021/ie100270x – volume: 52 start-page: 635 year: 2005 ident: key 20170512172148_MCT205C75 article-title: Functional identification of H+-ATPase and Na+/H+ antiporter in the plasma membrane isolated from the root cells of salt-accumulating halophyte Suaeda altissima publication-title: Russian Journal of Plant Physiology doi: 10.1007/s11183-005-0094-6 – volume: 210 start-page: 399 year: 1980 ident: key 20170512172148_MCT205C38 article-title: Saline culture of crops – a genetic approach publication-title: Science doi: 10.1126/science.210.4468.399 – volume: 28 start-page: 894 year: 1977 ident: key 20170512172148_MCT205C5 article-title: Electrophysiological measurements on root of Atriplex hastata publication-title: Journal of Experimental Botany doi: 10.1093/jxb/28.4.894 – volume: 105 start-page: 359 year: 1987 ident: key 20170512172148_MCT205C28 article-title: Salt tolerance in the halophyte Suaeda maritima (L) Dum – the effect of salinity on the concentration of sodium in the xylem publication-title: New Phytologist doi: 10.1111/j.1469-8137.1987.tb00873.x – volume: 186 start-page: 669 year: 2010 ident: key 20170512172148_MCT205C31 article-title: Na+/H+ antiporters are differentially regulated in response to NaCl stress in leaves and roots of Mesembryanthemum crystallinum publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03208.x – volume: 302 start-page: 79 year: 2008 ident: key 20170512172148_MCT205C71 article-title: Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd publication-title: Plant and Soil doi: 10.1007/s11104-007-9457-4 – volume: 53 start-page: 117 year: 2010 ident: key 20170512172148_MCT205C117 article-title: Responses of halophytes to environmental stresses with special emphasis to salinity publication-title: Advances in Botanical Research doi: 10.1016/S0065-2296(10)53004-0 – volume: 89 start-page: 41 year: 1985 ident: key 20170512172148_MCT205C40 article-title: Physiology of halophytes publication-title: Plant and Soil doi: 10.1007/BF02182232 – volume: 135 start-page: 303 year: 1991 ident: key 20170512172148_MCT205C158 article-title: Desalinization of saline soils by Suaeda salsa publication-title: Plant and Soil doi: 10.1007/BF00010921 – volume: 138 start-page: 171 year: 1998 ident: key 20170512172148_MCT205C1 article-title: Growth and development of Mesembryanthemum crystallinum (Aizoaceae) publication-title: New Phytologist doi: 10.1046/j.1469-8137.1998.00111.x – volume: 33 start-page: 1271 year: 2004 ident: key 20170512172148_MCT205C76 article-title: Heavy metal accumulation by the halophyte species Mediterranean saltbush publication-title: Journal of Environmental Quality doi: 10.2134/jeq2004.1271 – volume: 139 start-page: 273 year: 1998 ident: key 20170512172148_MCT205C109 article-title: Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella publication-title: New Phytologist doi: 10.1046/j.1469-8137.1998.00159.x – volume: 29 start-page: 329 year: 2010 ident: key 20170512172148_MCT205C121 article-title: Halophyte improvement for a salinized world publication-title: Critical Reviews in Plant Sciences doi: 10.1080/07352689.2010.524517 – volume: 61 start-page: 1205 year: 2010 ident: key 20170512172148_MCT205C95 article-title: Intracellular consequences of SOS1 deficiency during salt stress publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erp391 – volume: 149 start-page: 899 year: 2009 ident: key 20170512172148_MCT205C66 article-title: Consumptive water use and stomatal conductance of Atriplex lentiformis irrigated with industrial brine in a desert irrigation district publication-title: Agricultural and Forest Meteorology doi: 10.1016/j.agrformet.2008.11.010 – volume: 101 start-page: 25 year: 1985 ident: key 20170512172148_MCT205C111 article-title: Regulation of pH and generation of osmolarity in vascular plants – a cost–benefit analysis in relation to efficiency of use of energy, nitrogen and water publication-title: New Phytologist doi: 10.1111/j.1469-8137.1985.tb02816.x – volume: 105 start-page: 799 year: 1994 ident: key 20170512172148_MCT205C151 article-title: Ion channels in the xylem parenchyma of barley roots – a procedure to isolate protoplasts from this tissue and a patch-clamp exploration of salt passageways into xylem vessels publication-title: Plant Physiology doi: 10.1104/pp.105.3.799 – volume: 36 start-page: 1110 year: 2009 ident: key 20170512172148_MCT205C33 article-title: Ionic relations and osmotic adjustment in durum and bread wheat under saline conditions publication-title: Functional Plant Biology doi: 10.1071/FP09051 – volume: 100 start-page: 555 year: 2007 ident: key 20170512172148_MCT205C113 article-title: Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides publication-title: Annals of Botany doi: 10.1093/aob/mcm119 – volume: 18 start-page: 3145 year: 2006 ident: key 20170512172148_MCT205C27 article-title: SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana publication-title: The Plant Cell doi: 10.1105/tpc.106.044834 – volume: 58 start-page: 3829 year: 2007 ident: key 20170512172148_MCT205C57 article-title: Cell growth and differentiation in Arabidopsis epidermal cells publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erm253 – volume: 63 start-page: 179 year: 2008 ident: key 20170512172148_MCT205C159 article-title: Effect of supplementation with grain, hay or straw on the performance of weaner Merino sheep grazing old man (Atriplex nummularia) or river (Atriplex amnicola) saltbush publication-title: Grass and Forage Science doi: 10.1111/j.1365-2494.2007.00623.x – volume: 111 start-page: 1321 year: 1996 ident: key 20170512172148_MCT205C26 article-title: Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L) Heynh publication-title: Plant Physiology doi: 10.1104/pp.111.4.1321 – start-page: 362 year: 2010 ident: key 20170512172148_MCT205C39 article-title: Biomass production by desert halophytes: alleviating the pressure on food production publication-title: Recent advances in energy and environment – volume: 42 start-page: 351 year: 2002 ident: key 20170512172148_MCT205C114 article-title: Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview publication-title: Australian Journal of Experimental Agriculture doi: 10.1071/EA01111 – volume: 57 start-page: 1017 year: 2006 ident: key 20170512172148_MCT205C115 article-title: World salinization with emphasis on Australia publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erj108 – volume: 30 start-page: 875 year: 2007 ident: key 20170512172148_MCT205C32 article-title: Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.2007.01674.x – volume: 179 start-page: 945 year: 2008 ident: key 20170512172148_MCT205C42 article-title: Salinity tolerance in halophytes publication-title: New Phytologist doi: 10.1111/j.1469-8137.2008.02531.x – volume: 19 start-page: 765 year: 2001 ident: key 20170512172148_MCT205C155 article-title: Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit publication-title: Nature Biotechnology doi: 10.1038/90824 – volume: 581 start-page: 2247 year: 2007 ident: key 20170512172148_MCT205C7 article-title: Na+ transport in plants publication-title: FEBS Letters doi: 10.1016/j.febslet.2007.04.014 – volume: 14 start-page: 509 year: 1998 ident: key 20170512172148_MCT205C147 article-title: Guard cell cation channels are involved in Na+-induced stomatal closure in a halophyte publication-title: The Plant Journal doi: 10.1046/j.1365-313X.1998.00147.x – volume: 162 start-page: 1133 year: 2005 ident: key 20170512172148_MCT205C48 article-title: Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2004.11.011 – volume: 39 start-page: 223 year: 2010 ident: key 20170512172148_MCT205C65 article-title: Weed harrowing and inter-row hoeing in organic grown quinoa (Chenopodium quinoa Willd.) publication-title: Outlook on Agriculture doi: 10.5367/oa.2010.0001 – volume: 59 start-page: 365 year: 2008 ident: key 20170512172148_MCT205C63 article-title: A genetic regulatory network in the development of trichomes and root hairs publication-title: Annual Review of Plant Biology doi: 10.1146/annurev.arplant.59.032607.092949 – volume: 61 start-page: 839 year: 2010 ident: key 20170512172148_MCT205C132 article-title: Xylem ionic relations and salinity tolerance in barley publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2009.04110.x – volume: 139 start-page: 1507 year: 2005 ident: key 20170512172148_MCT205C146 article-title: Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance publication-title: Plant Physiology doi: 10.1104/pp.105.067850 – volume: 227 start-page: 189 year: 2007 ident: key 20170512172148_MCT205C131 article-title: Expression of animal CED-9 anti-apoptotic gene in tobacco modifies plasma membrane ion fluxes in response to salinity and oxidative stress publication-title: Planta doi: 10.1007/s00425-007-0606-z – volume: 26 start-page: 87 year: 2003 ident: key 20170512172148_MCT205C35 article-title: Logistics of water and salt transport through the plant: structure and functioning of the xylem publication-title: Plant, Cell and Environment doi: 10.1046/j.1365-3040.2003.00930.x – volume: 2 start-page: 407 year: 2011 ident: key 20170512172148_MCT205C129 article-title: Ion transport and osmotic adjustment in plants and bacteria publication-title: BioMolecular Concepts doi: 10.1515/BMC.2011.032 – volume: 30 start-page: 309 year: 1981 ident: key 20170512172148_MCT205C120 article-title: Sodium concentration in xylem sap in relation to ion exclusion, accumulation and secretion in halophytes publication-title: Acta Botanica Neerlandica doi: 10.1111/j.1438-8677.1981.tb00411.x – volume: 164 start-page: 1377 year: 2007 ident: key 20170512172148_MCT205C157 article-title: Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2007.04.001 – volume: 12 start-page: 587 year: 2009 ident: key 20170512172148_MCT205C104 article-title: One, two, three … models for trichome patterning in Arabidopsis? publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2009.07.015 – volume: 269 start-page: 350 year: 2003 ident: key 20170512172148_MCT205C122 article-title: Regulation of cell expansion by the DISTORTED genes in Arabidopsis thaliana: actin controls the spatial organization of microtubules publication-title: Molecular Genetics and Genomics doi: 10.1007/s00438-003-0843-1 – volume: 63 start-page: 156 year: 1979 ident: key 20170512172148_MCT205C137 article-title: Responses of Atriplex spongiosa and Suaeda monoica to salinity publication-title: Plant Physiology doi: 10.1104/pp.63.1.156 – volume: 38 start-page: 818 year: 2011 ident: key 20170512172148_MCT205C98 article-title: Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism publication-title: Functional Plant Biology doi: 10.1071/FP11088 – volume: 57 start-page: 151 year: 2011 ident: key 20170512172148_MCT205C128 article-title: Ion transport in halophytes publication-title: Advances in Botanical Research doi: 10.1016/B978-0-12-387692-8.00005-9 – volume: 107 start-page: 3251 year: 2010 ident: key 20170512172148_MCT205C72 article-title: Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.0913035107 – volume: 140 start-page: 473 year: 2011 ident: key 20170512172148_MCT205C136 article-title: Water consumption, irrigation efficiency and nutritional value of Atriplex lentiformis grown on reverse osmosis brine in a desert irrigation district publication-title: Agriculture Ecosystems and Environment doi: 10.1016/j.agee.2011.01.012 – volume: 60 start-page: 41 year: 2006 ident: key 20170512172148_MCT205C58 article-title: Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis publication-title: Plant Molecular Biology doi: 10.1007/s11103-005-2417-6 – volume-title: Sodium-induced stomatal closure in the maritime halophyte year: 1996 ident: key 20170512172148_MCT205C118 – volume: 114 start-page: 280 year: 1997 ident: key 20170512172148_MCT205C123 article-title: Stomata pattern in Arabidopsis is modulated by ethylene publication-title: Plant Physiology – volume: 31 start-page: 463 year: 2009 ident: key 20170512172148_MCT205C20 article-title: Photosystem II photochemistry and physiological parameters of three fodder shrubs, Nitraria retusa, Atriplex halimus and Medicago arborea under salt stress publication-title: Acta Physiologiae Plantarum doi: 10.1007/s11738-008-0254-3 – volume: 34 start-page: 859 year: 2011 ident: key 20170512172148_MCT205C152 article-title: Sequential depolarization of root cortical and stelar cells induced by an acute salt shock – implications for Na+ and K+ transport into xylem vessels publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.2011.02291.x – volume: 37 start-page: 604 year: 2010 ident: key 20170512172148_MCT205C46 article-title: Evolution of halophytes: multiple origins of salt tolerance in land plants publication-title: Functional Plant Biology doi: 10.1071/FP09269 – volume: 109 start-page: 549 year: 1995 ident: key 20170512172148_MCT205C12 article-title: Tonoplast Na+/H+ antiport activity and its energization by the vacuolar H+-ATPase in the halophytic plant Mesembryanthemum crystallinum L publication-title: Plant Physiology doi: 10.1104/pp.109.2.549 – volume: 117 start-page: 375 year: 1998 ident: key 20170512172148_MCT205C102 article-title: Gibberellins promote trichome formation by up-regulating GLABROUS1 in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.117.2.375 – volume: 38 start-page: 45 year: 1998 ident: key 20170512172148_MCT205C51 article-title: Water use, productivity and forage quality of the halophyte Atriplex nummularia grown on saline waste water in a desert environment publication-title: Journal of Arid Environments doi: 10.1006/jare.1997.0320 – volume: 92 start-page: 96 year: 2013 ident: key 20170512172148_MCT205C94 article-title: Halophytes as forages in saline landscapes: interactions between plant genotype and environment change their feeding value to ruminants publication-title: Environmental and Experimental Botany doi: 10.1016/j.envexpbot.2012.07.003 – volume: 219 start-page: 639 year: 2004 ident: key 20170512172148_MCT205C110 article-title: Effects of salinity and benzyl adenine on development and function of microhairs of Zea mays L publication-title: Planta doi: 10.1007/s00425-004-1269-7 – volume: 43 start-page: 1219 year: 1992 ident: key 20170512172148_MCT205C77 article-title: Sodium-chloride compartmentation in leaf vacuoles of the halophyte Suaeda maritima (L) dum and its relation to tonoplast permeability publication-title: Journal of Experimental Botany doi: 10.1093/jxb/43.9.1219 – volume: 22 start-page: 101 year: 1995 ident: key 20170512172148_MCT205C138 article-title: Salt tolerance, ion relations and the effect of root medium on the response of citrus to salinity publication-title: Australian Journal of Plant Physiology doi: 10.1071/PP9950101 – volume: 47 start-page: 25 year: 1996 ident: key 20170512172148_MCT205C9 article-title: Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr. in response to NaCl publication-title: Journal of Experimental Botany doi: 10.1093/jxb/47.1.25 – volume: 51 start-page: 443 year: 1989 ident: key 20170512172148_MCT205C59 article-title: Properties and diversity of (Na–K–Cl) cotransporters publication-title: Annual Review of Physiology doi: 10.1146/annurev.ph.51.030189.002303 – volume: 34 start-page: 11 year: 2006 ident: key 20170512172148_MCT205C97 article-title: Differences in salinity tolerance for growth and water-use efficiency in some amaranth (Amaranthus spp.) genotypes publication-title: New Zealand Journal of Crop and Horticultural Science doi: 10.1080/01140671.2006.9514382 – volume: 39 start-page: 157 year: 1999 ident: key 20170512172148_MCT205C62 article-title: Potassium is a critical regulator of apoptotic enzymes in vitro and in vivo publication-title: Advances in Enzyme Regulation doi: 10.1016/S0065-2571(98)00010-7 – volume: 36 start-page: 711 year: 1997 ident: key 20170512172148_MCT205C50 article-title: Water requirements for cultivating Salicornia bigelovii Torr. with seawater on sand in a coastal desert environment publication-title: Journal of Arid Environments doi: 10.1006/jare.1997.0253 – volume: 162 start-page: 940 year: 2013 ident: key 20170512172148_MCT205C18 article-title: Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa publication-title: Plant Physiology doi: 10.1104/pp.113.216572 – volume: 64 start-page: 803 year: 2002 ident: key 20170512172148_MCT205C36 article-title: Human and murine phenotypes associated with defects in cation–chloride cotransport publication-title: Annual Review of Physiology doi: 10.1146/annurev.physiol.64.081501.155847 – volume: 48 start-page: 446 year: 2010 ident: key 20170512172148_MCT205C93 article-title: Relationships between gas-exchange characteristics and stomatal structural modifications in some desert grasses under high salinity publication-title: Photosynthetica doi: 10.1007/s11099-010-0059-7 – volume: 16 start-page: 5855 year: 1997 ident: key 20170512172148_MCT205C60 article-title: A plant cation–chloride co-transporter promoting auxin-independent tobacco protoplast division publication-title: EMBO Journal doi: 10.1093/emboj/16.19.5855 – volume: 109 start-page: 351 year: 2000 ident: key 20170512172148_MCT205C124 article-title: Stomatal development and patterning in Arabidopsis leaves publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.2000.100317.x – volume: 52 start-page: 779 year: 2005 ident: key 20170512172148_MCT205C10 article-title: Significance of Na+ and K+ for sustained hydration of organ tissues in ecologically distinct halophytes of the family Chenopodiaceae publication-title: Russian Journal of Plant Physiology doi: 10.1007/s11183-005-0115-5 – volume: 19 start-page: 139 year: 2003 ident: key 20170512172148_MCT205C64 article-title: The global potential for quinoa and other Andean crops publication-title: Food Reviews International doi: 10.1081/FRI-120018880 – volume: 98 start-page: 303 year: 1988 ident: key 20170512172148_MCT205C4 article-title: Comparative ultrastructure of microhairs in grasses publication-title: Botanical Journal of the Linnean Society doi: 10.1111/j.1095-8339.1988.tb01705.x – volume: 37 year: 2010 ident: key 20170512172148_MCT205C14 article-title: Developing saline agriculture: moving from traits and genes to systems publication-title: Functional Plant Biology doi: 10.1071/FPv37n7_FO – volume: 16 start-page: 844 year: 2009 ident: key 20170512172148_MCT205C80 article-title: Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-009-0224-3 – volume: 43 start-page: 255 year: 1993 ident: key 20170512172148_MCT205C149 article-title: Performance of Atriplex species in the San Joaquin valley, California, under irrigation and with mechanical harvests publication-title: Agriculture Ecosystems and Environment doi: 10.1016/0167-8809(93)90090-C – volume: 6 start-page: 544 year: 2003 ident: key 20170512172148_MCT205C139 article-title: ‘Big it up’: endoreduplication and cell-size control in plants publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2003.09.009 – volume: 50 start-page: 873 year: 1999 ident: key 20170512172148_MCT205C23 article-title: Selectivity of the fast activating vacuolar cation channel publication-title: Journal of Experimental Botany – volume: 33 start-page: 973 year: 2002 ident: key 20170512172148_MCT205C8 article-title: Growing Atriplex and Maireana species in saline sodic and waterlogged soils publication-title: Communications in Soil Science and Plant Analysis doi: 10.1081/CSS-120003078 – volume: 89 start-page: 311 year: 1985 ident: key 20170512172148_MCT205C96 article-title: Agricultural production of halophytes irrigated with seawater publication-title: Plant and Soil doi: 10.1007/BF02182250 – volume: 52 start-page: 647 year: 2009 ident: key 20170512172148_MCT205C89 article-title: Characterization of Salt Overly Sensitive 1 (SOS 1) gene homoeologs in quinoa (Chenopodium quinoa Wilid.) publication-title: Genome doi: 10.1139/G09-041 – volume: 466 start-page: 351 year: 2000 ident: key 20170512172148_MCT205C73 article-title: pH control of the plant outwardly-rectifying potassium channel SKOR publication-title: FEBS Letters doi: 10.1016/S0014-5793(00)01093-0 – volume: 45 start-page: 1425 year: 2005 ident: key 20170512172148_MCT205C30 article-title: Improving salt tolerance of wheat and barley: future prospects publication-title: Australian Journal of Experimental Agriculture doi: 10.1071/EA04162 – volume: 31 start-page: 865 year: 2009 ident: key 20170512172148_MCT205C125 article-title: Cell fate transitions during stomatal development publication-title: Bioessays doi: 10.1002/bies.200800231 – volume: 114 start-page: 185 year: 1997 ident: key 20170512172148_MCT205C21 article-title: CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials publication-title: Plant Physiology doi: 10.1104/pp.114.1.185 – volume: 5 start-page: 343 year: 1986 ident: key 20170512172148_MCT205C79 article-title: Production from salt affected soils publication-title: Reclamation and Revegetation Research – volume-title: Mineral nutrition of higher plants year: 1995 ident: key 20170512172148_MCT205C85 – volume: 123 start-page: 1468 year: 2010 ident: key 20170512172148_MCT205C37 article-title: Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death publication-title: Journal of Cell Science doi: 10.1242/jcs.064352 – volume: 17 start-page: 335 year: 1994 ident: key 20170512172148_MCT205C103 article-title: Stomatal responses to sodium-ions in Aster tripolium – a new hypothesis to explain salinity regulation in aboveground tissues publication-title: Plant, Cell and Environment doi: 10.1111/j.1365-3040.1994.tb00300.x – volume: 19 start-page: 179 year: 2003 ident: key 20170512172148_MCT205C116 article-title: Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kaniwa (Chenopodium pallidicaule) publication-title: Food Reviews International doi: 10.1081/FRI-120018884 – volume: 329 start-page: 833 year: 1987 ident: key 20170512172148_MCT205C61 article-title: Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles publication-title: Nature doi: 10.1038/329833a0 – year: 2013 ident: key 20170512172148_MCT205C19 article-title: Kinetics of xylem loading, membrane potential maintenance, and sensitivity of K+-permeable channels to ROS: physiological traits that differentiate salinity tolerance between pea and barley publication-title: Plant, Cell and Environment – volume: 37 start-page: 656 year: 2010 ident: key 20170512172148_MCT205C34 article-title: Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium publication-title: Functional Plant Biology doi: 10.1071/FP09229 – volume: 14 start-page: 9267 year: 2013 ident: key 20170512172148_MCT205C17 article-title: Plasma and vacuolar membrane transporters conferring genotypic difference in salinity tolerance in a halophyte species, Chenopodium quinoa publication-title: International Journal of Molecular Science doi: 10.3390/ijms14059267 – volume: 286 start-page: 67 year: 2011 ident: key 20170512172148_MCT205C141 article-title: New insights into the mechanism of development of arabidopsis root hairs and trichomes publication-title: International Review of Cell and Molecular Biology doi: 10.1016/B978-0-12-385859-7.00002-1 – volume: 49 start-page: 301 year: 2005 ident: key 20170512172148_MCT205C67 article-title: The effects of NaCl on growth, water relations, osmolytes and ion content in Kochia prostrata publication-title: Biologia Plantarum doi: 10.1007/s10535-005-1304-y – volume: 19 start-page: 429 year: 2008 ident: key 20170512172148_MCT205C108 article-title: Productivity enhancement of salt-affected environments through crop diversification publication-title: Land Degradation and Development doi: 10.1002/ldr.853 – volume: 44 start-page: 157 year: 1993 ident: key 20170512172148_MCT205C112 article-title: Vacuolar H+-translocating pyrophosphatase publication-title: Annual Review of Plant Physiology and Plant Molecular Biology doi: 10.1146/annurev.pp.44.060193.001105 – volume: 133 start-page: 1367 year: 2003 ident: key 20170512172148_MCT205C142 article-title: Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.103.027086 – volume: 96 start-page: 1480 year: 1999 ident: key 20170512172148_MCT205C47 article-title: The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.96.4.1480 – volume: 122 start-page: 997 year: 1996 ident: key 20170512172148_MCT205C74 article-title: The control of trichome spacing and number in Arabidopsis publication-title: Development doi: 10.1242/dev.122.3.997 – volume: 25 start-page: 239 year: 2002 ident: key 20170512172148_MCT205C91 article-title: Comparative physiology of salt and water stress publication-title: Plant, Cell and Environment doi: 10.1046/j.0016-8025.2001.00808.x – volume: 207 start-page: 426 year: 1999 ident: key 20170512172148_MCT205C145 article-title: Salt stress in Mesembryanthemum crystallinum L cell suspensions activates adaptive mechanisms similar to those observed in the whole plant publication-title: Planta doi: 10.1007/s004250050501 – volume: 353 start-page: 1475 year: 1998 ident: key 20170512172148_MCT205C78 article-title: Signal transduction and ion channels in guard cells publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences doi: 10.1098/rstb.1998.0303 – volume: 133 start-page: 651 year: 2008 ident: key 20170512172148_MCT205C127 article-title: Potassium transport and plant salt tolerance publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.2007.01008.x – volume: 78 start-page: 163 year: 1985 ident: key 20170512172148_MCT205C16 article-title: Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris publication-title: Plant Physiology doi: 10.1104/pp.78.1.163 – volume: 68 start-page: 507 year: 1981 ident: key 20170512172148_MCT205C68 article-title: Light, temperature and salinity effects on growth, leaf anatomy and photosynthesis of Distichlis spicata (L) greene publication-title: American Journal of Botany doi: 10.2307/2443026 – volume-title: Plant stress physiology year: 2012 ident: key 20170512172148_MCT205C126 doi: 10.1079/9781845939953.0000 – volume: 55 start-page: 307 year: 2004 ident: key 20170512172148_MCT205C41 article-title: Improving crop salt tolerance publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erh003 – volume: 357 start-page: 117 year: 2012 ident: key 20170512172148_MCT205C2 article-title: Varietal differences of quinoa's tolerance to saline conditions publication-title: Plant and Soil doi: 10.1007/s11104-012-1133-7 – volume: 40 start-page: 21 year: 1992 ident: key 20170512172148_MCT205C49 article-title: Salicornia bigelovii Torr – a seawater-irrigated forage for goats publication-title: Animal Feed Science and Technology doi: 10.1016/0377-8401(92)90109-J – volume: 56 start-page: 2421 year: 2005 ident: key 20170512172148_MCT205C87 article-title: NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L publication-title: Journal of Experimental Botany doi: 10.1093/jxb/eri235 – volume: 52 start-page: 2355 year: 2001 ident: key 20170512172148_MCT205C148 article-title: Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/52.365.2355 – volume: 31 start-page: 149 year: 1980 ident: key 20170512172148_MCT205C56 article-title: Mechanisms of salt tolerance in non-halophytes publication-title: Annual Review of Plant Physiology doi: 10.1146/annurev.pp.31.060180.001053 – volume: 13 start-page: 959 year: 2011 ident: key 20170512172148_MCT205C82 article-title: Halophytes – an emerging trend in phytoremediation publication-title: International Journal of Phytoremediation doi: 10.1080/15226514.2010.532241 – volume: 184 start-page: 216 year: 2009 ident: key 20170512172148_MCT205C84 article-title: Diversity in leaf anatomy, and stomatal distribution and conductance, between salt marsh and freshwater species in the C-4 genus Spartina (Poaceae) publication-title: New Phytologist doi: 10.1111/j.1469-8137.2009.02903.x – volume: 29 start-page: 506 year: 2010 ident: key 20170512172148_MCT205C70 article-title: Exogenous methyl jasmonate alters trichome density on leaf surfaces of Rhodes Grass (Chloris gayana Kunth) publication-title: Journal of Plant Growth Regulation doi: 10.1007/s00344-010-9161-0 – volume: 116 start-page: 65 year: 2003 ident: key 20170512172148_MCT205C143 article-title: Photosynthetic limitations of a halophyte sea aster (Aster tripolium L) under water stress and NaCl stress publication-title: Journal of Plant Research doi: 10.1007/s10265-002-0070-6 – volume: 10 start-page: 25 year: 2012 ident: key 20170512172148_MCT205C90 article-title: Changes in Australian agriculture and land use: implications for future food security publication-title: International Journal of Agricultural Sustainability doi: 10.1080/14735903.2012.646731 – volume: 53 start-page: 1055 year: 2002 ident: key 20170512172148_MCT205C100 article-title: Increased vacuolar Na+/H+ exchange activity in Salicornia bigelovii Torr. in response to NaCl publication-title: Journal of Experimental Botany doi: 10.1093/jexbot/53.371.1055 – volume: 59 start-page: 515 year: 2012 ident: key 20170512172148_MCT205C15 article-title: Effects of phytohormones on the cytoskeleton of the plant cell publication-title: Russian Journal of Plant Physiology doi: 10.1134/S1021443712040036 – volume: 22 start-page: 875 year: 1995 ident: key 20170512172148_MCT205C43 article-title: Breeding for salinity resistance in crop plants: where next? publication-title: Australian Journal of Plant Physiology doi: 10.1071/PP9950875 – volume: 102 start-page: 360 year: 1998 ident: key 20170512172148_MCT205C160 article-title: Distinct responses to copper stress in the halophyte Mesembryanthemum crystallinum publication-title: Physiologia Plantarum doi: 10.1034/j.1399-3054.1998.1020304.x – volume: 18 start-page: 227 year: 1999 ident: key 20170512172148_MCT205C52 article-title: Salt tolerance and crop potential of halophytes publication-title: Critical Reviews in Plant Sciences doi: 10.1016/S0735-2689(99)00388-3 – volume: 120 start-page: 281 year: 1992 ident: key 20170512172148_MCT205C83 article-title: Salt tolerance of the coastal salt-marsh grass, Sporobolus virginicus (L) kunth publication-title: New Phytologist doi: 10.1111/j.1469-8137.1992.tb05665.x – volume: 179 start-page: 366 year: 2008 ident: key 20170512172148_MCT205C119 article-title: Overexpression of the tomato K+/H+ antiporter LeNHX2 confers salt tolerance by improving potassium compartmentalization publication-title: New Phytologist doi: 10.1111/j.1469-8137.2008.02461.x – volume: 164 start-page: 980 year: 2007 ident: key 20170512172148_MCT205C101 article-title: Morphological and physiological traits of three major Arabidopsis thaliana accessions publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2006.06.008 – volume: 146 start-page: 26 year: 2012 ident: key 20170512172148_MCT205C133 article-title: Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa) publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.2012.01599.x |
SSID | ssj0002691 |
Score | 2.5993276 |
SecondaryResourceType | review_article |
Snippet | • Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant... Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of... Background Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1209 |
SubjectTerms | abiotic stress Adaptation, Physiological crops Epidermal cells genes genetic variation Halophytes INVITED REVIEW metabolism physiology plant breeding Plant cells Plant physiology Plant Stomata Plant Stomata - physiology Plants potassium Quinoa Salinity Salt tolerance Salt-Tolerant Plants Salt-Tolerant Plants - physiology shoots sodium Sodium Chloride Sodium Chloride - metabolism stomata stress tolerance Stress, Physiological tonoplast Trichomes vacuoles Vacuoles - metabolism water use efficiency Xylem |
Title | Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops |
URI | https://www.jstor.org/stable/42801589 https://www.ncbi.nlm.nih.gov/pubmed/24085482 https://www.proquest.com/docview/1445914958 https://www.proquest.com/docview/1492623143 https://www.proquest.com/docview/1663587948 https://pubmed.ncbi.nlm.nih.gov/PMC3806534 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZg48AFjR9jZYCM4IJQttV26oTbQJsmVoYEregtsh1Hi1SSqfUO8NfzbMf5AdU0uFhV8mRF_tzn79nvfUbojd3aTxQwN-AeKmJay0gIoaJJKlIpUiXG2hY4f76YnM3Zp0W8CNe7N9UlRh6oXxvrSv4HVXgGuNoq2X9Atu0UHsBvwBdaQBjaW2E8DfsarkjkUixrGDTjs9zclkXr2WCxKr0a89oEcQhLO0u3p6DfCVnWVrq1KR0x9VKvXDGBTVNf1VfrPontRJdlbYIzcTKPQoqlY6PfbFHnz_6Wwpg2tXWd5wEnEHHq5cUPtPeMwMUie-o6cJ1j0psjvOcIbUlub1EdE18H_ZfD9mJWopbQ_lCGHMXdwhQO4y--ZKfz6TSbnSxmd9E2gYAAPNr28fnX7-ftqksm_nbE8OlBijalh9D7oe97QD58_ummyOLPBNke45jtoAdNqICPPe4P0R1dPUL3Prghf4zKAD624OMO_Pd4AD120GOAHnfQY1PjBnrcQI899LiFHpcVdtA_QfPTk9nHs6i5NyNSMSUmElQkOS8SmhcJRO85eG3OqeA6AX4prUgel4wVLOaS5oyTSR4DD5eEcKmJlJruoq2qrvQewoWUOSnyRMeCsyOgLlIJQXWqbKpdLOMRehsGNFONqLy922SZ-eQGmsHgZ37wR-h1a3vlpVQ2Wu06XFoTiI-BsibpCL0KQGXgAu25lqh0fb2G6JXFqY30k5tsrDAmhejgBhvLvhNYoKCfp34CtF_hlABZQkaID6ZGa2Bl2odvqvLSybVTm7tA2bNbfNs-ut_9H5-jLbO61i-A9Br5spnvvwEkPLXw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+from+halophytes%3A+physiological+basis+and+strategies+to+improve+abiotic+stress+tolerance+in+crops&rft.jtitle=Annals+of+botany&rft.au=Shabala%2C+Sergey&rft.date=2013-11-01&rft.issn=0305-7364&rft.eissn=1095-8290&rft.volume=112&rft.issue=7&rft.spage=1209&rft.epage=1221&rft_id=info:doi/10.1093%2Faob%2Fmct205&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-7364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-7364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-7364&client=summon |